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ABSTRACT 
We present an approach for automatic design via genetic 
programming of the functionality of driving agent, able to 
remotely operate a scale model of a car running in a fastest 
possible way. The agent’s actions are conveyed to the car via 
standard radio control transmitter. The agent perceives the 
environment from a live video feedback of an overhead camera. 
In order to cope with the inherent video feed latency we propose 
an approach of anticipatory modeling in which the agent 
considers its current actions based on anticipated intrinsic (rather 
than currently available, outdated) state of the car and its 
surrounding. The driving style of the agent is first evolved 
offline on a software simulator of the car and then adapted 
online to the real world.  Experimental results demonstrate that 
on long runs the agent’s-operated car is only marginally (about 
5%) slower than a human-operated one, while the consistence of 
lap times posted by the evolved driving agent is better than that 
of a human. Presented work can be viewed as a step towards the 
development of a framework for automated design of the 
controllers of remotely operated vehicles capable to find an 
optimal solution to various tasks in different traffic situations 
and road conditions.  

Categories and Subject Descriptors 
G.1.6–Global Optimization; J.2-Physics 

General Terms 
Algorithms, design 

Keywords 
Anticipatory modeling, genetic programming 
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1. INTRODUCTION 

The success of the computer playing sport games (like chess [3]) 
has long served as touchstone of the progress in the filed of 
artificial intelligence (AI). The expanding scope of applicability 
of AI, when the latter is employed to control the individual 
characters (agents) which are able to “learn” the environment 
and to adopt an adaptive optimal (rather than a priori 
preprogrammed) playing tactics and strategy include soccer [9], 
F1 racing [12], etc. [1]. Focusing in the domain of car racing, in 
this work we consider the problem of designing a driving agent, 
able to remotely control a scale model of a racing car, which 
runs in a fastest possible way. Our work is motivated by the 
opportunity to develop an agent, able to address some of the 
challenges, which a human driver of racing car faces. In order to 
provide a fastest laps times around the circuit, the driver needs 
to define the best driving (racing) line, or the way the car enters, 
crosses the apex, and exits each of the turns in the circuit. For 
technical circuits, featuring series of tight turns where the way 
the car enters a particular turn dramatically depends on the way 
it exits the previous one, the task of obtaining the best line is 
quite difficult even for experienced drivers without a certain 
amount of practice (learning) laps. Moreover, realizing the once 
defined optimal driving line, both the artificial driving agent and 
the human driver are required to make precise judgment about 
the state (i.e. position, orientation and velocity) of their car and 
the environment, and to react quickly and precisely. 

The objective of our work is an automatic design via genetic 
programming (GP) of the functionality of driving agent, able to 
remotely operate a scale model of racing car (hereafter referred 
to as “car”) running in a fastest way around. Our ultimate long-
term objective is to develop a framework for automated design 
of the control software of remotely operated vehicles capable to 
find an optimal solution to various tasks in different traffic 
situations and road conditions. Achieving the objective implies 
that the following tasks should be addressed: 

(i) Developing an approach allowing the agent to adequately 
control the scale model of the car addressing the challenge 
of dealing with the control feedback latency, 

(ii) Formalizing the notion of driving style and defining the 
key parameters which describe it, and 



 

(iii) Developing an algorithm paradigm for automatic definition 
of fastest driving lines by setting the key attributes of 
driving lines to their optimal values. 

The remaining of the paper is organized as follows. Section 2 
introduces the main characteristics of the hardware used in our 
system configuration. Section 3 elaborates on the anticipatory 
model employed by the driving agent as an approach to 
compensate the detrimental effect of the feedback latency on the 
performance of the agent. Section 4 discusses the key attributes 
of driving style and the proposed approach of genetic 
programming employed to automatically evolve them. Section 5 
draws an conclusion. 

 

2. SYSTEM HARDWARE  

2.1 The Car 

In our experiments we choose the 1:24 scaled model of the F1 
racing car (hereafter referred to as “car”), produced by Auldey 
Toy Industry Co.Ltd., with a bodywork stripped from logos and 
repainted for more reliable video tracking (Figure 1).  

