
Automated Program Repair
through the Evolution of Assembly Code

Eric Schulte
Computer Science

University of New Mexico
Albuquerque, NM

eschulte@cs.unm.edu

Stephanie Forrest
Computer Science

University of New Mexico
Albuquerque, NM

forrest@cs.unm.edu

Westley Weimer
Computer Science

University of Virginia
Charlottesville, VA

weimer@virginia.edu

ABSTRACT
A method is described for automatically repairing legacy
software at the assembly code level using evolutionary com-
putation. The technique is demonstrated on Java byte code
and x86 assembly programs, showing how to find program
variations that correct defects while retaining desired be-
havior. Test cases are used to demonstrate the defect and
define required functionality. The paper explores advantages
of assembly-level repair over earlier work at the source code
level—the ability to repair programs written in many dif-
ferent languages; and the ability to repair bugs that were
previously intractable. The paper reports experimental re-
sults showing reasonable performance of assembly language
repair even on non-trivial programs.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.5 [Software Engineering]: Testing and De-
bugging; D.3.2 [Software Engineering]: Macro and As-
sembly Languages

General Terms
Experimentation, Languages

Keywords
program repair, evolutionary computation, fault localiza-
tion, assembly code, bytecode, legacy software

1. INTRODUCTION
Automating the process of software repair is an impor-

tant issue for software engineering, one that is under active
exploration by several groups (e.g., [11, 2, 10, 11]). This
paper describes a generic method for automatically repair-
ing important classes of software defects in legacy assembly
programs, compiled from different programming languages
in the absence of formal specifications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

In earlier work, Evolutionary Computation (EC) tech-
niques successfully repaired bugs in legacy C programs by
representing and manipulating the abstract syntax tree (AST)
of C source code at the statement level [3, 11]. The earlier
work does not presuppose a formal specification of the pro-
gram, relying instead on test cases, both for fault localiza-
tion and as a proxy for evaluating correctness. The current
paper extends this earlier work, demonstrating the feasi-
bility of repairing programs by manipulating the assembly
code associated with existing software products. Although
direct manipulation of assembly code is not the most obvi-
ous way to approach software repair for programs written in
high-level languages, the paper demonstrates a number of
benefits:

• Generality: The technique is potentially applicable
to any program that compiles to an intermediate as-
sembly code, even without access to source code.

• Expressive Power: The earlier work was limited to
statement-level repairs and could not directly repair,
for example, transposed arguments to a function, in-
correct type declarations for a variable, or incorrect
value assignments to a constant. All of these repairs
are possible at the finer-grained assembly code level.

• Representation: The assembly code representation
features a small alphabet of primitives (each instruc-
tion is a primitive in our representation) and many
more lines of code than their source code counterparts.
These properties ensure that our method (which does
not invent new code) has access to a large portion of
the space of possible instructions.

2. BACKGROUND
Evolutionary Computation (EC) is a domain-independent

method of guided random search which borrows both mech-
anisms and terminology from the biological process of evolu-
tion. Both Genetic Algorithms (GA) and Genetic Program-
ming (GP) [5] are sub-fields of EC in which the candidate so-
lutions are represented either as linear arrays of parameters
and features (GA) or as program trees (GP). In this work
we blur the distinction between GA and GP by evolving lin-
ear arrays of assembly code instructions, and we therefore
adopt the more general term of evolutionary computation.

In EC, a population of candidate solutions is generated
for a given problem. In our application, these candidates
are computer programs. Each candidate solution is referred
to as an individual, genome, or variant, and we use those

terms interchangeably. EC evaluates each individual to as-
sess how well it solves the problem at hand, referred to as its
fitness. In this paper, fitness is assessed by test cases. Only
high-fitness programs (i.e., those that pass many test cases)
are retained in the population. Computational analogs of
biological mutation and crossover produce variations of the
high-fitness programs, and the process iterates until a high-
fitness program is found.

The small amount of previous work on EC program repairs
falls into two categories. The first guarantees that the code-
modification operators (genetic operators) can produce only
valid programs [8, 9], while the second uses general operators
and defers the determination of validity to the compiler and
execution engine [6]. Using the first approach, Orlov and
Sipper evolved machine code compiled from short programs
written in Java (on the order of 100 lines of code for sim-
ple mathematical manipulations) [9]. Here we demonstrate
applicability to legacy programs that are both longer and
more complex using the latter approach, finding that assem-
bly code is surprisingly robust under näıve modifications. In
earlier work, we demonstrated that EC could repair legacy
C programs by operating on statement-level ASTs parsed
from C source code [3, 11]. The earlier work was limited to
programs written in C and to bugs that can be fixed with
only statement-level manipulations. This paper addresses
both limitations by operating at the assembly code level.

