A “Futurist” approach to dynamic environments

Jano van Hemert Clarissa Van Hoyweghen
Leiden University University of Antwerp
jvhemert@liacs.nl hoyweghe@ruca.ua.ac.be

Eduard Lukschandl Katja Verbeeck
Ericsson & Hewlett-Packard University of Brussels
eduard.lukschandl@ieee.org kaverbee@vub.ac.be

May 27, 2001

Abstract

The optimization of dynamic environments has proved to be a difficult
area for Evolutionary Algorithms. As standard haploid populations find
it difficult to track a moving target, different schemes have been suggested
to improve the situation. We study a novel approach by making use of a
meta learner which tries to predict the next state of the environment, i.e.
the next value of the goal the individuals have to achieve, by making use
of the accumulated knowledge from past performance.

1 Introduction

In this study we are interested in how Evolutionary Algorithms (EAs) behave in
dynamic environments. Most of the time, EAs are used in static environments,
where the fitness function does not vary over time. Of course, this is not what
happens in natural evolution. Most often, when standard EAs (using a haploid
representation) are tested they have difficulties tracking a moving target and
tend to get stuck in local optima or lag behind the moving optimum. In (Ryan
and Collins, 1999) a haploid system using Polygenic Inheritance is construc-
ted for use in dynamic environments. In this paper,we present an alternative
approach based on our definition of a dynamic or non-stationary environment.

In (Lewis et al., 1998) and (Ryan and Collins, 1999) the notion of non-
stationarity problems is discussed. Lewis changes the environment every 1500
generations, whereas Ryan, following (Goldberg and Smith, 1987), does so every
15 generations. We believe that the predictability and tractability of the dy-
namic environment are important. When we do not have any information about
what is going to happen, as is the case in a chaotic environment, we should not
expect the EA to adapt to new situations immediately.

Under the assumption that the environment is somehow predictable, we
propose to complement the EA with a meta learner which is responsible for

estimating the next state of the environment. Therefore the meta learner ana-
lyzes the pairs of generations and best values seen so far. The basic idea is to
have two evolutionary algorithms. The first EA, called the current evolutionary
algorithm will use the given fitness function, while the second EA, called the
future evolutionary algorithm uses a predicted fitness function which hopefully
matches the fitness function in a future time step.

The rest of the paper is structured as follows. In the next section the problem
solver is described in more detail. In Section 3 the two dynamic problems we
use as test cases are explained. In Section 4 experiments and results are shown.
And Section 5 discusses conclusions and future work.

2 Solving dynamic problems

In this section the use of a meta learner which predicts the future environment
changes is motivated and techniques that can be applied by the meta learner to
predict the future fitness are described.

2.1 The problem solver

The core of the problem solver consists of two steady state EAs which evolve
simultaneously and a meta learner that predicts the future environment. At
each generation ¢, the first EA tries to find good elements with respect to the
current fitness function, while the second EA tries the same for the future fitness
function predicted by the meta learner, e.g. the predicted fitness function at
generation t + A. The two EAs, respectively called the current evolutionary
algorithm and the future evolutionary algorithm, use the same selection and
reproduction operators. Every d steps, a set of individuals migrates from the
future population to the current population (see Figure 1). In this way, we
hope that the current population is prepared for changes that will occur in the
environment A generations later.

current future
population population

Figure 1: Migration of members of the future population into the current pop-
ulation

The migration step in the problem solver works as follows. First select the
m best individuals from the future population and copy them to the current
population. Then reevaluate the current population and resize it to its initial
size by removing the m worst individuals. Figure 1 shows the pseudo code of
the problem solver.

Algorithm 1 Pseudo code of the problem solver

for t = 0 to T-1
future_EA.do_one_generation();
if time_to_migrate(t, delta) then migrate(m);
current_EA.do_one_generation() ;
info = meta_learner.learn();
pred = metalearner.predict(t+delta, info);
future_EA.change_fitness(pred);

2.2 Using future predictions

If the solver knows the goal we have to achieve in the future it can start creating
solutions which will be useful later on. Hopefully this will improve the accuracy
of our solver. The idea is that our solver will evolve two populations of can-
didate solutions. First, a population that optimizes the problem of the current
situation. Second, a population that optimizes the problem in the future. Given
that we use a steady state EA that is optimizing a function, we need for our
second population a fitness function which matches the fitness function in the
future. Hence we need some kind of prediction to set our goal. The idea is to
create a fitness function that predicts the fitness of an individual in the future
using the knowledge of the problems that we have seen so far. More accurate,
by analyzing the pairs of generations and best values we hope to find a function
that predicts the future best value.