 

 

 

 

 

 

Figure 1. Scale model of the F1 racing car 

 

This inexpensive, off-the-shelf car features simple remote 
control (RC) with functionality including "forward", "reverse", 
and "neutral" throttle control commands and "left", "right" and 
"straight" steering controls. The car has the following three 
favorable features: a wide steering angularity, a spring 
suspension system in frond and rear wheel, and a differential 
drive. The former feature implies a reduced turning angle, and 
consequently, high maneuverability of the car. The suspension, 
which is usually designed to cushion the body of the car from 
the bumps of the track, would be hardly used in its primary 
destination in our work. Instead, the torsion spring of the rear 
suspension of the considered model of the car functions as an 
elastic buffer, which absorbs the shocks, caused by the sharp and 
often violent alterations in the torque generated by the car's 
motor. These torque alterations occur during the pulse width 
modulation (PWM) of the throttle, by means of which the 
controlling software regulates the speed of the car within the 
range from zero to the maximum possible value. In addition, 
torque alterations occur when the “reverse" command is applied 
for braking of the car, which still runs forward. We anticipate 
that the absorption of the shocks caused by torque alterations of 
PWM is relevant for the reliability of the car's transmission. The 
last mentioned feature - differential rear wheels drive (similar to 
the real cars’) implies that the car turns without a rear wheels 
spin which results in smooth entrance into the turns and good 
traction at their exits.  

The mechanical characteristics of the car are summarized in 
Table 1. Characteristics 3)-10) are empirically measured from 
the car running on the considered surface - a synthetic short-pile 
carpet. The minimal velocity of understeer indicates the velocity 
at which the front wheel of the turning car start to skid away 
from the apex of the turn, yielding an increased actual turning 
radius. This effect however is observed only when the car turns 
with engaged “forward” and “neutral” throttle control 
commands. Due to the weight distribution effect observed under 
braking, the grip levels of the front wheels of the turning car 
increase, yielding a smooth turning with nominal turning radius 
without experiencing an understeer. On the surface used in our 
experiments, the car indicated no signs of oversteer.  

 

Table 1. Characteristics of the Car 
Parameter Value 

1) Car Model Auldey F1 

2) Scale 1:24 

3) Max straight line velocity, mm/s 2000 

4) Max turning velocity, mm/s 1400 

5) Min turning radius, mm 300 

6) Min velocity of understeer, mm/s 1600 

7) Increase of turning radius due to understeer , 
mm/(mm/s) 

0.4 

8) Acceleration on full throttle, mm/s2 1200 

9) Deceleration on reverse, mm/s2   -1200 

10) Deceleration on throttle lift-off, mm/s2 -800 

11) Type of the motor 
Mabuchi  
FA-130 

12) Normal voltage, V 1.5 – 3.0 

13) Normal current, A 0.5 

14) Normal torque, g.cm  4 

15) Speed at normal torque, rpm 8.600 
 
 
2.2 Video Feedback 
 

The agent perceptions are obtained from live video feedback of 
video camera mounted overhead. We use the Creative NX Ultra 
Web-Camera, which features a high definition CCD sensor and 
wide field of view (78 degrees) lenses, which allows to cover an 
area of about 3200mm X 2400mm from an altitude of about 
2200mm. Camera operates at 320x240 pixels mode in our 
experiments. The refresh rate is 40fps. Camera is connected to 
the USB port of PC. 
 
 
2.3 Radio Control of the Car via PC 
 

The agent’s actions (series steering and throttle controlling 
commands) are conveyed to the car via the standard radio 
control transmitter operating in 27MHz band. The mechanical 
buttons of the transmitter are electronically bypassed by n-p-n-
transistor switches activated by the controlling software. 
Transistors are mounted on a small board, and the board is 

 



 

connected to the parallel (LPT) port of the personal computer 
(PC).  
 
2.4 Following Simple Routes – First 
Experiments 
 

In order to verify the very basic concepts of applying the agency 
for remote operation of the car, we conducted experiments with 
the car following sample routes marked by apexes of the turns in 
three circuits featuring different complexity. These routes are as 
follows: 

(i) O-shaped circuit featuring two right, single-apex turns,  

(ii) 8-shaped circuit with a right and a left, double-apex turns, 
and  

(iii) S-shaped circuit with a series of right and left turns.  