Clearview [10] addresses a problem similar to ours, au-
tomatically detecting and patching assembly-level errors in
deployed software. Clearview monitors specific features of a
program at runtime, learns invariants that characterize nor-
mal behavior, and subsequently flags violations for repair.
Candidate patches that satisfy the implicated invariant are
generated and tested dynamically. Clearview repairs only
those errors that are relevant to preselected monitors. Our
method is more generic, providing a single approach to re-
pair multiple classes of faults without the need for specific
monitors, and we do not require continual runtime moni-
toring (and the incumbent slowdown) to create and deploy
repairs.

3. TECHNICAL APPROACH
Our technique takes as inputs an assembly-language pro-

gram and its test suite. The test suite contains both posi-
tive test cases, which the program currently passes, and one
or more negative test cases, which the program currently
fails, demonstrating the bug. The program is represented
abstractly (Section 3.1) and manipulated using EC opera-
tors (Section 3.2) to generate new candidate repairs. This
process iterates until a repair is found that passes all tests
(Section 3.3).

3.1 Representation
Individuals (program variants) are represented as linear

arrays of assembly code instructions, either x86 assembly
code or Java bytecode. In the case of x86 assembly, each
element in the array represents an entire line taken from
a file of assembly code, such as that generated by gcc -S.
For Java the “Bytecode Engineering Library” (BCEL) [1] is
used to obtain a list of bytecode instructions from a compiled
class file.

Assembly code instructions include labels, single commands,
and commands with arguments. We never alter the internal
elements of an assembly code instruction, and no distinction

is made between instructions based on their form or content.
This simplifies and generalizes the operators (because there
are no hard-coded rules about x86 assembly structure, for
example). It also restricts the search to programs that can
be constructed from the program’s existing assembly code
instructions Given the relatively small alphabet of assembly
code instructions and the large number of such instructions
in even small programs, this limitation seems reasonable.

3.2 Genetic Operators
Our genetic operators permute, copy, delete and recom-

bine existing sequences of instructions. Each instruction is
assigned a positive and negative weight indicating it’s rel-
evance to the execution path of the positive and negative
test cases respectively. There are three mutation operators
for altering a single variant and one crossover operator for
recombining two variants into a single offspring. Mutate-
insert selects an instruction with probability proportional
to its positive weight, copies and inserts it in a position se-
lected proportionally to the negative weights. Mutate-delete
selects an instruction proportionally by negative weight and
deletes it. The mutate-swap operator selects two instruc-
tions proportionally by negative weight and swaps them.
Finally, Crossover begins with two program variants, se-
lects a single crossover point for each of them (proportion-
ally by negative weight) and exchanges all instructions after
the crossover point between the two variants, creating two
new program variants.

3.3 Fitness Evaluation
The quality of a program variant is assessed using a fit-

ness function. Our fitness function uses the test suite of the
original program (i.e., the positive tests) and the negative
tests which exercise the bug. The negative tests allow us to
determine when a program variant has successfully repaired
the bug, and the positive tests ensure that a variant has
retained required program behavior.

To calculate the fitness of a program variant we assem-
ble and link it to an executable binary (x86) or a class file
(Java bytecode). Programs that fail to assemble or link are
assigned a fitness score of 0. Otherwise, we run the pro-
gram against all positive and negative test cases, recording
how many it passes correctly. The fitness score is equal to
the weighted sum of the number of positive and negative
test cases passed. In general passing a negative test case is
worth more, both to compensate for the fact that there are
generally more positive than negative test cases, and to bias
the search towards buggy code.

4. EXPERIMENTAL RESULTS
We compared the assembly code and C AST representa-

tions [11], using the benchmarks of the original work. The
benchmarks range from standard software engineering er-
rors (e.g., crashes or infinite loops) to security vulnerabilities
(e.g., remote buffer overflows). The programs themselves are
generally Unix system utilities, but include one webserver.
Each program typically includes five positive test cases and
one negative test case. Two programs, atris and flex, are
not included, because the testing rig and test cases provided
for them did not sufficiently isolate runaway and ill-behaved
variants.

All experiments were run using populations of 40 program
variants, and terminated after a maximum of 10 genera-

tions. We generate 90% of each generation’s new program
variants using mutation, and 10% using crossover, in both
tournaments of size 3 are used to select fit individuals for
reproduction.

Table 1 shows the results of these two representations.
The repair process is stochastic; the ‘% Success’ column
gives the percentage of random trials that yield a valid re-
pair. The dominant time cost of the repair process is evalu-
ating the fitness of a variant on the test suite; the ‘Fitness
per Success’ column gives the average number of fitness eval-
uations required to find a repair. Since each run is indepen-
dent (and, indeed, the fitness evaluation of each variant is
independent), runs are conducted in parallel, terminating at
first success. Thus if the success rate of a repair is 25% and
it requires 100 test suite evaluations, we say that it takes
on average 400 test suite evaluations before that repair is
discovered.

