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Abstract 

In this paper we examine how 
quickly the programs generated us
ing genetic programming grow in size. 
We found that without a constraint 
mechanism the programs will grow 
indefinitely regardless of whether or 
not the growth acts to improve the 
programs' solutions. This growth is 
dominated by non-functional code. If 
the non-functional code is removed 
the growth is dominated by func
tional, but non-executed code. Two 
methods of controlling the growth: 
removing non-functional code, and 
selective pressure applied by penal
izing longer programs, are compared. 
Only the later method appears to be 
effective in bounding the programs' 
size. 

1 Introduction 

Considerable study has gone into how close pro
grams generated using genetic programming (GP) 
come to the optimal solution: how effective they 
are [Koza, 1992, Koza, 1994]. The experiments in 
this paper study how efficiently genetic program
ming solves problems: how much code is generated 
compared to the amount of code actually needed. 
In addition, we measure how much of the generated 
code is actually non-functional. 

' Th i s work supported by funding from the URO FY96 
Seed Grant program, and through funding received from the 
NSF-Idaho EPSCoR project under NSF Cooperative Agree
ment number OSR-9350539. 

One of the interesting features of the programs 
generated using GP is that they almost invariably 
grow in size and incorporate large amounts of non
functional code which has no net effect, but does in
crease the programs' lengths. Unfortunately, there 
are several reasons for generally preferring shorter 
programs. Shorter programs typically require less 
time and less space to run. This is particularly im
portant during the GP process which may need to 
store and evaluate populations of hundreds or thou
sands of programs. In addition, shorter programs 
tend to show better generalization performance than 
do longer programs. This means that efforts to 
limit code size will be important in all but the sim
plest GP applications. Reducing the amount of non
functional code is an obvious place to start. 

However, several researchers have hypothesized 
that the growth of code during GP and the creation 
of non-functional code are both important contrib
utors to the production of effective programs. Iba 
et al. have suggested that the creation of large pro
grams is a necessary part of the exploration of the so
lution space [Iba et al., 1994]. Nordin and Banzhaf 
have argued that non-functional code is also impor
tant in shielding useful code from the harmful ef
fects of crossover [Nordin and Banzhaf, 1995]. They 
attempted to use external pressures to reduce the 
amount of non-functional information in variable 
length genetic algorithm individuals. Although the 
amount of non-functional information was reduced 
almost to zero the system failed to find the optimal 
solution, unlike in the case without external pres
sure. 

In contrast Zhang and Muhlenbein used an 
implementation of Occam's Razor to limit code 
size in a successful GP to design neural nets 
[Zhang and Muhlenbein, 1995]. Their model at
tempted to balance parsimony and performance. 
This resulted in populations which cycled between 
growth and reduction and produced reasonably ef-
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fective individuals. 
We have used selective pressure to control code 

size in a relatively successful genetic program 
for approximating the maximum clique problem 
[Soule et al., 1996]. 

Overall, the relative importance of code growth 
and non-functional code is still unclear. Although 
there are definite benefits to shorter, more parsi
monious programs some studies suggest that code 
growth, particularly of non-functional code, is im
portant to the evolution of effective programs. This 
makes attempts to restrict code growth and improve 
efficiency difficult. 

Looking at biological evolutionary processes is also 
not very enlightening. In humans roughly 80 — 90% 
of DNA does not code for functional proteins, al
though some of this DNA does have a structural 
function. Similar percentages hold for most other 
higher organisms. On the other hand, prokaryotes 
have almost no non-functional genetic material. It 
has been hypothesized that organisms which com
pete via rapid cell division experience strong selec
tive pressure for streamlined genomes - an efficiency 
consideration which may be relevant for GP. 

Comparing code growth to performance improve
ments will help indicate how important the growth is 
in producing effective solutions. The ability to use 
selective pressure to control code growth and non
functional code without interfering with the produc
tion of effective solutions places a limit on the im
portance of these factors to the GP process. It also 
leads to more efficient and generalizable solutions. 

