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Abstract. This paper shows that it is possible to (1) discover novel
implementations of median circuits using evolutionary techniques and
(2) find out suitable median circuits in case that only limited resources
are available for their implementation. These problems are approached
using Cartesian genetic programming and an ordinary compare–swap
encoding. Combining the proposed approaches a method is demonstrated
for effective exploration of the design space of median circuits under
various constraints.

1 Introduction

Starting in 1992 when Higuchi et al evolved multiplexers in a programmable
logic array [5], the evolutionary circuit design has become an important part
of applications of evolutionary computing. In contrast to evolvable hardware,
evolutionary circuit design deals in principle with a static fitness function and
its objective is to discover novel solutions automatically, possibly without an
assistance of human designers. A number of innovative and fault-tolerant digital
as well as analog circuits have been evolved and demonstrated up to now (see
examples in [4, 14, 18]).

Sorting networks have recently been recognized as potentially suitable objects
for the evolutionary design and optimization [6, 8]. They are also interesting from
a hardware viewpoint because of their regular and combinational nature suitable
for pipeline processing. For instance, Koza et al have used genetic programming
to evolve a 7-sorting network directly in a field programmable gate array [11].

This paper deals with median circuits whose effective hardware implementa-
tions are crucial for high-performance signal processing. As far as we know, no
research results are available dealing with their evolutionary design. Because the
median circuits can easily be derived from sorting networks, it seems that their
evolutionary design is useless. However, this paper shows that interesting median
circuits can be evolved from scratch. The objective of this research is twofold: (1)
to explore whether novel implementations of median circuits can be discovered
using evolutionary techniques and (2) to find out suitable median circuits in case
that only limited resources are available for their implementation. These prob-
lems will be approached using Cartesian genetic programming (which is applied
in this context first time) and an ordinary compare–swap encoding (known from
evolving sorting networks).



This paper is organized as follows. Sorting networks and median circuits are
introduced in Section 2. Cartesian genetic programming is utilized for designing
median circuits in Section 3. Section 4 presents the results obtained using the
compare–swap encoding. Section 5 deals with designing median circuits under
hardware constraints. Finally conclusions are given in Section 6.

2 From Sorting Networks to Median Circuits

A compare–swap of two elements (a, b) compares and exchanges a and b so that
we obtain a ≤ b after the operation. A sorting network is defined as a sequence
of compare–swap operations that depends only on the number of elements to be
sorted, not on the values of the elements [9].

Although a standard sorting algorithm such as quicksort usually requires a
lower number of compare operations than a sorting network, the advantage of the
sorting network is that the sequence of comparisons is fixed. Thus it is suitable
for parallel processing and hardware implementation, especially if the number
of sorted elements is small. Figure 1 shows an example of a sorting network.
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Fig. 1. (a) A 3-sorting network consists of 3 components, i.e. of 6 subcomponents
(elements of maximum or minimum). A 3-median network consists of 4 subcomponents.
(b) Alternative symbol. This sorting network can be tested in a single run if 23bits can
be stored in a single data unit.

Having a sorting network for N inputs, the median is simply the output
value at the middle position (we are interested in odd N only in this paper).
For example, efficient calculation of the median value is important in image
processing where median filters are widely used with N = 3x3 or 5x5 [14].

The number of compare–swap components and the delay are two crucial
parameters of any sorting network. Since we will only be interested in the number
of compare–swap components in this paper (we will deal with delay in future
research), the following Table 1 shows the number of components of some of the
best currently known sorting networks, i.e. those which require the least number
of components for sorting N elements. Some of these networks (N = 13–16) were
discovered using evolutionary techniques [1, 6, 8, 11]. The evolutionary approach



was based on the encoding that will be described in Section 4. Evolutionary
techniques were also utilized to discover fault-tolerant sorting networks [15].

Note that the compare–swap consists of two subcomponents: maximum and
minimum. Because we need the middle output value only in the case of the
median implementation, we can omit some subcomponents (dead code at the
output marked in gray in Fig. 1) and so to reduce the implementation cost
in hardware. Hence in the case of K components, we can obtain 2K − N + 1
subcomponents (Table 1, line 3 with median*).

However, in addition to deriving median networks from sorting networks,
specialized networks have been proposed to implement cheaper median networks.
Table 1 (line 2) also presents the best-known numbers of subcomponents for
optimal median networks. These values are derived from the table on page 226 of
Knuth’s book [9] and from papers [2, 10, 19]. Note that popular implementation
of the 9-median circuit in an FPGA proposed by Smith is also area-optimal (in
terms of the number of components) [16].

