
AUTOMATIC SYNTHESIS USING GENETIC PROGRAMMING OF BOTH THE
TOPOLOGY AND SIZING FOR FIVE POST-2000 PATENTED ANALOG AND MIXED

ANALOG-DIGITAL CIRCUITS

Matthew J. Streeter

Genetic Programming Inc.
Mountain View, California

mjs@tmolp.com

Martin A. Keane

Econometrics Inc.
Chicago, Illinois

martinkeane@ameritech.net

John R. Koza

Stanford University
Stanford, California

koza@stanford.edu

ABSTRACT
Recent work has demonstrated that genetic

programming can automatically create both
the topology (graphical structure) and sizing
(numerical component values) for analog
electrical circuits merely by specifying the
circuit's high level behavior (e.g., its desired
or observed output, given its input). This
automatic synthesis of analog circuits is
accomplished using only tools for the analysis
of circuits (e.g., a circuit simulator) and
without relying on any human know-how
concerning the synthesis of circuits. This
paper applies genetic programming to the
automatic synthesis of five analog and mixed
analog-digital circuits that duplicate the
functionality of circuits patented after January
1, 2000. The five automatically created
circuits read on some (but not all) of the
elements of various claims of the patents
involved (and therefore do not infringe). The
described method can be used as an automated
invention machine either to produce
potentially patentable new circuits or to
“engineer around” existing patents.

I. INTRODUCTION
Patents represent current research and development
efforts of the engineering and scientific communities.

Genetic programming can automatically create both
the topology (graphical structure) and sizing
(numerical component values) for analog electrical
circuits (e.g., filters, amplifiers) composed of
transistors, capacitors, resistors, and other components.
Our method for automatically synthesizing analog
circuits starts from a high-level statement of a circuit’s
desired behavior and characteristics (e.g., its desired or
observed output given its input). It uses only de
minimus knowledge about analog circuits. The method
employs a circuit simulator (e.g., SPICE) for the
analysis of candidate circuits, but does not use any
deep knowledge or expertise about the synthesis of
circuits.

This paper reports on a project in which we
browsed the patent literature for patents on analog
electrical circuits issued since January 1, 2000 to
commercial enterprises or university research
institutions. We then used genetic programming to
automatically synthesize both the topology and sizing
for circuits that duplicate the functionality of the
patented inventions. The five inventions are show in
table 1.

Table 1 Five post-2000 patented analog circuits

Invention Inventor(s) and
date

Institution

Low-voltage
balun circuit

Sang Gug Lee
(2001)

Information and
Communications
University

Mixed analog-
digital variable
capacitance

Turgut Sefket
Aytur (2002)

Lucent
Technologies
Inc.

Voltage-current
converter

Akira Ikeuchi
and Naoshi
Tokuda (2000)

Mitsumi Electric
Co., Ltd.

High-current
load circuit for
testing a voltage
source

Timothy Daun-
Lindberg and
Michael Miller
(2001)

International
Business
Machines
Corporation

Low-Voltage
cubic function
generator

Stefano Cipriani
and Anthony A.
Takeshian
(2000)

Conexant
Systems, Inc.

The method described can be used as an invention

machine either to produce potentially patentable new
circuits or to “engineer around” existing patents.

The method has also automatically created both the
topology and sizing for controllers, antennas, and
networks of chemical reactions (Koza, Keane, Yu,
Bennett, and Mydlowec 2000; Koza, Keane, Streeter,
Mydlowec, Yu, and Lanza 2003).

Section 2 describes genetic programming. Section 3
explains the preparatory steps performed by the human
user prior to launching a run of genetic programming.
Section 4 presents the results. Section 5 covers novelty-
driven evolution. Section 6 shows five 20th century

patented analog circuits that have been automatically
synthesized by genetic programming.

II. GENETIC PROGRAMMING
Genetic programming is an automatic method for
solving problems. Specifically, genetic programming
progressively breeds a population of computer
programs over a series of generations. Genetic
programming starts with a primordial ooze of
thousands of randomly created computer programs and
uses the Darwinian principle of natural selection,
recombination (crossover), mutation, gene duplication,
gene deletion, and certain mechanisms of
developmental biology to breed an improved
population over a series of many generations.