We examined the rate of code growth in a simple 
GP, separating the code into functional and non
functional categories. Then we measured the effect 
of removing the non-functional code or of applying 
selective pressure. We found that the size of the ge
netically generated programs grows indefinitely, re
gardless of whether the additional code acts to im
prove the programs' fitness. Additionally, most of 
this growth is caused by increases in the amount of 
non-functional code. Despite the prevalence of non
functional code, removing this code at every gener
ation does not halt the programs' growth. Instead 
the programs generate code which, while functional, 
is never actually executed. These results imply that 
much of the programs' growth is not caused by pres
sure to improve the solution, but, instead, is an in
nate part of the genetic programming process. How
ever, selective pressure was found to dramatically re
duce the overall growth and the percentage of non
functional code while still producing effective pro
grams. This implies that most of the growth seen 
in unrestrained GP and most of the non-functional 

code is not necessary for the evolution of effective 
programs. 

2 The Experiment 

2.1 The Test Arena 

Our test case was a GP for a robot guidance problem. 
The task is to generate a program which will guide a 
robot through an obstacle-filled room. The room, a 
simple maze, is shown in Figure 1. This problem was 
chosen to make automated detection of useless code 
relatively simple. Branches of statements which fail 
to change the robots position or direction are clearly 
useless. 

Figure 1: The Room 

The initial position and direction of the robot is 
shown by the arrow at the left of the figure. The fit
ness of a program is based on the horizontal distance 
the robot has traveled when the program terminates. 
Hence, the fitness varies from one to eighteen (the 
length of the room). No penalties are assessed for 
running into walls (although of course it does not 
advance the robot) or for the number of steps taken. 
To avoid infinite loops the programs are only allowed 
3000 statement executions. This number is more 
than sufficient to cross the room, but should avoid 
incidentally penalizing programs which might cross 
the room using a very long path. Of course, some 
programs will terminate in less than 3000 steps. 

We developed a simple, interpreted language for 
the genetic program (which was written in C++) . 
The language has five terminal statements (which 
have no arguments and no return values): l e f t , 
r i g h t , forward, back, and no_op. These state
ments change the robot's position or direction in 
the obvious manner. The no_op statement has no 
effect. It was included so that branches of non
functional code could be removed and replaced by 
a no_op without interfering with the syntax of the 
language, which requires binary branching. 
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The language also contains three control state
ments which take two other statements as argu
ments: progn, if, and while. The progn state
ment simply executes its first argument followed 
by its second argument. Both the i f and while 
statements take a predicate, either walljihead or 
no.wall^ahead. The i f statement executes its first 
argument if the predicate is true and its second ar
gument otherwise. As long as its predicate is true 
the while statement executes its first argument and 
then its second argument. This language produces 
programs which have the structure of a binary tree. 
This means that the crossover operation is rela
tively simple to accomplish through the exchange of 
branches. 

For example, a typical program is 

progn(left , 
while (no jwall jJiead, forward . r ight ) ) 

The corresponding program tree and the path along 
which the program would move the robot are shown 
in Figure 2. The robot ends at location 2,4 facing 
the barrier to the South. The program itself would 
be awarded a fitness of two. 

progn 

left while(no_wall_ahead) 

forward right 

h 
h 

h 
X 

Figure 2: A Sample Program Tree and Path 

For each trial the genetic program was run for 
fifty generations with a population of 500 individ
ual programs. The initial population was generated 
randomly, but each program always began with a 

control statement. Thus, the initial programs con
sisted of at least three statements. The average size 
of the programs in the initial population was approx
imately ten statements. 

The crossover rate was 0.6667 and the mutation 
rate was 0.001. Mutation was limited such that 
statements could only mutate into other statements 
of the same type: terminals to terminals, controls 
to controls, and predicates to predicates. At each 
generation a new population was chosen from the 
previous one using the stochastic remainder tech
nique which is based on the the fitness ranking of 
the individuals. 

Program fitness was determined by the number of 
columns between the robot's position at the start 
and termination of the program. More exacting fit
ness functions are possible. For example it would be 
reasonable to consider the number of steps the pro
gram used in determining its fitness. However, such 
fitness functions are likely to exert an additional in
fluence on the code size possibly obscuring the re
lationships between code growth and performance 
that we were measuring. 