2.3 Mining the past

When the steady state EA is running we record the best individual for each gener-
ation. These individuals will be used to make predictions later. There are many
ways of creating a predictor, for example we can use genetic programming, lin-
ear regression, neural networks, Fourier transformations and Walsh coefficients.
Here we take a different approach and test our solver using a perfect predictor
and a noisy predictor. Both will be discussed in Section 4.

f(x,t)

- _

~
N

\
\

T
|
I
T |
: : use predictor for
| , future population
| | v~
1 I
I
I
|

|
I
0/ t t+A maxgen

/
Il !
N regress fitness predictor
~ . 3
~ » acquire fitness values ~ - _ _ _ _ 1

Figure 2: The general idea of regressing a predicting fitness function to be used
in another population that should prepare for the future

3 Two dynamic problems

The problem solver is tested on two different types of dynamic problems, the
0-1 knapsack problem (Goldberg and Smith, 1987) and the OSmera’s dynamic
problem (O8mera et al., 1997). In this section we present a short description of
both problems.

3.1 The knapsack problem

The aim of the knapsack problem is to fill a knapsack with objects, all having
a certain value of interest and a weight. As there is a maximum weight the
knapsack can hold, the problem is to choose among the available objects a subset
which maximizes the value of the objects without violating the maximum weight.
The problem is made dynamic by changing over time the maximum weight the
knapsack can hold. In our experiments, the maximum weight is varied from
80% of the total weight of the objects to 50% of the total weight and then back
to 80% and so on. This change happens every 15 generations. The objects and
their associated weights and values for the problem are depicted in Table 1.

The knapsack problem can be represented by a binary string with as string
length the number of available objects. If the value at string position ¢ is one
(respectively zero) the object with number i is added (respectively not added)
to the knapsack. If the total weight of all items in the knapsack is more than
the allowed weight, the string has fitness value zero; otherwise, the string has
as fitness value the sum of the values of all items in the knapsack.

Table 1: Objects with associated weights and values for the 0-1 Knapsack prob-
lem

object walue weight object walue weight
0 2 12 9 10 7
1 3 5 10 3 4
2 9 20 11 6 12
3 2 1 12 5 3
4 4 5 13 5 3
5 4 3 14 7 20
6 2 10 15 8 1
7 7 6 16 6 2
8 8 8

90

80 1

70 +

0 50 100 150 200 250 300 350 400

Figure 3: Optimum of the dynamic knapsack problem

3.2 Osmera’s dynamic problem domain I

O8mera’s dynamic problem is specified by the following function:
gi(z,t)=1— £200(z—c(t))*

with ¢(t) = 0.04(|¢/20]), z € {0.000,...2.000} and each time step ¢t € {0, ...1000}
equal to one generation. The aim of the problem is to find the value z at time ¢
such that g;(z,t) is minimized. Figure 4 shows the O$mera’s dynamic problem
domain and the behavior of ¢(t) over time. The problem can be represented by
a binary string of length 31 which is normalized to yield a value between 0 and

c(t)

t

Figure 4: OSmera’s dynamic problem domain I (left) and behavior of ¢(t) over
time (right)

4 Experiments

To test our concept, the performance of our problem solver is tested in two
extreme situations. First, the performance of the problem solver is checked
given a perfect view of the future. In this way the idea of preparing the current
population by using a future population is validated. Second, the performance of
the problem solver using random or deceptive values as a predictor is compared
with the performance of a normal EA without prediction. In this way we want
to see whether the use of a predictor can be harmful.

The EA used in the experiments is a steady state algorithm using two-point
crossover, mutation with rate % and linear ranking selection (Whitley, 1989)
with bias 1.5. For all experiments the population size is set to 100 and children
replace older individuals in the population by using worst replacement selection.

4.1 Perfect predictor

To check the performance of the problem solver using a perfect predictor we
actually do not use a predictor at all, but instead we give our solver the correct

optimal value at the future time step. At any time ¢ the current population is
evaluated with f(¢) and the future population is evaluated with f(t + A).

4.1.1 0-1 Knapsack Problem

Table 2 gives the results of the knapsack problem for different lookahead times
and different migration numbers. The error is calculated by

| max — best fitness |

- 100,

max
with best fitness the fitness of the best individual. In all experiment the migra-
tion step d is set to one. Figure6 shows the fitness of the best individual during
the best run of the knapsack problem. The different plots vary in population
size, migration number and lookahead time.