Genetic programming (Koza 1992; Koza and Rice
1992; Koza, Bennett, Andre, and Keane 1999; Koza,
Bennett, Andre, Keane, and Brave 1999; Koza, Keane,
Streeter, Mydlowec, Yu, and Lanza 2003) breeds
computer programs to solve problems by executing the
following three steps:

(1) Generate an initial population of compositions
(typically random) of the functions and
terminals of the problem.

(2) Iteratively perform the following substeps (a
generation) on the population of programs until
the termination criterion has been satisfied:
(A) Execute each program in the population and

assign it a fitness value using the problem’s
fitness measure.

(B) Create a new population of programs by
applying the following operations to
program(s) selected from the population
with a probability based on fitness (with
reselection allowed).
(i) Reproduction: Copy the selected program

to the new population.
(ii) Crossover: Create a new offspring

program for the new population by
recombining randomly chosen parts
of two selected programs.

(iii) Mutation: Create one new offspring
program for the new population by
randomly mutating a randomly
chosen part of the selected program.

(iv) Architecture-altering operations: Select
an architecture-altering operation
from the available repertoire of such
operations and create one new
offspring program for the new
population by applying the selected
architecture-altering operation to the
selected program.

(3) Designate the individual program that is
identified by result designation (e.g., the best-
so-far individual) as the result of the run. This
result may be a solution (or approximate
solution) to the problem.

When genetic programming is used to
automatically create computer programs, the programs
are ordinarily represented as program trees (i.e., rooted,
point-labeled trees with ordered branches). In contrast,
electrical circuits are usually represented as labeled
graphical structures in which each component is
included in a cycle. Thus, there is a representational
obstacle that must be overcome before genetic
programming can be applied to the problem of
automatically synthesizing circuits. This obstacle can
be overcome by establishing a mapping between
program trees and labeled cyclic graphs. The mapping
from trees into circuits is accomplished by means of a
developmental process. This process begins with a
simple embryo. The embryo used herein consists of a
single modifiable wire that is not initially connected to
the inputs or outputs of the to-be-created circuit. An
analog electrical circuit is developed by progressively
applying the functions in a circuit-constructing
program tree to the embryo’s initial modifiable wire
(and to succeeding modifiable wires and modifiable
components).

The functions in the circuit-constructing program
trees include

(1) topology-modifying functions that alter the
topology of a developing circuit (e.g., series
division, parallel division, via between nodes,
via to ground, via to a power supply, via to
input, via to output),

(2) component-creating functions that insert
components (i.e., resistors, capacitors, and
transistors) into a developing circuit, and

(3) development-controlling functions that control
the developmental process (e.g., cut, end).

III. PREPARATORY STEPS
Genetic programming starts from a high-level
statement of the problem’s requirements couched in
terms of human-supplied preparatory steps describing
"what needs to be done." The five major preparatory
steps for genetic programming entail determining

(1) the set of functions,
(2) the set of terminals,
(3) the fitness measure for measuring the fitness of

individuals in the population,
(4) parameters for controlling the run, and
(5) a termination criterion.
The main difference between the runs of genetic

programming for the five problems is that we supplied

a different fitness measure for each problem (as
described below). Construction of a fitness measure
requires translating the problem’s high-level
requirements into a precise computation. We read the
patent document to find the performance that the
invention was supposed to achieve. We then created a
fitness measure reflecting the invention’s performance
and characteristics. The fitness measure specifies what
time-domain output value(s) are desired, given various
time-domain input value(s). For each specific problem,
a test fixture consisting of certain fixed components
(such as a source resistor, a load resistor) is connected
to the desired input port(s) and the desired output
port(s). Circuits are simulated using SPICE (Quarles,
Pederson, Newton, Sangiovanni-Vincentelli 1994).

The function and terminal sets for all five problems
permit the construction of any circuit composed of
transistors, resistors, and capacitors. We supplied
models for transistors appropriate to the problem. We
used the commercially common 2N3904 (npn) and
2N3906 (pnp) transistor models unless the patent
document called for a different model. We used 5-Volt
power supplies unless the patent specified otherwise.

The control parameters and termination criterion
were the same for all five problems, except that we
used different population sizes to approximately
equalize each run’s elapsed time per generation.

For additional details, see Koza, Keane, Streeter,
Mydlowec, Yu, and Lanza 2003.