2.2 The Test Cases 

We used four test cases: 1) a simple genetic pro
gram, 2) a genetic program in which the test pro
grams were reduced at each generation by editing 
out some of the non-functional code, 3) a genetic pro
gram in which only the initial, random population 
had non-functional code removed, and 4) a genetic 
program in which the fitness function was modified 
to penalize longer programs. The use of a penalizing 
function applies selective pressure in favor of shorter 
programs. 

The non-functional code fell into two basic cate
gories: code which did nothing and code which could 
never be executed. The first category includes any 
of the control statements with no_op's for both ar
guments, progn's with a no.op for one of the argu
ments, and l e f t - r i g h t combinations. The second 
category is a result of nested conditionals. For ex
ample, consider the code: 

i f (wall-ahead, while (no .wall jdiead,X,Y) ,Z) 

where X,Y, and Z are any additional statements, or 
lists of statements. The statements denoted by X 
and Y will never be executed. The while is only 
reached if there is a wall ahead in which case the 
while's conditional is false. Hence, the while state
ment and its attendant branches can all be replaced 
by a single no.op without affecting the program's 
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performance. The i f statement must have a state
ment in its first branch making the no_op necessary. 
Thus, the edited program would become 

if (wall-ahead,nojop.Z) 

It is also possible for code to be functional, but to 
never be executed. For example, the statement Z in 
the above example will never be executed if the robot 
is always facing a wall when the i f statement is exe
cuted. However, in such a case the non-execution of 
the statement Z is dependent upon the room and is 
not an inherent feature of the code, so the statement 
is not considered non-functional and is not removed. 

Although these tests remove much of the non
functional code they do not guarantee that it will 
all be removed. The detection of all non-functional 
code is an unsolvable problem, since it is reducible 
to the program equivalence problem, which is non-
recursive [Hartley Rogers, 1967]. Therefore all non
functional code cannot be removed. A more ex
haustive search could find and remove more of the 
non-functional code, but the differences between the 
edited and unedited test cases in our results are 
definitive enough that more rigorous editing was not 
warranted. 

Interestingly, in a few cases the removal of non
functional code did change the fitness of the edited 
program. This could occur if, for example, the non
functional code was also an infinite loop. By remov
ing the loop, sections of code which followed the loop 
were executed where previously they had not been. 
Similarly, because of the 3000 step maximum, re
moving an early section of non-functional code might 
allow a later section of code to be executed. Overall, 
changes in fitness due to editing were very rare and 
lowered the fitness roughly as often as they improved 
it. Hence, the effects were negligible. 

The fitness function used to penalize longer pro
grams subtracted one point of fitness for every fif
teen statements beyond the first fifty. We felt that 
the limit should be close to the length of the short
est program which could solve the task. Otherwise 
there is a significant risk that programs will evolve 
primarily for size rather than ability. Preliminary 
trials bore this out. When the cutoff was set too 
low, program performance suffered. The programs 
worked to avoid the penalties of a longer program 
rather than to produce effective solutions. Sample 
trials found a program of fifty-one statements which 
successfully crossed the room, so we rounded the the 
cut-off value to fifty. Further work has shown that 
shorter programs can successfully complete the task. 

3 The Results 

All of the data were obtained by averaging the re
sults of fifty separate trials. Figure 3 shows the pro
gram length of the best programs of each generation 
for the four test cases: the standard genetic pro
gram (control), the genetic program with individ
uals edited at every generation (edited programs), 
the genetic program with an edited initial population 
(edited initially), and the genetic program with indi
viduals subjected to selective pressure against length 
(selective pressure). Figure 4 shows the average pro
gram lengths averaged across all fifty trials. 

For the earlier generations (roughly the first 
twenty) the length of the best programs are gener
ally greater than that of the average program. How
ever, after that the length of the best and average 
programs are very similar. This suggests that once 
the programs reach a certain minimum size a longer 
program is not any more likely to be effective than 
a shorter program. The one exception occurs when 
selective pressure is applied. Here the best programs 
are actually slightly shorter than the average because 
the shorter programs are not penalized for length. 

