

Evolving Driving Agent for Remote Control
of Scaled Model of a Car

Ivan Tanev

Doshisha University, 1-3 Miyakodani,
Tatara, Kyotanabe 610-0321, Japan

ATR Network Informatics Laboratories,
2-2-2 Hikaridai, “Keihanna Science

City”,Kyoto 619-0288, Japan
itanev@mail.doshisha.ac.jp

Michal Joachimczak
Gdansk Technical University

11/12 Narutowicza Str.
Gdansk 80-952, Poland

mjoach@atr.jp

Hitoshi Hemmi
ATR Network Informatics

Laboratories,2-2-2 Hikaridai,
“Keihanna Science City”,
Kyoto 619-0288, Japan

hemmi@atr.jp

Katsunori Shimohara
ATR Network Informatics

Laboratories,2-2-2 Hikaridai,
“Keihanna Science City”,
Kyoto 619-0288, Japan

katsu@atr.jp

ABSTRACT
We present an approach for automatic design via genetic
programming of the functionality of driving agent, able to
remotely operate a scale model of a car running in a fastest
possible way. The agent’s actions are conveyed to the car via
standard radio control transmitter. The agent perceives the
environment from a live video feedback of an overhead camera.
In order to cope with the inherent video feed latency we propose
an approach of anticipatory modeling in which the agent
considers its current actions based on anticipated intrinsic (rather
than currently available, outdated) state of the car and its
surrounding. The driving style of the agent is first evolved
offline on a software simulator of the car and then adapted
online to the real world. Experimental results demonstrate that
on long runs the agent’s-operated car is only marginally (about
5%) slower than a human-operated one, while the consistence of
lap times posted by the evolved driving agent is better than that
of a human. Presented work can be viewed as a step towards the
development of a framework for automated design of the
controllers of remotely operated vehicles capable to find an
optimal solution to various tasks in different traffic situations
and road conditions.

Categories and Subject Descriptors
G.1.6–Global Optimization; J.2-Physics

General Terms
Algorithms, design

Keywords
Anticipatory modeling, genetic programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Genetic and Evolutionary Computation Conference (GECCO’05),
June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1. INTRODUCTION

The success of the computer playing sport games (like chess [3])
has long served as touchstone of the progress in the filed of
artificial intelligence (AI). The expanding scope of applicability
of AI, when the latter is employed to control the individual
characters (agents) which are able to “learn” the environment
and to adopt an adaptive optimal (rather than a priori
preprogrammed) playing tactics and strategy include soccer [9],
F1 racing [12], etc. [1]. Focusing in the domain of car racing, in
this work we consider the problem of designing a driving agent,
able to remotely control a scale model of a racing car, which
runs in a fastest possible way. Our work is motivated by the
opportunity to develop an agent, able to address some of the
challenges, which a human driver of racing car faces. In order to
provide a fastest laps times around the circuit, the driver needs
to define the best driving (racing) line, or the way the car enters,
crosses the apex, and exits each of the turns in the circuit. For
technical circuits, featuring series of tight turns where the way
the car enters a particular turn dramatically depends on the way
it exits the previous one, the task of obtaining the best line is
quite difficult even for experienced drivers without a certain
amount of practice (learning) laps. Moreover, realizing the once
defined optimal driving line, both the artificial driving agent and
the human driver are required to make precise judgment about
the state (i.e. position, orientation and velocity) of their car and
the environment, and to react quickly and precisely.

The objective of our work is an automatic design via genetic
programming (GP) of the functionality of driving agent, able to
remotely operate a scale model of racing car (hereafter referred
to as “car”) running in a fastest way around. Our ultimate long-
term objective is to develop a framework for automated design
of the control software of remotely operated vehicles capable to
find an optimal solution to various tasks in different traffic
situations and road conditions. Achieving the objective implies
that the following tasks should be addressed:

(i) Developing an approach allowing the agent to adequately
control the scale model of the car addressing the challenge
of dealing with the control feedback latency,

(ii) Formalizing the notion of driving style and defining the
key parameters which describe it, and

(iii) Developing an algorithm paradigm for automatic definition
of fastest driving lines by setting the key attributes of
driving lines to their optimal values.

The remaining of the paper is organized as follows. Section 2
introduces the main characteristics of the hardware used in our
system configuration. Section 3 elaborates on the anticipatory
model employed by the driving agent as an approach to
compensate the detrimental effect of the feedback latency on the
performance of the agent. Section 4 discusses the key attributes
of driving style and the proposed approach of genetic
programming employed to automatically evolve them. Section 5
draws an conclusion.

