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Abstract 
This paper centers on the problem of finding commonalities 
for a set of objects belonging to an object-oriented database. 
In our approach, commonalities within a set of objects are 
described by object-oriented queries that compute this set of 
objects. The paper discusses the architecture of a knowledge 
discovery system, called MASSON, which employs genetic 
programming to find such queries. We also report on an 
experiment that evaluated the knowledge discovery 
capabilities of the MASSON system. 

1. Introduction 
A database consists of extensional information and 
intensional information. Extensional information is 
physically stored data or database instances. Intensional 
information is the descriptions and the high-level abstracts 
of a database such as schema, relationships, and other 
implicit information. Most traditional database systems 
have focused on storing, maintaining and accessing the 
extensional information efficiently in databases. Extracting 
intensional information with respect to an extensional data 
collection is relatively difficult using conventional database 
systems. For example, suppose there is a police suspect 
database which contains information about persons and 
their activities, and a police officer has two drug-dealer 
suspects {Joe, Mary} who may be involved in a particular 
case. Then the police data analyst may be interested in 
knowing “What do Joe and Mary have in common ?” 
In order to answer this question, the data analyst has to 
conduct a time-consuming search process in which he has 
to find a query or a set of queries that returns the exactly 
same instances, {Joe, Mary} in this case, as its result. 
Suppose he found the following SQL form of query, 
“ (SELECT ssn name address 

FROM person purchase 
WHERE (amount-spent > 1000) and (payment-type = ‘cash’) 

and (store-name = ‘@a-market’))” 
which returns {Joe, Mary} as its result, which states that 
they both have spent more than $1,000 cash for shopping 
in a ‘flea-market’. This information might lead the police 
to investigate suspicious activities in flea-markets. 
However, in the example we have given in the above, it is 
not very obvious what kind of queries the user has to write. 
Accordingly, an automatic tool that facilitates the task for 

the data analyst is desirable. This paper will describe such 
a tool for extracting intensional information in an object- 
oriented database. 

2. Deriving Queries From Results 
Derivirzg queries ji-om results is the process of finding a 
desired query or a set of queries from a set of objects. In 
rl..T ulls approach, iiie USef’S roie is noi i0 deiive a fuels “viit 
the knowledge discovery in databases (KDD) system 
(Piatetsky & Frawley 1991) will derive a query or a set of 
queries by accessing database schema information as well 
as database instances through the database interface. The 
user of the KDD-system does not need in-depth knowledge 
about the database schema. We claim that this approach 
actually discovers useful or interesting intensional 
information implicitly stored in a database. We are 
developing a prototype system called MASSON that 
employs deriving queries from results approach in the 
context of object-oriented database. Figure 1 depicts the 
architecture of the system. MASSON takes a database 
name and object set (or database instances) as its input and 
accesses the database given from a user for domain 
knowledge and schema information. The user may also 
supply domain knowledge to restrict the search space if 
possible. MASSON uses genetic programming (GP) (Koza 
1990) to generate many different queries and to search a 
query or a set of queries that describe the commonalities of 
the given object set. The generated queries are sent to an 
-I-:--r -2 ̂ d.^ -I -I^&^L^-^ - ^^^-^-^- & ̂ _.^b^- Irb-lnDx,T‘P\ 
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for execution. The system will then evaluate those returned 
results from OODBMS according to how well they cover 
the given target object set. Based on the results of the 
evaluation process the GP search engine will generate new 
queries based on the principles of evolution by giving fitter 
query a better chance to reproduce. In order to evaluate an 
individual query q1 in a population, we use the following 
fitness function f: f (qc) = T- (hc *h)/ni 1 
where n, > 0, T 2 hi , and i = 1, 2, . . . population size. (T is 
the cardinality of the set of objects whose commonalities 
have to be determined, h, is the number of hits for an 
individual query q,, n, is the cardinality of query qi’s 
result) This function is our standardized fitness function 
(Koza 1990), which means the smaller the fitness value, 
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Figure 1: Architecture of MASSON 

the fitter the individual is. The above fitness function 
depends on the number of hits and the cardinality of the 
query result. If a query does not make any hit (h, = O), then 
it has the value 7’, which is the worst fitness value. If, on 
the other hand the result of query q, perfectly matches the 
set of objects given to the system, then its fitness value f(q, 
) is 0 ( hi = n, = Tin this case). We call this case perfect 
hit. However, if a query is too general, it may contain 
superfluous instances (false positives) even if it made 
100% of hits. If, on the other hand, a query is too specific 
then the number of hits of the query is less than the 
number of target instances - the difference is the number 
of false negatives. To cope with false positives and false 
negatives, we put the number of instances for an individual 
query, n, as denominator. Moreover, because we take the 
square of the number of hits, false positives are punished 
less severely than false negatives by the fitness function: 
we are more interested in queries that return the target set 
or at large portions of the target set, even if they return 
objects that do not belong to the target set. 