The driving agent receives a live video feedback from the Web 
camera, tracks the car, computes the current state (i.e., position, 
orientation and speed) of the car, and depending on the values of 
these parameters issues a series of corresponding throttle and/or 
steering controlling commands. The controlling commands 
correspond to the very basic, handcrafted functionality of 
following the route by homing at the apexes of the turns at 20 
degrees with speed of about 1500mm/s. The resulting driving 
lines, indicated by the traces of the detected center of the car on 
O-, 8-, and S-shaped circuits are shown in Figure 2. As Figure 
illustrates, the emerged driving lines (shown in Figures 2a, 2b 
and 2c) differ dramatically from the expected ones (Figures 2d, 
2e and 2f). The next section elaborates on the underlying reason 
for the discrepancy between the expected driving lines of the 
agent and the really observed ones.  
 
 

3. ANTICIPATORY MODELING 
 
3.1 Outdated Perceptions 
 

The latencies introduced in the feedback control loop (e.g., by 
the video feed latency, video feed sampling interval, reaction 
time of actuators, etc.) imply that the current actions of the 
driving agents are based on outdated perceptions, and 
consequently, outdated knowledge about its own state (position, 
orientation, and speed) and the surrounding environment. For 
the hardware used in our system, the accumulated latency is 
about 200ms, which results in a maximum error of perceiving 
the position of the car of about 400mm when the later runs at its 
maximum speed of 2000mm/s. This latency is also associated 
with an error in perceiving the orientation (bearing) and speed of 
the car. The cumulative effect of these errors renders the 
straightforward tasks of following simple routes, as shown in 
Figures 2, virtually insolvable. The driving lines, shown in 
Figures 2a), 2b) and 2c), conversely to the expected lines shown 
in 2d), 2e) and 2f) represent the cumulative effects of feedback 
latency when the car is controlled by driving agent which 
considers its current actions based on outdated perceptions.  

 

 

 

 

 

 

 

Figure 2. Driving lines of the real scaled model of the car 
(top) and the expected (bottom) lines of the car, controlled 
by agent following the apexes of the turns in O-shaped (a 
and d), 8- shaped (b and e), and S-shaped  (c and f) circuits. 
The real driving lines (a, b, and c) dramatically differ from 
the expected ones on the same circuits (d, e, and f). The 
arrows in d), e) and f) indicate the running direction of the 
car. 
 
3.2 Software Simulator 
 

In order to investigate the effect of latency on the performance 
of the driving agent, and to verify the effectiveness of the 
eventually proposed approaches for its compensation, we 
developed a software simulation of the car and circuits. The 
additional rationales behind the development of the software 
simulation can be summarized as (i) possibility to verify the 
feasibility of certain circuit configurations without the need to 
be concerned by the risks of possible damage to the environment 
and/or the car, and (ii) an opportunity to "compress" the runtime 
of fitness evaluation routine (the most time-consuming part) in 
the eventual implementation of agent's evolution [4][7]. 
Furthermore, as elaborated below, the developed simulator 
comprises the kernel of the internal model of the car and the 
environment, which the driving agent continuously applies in 
order to anticipate the intrinsic current state of the car based on 
currently available outdated perceptions. The software simulator 
takes into consideration the feedback latency of 200ms (8 time 
steps for sampling interval of 25ms), the physics of the car and 
the concrete values of mechanical parameters of the car (on the 
surface used in our experiment) as summarized in Table1. 

The driving lines of simulated car controlled by driving agent 
without- and with simulated feedback latency of 200ms are 
shown in Figure 3.  

 

 

 

 

 

 

Figure 3. Driving lines of the simulated car controlled by 
agent following the apexes of the turns with- (top) and 
without (bottom) feedback latency of 200ms in O- shaped (a 
and d), 8- shaped (b and e), and S-shaped  (c and f) circuits. 
The behavior of the simulated car with feedback latency (a, 
b, and c) is much similar to the behavior of the real scaled 
model of the car on the same circuits, shown in Figures 2a, 
2b, and 2c.  

a) b) 

d) e) f) 

c) 

a) b) c) 

d) e) f) 
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As Figure indicates, the characteristic behavior of the simulated 
car with feedback latency of 200ms in all three sample circuits 
(Figures 3a, 3b, and 3c) is quantitatively much similar to the 
behavior of the real scaled model of the car on the same circuits 
(Figures 2a, 2b, and 2c), which experimentally supports the 
conclusion about the significant detrimental effects of the 
feedback latency on the performance of the driving agent. In 
both the simulated and the real car the agent is unable to control 
the car adequately, and the car cannot follow the routes marked 
by apexes of the turns. Moreover, in all 6 cases considered the 
agent crashes the car into the fences of the circuits.  
 