2. SYSTEM HARDWARE

2.1 The Car

In our experiments we choose the 1:24 scaled model of the F1
racing car (hereafter referred to as “car”), produced by Auldey
Toy Industry Co.Ltd., with a bodywork stripped from logos and
repainted for more reliable video tracking (Figure 1).

Figure 1. Scale model of the F1 racing car

This inexpensive, off-the-shelf car features simple remote
control (RC) with functionality including "forward", "reverse",
and "neutral" throttle control commands and "left", "right" and
"straight" steering controls. The car has the following three
favorable features: a wide steering angularity, a spring
suspension system in frond and rear wheel, and a differential
drive. The former feature implies a reduced turning angle, and
consequently, high maneuverability of the car. The suspension,
which is usually designed to cushion the body of the car from
the bumps of the track, would be hardly used in its primary
destination in our work. Instead, the torsion spring of the rear
suspension of the considered model of the car functions as an
elastic buffer, which absorbs the shocks, caused by the sharp and
often violent alterations in the torque generated by the car's
motor. These torque alterations occur during the pulse width
modulation (PWM) of the throttle, by means of which the
controlling software regulates the speed of the car within the
range from zero to the maximum possible value. In addition,
torque alterations occur when the “reverse" command is applied
for braking of the car, which still runs forward. We anticipate
that the absorption of the shocks caused by torque alterations of
PWM is relevant for the reliability of the car's transmission. The
last mentioned feature - differential rear wheels drive (similar to
the real cars’) implies that the car turns without a rear wheels
spin which results in smooth entrance into the turns and good
traction at their exits.

The mechanical characteristics of the car are summarized in
Table 1. Characteristics 3)-10) are empirically measured from
the car running on the considered surface - a synthetic short-pile
carpet. The minimal velocity of understeer indicates the velocity
at which the front wheel of the turning car start to skid away
from the apex of the turn, yielding an increased actual turning
radius. This effect however is observed only when the car turns
with engaged “forward” and “neutral” throttle control
commands. Due to the weight distribution effect observed under
braking, the grip levels of the front wheels of the turning car
increase, yielding a smooth turning with nominal turning radius
without experiencing an understeer. On the surface used in our
experiments, the car indicated no signs of oversteer.

Table 1. Characteristics of the Car
Parameter Value

1) Car Model Auldey F1

2) Scale 1:24

3) Max straight line velocity, mm/s 2000

4) Max turning velocity, mm/s 1400

5) Min turning radius, mm 300

6) Min velocity of understeer, mm/s 1600

7) Increase of turning radius due to understeer ,
mm/(mm/s)

0.4

8) Acceleration on full throttle, mm/s2 1200

9) Deceleration on reverse, mm/s2 -1200

10) Deceleration on throttle lift-off, mm/s2 -800

11) Type of the motor
Mabuchi
FA-130

12) Normal voltage, V 1.5 – 3.0

13) Normal current, A 0.5

14) Normal torque, g.cm 4

15) Speed at normal torque, rpm 8.600

2.2 Video Feedback

The agent perceptions are obtained from live video feedback of
video camera mounted overhead. We use the Creative NX Ultra
Web-Camera, which features a high definition CCD sensor and
wide field of view (78 degrees) lenses, which allows to cover an
area of about 3200mm X 2400mm from an altitude of about
2200mm. Camera operates at 320x240 pixels mode in our
experiments. The refresh rate is 40fps. Camera is connected to
the USB port of PC.

2.3 Radio Control of the Car via PC

The agent’s actions (series steering and throttle controlling
commands) are conveyed to the car via the standard radio
control transmitter operating in 27MHz band. The mechanical
buttons of the transmitter are electronically bypassed by n-p-n-
transistor switches activated by the controlling software.
Transistors are mounted on a small board, and the board is

connected to the parallel (LPT) port of the personal computer
(PC).

2.4 Following Simple Routes – First
Experiments

In order to verify the very basic concepts of applying the agency
for remote operation of the car, we conducted experiments with
the car following sample routes marked by apexes of the turns in
three circuits featuring different complexity. These routes are as
follows:

(i) O-shaped circuit featuring two right, single-apex turns,

(ii) 8-shaped circuit with a right and a left, double-apex turns,
and

(iii) S-shaped circuit with a series of right and left turns.