We now describe the five fitness measures.
A. Low-Voltage Balun Circuit
The purpose of a balun (balance/unbalance) circuit is to
produce two outputs from a single input, each output
having half the amplitude of the input, one output
being in phase with the input while the other is 180
degrees out of phase with the input, with both outputs
having the same DC offset. The patented balun circuit
uses a power supply of only 1 Volt. The fitness
measure consisted of (1) a frequency sweep analysis
designed to ensure the correct magnitude and phase at
the two outputs of the circuit and (2) a Fourier analysis
designed to penalize harmonic distortion.
B. Mixed Analog-Digital Register-Controlled
Variable Capacitor
This mixed analog-digital circuit has a capacitance that
is controlled by the value stored in a digital register.
The fitness measure employed 16 time-domain fitness
cases. The 16 fitness cases ranged over all eight
possible values of a 3-bit digital register for two
different analog input signals.
C. Voltage-Current Conversion Circuit
The purpose of the voltage-current conversion circuit is
to take two voltages as input and to produce a stable
current whose magnitude is proportional to the

difference of the voltages. We employed four time-
domain input signals (fitness cases) in the fitness
measure. We included a time-varying voltage source
beneath the output probe point to ensure that the output
current produced by the circuit was stable with respect
to any subsequent circuitry to which the output of the
circuit might be attached.
D. High-Current Load Circuit
The patent covers a circuit designed to sink a time-
varying amount of current in response to a control
signal. The patented circuit employs a number of FET
transistors arranged in parallel, each of which sinks a
small amount of the desired current. The fitness
measure consisted of two time-domain simulations,
each representing a different control signal.
E. Low-Voltage Cubic Signal Generator
The patent covers an analog computational circuit that
produces the cube of an input signal as its output. The
circuit is “compact” in that it contains a voltage drop
across no more than two transistors.

The fitness measure for this problem consisted of
four time-domain fitness cases using various input
signals and time scales. The compactness constraint
was enforced by providing only a 2-Volt power supply.

IV. RESULTS
A. Low-Voltage Balun Circuit
The best-of-run evolved circuit (figure 1) was produced
in generation 97 and has a fitness of 0.429. The
patented circuit has a fitness of 1.72. That is, the
evolved circuit is roughly a fourfold improvement (less
being better) over the patented circuit in terms of our
fitness measure.

The evolved circuit is superior to the patented
circuit both in terms of its frequency response and its
harmonic distortion.

Figure 1 Best-of-run balun circuit

Lee (2001) identifies the essence of his invention in
the patent documents. The difference between the prior
art and Lee’s invention is a coupling capacitor located
between the base and the collector of a certain
transistor. This essential difference between the prior
art and Lee’s invention is an integral part of claim 1 of
Lee’s patent. The best-of-run genetically evolved balun
circuit (figure 1) possesses the very capacitor that Lee
identifies as the essence of his invention (called C302
in the figure). The genetically evolved circuit also
reads on three additional elements of claim 1 of Lee’s
patent. However, the genetically evolved circuit does
not infringe Lee’s patent because it does not read on
other elements enumerated in claim 1.
B. Mixed Analog-Digital Register-Controlled
Variable Capacitor
Over our 16 fitness cases, the patented circuit had an
average error of 0.803 millivolts. In generation 95, a
circuit emerged with average error of 0.808 millivolts,
or approximately 100.6% of the average error of the
patented circuit. During the course of this run, we
harvested the smallest individuals produced on each
processing node with a certain maximum level of error.
Examination of these harvested individuals revealed a
circuit from generation 98 (figure 2) that approximately
matches the topology of the patented circuit (without
infringing).

The genetically evolved circuit reads on all but one
of the elements of claim 1 of the patented circuit (and
hence does not infringe the patent).

Figure 2 Best-of-run mixed analog-digital variable
capacitor circuit

C. Voltage-Current Conversion Circuit
A circuit (figure 3) emerged on generation 109 of our
run of this problem with a fitness of 0.619. That is, the
evolved circuit has roughly 62% of the average
(weighted) error of the patented circuit. The evolved
circuit was subsequently tested on unseen fitness cases
that were not part of the fitness measure and
outperformed the patented circuit on these new fitness
cases. The best-of-run circuit solves the problem in a
different manner than the patented circuit.