The experiments show a slightly better result using future prediction if A is
set to 5. Unfortunately for A set to 15 the problem solver with perfect future
predictions performs worse than a normal EA. This is an unexpected result as
we imagined that A = 15 would help the algorithm best because A is equivalent
to the period of change in the problem. The experiments show that the settings
for the parameter A is very important.

Table 2: Error percentages for the 0-1 Knapsack problem over 50 runs with a
bitstring representation

predictor A m error stdev best run

none x x 16.6% 3.52 8.96%
perfect 5 10 11.9% 3.77 4.85%
perfect 15 10 20.3% 4.26 11.7%
perfect 5 50 11.8% 3.70 5.97%
perfect 15 50 21.4% 6.06 12.0%

noisy 5 10 12.6% 4.12 6.77%
noisy 15 10 13.0% 3.74 7.50%
noisy 5 50 12.7% 4.02 6.47%
noisy 15 50 12.8% 4.07 4.99%

4.1.2 OsSmera’s Function

Table 3 shows the results of the dynamic Osmera Problem for different lookahead
times A and different migration numbers m. The error is calculated by

| min — best fitness | -100 = | 0 — best fitness | -100,

with best fitness the fitness of the best individual. Figure 8 shows the average
checking error over all generations for the OSmera function.

If we compare the performance of the problem solver using a perfect predictor
with the performance of a normal EA (Figure 5 right), we see (as probably
could be expected) that for all tested settings the problem solver performs much
better.

Table 3: Error percentage for the Osmera problem for 50 runs

predictor A m error stdev best run

none X X 63.8% 10.3 41.2%
perfect 5 10 0.261% 0.153 0.0751%
perfect 5 50 0.168% 0.148 0.0266%
perfect 10 10 0.241% 0.220 0.0680%
perfect 10 50 0.203% 0.099 0.0698%

noisy 5 10 0.241% 0.186 0.0488%
noisy 5 50 0.144% 0.122 0.0358%
noisy 10 10 0.241% 0.186 0.0488%
noisy 10 50 0.168% 0.148 0.0266%

4.2 Noisy predictor

To check how harmful the use of a predictor can be, the performance of the
problem solver using noisy and deceitful values as a predictor is compared with
the performance of a normal EA without prediction.

For the knapsack problem the maximum size of the sack at the wrong point
in the future is used as noisy prediction, which makes it a deceptive goal. Instead
of supplying the correct value we take the other maximum size. For the OSmera
function all individuals in the future population are assigned a random fitness
value between 0 and 1. Figure 7 shows the fitness of the best individual during
the best run of the knapsack problem. Figure 9 shows the average checking error
over the best run of the Osmera function. The experiments show that the use
of a noisy predictor does not harm the search process. Even more the migration
of bad predicted individuals increases the diversity of the current population
which makes it easier for the population to adapt to the changing environment.
In case of the OSmera function the error percentages for noisy prediction are
equally good as those for perfect prediction. In case of the knapsack problem
the error percentages for the noisy predictor are even better than those for the
perfect predictor. It seems that in these cases prediction is not really necessary.
However, adding more diversity to the population, e.g. by migrating some
individuals from an other population, helps the population to adapt to changes
of the dynamic environment.

5 Discussion

Our results show that in case of the the Osmera problem setting, perfect future
prediction as well as noisy future prediction helps the current population to
adapt to changes of the environment. However for the knapsack problem the
results are not so promising. More experiments on different problems should
be done to evaluate the concept of future prediction. It would be interesting
to study theoretically the symbiosis of the current and the future population.
Hereby we think on the importance and the influence of the parameter A and
m in the migration step and the rate of change of the environment.

6 Future work

Although we have not that many results yet, we hope that our idea of predicting
the future using a meta learner will prove to be useful. Despite the fact that
we did not perform well on the dynamic knapsack problem our results on the
OSmera’s function have given us the feeling that the concept might actually
work.

N
o

100
90
80
70
60
50
40 -
30
20
10

"knapsack_clean"

"osfnera_clean"

B R B
N N O ©

Error (%)
Error (%)

=
o ©® o

IS

. . . . 0 o
0 50 100 150 200 250 300 350 400 0 100 200 300 400 500 600 700 800 900 1000
Generations Generations

Figure 5: Error percentage of the best individual during the best run of the
knapsack problem and the O8mera problem without prediction

Acknowledgments

We thank the organizers of the cOIL 2000 summer school for bringing us together
and for providing an environment that enabled us to learn and, at the same time,
give us the opportunity to write this paper. Especially, we would like to thank
Riccardo Poli for providing us with great ideas and for guidance, without we
would never have gotten far enough to receive the best paper award.

