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Abstract. In this work we propose an approach of incorporating learning context-
sensitive grammar in strongly typed genetic programming (GP) employed for evolu-
tion and adaptation of locomotion gaits of simulated snake-like robot (Snakebot). In 
our approach the probabilistic context-sensitive grammar is derived from the origi-
nally defined context-free grammar (which usually expresses the syntax of genetic 
programs in strongly typed GP), using aggregated reward values obtained from the 
evolved best-of-run healthy, undamaged Snakebots. The probabilities of applying each 
of particular production rules with multiple right-hand side alternatives in derived 
probabilistic context-sensitive grammar depend on the context, and these probabilities 
are “learned” from the aggregated reward values. Empirically obtained results indicate 
that employing probabilistic context-sensitive grammar contributes to the improving 
the ability of Snakebot to adapt to partial damage by gradually improving its velocity 
characteristics. Snakebot recovers completely from single damage and recovers a ma-
jor extent of its original velocity when more significant damage is inflicted. In all con-
sidered cases of inflicted partial damage of 1, 2, 4, and 8 out of 15 morphological 
segments, the incorporation of learning context sensitive grammar in GP improves the 
evolvability of adaptive locomotion gaits in that the recovery of partially damaged 
Snakebot is (i) faster and to (ii) higher values of velocity of locomotion. 
Keywords: adaptation, locomotion, snake-like robot, strongly typed genetic program-
ming, probabilistic context sensitive grammar 

1 Introduction 

Wheelless, limbless snake-like robots (Snakebots) feature potential robustness char-
acteristics beyond the capabilities of most wheeled and legged vehicles – ability to 
traverse terrain that would pose problems for traditional wheeled or legged robots, 
and insignificant performance degradation when partial damage is inflicted. Some 
useful features of Snakebots include smaller size of the cross-sectional areas, stabil-
ity, ability to operate in difficult terrain, good traction, high redundancy, and com-



plete sealing of the internal mechanisms [1,3,12]. Robots with these properties open 
up several critical applications in exploration, reconnaissance, medicine and inspec-
tion. However, compared to the wheeled and legged vehicles, Snakebots feature (i) 
smaller payload, (ii) more difficult thermal control, (iii) more difficult control of 
locomotion gaits and (iv) inferior speed characteristics. Considering the first two 
drawbacks as beyond the scope of our work, and focusing on the drawbacks of con-
trol and speed, we intend to address the following challenge: how to develop control 
sequences of Snakebot’s actuators, which allow for achieving the fastest possible 
speed of locomotion.  

Although for many tasks, handcrafting the robot locomotion control code can be 
seen as a natural approach, it might not be feasible for developing the control code of 
Snakebot due to its morphological complexity. While the overall locomotion gait of 
Snakebot might emerge from relatively simply defined motion patterns of morpho-
logical segments of Snakebot, neither the degree of optimality of the developed code 
nor the way to incrementally improve the code is evident to the human designer [7].  
Thus, an automated mechanism for solution evaluation and corresponding rules for 
incremental optimization of the intermediate solution(s) are needed [6]. The pro-
posed approach of employing genetic programming (GP) implies that the code, 
which governs the locomotion of Snakebot is automatically designed by a computer 
system via simulated evolution through selection and survival of the fittest in a way 
similar to the evolution of species in the nature.  The use of an automated process to 
design the control code opens the possibility of creating a solution that would be 
better than one designed by a human. Additional motivation for applying such an 
automated process to design the control code of Snakebot is that the anticipated ap-
plication areas of Snakebot (exploration, reconnaissance, medicine, inspection etc.) 
feature challenging environments in which a partial damage to the Snakebot might 
have been inflicted. In order to successfully accomplish its mission is such environ-
ments the Snakebot should be able quickly, automatically, and autonomously adapt 
to these damages. 

 The objectives of our work are (i) to explore the feasibility of applying GP for 
automatic design of the fastest possible locomotion of realistically simulated Snake-
bot and (ii) to investigate the adaptation of such locomotion to degraded abilities 
(due to partial damage) of Snakebot. We are particularly interested in the implica-
tions of incorporating a learning context-sensitive grammar in strongly typed GP 
(employed for automatic design of the fastest possible locomotion of Snakebot) on 
the evolvability of adaptive locomotion gaits of partially damaged Snakebot. 