The driving agent receives a live video feedback from the Web
camera, tracks the car, computes the current state (i.e., position,
orientation and speed) of the car, and depending on the values of
these parameters issues a series of corresponding throttle and/or
steering controlling commands. The controlling commands
correspond to the very basic, handcrafted functionality of
following the route by homing at the apexes of the turns at 20
degrees with speed of about 1500mm/s. The resulting driving
lines, indicated by the traces of the detected center of the car on
O-, 8-, and S-shaped circuits are shown in Figure 2. As Figure
illustrates, the emerged driving lines (shown in Figures 2a, 2b
and 2c) differ dramatically from the expected ones (Figures 2d,
2e and 2f). The next section elaborates on the underlying reason
for the discrepancy between the expected driving lines of the
agent and the really observed ones.

3. ANTICIPATORY MODELING

3.1 Outdated Perceptions

The latencies introduced in the feedback control loop (e.g., by
the video feed latency, video feed sampling interval, reaction
time of actuators, etc.) imply that the current actions of the
driving agents are based on outdated perceptions, and
consequently, outdated knowledge about its own state (position,
orientation, and speed) and the surrounding environment. For
the hardware used in our system, the accumulated latency is
about 200ms, which results in a maximum error of perceiving
the position of the car of about 400mm when the later runs at its
maximum speed of 2000mm/s. This latency is also associated
with an error in perceiving the orientation (bearing) and speed of
the car. The cumulative effect of these errors renders the
straightforward tasks of following simple routes, as shown in
Figures 2, virtually insolvable. The driving lines, shown in
Figures 2a), 2b) and 2c), conversely to the expected lines shown
in 2d), 2e) and 2f) represent the cumulative effects of feedback
latency when the car is controlled by driving agent which
considers its current actions based on outdated perceptions.

Figure 2. Driving lines of the real scaled model of the car
(top) and the expected (bottom) lines of the car, controlled
by agent following the apexes of the turns in O-shaped (a
and d), 8- shaped (b and e), and S-shaped (c and f) circuits.
The real driving lines (a, b, and c) dramatically differ from
the expected ones on the same circuits (d, e, and f). The
arrows in d), e) and f) indicate the running direction of the
car.

3.2 Software Simulator

In order to investigate the effect of latency on the performance
of the driving agent, and to verify the effectiveness of the
eventually proposed approaches for its compensation, we
developed a software simulation of the car and circuits. The
additional rationales behind the development of the software
simulation can be summarized as (i) possibility to verify the
feasibility of certain circuit configurations without the need to
be concerned by the risks of possible damage to the environment
and/or the car, and (ii) an opportunity to "compress" the runtime
of fitness evaluation routine (the most time-consuming part) in
the eventual implementation of agent's evolution [4][7].
Furthermore, as elaborated below, the developed simulator
comprises the kernel of the internal model of the car and the
environment, which the driving agent continuously applies in
order to anticipate the intrinsic current state of the car based on
currently available outdated perceptions. The software simulator
takes into consideration the feedback latency of 200ms (8 time
steps for sampling interval of 25ms), the physics of the car and
the concrete values of mechanical parameters of the car (on the
surface used in our experiment) as summarized in Table1.

The driving lines of simulated car controlled by driving agent
without- and with simulated feedback latency of 200ms are
shown in Figure 3.

Figure 3. Driving lines of the simulated car controlled by
agent following the apexes of the turns with- (top) and
without (bottom) feedback latency of 200ms in O- shaped (a
and d), 8- shaped (b and e), and S-shaped (c and f) circuits.
The behavior of the simulated car with feedback latency (a,
b, and c) is much similar to the behavior of the real scaled
model of the car on the same circuits, shown in Figures 2a,
2b, and 2c.

a) b)

d) e) f)

c)

a) b) c)

d) e) f)

�

�

�� ��
��

�

�

�� ��
��

�

�

�� ��
��

�����

��		�

�� ����� ��
���

�� ��
�

�� ��
��

�� ��
��

�� ��
�

������	
�

��������
��������

��������
��������

������������������
� � ��������
	 � 	
��
� � �����

������������������
� � ������
� � �
�����

	������� !""���#$���������%�&�����'��((��)
��������������������"��������������������������������������

*+����,���
"����+�����
"���,��-�
����	���
����������

����
�����
���������
��
���������
���������
���������
�	 �!

����
�����
���������
��
��������"
���������
���������
�� �!

����
����#
���������
��
��������$
���������
���������
�� ��!

����
����$
���������
��
���������
���������
���������
�	 �!

����
����%
���������
��
��������#
���������
���������
�� ��!