Table 1. Best known minimum-comparison sorting networks and median networks for
some N . c(N) denotes the number of compare–swap operations, s(N) is the number of
subcomponents. The last line holds for median networks derived from sorting networks
using dead code elimination.

N 3 4 5 6 7 8 9 10 11 12 13 14 15 16 25

sortnet, c(N) 3 5 9 12 16 19 25 29 35 39 45 51 56 60 144
median, s(N) 4 - 10 - 20 - 30 - 42 - > 52 - > 66 - 174
median*, s(N) 4 - 14 - 26 - 42 - 60 - 78 - 98 - 264

The zero–one principle helps with evaluating sorting networks (and median
circuits as well). It states that if a sorting network with N inputs sorts all 2N

input sequences of 0’s and 1’s into nondecreasing order, it will sort any arbitrary
sequence of N numbers into nondecreasing order [9]. Furthermore, if we use a
proper encoding, on say 32 bits, and binary operators AND instead of minimum
and OR instead of maximum, we can evaluate 32 test vectors in parallel and thus
reduce the testing process 32 times. Figure 1 illustrates this idea for 3-median.
Note that it is usually impossible to obtain the general solution if only a subset
of input vectors is utilized during the evolutionary design [7].

3 CGP for Designing Median Circuits

As far as we know, Cartesian Genetic Programming (CGP) has not been uti-
lized to evolve median circuits or sorting networks yet. Our initial hypothesis is
that novel and more efficient median circuits can be evolved using smaller build-
ing blocks (such as subcomponents minimum and maximum) instead of using
compare–swap components.



3.1 Cartesian Genetic Programming

Miller and Thomson have introduced CGP that has recently been applied by sev-
eral researchers especially for the evolutionary design of combinational circuits
[12]. In CGP, the reconfigurable circuit is modeled as an array of u (columns) × v

(rows) of programmable elements (gates). The number of circuit inputs and out-
puts is fixed. Feedback is not allowed. Each gate input can be connected to the
output of some gate placed in the previous columns or to some of circuit inputs.
L-back parameter defines the level of connectivity and thus reduces/extends the
search space. For example, if L=1 only neighboring columns may be connected;
if L=u, the full connectivity is enabled. The designer has to define for a given
application: the number of inputs and outputs, L, u, v and the set of functions
performed by programmable elements. Figure 2 shows an example and a corre-
sponding chromosome. Miller and Thomson originally used a very simple variant
of evolutionary algorithm to produce configurations for the programmable cir-
cuit [12]. Our algorithm is based on this evolutionary technique.
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Fig. 2. An example of evolved 3-median circuit. CGP parameters are as follows: L = 6,
u = 6, v = 1, functions Minimum (0) and Maximum (1). Gates 4 and 8 are not utilized.
Chromosome: 1,2,1, 2,2,0, 1,2,0, 0,5,1 3,6,0, 0,7,1, 7. The last integer indicates the
output of the circuit.

3.2 Experimental Setup

In order to evolve N -median circuits we utilized CGP with the following set-
ting: u = p, v = 1, L = p, N inputs and a single output. p is the number of
programmable elements depending on the problem size (for example, p = 23 for
N = 7). Each of elements can be configured to operate as logical AND (mini-
mum) or logical OR (maximum). Thus median circuits are rather constructed
from subcomponents than from compare–swap components.

The evolutionary algorithm operates with population of 128 individuals. Ac-
cording to CGP, every individual consists of u × v × 3 + 1 integers. Four best
individuals are considered as parents and every new population is generated as
their clones. Elitism is supported. The initial population is generated randomly;
however, the circuits with the maximum number of utilized elements are pre-
ferred. The evolution was typically stopped (1) when no improvement of the best
fitness value occurs in the last 50k generations, or (2) after 600k generations.



Mutation works as follows: either the circuit output is mutated with the proba-
bility 25% or one of the used elements is mutated – gate inputs are changed with
the probability 85%, function is changed with the probability 15%. Only one mu-
tation is performed per circuit; however, when the best fitness value stagnates
for 10k generations, two mutations are employed. The proposed parameters were
chosen as suitable after the experimental testing.

During fitness calculation all possible input combinations are supplied at the
circuit inputs (i.e. 2N vectors). The fitness value of every candidate circuit is
incremented by one if the circuit returns the correct median value for a given
input vector.

3.3 Results

Table 2 shows that it is very difficult to evolve a perfect median circuit (with
the fitness value 2N ) for more than 5 inputs. Furthermore, we were not able
to reach optimal s(N) for N = 9 and 11. The algorithm usually traps in local
optima, which is very close to the perfect fitness value 2N . It seems that the cir-
cuit evolution landscapes exhibit vast neutrality – similarly to Yu’s and Miller’s
observations for even-parity problem [17].

