Skip to main content
Log in

Comparison of genetic programming and radial basis function neural network for open-channel junction velocity field prediction

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The ability to accurately predict the velocity field in open-channel junctions has a significant impact on the designing process of many hydraulic structures, such as irrigation and drainage channels and sewer networks. The gene expression programming (GEP) and radial basis function neural network (RBF-NN) methods are developed in order to find a continuous spatial velocity description using discrete experimental measurements. By using the coordinates of each point and the tributary-to-main-discharge ratio of an open-channel junction, seven different input combinations are investigated. To find the optimum GEP model, various mathematical and linking functions are studied. The RBF-NN models are developed with various numbers of hidden layer nodes and amounts of spread. A comparison of the results indicates that both GEP and RBF-NN methods can accurately simulate flow in junctions. However, the GEP with root-mean-squared error (RMSE) of 0.2361 performs better than RBF-NN with RMSE of 0.2590. Owing to the higher accuracy and explicit output equation of the GEP, this method can be used in practical situations of predicting open-channel characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bradbrook KF, Biron PM, Lane SN, Richards KS, Roy AG (1998) Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrol Process 12(8):1371–1396

    Article  Google Scholar 

  2. Ab. Ghani A, Md. Azamathulla H (2010) Gene-expression programming for sediment transport in sewer pipe systems. J Pipeline Syst Eng Pract 2(3):102–106

    Article  Google Scholar 

  3. Kisi O, Dailr AH, Cimen M, Shiri J (2012) Suspended sediment modeling using genetic programming and soft computing techniques. J Hydrol 450:48–58

    Article  Google Scholar 

  4. Taylor EH (1944) Flow characteristics at rectangular open-channel junction. J Hydraul Eng 109:893–902

    Google Scholar 

  5. Carballada B (1979) Combining flow in open-channels and blockage phenomenon. Internal report RSH 43-79-49, Hydraulic Division, Hydro-Quebec, Montreal

  6. Best J, Reid I (1984) Separation zone at open-channel junctions. J Hydraul Eng 110(11):1588–1594

    Article  Google Scholar 

  7. Rhoads BL, Kenworthy ST (1995) Flow structure at an asymmetrical stream confluence. Geomorphology 11(4):273–293

    Article  Google Scholar 

  8. Hsu C, Wu F, Lee W (1998) Flow at 90° equal-width open-channel junction. J Hydraul Eng 124(2):186–191

    Article  Google Scholar 

  9. Weber LJ, Schumate ED, Mawer N (2001) Experiments on flow at a 90° open-channel junction. J Hydraul Eng 127(5):340–350

    Article  Google Scholar 

  10. Huang J, Weber LJ, Lai YG (2002) Three-dimensional numerical study of flows in open-channel junctions. J Hydraul Eng 128(3):268–280

    Article  Google Scholar 

  11. Shakibainia A, Tabatabai MRM, Zarrati AR (2010) Three-dimensional numerical study of flow structure in channel confluences. Can J Civil Eng 37(5):772–781

    Article  Google Scholar 

  12. Yang Q, Liu T, Lu W, Wang X (2013) Numerical simulation of confluence flow in open-channel with dynamic meshes techniques. Adv Mech Eng. doi:10.1155/2013/860431

    Google Scholar 

  13. Mamak M, Seckin G, Cobaner M, Kisi O (2009) Bridge afflux analysis through arched bridge constrictions using artificial intelligence methods. Civ Eng Environ Syst 26(3):279–293

    Article  Google Scholar 

  14. Seckin G, Akoz MS, Cobaner M, Haktanir T (2009) Application of ANN techniques for estimating backwater through bridge constrictions in Mississippi River basin. Adv Eng Softw 40(10):1039–1046

    Article  MATH  Google Scholar 

  15. Pinar E, Paydas K, Seckin G, Akilli H, Sahin B, Cobaner M, Kocaman S, Atakan Akar M (2010) Artificial neural network approaches for prediction of backwater through arched bridge constrictions. Adv Eng Softw 41(4):627–635