Object-oriented queries are used to describe 
commonalities among objects in our approach. The 
supported navigational query operators include SELECT, 
RESTRICTED, RELATED, GET-RELATED, and set 
operators (Ryu & Eick 1996). SELECT operator selects all 
the objects that satisfy the conditional predicate. 
RESTRICTED operator restricts the objects in the given set 
to those that are related to another class, according to the 
given predicate. The relationship operator RELATED 
rc.lo~tc ~111 the nhbrtr frnm CI rlarr that CWP wlatd tn nhierto U”IU~c.3 l.LA, U,” ““JVUC” I.“11. u “.*,u” L..UC L.-v 1V.UC”” L” ““JVVW 

in another class through the relationship links. GET- 
RELATED operator is an inverse operator of RELATED. 
In addition, the set operators UNION, INTERSECTION, 
DIFFERENCE are supported. 

-6 OODBMS 

The schema diagram shown in Figure 2 represents our 
experimental object-oriented database that contains 
information of persons and their related activities. Each 
class (or entity set) has slots and their values. A 
relationship or reverse relationship links a class to another 
class. The MASSON system was implemented by the PCL 
(Portable Common Loops) version of the CLOS (Common 
Lisp Object System) (Paepcke 1993) implementation. 

We used GP as a search engine for MASSON (Ryu & 
Eick 1996). GP searches for a target program in the space 
of all possible computer programs (queries in our 
application) randomly composed of functions (query 
operators) and terminals (basic arguments for each 
operator) appropriate to the problem domain. Initially, a 
pre-defined number of queries that are syntactically legal, 
are generated by randomly selecting operators and their 
arguments from the function set and the terminal set 
respectively, forming the initial population. Each 
individual is evaluated based on the fitness function J 
Fitter queries are then selected with higher probability to 
breed a new population, using three genetic operators: 
selection, crossover, and mutation. The selection operator 
is used to choose certain individuals based on their fitness 
values for generating the next generation. The crossover 
operation creates two new offsprings by exchanging 
subtrees between the two parents if we represent a query as 
a tree. The mutation operation produces a new offspring by 
replacing one parent subtree with a newly created subtree. 
The size, shape, and structures of queries can be 
dvnamicallv chanwd when CTQS~QI)V~T 0~ mut@e~n q~er&xs -, ------ ---, ------o-1- 
are applied to each pair of selected queries (parent queries) 
during the breeding process. The selection-crossover- 
mutation cycle is repeated until an user defined 
termination criteria are satisfied. 
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Figure 2: Schema Diagram for Personal Database 

3. MASSON at Work 
To demonstrate how MASSON works, and to evaluate the 
knowledge discovery capabilities of MASSON, we 
manually created 5 benchmark queries, Q l - QS. 
Ql: “Select persons who have transferred cash to anyone 

more than 4 times. ” 
(GET-RELATED (RESTRICTED bank-account (> transfer-to 4)) 

owned-by 
person) 

An object set that Q l computes for a given example 
database consists of 22 persons. This object set was then 
used as the target object set when running the MASSON 
system. The query discovery process starts by generating 
100 queries randomly. At generation 33, MASSON found 
the original query Q l. This was the first query that made a 
perfect hit, which is the case of fJ3 = 0 (since T=h=n=22). 
At generation 47, the average fitness value was 
significantly decreased to 2.83, and the best query that also 
made a perfect hit and has different semantics was: 
“Select persons who have tran$ferred cash to anyone more than 
4 hes and are age less than 36 or greater than i0. ” 
(GET-RELATED (RESTRICTED BANK-ACCOUNT (> TRANSFER-TO 4)) 

‘OWNED-BY 
(SELECT PERSON (OR (<AGE 30) (> AGE 20)))) 

The predicate in boldface is an additional predicate. 
Another perfect hit query was also found at generation 81. 
Q2: “Select persons who live in Houston. ” 

{SELECT person (= address “Houston”)) 
The first perfect hit query to the object set provided by Q2 
was found at generation 122. The query and the semantics 
were: 

“Select persons who have telephone and live in Houston. ” 
(GET-RELATED BANK-ACCOUNT OWNEDBY 

(SELECT (RELATED PERSON HAS PHONE) (= ADDRESS “Houston’))) 

The query Q2 was found at generation 135. Several other 
perfect hit queries that was different from Q l was found. 
43: “Select persons who purchased more than $3,000 by cash in 

one store. ” 
(RELATED person shopped-at 

(SELECTpurchase (AND (> amount-spent 3000) 
f = pay~nwv 1)))) 

The first perfect hit query was found at generation 70. 
Even if the exactly same query Q3 was not found during 
200 generations, syntactically and semantically almost 
similar query to Q3 was found at generation 94: 
(RELATED PERSON SHOPPED-AT 

(SELECT (SELECT PURCHASE (= PAYMENT-TYPE 1)) 
(> AMOUNT-SPENT 3002))) 