The discussed approach is related to employing learning Bayesian optimization 
algorithms and reinforcement learning in evolutionary computations [2, 4, 8, 9, 10]. 
In neither of these methods however the incorporation of learning context-sensitive 
grammar in strongly typed GP has been explored and the curiosity about the feasibil-
ity of such approach additionally motivated us in this work.  

The remainder of this document is organized as follows. Section 2 emphasizes 
the main features of the GP proposed for evolution of locomotion of simulated 
Snakebot. The same section presents empirical results of evolving fast locomotion 
gaits of Snakebots. Section 3 introduces the proposed approach of incorporating 



learning context-sensitive grammar in the strongly typed GP and its implications on 
the evolvability of adaptive locomotion gaits of partially damaged Snakebot. Finally, 
Section 4 draws a conclusion.  

2 GP for Automatic Design of Locomotion Gaits of Snakebot 

2.1 Representation of Snakebot  

Snakebot is simulated as a set of identical spherical morphological segments (“verte-
brae”), linked together via universal joints. All joints feature identical (finite) angle 
limits and each joint has two attached actuators (“muscles”). In the initial, standstill 
position of Snakebot the rotation axes of the actuators are oriented vertically (vertical 
actuator) and horizontally (horizontal actuator) and perform rotation of the joint in 
the horizontal and vertical planes respectively (Figure 1). Considering the represen-
tation of Snakebot, the task of designing the fastest locomotion can be rephrased as 
developing temporal patterns of desired turning angles of horizontal and vertical 
actuators of each segment, that result in fastest overall locomotion of Snakebot. 

 
 
 
 
 
 
 

Fig.1. Morphological segments of Snakebot linked via universal joint. Horizontal and vertical 
actuators attached to the joint perform rotation of the segment #i+1 in vertical and horizontal 
planes respectively. 

2.2 Algorithmic Paradigm 

GP. GP [5] is a domain-independent problem-solving approach in which a popula-
tion of computer programs (individuals’ genotypes) is evolved to solve problems. 
The simulated evolution in GP is based on the Darwinian principle of reproduction 
and survival of the fittest. The fitness of each individual is based on the quality with 
which the phenotype of the simulated individual is performing in a given environ-
ment. The major attributes of GP - function set, terminal set, fitness evaluation, ge-
netic representation, and genetic operations are elaborated in the remaining of this 
Section. 

Function Set and Terminal Set. In applying GP to evolution of Snakebot, the geno-
type is associated with two algebraic expressions, which represent the temporal pat-
terns of desired turning angles of both the horizontal and vertical actuators of each 
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morphological segment. Since locomotion gaits are periodical, we include the trigo-
nometric functions sin and cos in the GP function set in addition to the basic alge-
braic functions. The choice of these trigonometric functions reflects our intention to 
verify the hypothesis (first expressed by Petr Miturich in 1920’s) that undulative 
motion mechanisms could yield efficient gaits of snake-like artifacts operating in air, 
land, or water. Terminal symbols include the variables time, index of morphologi-
cal segment of Snakebot, and two constants: Pi, and random constant within the 
range [0, 2]. The main parameters of the GP are summarised in Table 1.  

Table 1. Main parameters of GP 

Category Value 

Function set {sin, cos, +, -, *, /} 
Terminal set {time, segment_ID, Pi, random constant, ADF} 
Population size 200 individuals 
Selection  Binary tournament, ratio 0.1 
Elitism Best 4 individuals 
Mutation Random subtree mutation, ratio 0.01 
Fitness Velocity of simulated Snakebot during the trial 
Trial interval 180 time steps, each time step account for 50ms of “real” time  

Termination criterion 
(Fitness >100) or (Generations>30) 
 or (no improvement of fitness for 16 generations) 