 
3.3 Anticipated Intrinsic State of the Car and 
Anticipated Environment 
 

The common methods of dealing with latency feedback are 
based on the idea of either slowing down the flow of control 
commands in order to allow the feedback to catch-up, or issuing 
the current control command only after the feedback result of 
the execution of the previous one have been obtained [6]. 
However, these methods are not applicable for the considered 
task of controlling a scaled model of racing car due to the 
relatively high velocities of the controlled object. In the 
proposed approach of incorporating an anticipatory modeling 
[10], the driving agent considers its current actions based on 
anticipated intrinsic (rather than currently available, outdated) 
state of the car and surrounding environment. As illustrated in 
Figure 4, the agent anticipates the intrinsic state of the car 
(position, orientation, and speed) from the currently available 
outdated (by 200ms) state by means of iteratively applying the 
recorded history of its own most recent (during the last 200ms) 
actions (i.e., the throttle and steering commands) to the internal 
software model of the car.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Anticipatory modeling: driving agent anticipates 
the intrinsic state of the car (position, orientation, and speed) 
from the currently available outdated state by means of 
iteratively applying the history (recorded in the latency 
buffer) of its own most recent actions (i.e., the steering and 
throttle commands) to the internal software model of the car 

It further anticipates the perception information related to the 
surrounding environment, (e.g., the distance and the bearing to 
the apex of the next turn) from the viewpoint of the anticipated 
intrinsic position and orientation of the car.  
 

3.4 Following Simple Routes with 
Anticipatory Modeling 
The emerged driving lines of the simulated car and the real 
scaled model of the car are shown in Figure 5. As figure 
illustrates, the behavior of the simulated car with feedback 
latency and anticipatory modeling  (Figures 5a, 5b, and 5c) is 
much similar to the behavior of the real scaled model of the car 
on the same circuits (Figures 5d, 5e, and 5f). Moreover, it is 
virtually identical to the behavior of the simulated car without 
feedback latency (Figures 3d, 3e and 3f), which experimentally 
verifies the compensatory effect of applying an anticipatory 
model on the performance of the driving agent with latency 
feedback. 

 

 

 

 

 

 

Figure 5. Driving lines of the simulated (top) and the real 
(bottom) car controlled by agent in a system featuring a 
feedback latency of 200ms and anticipatory modeling in O- 
shaped (a and d), 8- shaped (b and e), and S-shaped  (c and 
f) circuits respectively.  
 
 

4. EXPERIMENTAL RESULTS 
 
4.1. Attributes of the Driving Style 
 

Before starting discussing the proposed approach of employing 
genetic programming to automatically evolve the driving styles, 
we should define the key parameters, which describe them. In 
our work we considering the notion of driving style as the 
driving line, which the car follows around the turns in the 
circuits combined with the speed, at which the car travels along 
this line. Our choice of driving styles’ parameters is based on the 
view of the importance of the way the driver negotiates turns, a 
view which is shared among the racing drivers from various F1 
racing teams. Indeed, the driver is trying to pass the turn at 
maximum possible speed, in which the centrifugal forces do not 
excess the grip provided by the interaction of the tires and the 
surface. The centrifugal forces depend inversely proportional to 
the turning radius. Depending on the characteristics of the circuit 
however, higher turning radius, which result in lower centrifugal 
forces and higher turning speed may increase the actual distance 
the car travels around the circuit, which in turn may result in 
longer lap times. Moreover, the way drivers negotiates particular 
turn depends on the characteristics of the following section of 
the circuit, as a higher turning radius, and thus higher exit speed 

a) b) c) 

d) e) f) 