���%�� ���%�� ���%�� ���%�
 ���%��

.���������������
��(������%�����
"��������
�%%������
���������
#�/��)

����
����&�
���������
��
��������%
���������
���������
�� ��!

���%�� ���%�

As Figure indicates, the characteristic behavior of the simulated
car with feedback latency of 200ms in all three sample circuits
(Figures 3a, 3b, and 3c) is quantitatively much similar to the
behavior of the real scaled model of the car on the same circuits
(Figures 2a, 2b, and 2c), which experimentally supports the
conclusion about the significant detrimental effects of the
feedback latency on the performance of the driving agent. In
both the simulated and the real car the agent is unable to control
the car adequately, and the car cannot follow the routes marked
by apexes of the turns. Moreover, in all 6 cases considered the
agent crashes the car into the fences of the circuits.

3.3 Anticipated Intrinsic State of the Car and
Anticipated Environment

The common methods of dealing with latency feedback are
based on the idea of either slowing down the flow of control
commands in order to allow the feedback to catch-up, or issuing
the current control command only after the feedback result of
the execution of the previous one have been obtained [6].
However, these methods are not applicable for the considered
task of controlling a scaled model of racing car due to the
relatively high velocities of the controlled object. In the
proposed approach of incorporating an anticipatory modeling
[10], the driving agent considers its current actions based on
anticipated intrinsic (rather than currently available, outdated)
state of the car and surrounding environment. As illustrated in
Figure 4, the agent anticipates the intrinsic state of the car
(position, orientation, and speed) from the currently available
outdated (by 200ms) state by means of iteratively applying the
recorded history of its own most recent (during the last 200ms)
actions (i.e., the throttle and steering commands) to the internal
software model of the car.

Figure 4. Anticipatory modeling: driving agent anticipates
the intrinsic state of the car (position, orientation, and speed)
from the currently available outdated state by means of
iteratively applying the history (recorded in the latency
buffer) of its own most recent actions (i.e., the steering and
throttle commands) to the internal software model of the car

It further anticipates the perception information related to the
surrounding environment, (e.g., the distance and the bearing to
the apex of the next turn) from the viewpoint of the anticipated
intrinsic position and orientation of the car.

3.4 Following Simple Routes with
Anticipatory Modeling
The emerged driving lines of the simulated car and the real
scaled model of the car are shown in Figure 5. As figure
illustrates, the behavior of the simulated car with feedback
latency and anticipatory modeling (Figures 5a, 5b, and 5c) is
much similar to the behavior of the real scaled model of the car
on the same circuits (Figures 5d, 5e, and 5f). Moreover, it is
virtually identical to the behavior of the simulated car without
feedback latency (Figures 3d, 3e and 3f), which experimentally
verifies the compensatory effect of applying an anticipatory
model on the performance of the driving agent with latency
feedback.

Figure 5. Driving lines of the simulated (top) and the real
(bottom) car controlled by agent in a system featuring a
feedback latency of 200ms and anticipatory modeling in O-
shaped (a and d), 8- shaped (b and e), and S-shaped (c and
f) circuits respectively.

4. EXPERIMENTAL RESULTS

4.1. Attributes of the Driving Style

Before starting discussing the proposed approach of employing
genetic programming to automatically evolve the driving styles,
we should define the key parameters, which describe them. In
our work we considering the notion of driving style as the
driving line, which the car follows around the turns in the
circuits combined with the speed, at which the car travels along
this line. Our choice of driving styles’ parameters is based on the
view of the importance of the way the driver negotiates turns, a
view which is shared among the racing drivers from various F1
racing teams. Indeed, the driver is trying to pass the turn at
maximum possible speed, in which the centrifugal forces do not
excess the grip provided by the interaction of the tires and the
surface. The centrifugal forces depend inversely proportional to
the turning radius. Depending on the characteristics of the circuit
however, higher turning radius, which result in lower centrifugal
forces and higher turning speed may increase the actual distance
the car travels around the circuit, which in turn may result in
longer lap times. Moreover, the way drivers negotiates particular
turn depends on the characteristics of the following section of
the circuit, as a higher turning radius, and thus higher exit speed

a) b) c)

d) e) f)

might be important in cases when the turn is followed by long
straight where the car can reach its maximum speed. However,
higher turning radius and consequently, running wide at the exit
of the turn might negatively affect the trajectory of approaching
the following turn incases when both turns tightly follow each
other in a form of chicane. We introduce the following key
attributes of the driving style of the agent:
(i) Straight-line velocity –the velocity at which the car

approaches the turn,
(ii) Turning velocity,
(iii) Throttle lift-off zone – the distance from the apex at which

the car begins slowing down from the straight line velocity
to turning velocity,

(iv) Braking velocity - the threshold, above which the car applies
brakes for slowing down. When the velocity is below this
threshold, the car slows down by turning to neutral (or
lifting-off the throttle),

(v) Approach angle – the bearing of the apex of the turn. Higher
values of this parameter yield wider driving lines featuring
higher turning angles.