 
The rationale of employing automatically defined function (ADF) is based on 

empirical observation that the evolvability of straightforward, independent encoding 
of desired turning angles of both horizontal and vertical actuators is poor, although it 
allows GP to adequately explore the search space and ultimately, to discover the 
areas which correspond to fast locomotion gaits in solution space.  We discovered 
that (i) the motion patterns of horizontal and vertical actuators of each segment in 
fast locomotion gaits are highly correlated (e.g. by frequency, direction, etc.) and that 
(ii) discovering and preserving such correlation by GP is associated with enormous 
computational effort. ADF, as a way of introducing modularity and reuse of code in 
GP [5] is employed in our approach to allow GP to explicitly evolve the correlation 
between motion patterns of horizontal and vertical actuators as shared fragments in 
algebraic expressions of desired turning angles of actuators. Moreover, the best result 
was obtained by (i) allowing the use of ADF as a terminal symbol in algebraic ex-
pression of desired turning angle of vertical actuator only, and (ii) by evaluating the 
value of ADF by equalizing it to the value of currently evaluated algebraic expression 
of desired turning angle of horizontal actuator. 

Fitness Evaluation. The fitness function is based on the velocity of Snakebot, esti-
mated from the distance which the center of the mass of Snakebot travels during the 
trial. The real values of the raw fitness, which are usually within the range (0, 2) are 
multiplied by a normalizing coefficient in order to deal with integer fitness values 
within the range (0, 200). A normalized fitness of 100 (one of the termination crite-



ria shown in Table 1) is equivalent to a velocity which displaced Snakebot a distance 
equal to twice its length.  

Genetic Operations.  Binary tournament selection is employed – a robust, com-
monly used selection mechanism, which has proved to be efficient and simple to 
code. Crossover operation is defined in a strongly typed way in that only the DOM-
nodes (and corresponding DOM-subtrees) of the same data type (i.e. labeled with the 
same tag) from parents can be swapped. The sub-tree mutation is allowed in strongly 
typed way in that a random node in genetic program is replaced by syntactically 
correct sub-tree. The mutation routine refers to the data type of currently altered 
node and applies randomly chosen rule from the set of applicable rewriting rules as 
defined in the context-free grammar of strongly typed GP.  

ODE. We have chosen Open Dynamics Engine (ODE) [11] to provide a realistic 
simulation of physics in applying forces to phenotypic segments of Snakebot, for 
simulation of Snakebot locomotion.  ODE is a free, industrial quality software library 
for simulating articulated rigid body dynamics. It is fast, flexible and robust, and it 
has built-in collision detection.  

2.3 Automatic Design of Fastest Locomotion Gaits of Healthy Snakebot: 
Empirical Results 

Figure 2 shows the fitness convergence characteristics of 10 independent runs of GP 
(Figure 2a) and sample snapshots of evolved best-of-run locomotion gaits (Figure 2b 
and Figure 2c) of healthy Snakebot when fitness is measured in any direction in an 
unconstrained environment. Despite the fact that fitness is unconstrained and meas-
ured as velocity in any direction, sidewinding locomotion (defined as locomotion 
predominantly perpendicular to the long axis of Snakebot) emerged in all 10 inde-
pendent runs of GP, suggesting that it provides superior speed characteristics for 
Snakebot morphology.  
 
 
 
 
 
 
 

 
 

                             a)                                           b)                                   c) 

Fig. 2. Fitness convergence characteristics of 10 independent runs of GP for cases where 
fitness is measured as velocity in any direction (a) and snapshots of sample evolved best-of-
run sidewinding locomotion gaits of simulated Snakebot (b, c), viewed from above. The dark 
trailing circles depict the trajectory of the center of the mass of Snakebot. Timestamp interval 
between each of these circles is fixed and it is the same (10 time steps) for both snapshots.   
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The dynamics of evolved turning angles of actuators in sidewinding locomotion 
result in characteristic circular motion pattern of segments around the center of the 
mass as shown in Figure 3a. The circular motion pattern of segments and the charac-
teristic track on the ground as a series of diagonal lines (Figure 3b) suggest that 
during sidewinding the shape of Snakebot takes the form of a rolling helix. Figure 3 
demonstrates that the simulated evolution of locomotion via GP is able to invent the 
improvised “wheel” of the sidewinding Snakebot to achieve fast locomotion.  