Comparison of the edited and unedited programs 
shows that for the initial random programs almost 
fifty percent of their length is non-functional code. 
Simply removing this code in the initial generation 
has a lasting effect on the code size, although it does 
not appear to effect the basic growth curve. 

We found that non-functional code is responsible 
for most of the code growth in the control case. The 
amount of functional code grows much more slowly 
and, unlike the total code size, its growth begins 
to level off. This suggests that removing the non
functional code at each generation would restrict 
the overall program growth. However, the edited 
programs show that this does not happen. Even 
when the programs are edited at each generation 
their growth curve is still very dramatic. We found 
that when the non-functional code is removed the 
GP responds by producing large programs consist
ing entirely of potentially functional code. However, 
most of this code is never executed, since it is stored 
in branches of the program which are never reached 
during execution. This non-executed code accounts 
for most of the edited programs' growth, while the 
executed code remains relatively small. More signif
icantly, the growth in the amount of executed code 
appears to level off just as the growth in the func
tional code did in the unedited case. 

In contrast, penalizing longer code through the 
fitness function appears to be considerably more ef
fective at reducing code length. More importantly, 
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Figure 3: Best Program Lengths 

such selective pressure limits the overall amount of 
growth. 

Figure 5 shows the fitness for the best program of 
each generation for each of the four test cases. The 
test cases are labeled in the same manner as in the 
previous figures. All of the cases show roughly the 
same performance results, including the programs 
subjected to selective pressure. This strongly indi
cates that the rapid growth seen in the other test 
cases is not necessary for the production of effective 
programs. 

Figure 5 also shows that the success of the pro
grams tends to level off towards the later genera
tions. This plateau corresponds to the convergence 
of the population towards a particular solution and 
implies that further rapid improvement is unlikely. 
In some cases the achieved solution is optimal, and 
in others it is sub-optimal, thus the average fitness 
over all fifty trials is slightly lower than the the max
imum possible (eighteen). Figure 6 shows the aver
age fitness for all of the programs of each generation 
for the four test cases. The actual fitness values are 
shown, so the programs subjected to selective pres

sure are slightly more successful in crossing the room 
than the data indicate. They have lost points due to 
their length rather than to poor performance. The 
data in Figure 4 show that towards the later gener
ations (beginning around generation thirty-five) the 
average program length with selective pressure was 
between fifty and sixty. Thus, the fitnesses in Fig
ure 6 are approximately one point less than the dis
tance traveled. 

Figure 6 also shows a leveling of the fitnesses to
wards the end of the run. The plateau lags slightly 
behind that of the best programs (Figure 5) in a 
fashion typical of genetic programs. In contrast, Fig
ure 3 and Figure 4 show that no similar effect ap
pears in the code size for the first three test cases. 
Even though the genetic program is no longer im
proving significantly (indeed in many of the trials 
an optimal solution has been found and no further 
improvement is possible) it continues to make larger 
and larger programs. 

We hypothesize that this phenomenon is caused 
by crossover. Consider two identical and highly suc
cessful programs (program 1 and program 2) which 
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Figure 4: Average Program Lengths 

are chosen to be crossed with each other. Program 1 
has a relatively small branch removed which is re
placed by a much larger branch from program 2. 
The opposite occurs in program 2; it loses the large 
branch and gains a smaller branch. It seems likely 
that after the crossover, program 1, which lost less 
of its original code and gained more of program 2's 
code, is going to have a better chance of remaining a 
fairly fit individual. Whereas program 2, which lost 
more code and only gained a little to replace it, is 
more likely to lose fitness. Hence, there is a slight, 
but distinct, statistical advantage for the longer of 
two programs created by crossover. This advantage 
would act to keep the code size growing even after 
an optimal program had been found, as is occurring 
in these trials. 

This point deserves emphasizing. Even though the 
programs' performance has begun to level off, they 
are growing in size just as rapidly as ever. Remov
ing the non-functional code is not sufficient to halt 
this growth. Only the use of a penalty function and 
selective pressures are effective, and their success in 
limiting code size is extremely dramatic. 