The only difference between the discovered query and the 
query Q3 is the amount 3002 showed in boldface which is 
different from 3000. Actually, it is not possible to find the 
exact value 3000 unless the value is stored in the database, 
since MASSON only generates constants that appear in the 
database. Therefore we assume it found a query that is 
approximately the same as the original query Q3. Several 
other different perfect hit queries were also found. 
Q4: “Select persons that have more than 7 times of suspect 

activities records or spent more than $5,000 cash in a 
store. ” 

(O-UNION 
(RELATED person shopped-at 

(SELEm purchase (AND (> amount-spent 5000) (= payment-type 1)))) 
(SELECT p&n (> nsuspect-act 7))) 

Q4 is relatively a complex query. The first query that made 
perfect hit was found at generation 95: 
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“Select persons that have more than 7 times of suspect activities 
records or paid cash when shopping. ” 
(O-UNION 

(SELECI. PERSON I> NSUSPECT-ACT 7)) 
&ELATED (O-UNIbN PERSON (SELEC? (RESTRICTED (RESTRICTED 

PERSON (x RECEIVED 3)) (< HAS 0)) (> NSUSPECT-ACT 7))) 
SHOPPED-AT 

(SELECT (GET-RELATED PERSON SHOPPED-AT (GET-RELATED 
PERSON SHOPPED-AT PURCHASE)) (= PAYMENT-TYPE 1)))) 

Other perfect hit queries was found. However, MASSON 
could not find the original query Q4 for 200 generations. 
QS: “Select persons who have transferred rnore than $2,000 and 

have called more than 4 times and spent more than $500 
cash. ” 

(O-INTERSECTION 
(GET-RELATED (GET-RELATED 

(SELECT cash-trmfer (> amount 2000)) 
transfer-from bank-account) owued-by person) 

(GET-RELATED (RESTRICTED (GET-RELQTED 
(SELECT phone-call (> amount 500)) phone-used phone)(z mode-call 4)) 
owned-by person))) 

This is another complex query. The first query that made 
perfect hit to the object set provided by the query Q5 was 
found at generation 112: 
“Select persons who have telephone and have called to 
two persons not at 11/10/1987 and have made phone calls 
more than 4 times. ” 
[GET-RELATED PHONE 

OWNEDBY 
(GET-RELATED (RESTRICTED (GET-RELATED PHONE-CALL PHONE-USED 

(GET-RELATED PHONE-CALL PHONE-USED (GET-RELATED (SELECT 
(RELATED (RESTRICTED PHONE-CALL (= CALLED-TO 2)) PHONE-USED 
(RELATED (GET-RELATED PHONE-CALL PHONEUSED PHONE) 

MADECiLL (RELATED PHONE-CALL CALLED-TO PERSON))) 
(NOT (EQUAL DATE “11 10 87”))) PHONE-USED PHONE))) 
(z MADE-CALL 4)) OWNED-BY 

(GET-RELATED (RESTRICTED (GET-RELATED PHONE-CALL 
PHONE-USED PHONE) (> MADE-CALL 3)) OWNED-BY PERSON))) 

MASSON could not find the original query Q5 during 200 
generations; however, it found several other queries that 
made perfect hit. These queries are semantically and 
syntactically different from Q5. This is an interesting 
discovery by MASSON since the input object set was 
obtained by Q5 consisting of a set operator, 
INTERSECTION. On the other hand, MASSON found 
those queries that consist of only selection and relationship 
operators. The semantics of those queries are also different 
from Q5. Table 1 shows summary for this experiment. 

Table 1: Execution results and the complexity for the 5 test 
queries 

The left part of Table 1 shows the benchmark results for 
the 5 test queries and the right part of the table shows 

relative complexity of each test query although these are 
not a precise metrics of complexity measure. In this table, 
Hit-at is the generation number that made first perfect hit. 
Org shows whether MASSON found the original query or 
not. Othr is the number of other queries found that made 
perfect hit other than the original query. Nclass is the 
number of classes that each test query traversed. Nvsl, 
Nop, Nsop, and Ncop are the number of slots, query 
operators, set operators, and conditional operators 
respectively. According to the table, the query Q4 and Q5 
are relatively more complex than Ql, Q2, and Q3. 
MASSON could not find the exactly same queries as those 
queries Q4 and Q5 for 200 generations but found other 
queries that describe commonalities within the given target 
set. 

4. Summary 
In this paper, we proposed a problem on how to extract, 
intensional information or concept descriptions for a set of 
objects from a database without other knowledge about the 
given object set. The major contribution of this paper is the 
presentation of a new approach to discovering 
common&ties within a given set of objects. We dealt with 
this problem by introducing deriving queries from results 
approach in which we try to find an object-oriented query 
that returns a given result or set of results for a given 
database. These derived queries present intensional 
information for the given set of objects. MASSON takes a 
database name and a set of objects belonging to the 
database as its input and returns a query or a set of queries 
as the result of the search process. We presented an 
example that demonstrated how MASSON works, and we 
reported on an experiment that evaluated MASSON’s 
knowledge discovery capabilities. 
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