 
 
 
 
 
 
 
 
                                    a)                                                                 b) 

Fig. 3. Trajectory of the central segment (cs) around the center of mass (cm) of Snakebot for a 
sample evolved best-of-run sidewinding locomotion (a) and traces of ground contacts (b). 

3 Incorporating Learning Context-sensitive Grammar in GP 

3.1 Context-free Grammar of Strongly-typed GP Employed for Automatic 
Design of Fastest Locomotion Gaits of Healthy Snakebot 

Context free grammar G is defined as (N, Σ, P, S) where N is a finite set of 
nonterminal symbols, Σ is a finite set of terminal symbols that is disjoint from N, S 
is a symbol in N that is indicated as the start symbol, and P is a set of production 
rules, where a rule is of the form 

V → w 

where V is a non-terminal symbol and w is a string consisting of terminals and/or 
non-terminals. The term "context-free" comes from the feature that the variable V 
can always be replaced by w, in no matter what context it occurs. For the considered 
case of context free grammar of strongly typed GP, employed for automatic design 
of locomotion gaits of healthy Snakebot (as elaborated before in Section 2), the set 
of non-terminal symbols is defined as follow:  

N = {GP, STM, STM1, STM2, VAR, CONST_x10, CONST_PI, OP1, OP2} 

where STM is a Statement, STM1 – Unary statement, STM2 – Binary (dyadic) state-
ment, VAR – variable, OP1 – unary operation, OP2 – binary (dyadic) operation, 
CONST_x10 is a random constant within the range [0..20], and CONST_PI equals 
either 3.1416 or 1.5708. The set of terminals is: 
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Σ = {sin, cos, nop, sqr, sqrt, +, -, *, /, time, segment_id} 
 

The start (nonterminal) symbol is GP, and the set of production rules expressed in 
Backus-Naur form (BNF) is as shown in Figure 4.  

 
(1)        GP ——► STM 
(2.1-2.5)  STM ——► STM1|STM2|VAR|CONST_x10|CONST_PI 
(3)         STM1 ——► OP1 STM  
(4.1-4.6)    OP1 ——► sin|cos|nop|–|sqr|sqrt 
(5)         STM2 ——► OP2 STM STM 
(6.1-6.4)    OP2 ——► +|-|*|/ 
(7.1-7.2)   VAR  ——► time|segment_id  
(8)         CONST_x10 ——► 0..20 
(9.1-9.2)   CONST_PI  ——► 3.1416|1.5708 

 

Fig. 4. BNF of production rules of the context free grammar G of strongly typed GP, em-
ployed for automatic design of locomotion gaits of healthy Snakebot. The following abbrevia-
tions are used: STM – statement, STM1 – unary statement, STM2 – binary (dyadic) statement, 
VAR – variable, OP1 – unary operation, OP2 – binary (dyadic) operation 

The algebraic expression of horizontal (and vertical) desired angle of actuators of 
Snakebot evolved through GP can be obtained from described context-free grammar 
G and starting symbol GP applying a corresponding production rule for the currently 
leftmost non-terminal symbol in the derivative expression. The production rules with 
multiple alternative right-hand sides (such as rules 2, 4, 6, 7 and 9) are chosen ran-
domly. GP uses the defined production rules of the grammar during the creation of 
initial population and during mutation of genetic programs. Because crossover is 
implemented in strongly typed way, the syntax of resulting offspring complies with 
the allowed syntax of genetic programs as defined by the context-free grammar G. 
For example, applying the sample sequence of production rules, shown in Figure 5a 
on the stage of creation of initial population of GP yields a genetic program (e.g. for 
defining the desired horizontal angle of actuators of Snakebot) as shown in Figure 5b. 