 

might be important in cases when the turn is followed by long 
straight where the car can reach its maximum speed. However, 
higher turning radius and consequently, running wide at the exit 
of the turn might negatively affect the trajectory of approaching 
the following turn incases when both turns tightly follow each 
other in a form of chicane. We introduce the following key 
attributes of the driving style of the agent: 
(i) Straight-line velocity –the velocity at which the car 

approaches the turn, 
(ii) Turning velocity, 
(iii) Throttle lift-off zone – the distance from the apex at which 

the car begins slowing down from the straight line velocity 
to turning velocity, 

(iv) Braking velocity - the threshold, above which the car applies 
brakes for slowing down. When the velocity is below this 
threshold, the car slows down by turning to neutral (or 
lifting-off the throttle), 

(v) Approach angle – the bearing of the apex of the turn. Higher 
values of this parameter yield wider driving lines featuring 
higher turning angles. 

Viewing these attributes as key attributes of the driving style, 
the functionality of agent exhibiting a given driving style can be 
algorithmically formalized in a way as shown in Figure 6. 
 

1. At each time step do begin 
2. //--- Perceptions: 
3. Obtain the agent’s perceptions of its own state:  
4.   position (P), orientation (O) and velocity (V); 
5. Obtain the agent’s perceptions of the environment:  
6.   approach angle (AA), distance (AD) to the current apex,    
7.   and whether the car is inside or outside the preferred 
8.   throttle lift off zone; 
9. //--- Reaction of the agent to the current perceptions 
10. //--- Steering control: 

 11. if (AA> Preferred A A)  
 12.    and (abs(AA - Preferred A A)>Preferred Threshold A A)  
 13.  then SetSteering(Left) 
 14.  else  if (AA< Preferred A A)  
 15.     and (abs(AA - Preferred A A)> Preferred Threshold A A)  
 16.   then SetSteering(Right) 
 17.   else SetSteering(Straight); 
 18.//--- Throttle control: 
 19. if Car is outside Preferred Throttle Lift-off Zone  
 20.   then ShiftGear (Preferred Straight Line Gear) 
 21.   else begin 
 22.          if V > Preferred_Braking Velocity  
 23.            then SetThrottle(Reverse) 
 24.            else ShiftGear( Preferred Turning Gear); 
 25.        end; 
 26. end 

Figure 6. Functionality of driving agent. 
 

The usage of the hypothetical optimal (i.e. yielding a fastest lap 
times) values of the key driving style attributes are underlined in 
the figure and indicated as “Preferred”. As Figure illustrates, 
both the orientation and the velocity of the car are continuously 
adjusted to match the preferred values of the corresponding 
attributes. The open-loop adjustment of the car’s velocity 
(Figure 6, lines 20 and 24) is implemented by macro-commands 
ShiftGear(Gear), implemented via PWM of the sequence 
of “forward” and “neutral” throttle commands with duty cycle of 
150ms. The possible values of the input parameter Gear are 1, 
2, 3 or 4, which correspond to the duty ratios of the underlying 
PWM of 0.5, 0.66, 0.73, and 1 respectively.  

The way the driving agent perceives its own state and the 
environment (Figure 6, lines 2-8) is illustrated in Figure 7. 
 
 

4.2 Evolving Driving Styles 
Assuming that the key attributes of optimal driving style around 
a particular turn of particular circuit will feature different values, 
our objective of automatic design of optimal driving styles can 
be rephrased as an automatic discovery of the optimal values of 
these parameters for each of the turns in the circuit. This section 
elaborates on the proposed approach of employing genetic 
programming for automatic discovery of these optimal values on 
software simulator of the car and on the method used to adapt 
the evolved solution to the concrete characteristics of the real 
scaled model of the car on the real track. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Perceptions of the driving agent. 
 

4.1.1 GP 
GP [5] is a domain-independent problem-solving approach in 
which a population of computer programs (individuals’ 
genotypes) is evolved to solve problems. The simulated 
evolution in GP is based on the Darwinian principle of 
reproduction and survival of the fittest. The fitness of each 
individual is based on the quality with which the phenotype of 
the simulated individual is performing in a given environment. 
 