Figure 3 Best-of-run voltage current converter

D. High-Current Load Circuit
On generation 114, a circuit emerged that duplicated
Daun-Lindberg and Miller’s parallel FET transistor
structure. This circuit (figure 4) has a fitness (weighted
error) of 1.82, or 182% of the weighted error for the
patented circuit.

Figure 4 Best-of-run high current load circuit

The genetically evolved circuit shares the following
features found in claim 1 of U.S. patent 6,211,726:

“A variable, high-current, low-
voltage, load circuit for testing a voltage
source, comprising:

“a plurality of high-current
transistors having source-to-drain paths
connected in parallel between a pair of
terminals and a test load.”

However, the remaining elements of claim 1 in U.S.
patent 6,211,726 are very specific and the genetically
evolved circuit does not read on these remaining
elements. The remaining elements of the genetically
evolved circuit bear hardly any resemblance to the
patented circuit. In this instance, genetic programming
produced a circuit that duplicates the functionality of
the patented circuit without infringing.
E. Low-Voltage Cubic Signal Generator
The best-of-run evolved circuit (figure 5) was produced
in generation 182 and has an average error of 4.02
millivolts. The patented circuit had an average error of
6.76 millivolts. That is, the evolved circuit has
approximately 59% of the error of the patented circuit
over our four fitness cases.

Figure 5 Best-of-run cubic signal generator

Averaged over the four fitness cases, the best-of-
run individual from generation 182 has 4.20 millivolts
average absolute error, and 26.7 millivolts maximum
absolute error.

Figure 6 compares the output produced by the best-
of-run cubic signal generation circuit from generation
182 (solid line) against the target cubic curve (dotted
line). As can be seen, the two curves are almost
indistinguishable.

0V

0.5V

1V

1.5V

2V

0mS 0.2mS 0.4mS 0.6mS 0.8mS 1mS

Time

V
o

lt
ag

e

Ideal output
GP output

Figure 6 Output produced by the best-of-run cubic
signal generator

-25mV

0mV

25mV

0mS 0.2mS 0.4mS 0.6mS 0.8mS 1mS

Time

V
o

lt
ag

e

GP error
Patent ckt error

Figure 7 Comparison of the error of the best-of-run
cubic signal generator and patented circuit

Figure 7 compares the error of the best-of-run cubic
signal generation circuit from generation 182 of the
first run and the error of the circuit of U.S. patent
6,160,427. As can be seen from the figure, the error
produced by the genetically evolved circuit is generally
less than that produced by the patented circuit.

Figure 8 shows the cubic function generator of U.S.
patent 6,160,427. This circuit has nine transistors.

Figure 8 Patented cubic function generator

Averaged over the four fitness cases, the patented
circuit has 6.76 millivolts average absolute error, and
17.3 millivolts maximum absolute error.

The claims in U.S. patent 6,160,427 amount to a
very specific description of the patented circuit. The
genetically evolved circuit does not read on these
claims and, in fact, bears hardly any resemblance to the
patented circuit. In this instance, genetic programming
produced a circuit that duplicates the functionality of
the patented circuit with a very different structure.

V. NOVELTY-DRIVEN EVOLUTION
One may be interested in patenting a novel circuit for
commercial advantage. Alternatively, one might simply
have a scientific interest in producing novel solutions
to challenging problems. Or, alternatively, one may
want to avoid infringing an existing patent (either to
avoid paying royalties or because the patent holder is
unwilling to license a competitor).

In any of the above three situations, the fitness
measure can incorporate the degree to which a
candidate satisfies the problem’s technical design
requirements and the degree to which it avoids
characteristics that read on prior art.

Because circuits can be conveniently represented
by labeled graphs, a graph isomorphism algorithm can
be applied to the candidate circuit and various template
graphs representing key characteristics of the relevant
prior art. For example, the templates for a balun would
represent key characteristics of Lee’s now-patented
balun and all other prior art circuits (such as those cited
by Lee himself in his patent). The measure of similarity
can be based on the size of the maximal common
subgraph between a candidate circuit and a template.
For details, see Koza, Bennett, Andre, and Keane 1999.