 
3.2 Learning Probabilistic Context-sensitive Grammar of Strongly-typed GP 

 
In our approach, the probabilistic context-sensitive grammar G* is introduced as a 

set of the same attributes (N*, Σ*, P*, S*) as for the context-free grammar G defined 
in 3.1 before. While the attributes N*, Σ*, and S* are identical to N, Σ, and S of G, 
the set of production rules P* of G* are derived from P of G as follows: (i) The pro-
duction rules of P which does not have right-hand side alternatives are defined in the 
same way in P* as in P, and (ii) production rules in P, which do have multiple right-
hand side alternatives V → w1|w2|...|wN are re-defined for each instance of the 
context (i.e. contexti) as follows: 

contexti V → contexti w1 (p
i
1) 

contexti V → contexti w2 (p
i
2) 

... 
contexti V → contexti wN (p

i
N) 



where pi1, pi2,  …piN are probabilities (frequencies) of applying each alternative 
rule in the given contexti.  For each set of production rules featuring multiple 
right-hand side alternatives, and for given contexti, ∑ pin = 1,  n=1,2..N.  
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                      a)                                                                 b) 

Fig. 5. Sample sequence of applied production rules (a) and resulting genetic program (b) 

The proposed approach is based on the idea of introducing bias in applying the 
most preferable rule from the set of rules with multiple, alternative right-hand sides. 
We assume that (i) such preferences of applying certain rule can be defined as prob-
abilities (preferred frequencies) of applying the rule and (ii) the preferences of apply-
ing certain production rules would depend on the context, i.e. on which rules have 
been applied before. In the proposed approach, the initial distribution of probabilities 
p1…pN is even. The distribution of probabilities is learned (adjusted) from the best 
performing evolved healthy Snakebots and then used in adaptation of Snakebot via 



GP to partial damage. 
Sample sequence of applying the production rules (as shown in Figure 5a) imme-

diately after applying the production rule 9.1, and the corresponding genetic pro-
gram in prefix notation and as a parsing tree are shown in Figure 6a, 6b and 6c re-
spectively. The current leftmost non-terminal, as shown in Figure 6b and 6c is STM, 
which requires applying one of production rules 2.1-2.5 (Figure 4). Assuming that 
for the considered context, the “learned” preferences of applying rules 2.1-2.5 indi-
cates highest probability, and consequently, preferential bias towards the rule 2.4: 
STM ——► CONST_x10, then this production rule will be most likely applied yielding 
the genetic program shown Figure 5b.  
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(-(sqrt(+ 1.5708 STM))(STM))  
 
 
 
 
 
 
                    
                   b)                                                                                 c) 

Fig. 6. Sample sequence of applied production rules (a) and resulting genetic program in 
prefix notation (b) and parsing tree (c) 

 
Obtaining the probabilities of applying certain production rule with multiple 

right-hand side alternatives implies maintaining a probability distribution table. 
Each entry in the table stores the probability of applying certain production rule for 
given context. The probability is proportionally calculated from the reward values, 
aggregated over 10 best of run genetic programs obtained from experiments with 
evolving healthy Snakebot as elaborated in Section 2.  The string of symbols of the 
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right-hand side RHS of concrete production rule that should currently replace the 
leftmost nonterminal (i.e. the corresponding left-hand symbol in production rule, 
LHS) for given context C is obtained by function GetProduction([in] C, [in] 
LHS, [out] RHS) which operates on  probability distribution table as illustrated 
in Figure 7. 

 
 
 
 
 
 

Context 

(C) 

Left-hand side 

(LHS) 

Right-hand side 

(RHS) 

Aggregated Reward 

Value (ARV) 

Probability 

Distribution (PD) 
... ... ... ... ... 

contexti ‘STM’ ‘STM1’ 19 0.34 

contexti ‘STM’ ‘STM2’ 0 0.00 

contexti ‘STM’ ‘VAR’ 4 0.07 

contexti ‘STM’ ‘CONST_x10’ 24 0.43 
contexti ‘STM’ ‘CONST_PI’ 9 0.16 

... ... ... ... ... 