Viewing these attributes as key attributes of the driving style,
the functionality of agent exhibiting a given driving style can be
algorithmically formalized in a way as shown in Figure 6.

1. At each time step do begin
2. //--- Perceptions:
3. Obtain the agent’s perceptions of its own state:
4. position (P), orientation (O) and velocity (V);
5. Obtain the agent’s perceptions of the environment:
6. approach angle (AA), distance (AD) to the current apex,
7. and whether the car is inside or outside the preferred
8. throttle lift off zone;
9. //--- Reaction of the agent to the current perceptions
10. //--- Steering control:

 11. if (AA> Preferred A A)
 12. and (abs(AA - Preferred A A)>Preferred Threshold A A)
 13. then SetSteering(Left)
 14. else if (AA< Preferred A A)
 15. and (abs(AA - Preferred A A)> Preferred Threshold A A)
 16. then SetSteering(Right)
 17. else SetSteering(Straight);
 18.//--- Throttle control:
 19. if Car is outside Preferred Throttle Lift-off Zone
 20. then ShiftGear (Preferred Straight Line Gear)
 21. else begin
 22. if V > Preferred_Braking Velocity
 23. then SetThrottle(Reverse)
 24. else ShiftGear(Preferred Turning Gear);
 25. end;
 26. end

Figure 6. Functionality of driving agent.

The usage of the hypothetical optimal (i.e. yielding a fastest lap
times) values of the key driving style attributes are underlined in
the figure and indicated as “Preferred”. As Figure illustrates,
both the orientation and the velocity of the car are continuously
adjusted to match the preferred values of the corresponding
attributes. The open-loop adjustment of the car’s velocity
(Figure 6, lines 20 and 24) is implemented by macro-commands
ShiftGear(Gear), implemented via PWM of the sequence
of “forward” and “neutral” throttle commands with duty cycle of
150ms. The possible values of the input parameter Gear are 1,
2, 3 or 4, which correspond to the duty ratios of the underlying
PWM of 0.5, 0.66, 0.73, and 1 respectively.

The way the driving agent perceives its own state and the
environment (Figure 6, lines 2-8) is illustrated in Figure 7.

4.2 Evolving Driving Styles
Assuming that the key attributes of optimal driving style around
a particular turn of particular circuit will feature different values,
our objective of automatic design of optimal driving styles can
be rephrased as an automatic discovery of the optimal values of
these parameters for each of the turns in the circuit. This section
elaborates on the proposed approach of employing genetic
programming for automatic discovery of these optimal values on
software simulator of the car and on the method used to adapt
the evolved solution to the concrete characteristics of the real
scaled model of the car on the real track.

Figure 7. Perceptions of the driving agent.

4.1.1 GP
GP [5] is a domain-independent problem-solving approach in
which a population of computer programs (individuals’
genotypes) is evolved to solve problems. The simulated
evolution in GP is based on the Darwinian principle of
reproduction and survival of the fittest. The fitness of each
individual is based on the quality with which the phenotype of
the simulated individual is performing in a given environment.

4.1.2 Genetic Representation
The genotype in GP encodes for the evolving optimal values of
the key parameters (as elaborated earlier in 4.1) of the driving
style for each of the turns of given racing circuit. In principal,
the genotype could be represented as a linear chromosome
featuring numerical values of the corresponding parameters, and
genetic algorithms [2] (rather than GP) could be applied for
automatic discovery of these values. However, trying to
prototype such linear representation of the genotype we
observed the following difficulties which required solutions not
foreseen in the canonical implementations of genetic algorithms:
(i) Variable length representation problem: because different

racing circuits feature different number of turns, implying
variable length of genetic representation,

(ii) Different driving style parameters feature different ranges of
their possible respective values which need to be
individually considered at the stage of creating the initial
population, and during the mutation operation too,

(iii) The crossover operation should allow for the complete set of
driving style parameters associated with particular turn to be

�������������	�

 �����������	
��

� �� ��	��	�� �	
� � ������	��������	� ���

�� � ���� � 	��� ��	
���
��� ���� �	��	�� �	�� �� 	
���

� ���� ��� 	
� �

X

Y

XC

YC

� � � ���
� �
� �

� � � �
�� � �� ��

� �
� �� ���� � ��������� � �� �

�� �� � ����� � �	��������	� ���

� �
� �

 �� �����	
 �

���! ��� 	
����

swapped with the complete set of parameters of another turn
in order to protect higher granularity building blocks from
the potentially destructive effects of crossover,

(iv) The crossover operation should allow for the values of the
same attributes of different turns to be swapped.