Table 2. Summary of experiments performed to evolve small median circuits using
CGP. N – # of inputs; p – # of columns in CGP; runs – # of runs performed; perfect
– # of runs leading to the perfect fitness; perfect+opt s(N) – # of runs with the perfect
fitness and the optimal s(N); best s(N) – best obtained s(N); best known s(N)

N p runs perfect perfect+opt s(N) best s(N) best known s(N)

3 8 50 50 15 4 4
5 16 100 11 1 10 10
7 23 2000 22 1 20 20
9 50 2000 35 0 36 30
11 90 200 2 0 71 42
13 120 200 none - - -

Table 2 indicates that it is necessary to utilize much more programmable
elements (the column denoted as p) than the resulting circuit requires in order
to evolve a circuit with the perfect fitness. This requirement on redundancy was
initially discussed by Miller et al [13]. For instance, 50 elements were used to
evolve the 36-element median circuit for N = 9. However, we performed 200
runs with p = 43 for N = 9, but no circuit has appeared with the perfect fitness
512. The best circuits evolved using CGP are depicted in Fig. 3.

CGP has not allowed us to discover median circuits with lower s(N) than
the best known solutions exhibit. Furthermore, the approach produced median
circuits only for small N . On the other hand, the obtained circuits are (1) totally
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Fig. 3. Median circuits evolved using CGP: (a) 3-median, (b) 5-median and (c) 7-me-
dian circuits consist of the same number of subcomponents as the best–known conven-
tional circuits. The evolved 7-median circuit contains one redundant subcomponent.

different from the known median circuits that are based on the compare–swap
approach and (2) much cheaper than those median circuits derived from classical
sorting networks (see Table 1, line 3 with median*).

4 A Compare-Swap Approach

The compare–swap approach is usually applied in order to evolve sorting net-
works. This approach works at the level of compare–swap components. Candi-
date solutions are represented as sequences of pairs (a, b) indicating that a is
compared/swapped with b. More complicated representations have been devel-
oped in order to minimize the delay of the network (for instance, see [1]). We
applied the compare–swap approach to evolve area-efficient median circuits.

4.1 Experimental Setup

Each chromosome consists of a sequence of integers that represents a median
circuit. We used variable-length chromosomes of maximum length ml; a sentinel
indicates the end of valid sequence.

A typical setting of the evolutionary algorithm is as follows. Initial population
of 200 individuals is seeded randomly using alleles 0− (N − 1). New individuals
are generated using mutation (1 integer per chromosome). Four best individuals



are considered as parents and every newly formed population consists of their
clones. The evolutionary algorithm is left running until a fully correct individual
is found or 3000 generations are exhausted. We also increase mutation rate if no
improvement is observable during the last 30 generations. Fitness calculation is
performed in the same way as for CGP.

Because we would like to reduce the number of compare–swap components
and because the fitness function does not consider the number of compare–swap
operations, we utilized the following strategy. First, we defined a sufficient value
ml for a given N (according to Table 1) and executed the evolutionary design. If
a resulting circuit exhibits the perfect fitness, ml is decremented by 2, otherwise
ml remains unchanged and the evolution is executed again. This is repeated until
a predefined number of runs are exhausted. Because this approach works at the
level of compare–swap components (i.e. c(n)), it was necessary to eliminate dead
code to obtain s(N).

4.2 Results

In contrary to CGP, perfectly operating median circuits were evolved up to
N = 25 (see examples in Fig. 4). Table 3 shows that area-optimal circuits are
up to N = 11. In spite of the best efforts of the author of this paper none
specific values of s(N) nor c(N) were found in literature for median circuits
with N = 13− 23.

Table 3. The best median circuits evolved using the compare–swap approach

N 3 5 7 9 11 13 15 17 19 21 23 25

c(N) 3 7 13 19 26 34 44 55 65 80 94 109
s(N) 4 10 20 30 42 56 74 94 112 140 166 194
best known s(N) 4 10 20 30 42 ? ? ? ? ? ? 174

While evolved median circuits are area-optimal for N = 3 − 11 and perhaps
close to optimal for N = 13 − 19, the evolved median circuits for N = 21 − 25
seem to be area wasting. The reason is that the best known value s(25) is 174
[2]; however, we reached s(25) = 194.

The evolution takes several days on a common PC for N ≥ 23. Hence we
tried to reduce the training set in our experiments; however, no solution has
appeared producing correct outputs for all possible input combinations.