Given that the penalty function is so successful, 
it is reasonable to consider what portion of the non
functional code it is removing. Figure 7 shows the 
average program lengths at each generation for the 
programs subjected to selective pressure and the av
erage program lengths after these programs have 
been edited. Clearly, the programs still contain a 
considerable amount of non-functional code. How
ever, the selective pressure is sufficient to keep the 
amount of this code from growing indefinitely as in 
the previous cases. 

While we have not considered programs which are 
limited to less than some fixed size, we feel that some 
predictions may be made concerning this case. First, 
to avoid the possibility that even programs of the 
maximum size cannot complete the task it is nec
essary to fix the limit at a large value. Given the 
rate of program growth which we observed, and the 
fact that most of this growth is either non-functional 
or non-executed, it is reasonable to expect that the 
programs will grow rapidly towards the size limit. 
Additionally, most of this growth will consist of non
functional code. 
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The bound on program size is usually denned as a 
maximum depth. This restricts the program's size, 
but also artificially influences its shape. For pro
grams to incorporate the maximum number of func
tions they must be relatively symmetrical. An ad
ditional problem stems from the fact that the en
forcement of the size limit normally occurs during 
crossover. If a program created during crossover ex
ceeds the accepted limit it is discarded and one of its 
parents is used in the next generation instead. This 
requires additional computation to detect oversized 
offspring and, perhaps more importantly, also artifi
cially influences the programs' development. Effec
tively, there is a decline in the crossover rate as the 
average program size grows and more products of 
crossover are discarded. 

Using a fitness function which penalizes larger pro
grams avoids most of these problems. It is true 
that programs appear to rapidly approach the size 
at which penalties are introduced. However, because 
this limit is not completely restrictive, it can be set 
much lower than otherwise. This means that the 
usual program size will be much lower without run

ning the risk of making the task unsolvable. 

4 Conclusions 

Code growth in GP is an issue which certainly de
serves attention. In these experiments code growth 
was extremely rapid and gave every indication of 
continuing, without corresponding increases in fit
ness. We hypothesize that this growth is due to 
a slight preference for the larger of the two pro
grams created during crossover. This would cause an 
overall increase in the program sizes. However, this 
doesn't appear to be an important factor in evolv
ing effective programs. Incorporating a balancing 
preference for shorter programs should restrict this 
growth without harming the overall results. 

Most of the code growth is attributable to in
creases in the amount of non-functional code. How
ever, removing this code does not halt the growth-
instead functional, but non-executed, code is sub
stituted for non-executable code. Removing non
functional code does not appear to harm the evolu
tion of effective programs and does lead to program 
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which are considerably shorter than when editing is 
not used. 

Using a fitness function which penalizes large pro
grams generates selective pressure which does act to 
limit program growth. Furthermore, in our experi
ments selective pressure does not hurt the produc
tion of effective programs. Thus, it appears that 
selective pressure can be used to evolve programs 
which are both effective and efficient. It is evident 
that all of the code growth and non-functional code 
seen in our control and edited cases, as well as many 
other GP applications, is not necessary to the evo
lution of effective programs. 

The one difficulty in using a penalty function is 
that it may require estimating the minimum size of 
programs which can solve the problem. However, the 
growth of unrestricted programs is so rapid and the 
effect of the penalty function is so dramatic that even 
an extremely liberal guess at the minimal program 
size should produce beneficial results. The effects 
of underestimating the required program size, and 
thereby penalizing programs which are too small to 
optimally solve the problem still needs to be stud

ied, as does effectiveness of other types of penalty 
functions. 

Other factors being equal, shorter code has the 
inherent benefits of requiring less resources and gen
eralizing better than longer code. However, it is also 
possible that shorter code is also more amenable to 
the GP process. If, as Nordin and Banzhaf suggest, 
non-functional code shields functional code from the 
harmful effects of crossover, it also decreases the 
chances of helpful crossovers occurring. Thus, too 
much code growth would lead to a stagnation of the 
GP process. 
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