The issues (i) and (iii) might be addressed in generic way by a
variable length hierarchical representation of the genotype such
as a parsing tree, usually employed in GP. The second and
fourth issues suggest the need of method for maintaining data
types in the genetic representation, and performing the mutation
and crossover operations in a strongly typed way, which is
consistent with the notion of strongly typed GP (STGP) [8].
These concerns motivated us to employ a three-based structure
for the genotypic representation of the evolving driving styles of
the agent. And inspired by its flexibility, and the recently
emerged widespread adoption of document object model (DOM)
and extensible markup language (XML), we represent the
evolved genotypes as DOM-parse trees featuring equivalent flat
XML-text. XML-tags offer a generic support for the data types
in STGP, while the standard API of the off-the-shelf DOM-
parsers contributes to the efficiency of manipulating the genetic
representation [11]. A DOM-tree of sample genotype is shown
in Figure 8.

Figure 8. DOM-tree of sample genotype. The genotype
represents the values of attributes of driving style of the
agent for a sample circuit featuring four turns. The sub-tree
associated with the values of attributes of the First Turn of
the circuit is shown expanded.

The main parameters of STGP are shown in Table 2. The
sample circuit considered in our experiments of evolving
driving styles of the agent operating both the software
model and the real scale model of the car is shown in
Figure 9. This circuit is a challenge for human operator,
featuring a combination of a low-sped (4), medium-speed
(2) and two high-speed turns (1 and 3) represented in the
figure with their respective apexes. The series of turns 4-
1-2 form a technical S-shaped sector of right, left, and
right turn. The length of the track, measured between the
apexes of the turns is about 4900mm.

Table 2. Main parameters of GP

Figure 9. A sample circuit used for evolution of driving style
of agent. The length of the track (lap distance) measured
between the apexes of the turns is about 4900mm. The
circuit is used for experiments with both the (i) software
model and (ii) the real scaled model of the racing car.

4.1.3 Offline Evolution of Driving Styles on a
Software Model of The Car.

In this experiment we conducted an offline evolution employing
the proposed STGP framework on the software anticipatory
model of the car. The fitness (i.e. the lap time of a single flying
lap) convergence results, aggregated over 50 independent runs
of STGP are shown in Figure 10. As figure illustrates, the best
lap time average over all runs of STGP improved from 3800ms
to about 3240ms (i.e., 15%) in 25 generations, which for a single
run of STGP consumes only about 15 minutes of runtime on PC
with 3GHz CPU, 512MB RAM and Windows XP OS.

4.1.4 Porting the Evolved Solution to the Real Car
Adaptation in Nature is viewed as an ability of species to
discover the best phenotypic (i.e. pertaining to biochemistry,
morphology, physiology, and behavior) traits for survival in
continuously changing fitness landscape. For the considered task
of evolving driving styles, the process of porting the solution,
evolved offline on the model to the real car can be viewed as
process of changing the fitness landscape (because of changing
both the morphology of the car and the surrounding environment
from modeled to the real ones) of the task.

Category Value

Population size 200 individuals

Selection
Binary tournament, selection ratio 0.1,
reproduction ratio 0.9

Elitism Best 4 individuals

Mutation Random sub-tree mutation, ratio 0.01

Trial interval
Single flying lap for the software model
and four flying laps for the real scale
model of the car

Fitness Average lap time in milliseconds

Termination criteria Number of generations = 40

1

4

2

3

���
����� �� ����� ��

3000
3200
3400
3600
3800
4000
4200

0 5 10 15 20 25 30 35 40
Generation #

Fi
tn

es
s

of
 th

e
B

es
t

G
en

et
ic

 P
ro

gr
am

s,
 m

s
Min
Max
Avr

Figure 10. Aggregated over 50 independent runs of STGP
fitness convergence characteristics of offline evolution of
driving styles on software anticipatory model of the car.