VI. 20TH CENTURY PATENTED CIRCUITS
As an additional indicator of the ability of genetic
programming to automatically synthesize both the
topology and sizing of analog electrical circuits, table 2
shows five 20th century patented circuits that were
previously automatically synthesized by means of
genetic programming (Koza, Bennett, Andre, and
Keane 1999).

Table 2 Five 20th century patented circuits
Invention Inventor(s)

and date
Institution

Darlington emitter-
follower section
(transistor circuit)

Sidney
Darlington
(1953)

Bell Telephone
Laboratories

Ladder filter (LC
circuit)

George
Campbell
(1917)

American
Telephone and
Telegraph

Crossover filter (LC
circuit)

Otto Julius
Zobel (1925)

American
Telephone and
Telegraph

“M-derived half
section” filter (LC

Otto Julius
Zobel (1925)

American
Telephone and

circuit) Telegraph
Philbrick circuit
(RC circuit)

George
Philbrick
(1956)

George A.
Philbrick
Researches

VII. CONCLUSIONS
We applied genetic programming to the problem of
automatically synthesizing circuits that duplicate the
functionality of five analog and mixed analog-digital
circuits patented after January 1, 2000. The five
automatically created circuits read on some (but not
all) of the elements of various claims of the patents
involved (and therefore do not infringe). Genetic
programming can be used as an automated invention
machine either to produce potentially patentable new
circuits or to “engineer around” existing patents. As
computer power continues to increase in accordance
with Moore’s Law, we anticipate that the use of genetic
programming as an invention machine will become
more and more common.

REFERENCES
Aytur; Turgut Sefket. 2000. Integrated Circuit with

Variable Capacitor. U. S. patent 6,013,958. Filed
July 23, 1998. Issued January 11, 2000.

Campbell, George A. 1917. Electric Wave Filter. Filed
July 15, 1915. U.S. Patent 1,227,113. Issued May
22, 1917.

Darlington, Sidney. 1953. Semiconductor Signal
Translating Device. U.S. Patent 2,663,806. Filed
May 9, 1952. Issued December 22, 1953.

Cipriani, Stefano and Takeshian, Anthony A. 2000.
Compact cubic function generator. U. S. patent
6,160,427. Filed September 4, 1998. Issued
December 12, 2000.

Daun-Lindberg, Timothy Charles and Miller; Michael
Lee. 2000. Low Voltage High-Current Electronic
Load. U. S. patent 6,211,726. Filed June 28,
1999. Issued April 3, 2001.

Ikeuchi, Akira and Tokuda, Naoshi. 2000. Voltage-
Current Conversion Circuit. U. S. patent
6,166,529. Filed February 24, 2000 in U. S..
Issued December 26, 2000 in U. S.. Filed March
10, 1999 in Japan.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT
Press.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1999. Genetic
Programming III: Darwinian Invention and
Problem Solving. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David,
Keane, Martin A., and Brave Scott. 1999. Genetic
Programming III Videotape: Human-Competitive
Machine Intelligence. San Francisco, CA:
Morgan Kaufmann.

Koza, John R., Keane, Martin A., Streeter, Matthew J.,
Mydlowec, William, Yu, Jessen, and Lanza,
Guido. 2003. Genetic Programming IV. Routine
Human-Competitive Machine Intelligence.
Kluwer Academic Publishers. In press.

Koza, John R., Keane, Martin A., Yu, Jessen, Bennett,
Forrest H III, and Mydlowec, William. 2000.
Automatic creation of human-competitive
programs and controllers by means of genetic
programming. Genetic Programming and
Evolvable Machines. (1) 121 - 164.

Lee, Sang Gug. 2001. Low Voltage Balun Circuit. U. S.
patent 6,265,908. Filed December 15, 1999.
Issued July 24, 2001.

Philbrick, George A. 1956. Delayed Recovery Electric
Filter Network. Filed May 18, 1951. U.S. Patent
2,730,679. Issued January 10, 1956.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and
Sangiovanni-Vincentelli, A. 1994. SPICE 3
Version 3F5 User's Manual. Department of
Electrical Engineering and Computer Science,
University of California. Berkeley. March 1994.

Zobel, Otto Julius. 1925. Wave Filter. Filed January
15, 1921. U.S. Patent 1,538,964. Issued May 26,
1925.