    Article  MATH  Google Scholar 

  16. Wolfs V, Willems P (2014) Development of discharge-stage curves affected by hysteresis using time varying models, model trees and neural networks. Environ Modell Softw 55:107–119

    Article  Google Scholar 

  17. Guven A, Aytek A, Azamathulla HM (2013) A practical approach to formulate stage-discharge relationship in natural rivers. Neural Comput Appl 23(3–4):873–880

    Article  Google Scholar 

  18. Kisi O (2008) Constructing neural network sediment estimation models using a data-driven algorithm. Math Comput Simul 79(1):94–103

    Article  MATH  Google Scholar 

  19. Senthil Kumar A, Ojha C, Goyal MK, Singh R, Swamee P (2011) Modeling of suspended sediment concentration at Kasol in India using ANN, fuzzy Logic, and decision tree algorithms. J Hydrol Eng 17(3):394–404

    Article  Google Scholar 

  20. Singh A, Imtiyaz M, Isaac R, Denis D (2012) Comparison of artificial neural network models for sediment yield prediction at single gauging station of watershed in eastern India. J Hydrol Eng 18(1):115–120

    Article  Google Scholar 

  21. Goyal MK (2014) Modeling of sediment yield prediction using M5 model tree algorithm and wavelet regression. Water Resour Manag 28(7):1991–2003

    Article  Google Scholar 

  22. Singh A, Imtiyaz M, Isaac R, Denis D (2014) Assessing the performance and uncertainty analysis of the SWAT and RBNN models for simulation of sediment yield in the Nagwa watershed, India. Hydrol Sci J 59(2):351–364

    Article  Google Scholar 

  23. Fuladipanah M, Sangi E (2014) Neural network for estimation of scour hole dimensions downstream of siphon spillway. Adv Environ Biol 7(13):4254–4264

    Google Scholar 

  24. Azmathullah HM, Deo MC, Deolalikar PB (2005) Neural networks for estimation of scour downstream of a ski-jump bucket. J Hydraul Eng 131(10):898–908

    Article  Google Scholar 

  25. Krishna B, Satyaji Rao Y, Vijaya T (2008) Modelling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrol Process 22(8):1180–1188

    Article  Google Scholar 

  26. Rakhshandehroo GR, Vaghefi M, Aghbolaghi MA (2012) Forecasting groundwater level in Shiraz Plain using artificial neural networks. Arab J Sci Eng 37(7):1871–1883

    Article  Google Scholar 

  27. Kisi O (2009) Modeling monthly evaporation using two different neural computing techniques. Irrig Sci 27(5):417–430

    Article  Google Scholar 

  28. Bilhan O, Emin Emiroglu M, Kisi O (2010) Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel. Adv Eng Softw 41(6):831–837

    Article  MATH  Google Scholar 

  29. Cobaner M, Unal B, Kisi O (2009) Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data. J Hydrol 367(1–2):52–61

    Article  Google Scholar 

  30. Guven A, Gunal M (2008) Genetic programming approach for prediction of local scour downstream of hydraulic structures. J Irrig Drain 134(2):241–249

    Article  Google Scholar 

  31. Azamathulla HM (2012) Gene expression programming for prediction of scour depth downstream of sills. J Hydrol 460:156–159

    Article  Google Scholar 

  32. Mohammadpour R, Ghani AA, Azamathulla HM (2013) Estimation of dimension and time variation of local scour at short abutment. Int J River Basin Manag 11(1):121–135

    Article  Google Scholar 

  33. Guven A, Azamathulla HM (2012) Gene-expression programming for flip-bucket spillway scour. Water Sci Technol 65(11):1982–1987

    Article  Google Scholar 

  34. Azamathulla HM, Deo MC, Deolalikar PB (2008) Alternative neural networks to estimate the scour below spillways. Adv Eng Softw 39(8):689–698

    Article  Google Scholar 

  35. Azmathullah HM, Deo MC, Deolalikar PB (2006) Estimation of scour below spillways using neural networks. J Hydraul Res 44(1):61–69