The average number of fitness evaluations required to pro-
duce a repair is 63.6 for C and 74.4 for assembly: only 17%
more work is required, on average, for assembly level re-
pairs. These performance results were obtained using EC
parameters taken from previous work for the purpose of di-
rect comparison. EC applications more typically use popula-
tion sizes and number of iterations in the hundreds or thou-
sands. When we select parameters more suited to assembly-
level repair, performance improves significantly with the suc-
cess rate of ultrix-look rising from 60% to 100%, and of
ultrix-deroff rising from 1% to 21%.

This comparison shows that evolution at the assembly
code level has reasonable performance when fixing bugs in
legacy software tools. Even at the scale of thousands of lines
of code, and tens of thousands of assembly code instructions,
the solutions were normally found with very few runs (un-
der 40 fitness evaluations on average across every program
in Table 1). This supports earlier results showing that EC
program repair time scales with the size of the weighted path
(fault localization) [3].

4.1 Generality to Multiple Languages

Input: Integer a
Input: Integer b.
Output: gcd(a, b)
or infinite loop
1: if a = 0 then
2: print a
3: end if
4: while b 6= 0 do
5: if a > b then
6: a← a− b
7: else
8: b← b− a
9: end if

10: end while
11: print a

Figure 1: A buggy
Euclid’s algorithm.

The algorithm shown in Fig-
ure 1 calculates the greatest
common denominator of two
numbers. This algorithm con-
tains a bug: When a = 0 and
b 6= 0 the program enters an in-
finite loop in lines 4 to 10. This
algorithm was coded by the au-
thors in C, Haskell, and Java,
and repairs were generated for
the assembly code compiled
from each program. The re-
sults are shown in Table 2, and
demonstrate that it is indeed
possible to use a single setup
to repair defects in a variety of
programming languages. ‘Pro-
gram length’ refers to the to-
tal number of assembly-code
instructions of the baseline in-
dividual. ‘Unique Solutions’ is
the total number of unique solutions found in 500 total runs
with populations of 40 program variants.

Table 2: GCD repair results for 3 source languages.

C Haskell Java
Program Length 79 885 33
Unique Solutions 2 10 1

5. DISCUSSION AND FUTURE WORK
Section 4.1 shows that linear arrays of assembly code in-

structions obtained from legacy programs can be repaired
automatically using EC. Previous EC work focused on hundred-
line assembly programs; we present results on thousands of
lines (e.g., 15428 lines for indent). The fine-grained expres-
sive power of operations at the assembly code instruction
level can, in some cases, effect repairs that are currently not
possible at the source-code statement level. The generality
of assembly code extends the potential reach of this method
to a wide range of programming languages, greatly expand-
ing its applicability compared to previous automated bug
correction techniques. The large number of assembly code
statements present in even trivial programs ensures that the
genetic operations have a full library of existing code from
which to construct new program variants.

We were surprised to discover that most of the repairs
described in this paper required a small number of genetic
operations, in some cases, only one swap of assembly in-
structions. We experimented with more complex operators,
which not only rearranged assembly code instructions, but
also altered the values of arguments and labels. These finer-
grained alterations rarely improved our results, and gener-
ally slowed down search time. We conjecture that our results
could be improved significantly by optimizing and enhancing
the EC parameters and operators (e.g. context-aware mu-
tation and improved crossover), and we leave the question
of carefully evaluating repair quality to future work.

Our methodology is automatable but not yet a turnkey
solution. The configuration of the testing rig is more com-
plex compared to previous work. Also, existing program
behavior that is not protected by positive test cases could
be compromised, although that has not been a problem in
practice. Finally, it is not yet clear how many complex bugs
can be fixed without inventing any new code.

5.1 Fitness Evaluation and Safety
Evaluating programs created by randomly mutating as-

sembly code is not trivial. For example, gcc or as would
often stall indefinitely without throwing an exception when
transforming mutated x86 assembly into object files. We
adopted an eight second timeout on the process and all test
cases.

To protect host systems, fitness is evaluated in a vir-
tual machine. Because the genetic operators do not include
safety checks, it is possible for arbitrary code to be executed
on the machine used for evaluation. “Stack Smashing”errors
were common and program variants were routinely termi-
nated by security measures built into the host Linux oper-
ating system. Similarly, some ill-behaved program variants
would not respond to standard termination signals. The use
of safety and isolation measures built in to the processor and
OS to selectively cull unfit program variants is a standard
feature of EC approaches [6].

Table 1: Performance comparison between C AST Assembly (’ASM’) code program representations: Program
size and fault localization are expressed in terms of statements for C and assembly instructions with non-zero
negative weights for the Assembly programs. ‘% Success’ gives the number of runs out of 100 that produced
a successful repair. ‘Fitness per Success’ gives the average number of times the test suite was evaluated
per successful repair. ‘ASM Operations per Repair’ shows the frequency with which each genetic operator
produced a successful repair.