4.1.2 Genetic Representation 
The genotype in GP encodes for the evolving optimal values of 
the key parameters (as elaborated earlier in 4.1) of the driving 
style for each of the turns of given racing circuit. In principal, 
the genotype could be represented as a linear chromosome 
featuring numerical values of the corresponding parameters, and 
genetic algorithms [2] (rather than GP) could be applied for 
automatic discovery of these values. However, trying to 
prototype such linear representation of the genotype we 
observed the following difficulties which required solutions not 
foreseen in the canonical implementations of genetic algorithms: 
(i) Variable length representation problem: because different 

racing circuits feature different number of turns, implying 
variable length of genetic representation, 

(ii) Different driving style parameters feature different ranges of 
their possible respective values which need to be 
individually considered at the stage of creating the initial 
population, and during the mutation operation too, 

(iii) The crossover operation should allow for the complete set of 
driving style parameters associated with particular turn to be 

�������������	�
 

 �����������	
�� 

� �� ��	��	�� �	
� � ������	��������	� ��� 

 

�� � ���� � 	��� ��	
��� 
��� ���� �	��	�� �	�� �� 	
��� 

� ���� ��� 	
� � 

X 

Y 

XC
 

YC
 

� � � ��� 
� � 
� � 

 

� � � �
�� � �� �� 

 
� �
� �� ���� � ��������� � �� � 

 
�� �� � ����� � �	��������	� ��� 

� � 
� � 

 �� �����	
 � 

���! ��� 	
���� 

 



 

swapped with the complete set of parameters of another turn 
in order to protect higher granularity building blocks from 
the potentially destructive effects of crossover, 

(iv) The crossover operation should allow for the values of the 
same attributes of different turns to be swapped.   

The issues (i) and (iii) might be addressed in generic way by a 
variable length hierarchical representation of the genotype such 
as a parsing tree, usually employed in GP. The second and 
fourth issues suggest the need of method for maintaining data 
types in the genetic representation, and performing the mutation 
and crossover operations in a strongly typed way, which is 
consistent with the notion of strongly typed GP (STGP) [8]. 
These concerns motivated us to employ a three-based structure 
for the genotypic representation of the evolving driving styles of 
the agent. And inspired by its flexibility, and the recently 
emerged widespread adoption of document object model (DOM) 
and extensible markup language (XML), we represent the 
evolved genotypes as DOM-parse trees featuring equivalent flat 
XML-text. XML-tags offer a generic support for the data types 
in STGP, while the standard API of the off-the-shelf DOM-
parsers contributes to the efficiency of manipulating the genetic 
representation [11]. A DOM-tree of sample genotype is shown 
in Figure 8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. DOM-tree of sample genotype. The genotype 
represents the values of attributes of driving style of the 
agent for a sample circuit featuring four turns. The sub-tree 
associated with the values of attributes of the First Turn of 
the circuit is shown expanded.   
 
The main parameters of STGP are shown in Table 2. The 
sample circuit considered in our experiments of evolving 
driving styles of the agent operating both the software 
model and the real scale model of the car is shown in 
Figure 9. This circuit is a challenge for human operator, 
featuring a combination of a low-sped (4), medium-speed 
(2) and two high-speed turns (1 and 3) represented in the 
figure with their respective apexes. The series of turns 4-
1-2 form a technical S-shaped sector of right, left, and 
right turn. The length of the track, measured between the 
apexes of the turns is about 4900mm. 

Table 2. Main parameters of GP 

 
 
 
 
 
 
 
 
 
 
 
Figure 9. A sample circuit used for evolution of driving style 
of agent. The length of the track (lap distance) measured 
between the apexes of the turns is about 4900mm. The 
circuit is used for experiments with both the (i) software 
model and (ii) the real scaled model of the racing car. 
 
 

4.1.3 Offline Evolution of Driving Styles on a 
Software Model of The Car.  

In this experiment we conducted an offline evolution employing 
the proposed STGP framework on the software anticipatory 
model of the car. The fitness (i.e. the lap time of a single flying 
lap) convergence results, aggregated over 50 independent runs 
of STGP are shown in Figure 10. As figure illustrates, the best 
lap time average over all runs of STGP improved from 3800ms 
to about 3240ms (i.e., 15%) in 25 generations, which for a single 
run of STGP consumes only about 15 minutes of runtime on PC 
with 3GHz CPU, 512MB RAM and Windows XP OS.  
 