Fig. 7. Obtaining the string of symbols of the right-hand side RHS of production rule that 
should currently replace the left-most non-terminal (i.e. left-hand symbol in production rule, 
LHS), and the context C: 1) Selecting the set of entries associated with rules featuring the 
considered left-hand side LHS and context C,  2) Selecting a certain production rule (from 
the set of entries featuring considered LHS and C) with probability of selection, proportional 
to the learned probability distribution, and 3) returning the RHS of selected production rule 

 
3.3 Empirical Results 

 

The adaptation of Snakebot to partial damage is implemented via GP, where the latter is 
initialized with a population comprising the 10 best-of-run genetic programs, obtained from 
the experiments as described in Section 2.3, plus 190 individuals created applying the prob-
abilistic context sensitive grammar. The genetic operations and the value of parameters of GP 
employed for adaptation of the damaged Snakebot are virtually the same as used for evolution 
of healthy Snakebot (as elaborated in Section 3.1), with the only difference that (i) the muta-
tion ratio is increased from 0.01 to 0.1 and (ii) the altering the genetic programs during muta-
tion operation is performed using the preferential application of certain grammar rules of the 
probabilistic context-sensitive grammar. The ability of sidewinding Snakebot to adapt to 
partial damage to 1, 2, 4 and 8 (out of 15) segments by gradually improving its velocity by 
simulated evolution via GP is shown in Figure 8. Demonstrated results are averaged over 20 
independent runs for each case of partial damage to 1, 2, 4 and 8 segments. The damaged 
segments are evenly distributed along the body of Snakebot. Damage inflicted to a particular 
segment implies a complete loss of functionality of both horizontal and vertical actuators of 
the corresponding joint. As Figure 8 illustrates, Snakebot completely recovers from damage to 
single segment attaining its previous velocity in 25 generations with “canonical” strongly 
typed GP employing context-free grammar G, and only in 11 generations with GP employing 
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probabilistic learning context sensitive grammar G*. Snakebots recovers to average of 94% 
(with G) and 96% (G*) of its previous velocity in the case where 2 (13% of total amount of 
15) segments are damaged. With 4 (27%) and 8 (53%) damaged segments the degree of re-
covery is 77% (G)  and 80% (G*), and 64% (G) and 75% (G*) respectively. In all considered 
cases of partial damage incorporating learning context sensitive grammar contributes to faster 
adaptation of Snakebot, and in all cases the Snakebot recovers to higher values of velocity of 
locomotion. 

 
 
 
 
 
 
 
 
 
 
 
 

 
                       
                        a)                               b)                                c)                               d) 

Fig. 8. Adaptation of sidewinding Snakebot to damage of 1 (a), 2 (b), 4 (c) and 8 (d) segments 
using context-free grammar and learning probabilistic context-sensitive grammar.  Fd is the 
best fitness in evolved population of damaged snakebots, and Fh is the best fitness of 10 best-
of-run healthy sidewinding Snakebots. 

4 Conclusion 

In this work we propose an approach of incorporating learning context-sensitive 
grammar in strongly typed genetic programming (GP) employed for evolution and 
adaptation of locomotion gaits of simulated snake-like robot (Snakebot). In our ap-
proach the probabilistic context-sensitive grammar is derived from the originally 
defined context-free grammar (which usually expresses the syntax of genetic pro-
grams in strongly typed genetic programming), using aggregated reward values 
obtained from the evolved best-of-run healthy, undamaged Snakebots. The probabili-
ties of applying each of particular production rules with multiple right-hand side 
alternatives in derived probabilistic context-sensitive grammar depend on the con-
text, and these probabilities are “learned” from the aggregated reward values. Em-
pirically obtained results indicate that employing probabilistic context-sensitive 
grammar contributes to the improving the ability of Snakebot to adapt to partial 
damage by gradually improving its velocity characteristics. Snakebot recovers com-
pletely from single damage and recovers a major extent of its original velocity when 
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more significant damage is inflicted. In all considered cases of inflicted partial dam-
age of 1, 2, 4, and 8 out of 15 morphological segments, the incorporation of learning 
context sensitive grammar in GP improves the evolvability of adaptive locomotion 
gaits in that the recovery of partially damaged Snakebot is (i) faster and to (ii) higher 
values of velocity of locomotion. 
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