It was much easier to evolve perfect median circuits using the compare–
swap encoding than using CGP. Similarly to the results obtained from CGP, the
median circuits are not optimized for delay.
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Fig. 4. Some of median circuits evolved using the compare–swap approach

5 Reducing Resources

The proposed evolutionary approach allows designers to explore much larger
portion of the design space than conventional methods. This is demonstrated
on the following experiment. The objective is to find out how many input com-
binations of all possible inputs lead to wrong output values if the number of
circuit elements (compare–swap operations) is continually reduced. It is useful
to know this characteristic from the fault tolerance point of view or when only
limited resources are available for the implementation. Drechsler and Günther
performed similar research for multiplexer circuits [3].

In order to evolve median circuits under hardware constraints, we utilized
the experimental background from the previous section. Table 4 shows how re-
duction of the resources influences the number of outputs calculated correctly
for median circuits of 5, 7 and 9 inputs. For instance, we need 13 compare–swap
components to obtain the perfect fitness (128) for the 7-median circuit. If we
reduce the number of components to 10, we obtain correct outputs for 122 input
combinations. Using 5 components only, 102 out of 128 outputs are calculated
correctly. It will probably be very difficult to design these “under-dimensioned”
circuits by means of a conventional approach. Our method requires a few minutes



to find a solution using a common personal computer.
The method could be useful for designing area/energy-consumption efficient

median filters for image preprocessing. In this application, most input combina-
tions should be processed correctly. Rare mistakes are not critical because our
eye is not able to see them.

Table 4. The number of correct calculations of output values for median circuits when
reducing the number of compare–swap components c(N) from 21 till 2

c(N) 2 3 4 5 6 7 8 9 10 11

5-median 24 26 27 28 30 32 32 32 32 32
7-median 90 96 98 102 104 108 112 116 122 126
9-median 346 366 372 384 390 402 410 420 430 442

c(N) 12 13 14 15 16 17 18 19 20 21

5-median 32 32 32 32 32 32 32 32 32 32
7-median 127 128 128 128 128 128 128 128 128 128
9-median 458 470 484 496 500 506 510 512 512 512

6 Conclusions

Two approaches for designing median circuits were proposed, implemented and
analyzed in this paper. We were able to evolve better median circuits than those
median circuits that can be created by means of dead code elimination from the
best-known sorting networks. In some cases (up to N=11), the evolved median
circuits are area-optimal. CGP has been applied in order to obtain median cir-
cuits directly without the need to eliminate same gates. However, the approach
is suitable only for smaller N . Finally, we explored the design space of “reduced”
median circuits and showed that these circuits operate correctly for most input
vectors.

Combining the proposed approaches we provide a method for effective explo-
ration of the design space of median circuits under various constraints.

Apart from hardware implementations of evolved circuits, our future research
will be devoted to (1) designing larger median circuits by means of some devel-
opmental strategies, (2) investigating fault tolerance of evolved median circuits
and (3) reducing latency.

Acknowledgment

The research was performed with the Grant Agency of the Czech Republic un-
der No. 102/03/P004 Evolvable hardware based application design methods and
No. 102/04/0737 Modern Methods of Digital System Synthesis and the Research
intention No. MSM 262200012 – Research in information and control systems.



References

1. Choi, S. S., Moon, B. R.: More Effective Genetic Search for the Sorting Net-
work Problem. In: Proc. of the Genetic and Evolutionary Computation Conference
GECCO’02, Morgan Kaufmann, 2002, p. 335–342

2. Devillard, N.: Fast Median Search: An ANSI C Implementation. 1998
http://ndevilla.free.fr/median/median/index.html

3. Drechsler, R., Günther, W.: Evolutionary Synthesis of Multiplexer Circuits under
Hardware Constraints. In: Proc. of the GECCO Workshop on Genetic Program-
ming and Evolvable Hardware, Morgan Kaufmann Publishers, San Francisco 2000,
p. 513–518

4. Gordon, T., Bentley, P.: On Evolvable Hardware. Soft Computing in Industrial
Electronics, Physica-Verlag, Heidelberg 2001, p. 279–323

5. Higuchi, T. et al.: Evolving Hardware with Genetic Learning: A First Step Towards
Building a Darwin Machine. In: Proc. of the 2nd International Conference on
Simulated Adaptive Behaviour, MIT Press, Cambridge MA 1993, p. 417–424

6. Hillis, W. D.: Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D 42 (1990) 228–234

7. Imamura, K., Foster, J. A., Krings, A. W.: The Test Vector Problem and Limita-
tions to Evolving Digital Circuits. In: Proc. of the 2nd NASA/DoD Workshop on
Evolvable Hardware, IEEE CS Press, 2000, p. 75–79
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