 

4.1.4 Porting the Evolved Solution to the Real Car  
Adaptation in Nature is viewed as an ability of species to 
discover the best phenotypic (i.e. pertaining to biochemistry, 
morphology, physiology, and behavior) traits for survival in 
continuously changing fitness landscape. For the considered task 
of evolving driving styles, the process of porting the solution, 
evolved offline on the model to the real car can be viewed as 
process of changing the fitness landscape (because of changing 
both the morphology of the car and the surrounding environment 
from modeled to the real ones) of the task. 
 
 

Category Value 

Population size 200 individuals 

Selection  
Binary tournament, selection ratio 0.1, 
reproduction ratio 0.9 

Elitism Best 4 individuals 

Mutation Random sub-tree mutation, ratio 0.01 

Trial interval 
Single flying lap for the software model 
and four flying laps for the real scale 
model of the car 

Fitness Average lap time in milliseconds 

Termination criteria Number of generations = 40 
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Figure 10. Aggregated over 50 independent runs of STGP 
fitness convergence characteristics of offline evolution of 
driving styles on software anticipatory model of the car. 
 
 
In our approach we employ the same STGP framework (as used 
for offline evolution of the driving styles) for implementing a 
phylogenetic adaptation of the obtained solution to changes in 
the fitness landscape caused by switching from the simulated 
world into the reality. At the beginning of the adaptation process 
the STGP is initialized with a population comprising 20 best-of-
run genetic programs (i.e. driving styles) obtained from 
experiments with offline evolution as elaborated in 4.2.3. In 
order to address the challenges of (i) guaranteeing an equal 
initial conditions for the time trials of all candidate solutions and 
(ii) automatic positioning of the real car before each time trial, 
we propose an approach of employing out-lap, several flying 
timed laps, and in-lap during each time trial in a way much 
similar to the current qualifying format in many car racing 
formulas. After crossing the start-finish line (shown immediately 
after the Turn 4 in Figure 9) completing the final timed lap 
governed by the current genetic program (i.e., driving style), the 
car enters the in-lap slowing down by implementing the 
“Neutral” throttle command. Depending on the speed at the 
start-finish line, the car comes to a complete rest at a point 
somewhere between Turn 1 and Turn 2. At this point, which can 
be seen as an improvised team pit, the next genetic program 
(driving style) to be evaluated is loaded into the agent’s 
controller, and the car starts an out-lap. Controlled by the new 
agent’s controller, the car negotiates Turns 2, 3 and 4. During 
the out lap the car covers a distance from the improvised pit stop 
to the start-finish line, which is quite sufficient to cancel any 
effect of the quality of the previous time trial on the 
performance of the current genetic program. Actually, already 
on the back straight between turns 3 and 4 the car the driving 
line and the car speed during the out lap virtually match these 
parameters of the timed flying lap. In order to compensate for 
the eventual effect of perceptional noise, inherent for the real 
systems, a total amount of 4 timed laps are conducted during the 
time trial of each genetic program, and the average lap time is 
considered as a corresponding fitness value. 

The online evolution of the initial population of 20 best-of-run 
solutions obtained offline was allowed to run until no 
improvement in fitness value of the best driving style have been 
registered for 4 generations. A single run has been completed, 
and within 8 generations an improvement of fitness value of the 
best solution from the initial value of 3460s to 3220s has been 
observed. 
 

4.3 Comparative Analysis of Human and 
Computer Driven Cars 
 
In order to comparatively evaluate the quality of driving style 
obtained by evolution via STGP we conducted an comparative 
analysis of the performance results obtained on a simulated race 
distance of 80 flying laps (20 stints of 4 timed flying laps per 
each stint) around the same sample circuit as shown in Figure 9 
for two cases: a computer- and a human controlled car. In the 
former case the anticipatory agent drives the car employing the 
best driving style evolved as elaborated before in 4.2.3 and 
4.2.4. In the latter case the car was operated via the standard RC 
unit by the second author of this work, who proved to be the 
fastest among the 6 candidates considered. The results are 
summarized in Table 3.  
 