25

20

15

Error (%)

10

o

25

20

15

Error (%)

10

”kna‘psack;perfec‘tidsirﬁm" A

nnnnonnnng

I

0 5 100 150 200 250 300 350 400
Generations
"knapsack_perfect_d5_m50" ——
0 50 100 150 200 250 300 350 400
Generations

Figure

25

20

15

Error (%)

10

32
30
28
26
24
22
20
18
16
14
12
10

Error (%)

knapsack problem with perfect prediction

' "knap‘sackJ)‘erfect;dlSJﬁlO" A

50

100 150 200 250 300 350
Generations

400

"knapsack_perfect_d15_m50" ——

50

100 150 200 250 300 350
Generations

400

Error percentage of the best individual during the best run of the

"kna‘psack‘inoisy;dlsirﬁm" A

|

I

100 150 200 250

Generations

400

"knapsack_noisy_d15_m50" ——

18 T T y — T T 25 T
"knapsack_noisy_d5_m10" ——
16
14
~ 12 —
g g
g 10 8
o g]
6
4
0 50 100 150 200 250 300 350 400 0 50
Generations
30 22
"knapsack_noisy_d5_m50" ——
25
20
g 1° 8
i} i}
10
5
0 50 100 150 200 250 300 350 400 0 50
Generations
Figure 7: Error percentage of the best

knapsack problem with noisy prediction

10

100

150 200 250
Generations

300 350 400

individual during the best run of the

14

12

Error (%)

0.8

0.6

0.4

0.2

16
14
12
10

Error (%)

0
0

Figure 8: Error percentage of the best individual during the best run of the

‘"osrﬁeraﬁberfe‘ctids‘imlo"' —

‘HHH‘FLH\‘HhFLL

100 200 300 400 500 600 700 800 900 1000
Generations

‘|_Jj‘_l_'_\1;,_‘44’__l_l—_l

"osmera_perfect_d5_m50" ——

100 200 300 400 500 600 700 800 900 1000
Generations

18
16
1.4
12

Error (%)
=

0.8
0.6
0.4
0.2

L)L

"'osme‘raipérfect‘idlOLmlO‘" —

Ml n

0.5
0.45
0.4
0.35
03
0.25
0.2
0.15
0.1
0.05

Error (%)

100 200 300 400 500 600 700 800 900 1000

Generations

"osmera_perfect_d10_m50" ——

(L P

0
0 100 200 300 400 500 600 700 800 900 1000

OSmera problem with perfect prediction

Error (%)

Error (%)

Figure 9: Error percentage of the best individual during the best run of the

' "osfnera;noisﬁ/idsimll)"' —

ﬂlj_\ ann JTH — 1. Orn

100 200 300 400 500 600 700 800 900 1000
Generations

"osmera_noisy_d5_m50" ——

“ﬂﬂlﬁﬂﬂﬂﬂﬂ 00

100 200 300 400 500 600 700 800 900 1000
Generations

Osmera problem with noisy prediction

Generations

20
18
16
14
12

Error (%)

' "os‘mera‘inoiS)‘/ﬁleLmld" —

oN M O ®

0

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

Error (%)

11

o LT 17

100 200 300 400 500 600 700 800 900 1000
Generations

"osmgra_noisy_d10_m50" ——

TH0LLLLD

0 100 200 300 400 500 600 700 800 900 1000
Generations

References

Goldberg, D. and Smith, R. (1987). Nonstationary function optimization with
dominance and diploidy. In Grefenstette, J., editor, Proceedings of the 2nd
International Conference on Genetic Algorithms and Their Applications,
pages 59-68. Lawrence Erlbaum Associates.

Lewis, J., Hart, E., and Ritchie, G. (1998). A comparison of dominance mech-
anisms and simple mutation on nonstationary problems. In Eiben, A. E.,
Back, T., Schoenauer, M., and Schwefel, H.-P., editors, Proceedings of Par-
allel Problem Solving from Nature, number 1498 in Lecture Notes in Com-
puter Science, pages 139-148. Springer, Berlin.

OSmera, P.; Kvasnicka, V., and Pospichal, J. (1997). Genetic algorithms with
diploid chromosomes. In Proceedings of Mendel ’97, pages 111-116.

Ryan, C. and Collins, J. (1999). Non-stationary function optimization using
polygenic inheritance. In Submitted to IEEE Transactions on Evolutionary
Computation.

Whitley, D. (1989). The GENITOR algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best. In Schaffer, J. D., editor,
Proceedings of the Third International Conference on Genetic Algorithms
(ICGA’89), pages 116123, San Mateo, California. Morgan Kaufmann Pub-
lishers, Inc.

12