    Article  Google Scholar 

  36. Kisi O, Emin Emiroglu M, Bilhan O, Guven A (2012) Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches. Expert Syst Appl 39(3):3454–3460

    Article  Google Scholar 

  37. Unsal M (2012) GEP modeling of penetration depth in sharp crested Weirs. Arab J Sci Eng 37(8):2163–2174

    Article  Google Scholar 

  38. Onen F (2014) GEP prediction of scour around a side weir in curved channel. J Environ Eng Landsc 22(3):161–170

    Article  Google Scholar 

  39. Md. Azamathulla H (2013) Gene-expression programming to predict friction factor for Southern Italian rivers. Neural Comput Appl 23(5):1421–1426

    Article  Google Scholar 

  40. Azamathulla HM, Jarrett RD (2013) Use of gene-expression programming to estimate manning’s roughness coefficient for high gradient streams. Water Resour Manag 27(3):715–729

    Article  Google Scholar 

  41. Terzi O, Erol Keskin M (2005) Evaporation estimation using gene expression programming. J Appl Sci 5:508–512

    Article  Google Scholar 

  42. Shiri J, Kisi O (2011) Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (South Western Iran). J Irrig Drain 137(7):412–425

    Article  Google Scholar 

  43. Azamathulla H, Ghani A, Leow C, Chang C, Zakaria N (2011) Gene-expression programming for the development of a stage-discharge curve of the Pahang river. Water Resour Manag 25(11):2901–2916

    Article  Google Scholar 

  44. Zaji AH, Bonakdari H (2015) Efficient methods for prediction of velocity fields in open-channel junctions based on the artificial neural network. Eng Appl Comput Fluid. doi:10.1080/19942060.2015.1004821

    Google Scholar 

  45. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT press, Cambridge

    MATH  Google Scholar 

  46. Ferreira C (2002) Gene expression programming in problem solving. In: Roy R, Köppen M, Ovaska S, Furuhashi T, Hoffmann F (eds) Soft computing and industry. Springer, London, pp 635–653

    Chapter  Google Scholar 

  47. Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13:87–129

    MathSciNet  MATH  Google Scholar 

  48. Broomhead DS, Lowe D (1988) Radial basis functions, multi-variable functional interpolation and adaptive networks. DTIC Document

  49. Moody J, Darken CJ (1989) Fast learning in networks of locally-tuned processing units. Neural Comput 1(2):281–294

    Article  Google Scholar 

  50. Poggio T, Girosi F (1990) Regularization algorithms for learning that are equivalent to multilayer networks. Science 247(4945):978–982

    Article  MathSciNet  MATH  Google Scholar 

  51. Kisi O, Yuksel I, Dogan E (2008) Modelling daily suspended sediment of rivers in Turkey using several data-driven techniques/Modélisation de la charge journalière en matières en suspension dans des rivières turques à l’aide de plusieurs techniques empiriques. Hydrol Sci J 53(6):1270–1285

    Article  Google Scholar 

  52. Ay M, Kisi O (2011) Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. J Environ Eng 138(6):654–662

    Article  Google Scholar 

  53. Pulido-Calvo I, Gutierrez-Estrada JC (2009) Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosyst Eng 102(2):202–218

    Article  Google Scholar 

  54. Pulido-Calvo I, Portela MM (2007) Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J Hydrol 332(1):1–15

    Article  Google Scholar 

  55. Aytek A, Kisi O (2008) A genetic programming approach to suspended sediment modelling. J Hydrol 351(3):288–298

    Article  Google Scholar 

  56. Shiri J, Kisi O (2011) Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Comput Geosci 37(10):1692–1701

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bonakdari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifipour, M., Bonakdari, H. & Zaji, A.H. Comparison of genetic programming and radial basis function neural network for open-channel junction velocity field prediction. Neural Comput & Applic 30, 855–864 (2018). https://doi.org/10.1007/s00521-016-2713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2713-x

Keywords

Navigation