Table 3. Comparative results of the performance of   
              computer and a human operator 

Parameter Computer Human 
Total amount of covered laps 80 80 
Total distance, mm 441381 411833 
Total time, s 296 280 
Average speed, mm/s 1491 1470 
Max speed, mm/s 2058 2150 
Average lap time, s 3.74 3.54 
Best lap time, s 3.29 3.11 
Standard deviation (inconsistence) 0.17 0.24 

 
As shown in the table, the human is faster than computer with a 
relatively narrow gap of 16s (280s vs. 296s, of about 5%) in the 
total time, and 0.2s in the average lap time (3.54s vs.3.74s). 
However, the computer laps around the circuit more consistently 
with a standard deviation of a lap time about 0.17 vs. 0.24 for 
the human. While for the human the standard deviation can be 
attributed to the effects of the slight misjudgments and/or delays 
in responses (due to tiredness), for computer it is primarily 
related to the effect of noise on the precision with which the 
agent perceives its own state (position, orientation, velocity) and 
the environment (distance and the bearing to the apex of the 
current turn). This noise stems from the noise in determining the 
perfect geometrical center of car by the video-tracking 
subsystem. The latter employs a simple color-spot detection 
algorithm and it is not intended to compensate for the 
deformations of the shape of the spot caused by the shadows of 
irregular relief of the bodywork of the car. The consistency of 
lapping around the sample circuit is illustrated by the histograms 
of lap times shown in Figure 11.  
 
 
 
 
 
 
 
 
 
 
Figure 11. Histogram of lap times registered by computer- 
operated (left) and human-operated (right) car. 
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The emergent features of the evolved best driving style of the 
anticipatory agent, which are virtually identical to the 
corresponding features of the driving style of the human 
operator, are illustrated in Figure 12.  

 
 
 
 
 

 
 

 
 

 
 

 
Figure 12. Emergent features of the best evolved driving 
style of the anticipatory agent. 
 

The circle running just in front of the car indicates the 
anticipated intrinsic position and orientation of the car. As 
Figure 12a illustrates the starts the flying lap entering the Turn 4 
relatively wide and exiting it as close as possible to the apex of 
the turn. As Figure 12b depicts, this allows the car to negotiate 
the left Turn 1 and the following right Turn 2 using the shortest 
possible driving line.  As Figure 12c illustrates, the car exits the 
Turn 2 quite wide, interpreting the combination of right single-
apex turns 2 and 3 as an improvised single double-apex turn. As 
Figure 12d demonstrates, such driving line contributes to the 
favorable orientation of the car at the entrance of the turn 3, 
which additionally extends the length of the back straight 
contributing to the achievement of the faster speed along the 
straight. The car enters the Turn 4 wide to allow for the exit to 
be as close as possible to the apex preparing for Turn 1 of the 
next flying lap.  
 

5. CONCLUSIONS 
 

The objective of this work is an automatic design via genetic 
programming of the functionality of driving agent, able to 
remotely operate a scale model of racing car in a fastest possible 
way. The agent’s action are conveyed to the car via simple 
remote control unit featuring "forward", "reverse", and "neutral" 
throttle control commands and "left", "right" and "straight" 
steering controls. The agent perceives the environment from live 
video feed of a camera mounted overhead. In order to cope with 
the inherent video feed latency, which renders even the tasks of 
following simple routes virtually unsolvable, we proposed and 
implemented an approach of anticipatory modeling. In the 
proposed approach the agent considers its current actions based 
on anticipated intrinsic (rather than currently available, 
outdated) state of the car and surrounding environment. The 
driving style (considered in our approach as a driving line, 
which the car follows around the turns in the circuits together 
with the speed at which the car travels along this line) is both (i) 
evolved offline on a software simulator of the scaled model of 
the car and (ii) adapted online to real world applying strongly 
typed genetic programming. Comparative analysis demonstrates 
that on long runs the agent’s operated car is only marginally 

(about 5%) slower than a human-operated one. However, the lap 
times of evolved agent are more consistent than that of human 
because of the occasional misjudgments and/or delays in the 
responses of the latter. This work can be viewed as a step 
towards the development of a framework for automated design 
of the control software of remotely operated vehicles capable to 
find an optimal solution to various tasks in different traffic 
situations and road conditions.  
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