In our approach we employ the same STGP framework (as used
for offline evolution of the driving styles) for implementing a
phylogenetic adaptation of the obtained solution to changes in
the fitness landscape caused by switching from the simulated
world into the reality. At the beginning of the adaptation process
the STGP is initialized with a population comprising 20 best-of-
run genetic programs (i.e. driving styles) obtained from
experiments with offline evolution as elaborated in 4.2.3. In
order to address the challenges of (i) guaranteeing an equal
initial conditions for the time trials of all candidate solutions and
(ii) automatic positioning of the real car before each time trial,
we propose an approach of employing out-lap, several flying
timed laps, and in-lap during each time trial in a way much
similar to the current qualifying format in many car racing
formulas. After crossing the start-finish line (shown immediately
after the Turn 4 in Figure 9) completing the final timed lap
governed by the current genetic program (i.e., driving style), the
car enters the in-lap slowing down by implementing the
“Neutral” throttle command. Depending on the speed at the
start-finish line, the car comes to a complete rest at a point
somewhere between Turn 1 and Turn 2. At this point, which can
be seen as an improvised team pit, the next genetic program
(driving style) to be evaluated is loaded into the agent’s
controller, and the car starts an out-lap. Controlled by the new
agent’s controller, the car negotiates Turns 2, 3 and 4. During
the out lap the car covers a distance from the improvised pit stop
to the start-finish line, which is quite sufficient to cancel any
effect of the quality of the previous time trial on the
performance of the current genetic program. Actually, already
on the back straight between turns 3 and 4 the car the driving
line and the car speed during the out lap virtually match these
parameters of the timed flying lap. In order to compensate for
the eventual effect of perceptional noise, inherent for the real
systems, a total amount of 4 timed laps are conducted during the
time trial of each genetic program, and the average lap time is
considered as a corresponding fitness value.

The online evolution of the initial population of 20 best-of-run
solutions obtained offline was allowed to run until no
improvement in fitness value of the best driving style have been
registered for 4 generations. A single run has been completed,
and within 8 generations an improvement of fitness value of the
best solution from the initial value of 3460s to 3220s has been
observed.

4.3 Comparative Analysis of Human and
Computer Driven Cars

In order to comparatively evaluate the quality of driving style
obtained by evolution via STGP we conducted an comparative
analysis of the performance results obtained on a simulated race
distance of 80 flying laps (20 stints of 4 timed flying laps per
each stint) around the same sample circuit as shown in Figure 9
for two cases: a computer- and a human controlled car. In the
former case the anticipatory agent drives the car employing the
best driving style evolved as elaborated before in 4.2.3 and
4.2.4. In the latter case the car was operated via the standard RC
unit by the second author of this work, who proved to be the
fastest among the 6 candidates considered. The results are
summarized in Table 3.

Table 3. Comparative results of the performance of
 computer and a human operator

Parameter Computer Human
Total amount of covered laps 80 80
Total distance, mm 441381 411833
Total time, s 296 280
Average speed, mm/s 1491 1470
Max speed, mm/s 2058 2150
Average lap time, s 3.74 3.54
Best lap time, s 3.29 3.11
Standard deviation (inconsistence) 0.17 0.24

As shown in the table, the human is faster than computer with a
relatively narrow gap of 16s (280s vs. 296s, of about 5%) in the
total time, and 0.2s in the average lap time (3.54s vs.3.74s).
However, the computer laps around the circuit more consistently
with a standard deviation of a lap time about 0.17 vs. 0.24 for
the human. While for the human the standard deviation can be
attributed to the effects of the slight misjudgments and/or delays
in responses (due to tiredness), for computer it is primarily
related to the effect of noise on the precision with which the
agent perceives its own state (position, orientation, velocity) and
the environment (distance and the bearing to the apex of the
current turn). This noise stems from the noise in determining the
perfect geometrical center of car by the video-tracking
subsystem. The latter employs a simple color-spot detection
algorithm and it is not intended to compensate for the
deformations of the shape of the spot caused by the shadows of
irregular relief of the bodywork of the car. The consistency of
lapping around the sample circuit is illustrated by the histograms
of lap times shown in Figure 11.

Figure 11. Histogram of lap times registered by computer-
operated (left) and human-operated (right) car.

0

10

20

30

40

3.1 3.7 4.3

La

ps

0

10

20

30

40

3.1 3.7 4.3

La

ps

Lap time, s

Computer Human

The emergent features of the evolved best driving style of the
anticipatory agent, which are virtually identical to the
corresponding features of the driving style of the human
operator, are illustrated in Figure 12.

Figure 12. Emergent features of the best evolved driving
style of the anticipatory agent.