Program Size Fault Localization % Success Fitness per Success ASM Operations per Repair
Program C ASM C ASM C ASM C ASM total swap del ins cros
ultrix-uniq 1146 486 81.5 3 100 75 9.5 30.8 1 21 26 28 0
ultrix-look 1169 541 213.0 12 99 60 11.1 27.6 1 37 15 8 0
look 1363 565 32.4 6 100 98 8.5 39.0 1 37 37 24 0
units 1504 1494 2159.7 125 7 2 55.7 15.5 1 2 0 0 0
ultrix-deroff 2236 7041 251.4 13 97 1 21.6 23.0 1 1 0 0 0
nullhttpd 5575 6933 768.5 13 36 1 79.1 27.0 1 1 0 0 0
indent 9906 15428 1435.9 80 7 1 95.6 14.0 1 0 0 1 0
average 3271 4641 705.1 36 63 34 40.1 25.3 1 14 11 8 0

5.2 Future Work
The functional properties of common programs (as defined

by test suites) are remarkably robust to program manipula-
tion at the assembly level, a property known as mutational
robustness. Preliminary investigations of programs compiled
from different source languages suggests significant differ-
ences in the mutational robustness of their assembly repre-
sentation. We hope to examine both the surprising overall
level of robustness of program functionality to mutational
changes, and the differences in robustness in similar pro-
grams compiled from different source languages.

More speculatively, we believe that this technique could
have practical applications beyond software repair. First,
seemingly innocuous machine-specific environmental factors
can have surprisingly large impacts on the performance of
common utility programs [7]. A variation of our technique
could be used to optimize such utilities to each machine
on which they are used. A second potential application is
disruption of software monocultures [4]. In security settings,
randomization is often inserted into compiled programs to
prevent malicious attacks. Assembly code evolution could
be used for widely distributed programs to add diversity to
deployed software.

5.3 Conclusion
This work presents a simple, powerful, and general mech-

anism for automatically repairing legacy software by evolv-
ing assembly code programs. We presented empirical results
comparing our approach to the previous state-of-the-art in
EC repair, showing that assembly level EC is nearly as ef-
ficient as source code EC. Although some may object to
attempting automated assembly code repair at all, we be-
lieve that it will increase the class of repairs that can be
addressed by EC and is an important steps toward making
automated repair practical.

5.4 Acknowledgments
The authors gratefully acknowledge the support of NSF

grants CCF 0621900 (SF), CCR-0331580 (SF), CNS 0716478
(WW), CNS 0905373 (WW), and SHF-0905236; AFOSR
MURI grant FA9550-07-1-0532, and the Santa Fe Institute.

6. REFERENCES
[1] M. Dahm. Byte code engineering with the BCEL API.

Technical report, Freie Universität Berlin, 2001.
[2] V. Dallmeier, A. Zeller, and B. Meyer. Generating fixes

from object behavior anomalies. In Automated Software
Engineering, 2009.

[3] S. Forrest, W. Weimer, T. Nguyen, and C. Le Goues. A
genetic programming approach to automated software
repair. In Genetic and Evolutionary Computing
Conference, 2009.

[4] D. Geer, R. Bace, P. Gutmann, P. Metzger, C. Pfleeger,
J. Quarterman, and B. Schneier. Cyber insecurity: The
cost of monopoly. Technical report, Computer &
Communications Industry Association, 2003.

[5] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT, 1992.

[6] F. Kühling, K. Wolff, and P. Nordin. Brute-force approach
to automatic induction of machine code on CISC
architectures. In European Conference on Genetic
Programming, pages 288–297, 2002.

[7] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Producing wrong data without doing anything
obviously wrong! In Architectural support for programming
languages and operating systems, pages 265–276, 2009.

[8] P. Nordin, W. Banzhaf, and F. D. Francone. Efficient
evolution of machine code for CISC architectures using
instruction blocks and homologous crossover. In Advances
in Genetic Programming 3, pages 275–299. June 1999.

[9] M. Orlov and M. Sipper. Genetic programming in the wild:
evolving unrestricted bytecode. In Genetic and
evolutionary computation, pages 1043–1050, 2009.

[10] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,
J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,
S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D.
Ernst, and M. Rinard. Automatically patching errors in
deployed software. In ACM Symposium on Operating
Systems Principles, pages 87–102, October 2009.

[11] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic programming.
In International Conference on Software Engineering,
pages 364–367, 2009.

	Introduction
	Background
	Technical Approach
	Representation
	Genetic Operators
	Fitness Evaluation

	Experimental Results
	Generality to Multiple Languages

	Discussion and Future Work
	Fitness Evaluation and Safety
	Future Work
	Conclusion
	Acknowledgments

	References