The circle running just in front of the car indicates the
anticipated intrinsic position and orientation of the car. As
Figure 12a illustrates the starts the flying lap entering the Turn 4
relatively wide and exiting it as close as possible to the apex of
the turn. As Figure 12b depicts, this allows the car to negotiate
the left Turn 1 and the following right Turn 2 using the shortest
possible driving line. As Figure 12c illustrates, the car exits the
Turn 2 quite wide, interpreting the combination of right single-
apex turns 2 and 3 as an improvised single double-apex turn. As
Figure 12d demonstrates, such driving line contributes to the
favorable orientation of the car at the entrance of the turn 3,
which additionally extends the length of the back straight
contributing to the achievement of the faster speed along the
straight. The car enters the Turn 4 wide to allow for the exit to
be as close as possible to the apex preparing for Turn 1 of the
next flying lap.

5. CONCLUSIONS

The objective of this work is an automatic design via genetic
programming of the functionality of driving agent, able to
remotely operate a scale model of racing car in a fastest possible
way. The agent’s action are conveyed to the car via simple
remote control unit featuring "forward", "reverse", and "neutral"
throttle control commands and "left", "right" and "straight"
steering controls. The agent perceives the environment from live
video feed of a camera mounted overhead. In order to cope with
the inherent video feed latency, which renders even the tasks of
following simple routes virtually unsolvable, we proposed and
implemented an approach of anticipatory modeling. In the
proposed approach the agent considers its current actions based
on anticipated intrinsic (rather than currently available,
outdated) state of the car and surrounding environment. The
driving style (considered in our approach as a driving line,
which the car follows around the turns in the circuits together
with the speed at which the car travels along this line) is both (i)
evolved offline on a software simulator of the scaled model of
the car and (ii) adapted online to real world applying strongly
typed genetic programming. Comparative analysis demonstrates
that on long runs the agent’s operated car is only marginally

(about 5%) slower than a human-operated one. However, the lap
times of evolved agent are more consistent than that of human
because of the occasional misjudgments and/or delays in the
responses of the latter. This work can be viewed as a step
towards the development of a framework for automated design
of the control software of remotely operated vehicles capable to
find an optimal solution to various tasks in different traffic
situations and road conditions.

Acknowledgments

We thank Simon Lucas for his suggestion regarding hardware
implementation of the presented system. The research was
supported in part by the National Institute of Information and
Communications Technology of Japan.

Bibliography

����Funge, J. D. (2004) “Artificial Intelligence For Computer
Games”, Peters Corp.
[2] Goldberg, D. (1989) “Genetic Algorithms in Search,
Optimization, and Machine Learning”, Addision-Wesley, 1989

[3] IBM Corporation (1997), “Deep Blue”,

URL: http://www.research.ibm.com/deepblue/

[4] Jacobi, N. (1998) “Minimal Simulations for Evolutionary
Robotics”, Ph.D. thesis, School of Cognitive and Computing
Sciences, Sussex University

[5] Koza, J. R. (1992) “Genetic Programming: On the
Programming of Computers by Means of Natural Selection”,
Cambridge, MA, MIT Press

[6] Lane, J. C., Carignan, C. and Akin, D (2001) “Time Delay
and Communication Bandwidth Limitation on Telerobotic
Control”, Proc. SPIE Mobile Robots XV and Telemanipulator
and Telepresence Technologies VII, SPIE, pp.405-419

[7] Meeden, L. and Kumar, D. (1998) “Trends in Evolutionary
Robotics”, Soft Computing for Intelligent Robotic Systems,
edited by L.C. Jain and T. Fukuda, Physica-Verlag, New York,
NY, 1998, pp.215-233
[8] Montana, D. (1995) “Strongly Typed Genetic
Programming”, Evolutionary Computation, Vol.3, No.2, pp.199-
230

[9] Robocup (2005) URL: http://www.robocup.org/02.html

[10] Rosen, R. (1985) “Anticipatory Systems”, Pergamon Press

[11] Tanev, I (2004) ”DOM/XML-Based Portable Genetic
Representation of Morphology, Behavior and Communication
Abilities of Evolvable Agents”, Artificial Life and Robotics,
Vol.8, Number 1, pp.52-56, Springer-Verlag

[12] Wloch, K. and Bentley, P. (2004) “Optimizing the
Performance of a Formula One Car Using a Genetic Algorithm”,
Proceedings of the 8th International Conference on Parallel
Problem Solving from Nature, Birmingham, UK, September 18-
22, pp.702-711

a) b)

c) d)

