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Abstract

A probabilistic regular motif language for
protein sequences is evaluated. SRE-DNA is
a stochastic regular expression language that
combines characteristics of regular expres-
sions and stochastic representations such as
Hidden Markov Models. To evaluate its ex-
pressive merits, genetic programming is used
to evolve SRE-DNA motifs for aligned sets
of protein sequences. Different constrained
grammatical forms of SRE-DNA expressions
are applied to aligned protein sequences
from the PROSITE database. Some se-
quences patterns were precisely determined,
while others resulted in good solutions hav-
ing considerably different features from the
PROSITE equivalents. This research es-
tablishes the viability of SRE-DNA as a
new representation language for protein se-
quence identification. The practicality of
using grammatical genetic programming in
stochastic biosequence expression classifica-
tion is also demonstrated.

1 INTRODUCTION

The rate of biological sequence acquisition is accelerat-
ing considerably, and this data is freely accessible from
biosequence databases such as PROSITE (Hofmann et
al. 1999). Research in bioinformatics is investigating
more effective technology for classifying and analysing
this wealth of new data. One important problem in
this regard is the automated discovery of sequence pat-
terns (Brazma et al. 1998a). A sequence pattern, also
known as a motif or consensus pattern, encodes the
common characteristics of a set of biosequences. From
one point of view, a sequence pattern is a signature
identifying a set of related biosequences, and hence can

be used as a means of database query. Alternatively,
and perhaps more importantly, a motif can also char-
acterizes the salient biological and evolutionary char-
acteristics common to a family of sequences. The use
of computational tools which automatically determine
biologically meaningful patterns from sets of sequences
is of obvious practical importance to the field.

The contributions of this research are two-fold. Firstly,
the viability of SRE-DNA, a new motif language, is
investigated. SRE-DNA shares characteristics of de-
terministic regular expressions and stochastic repre-
sentations such as Hidden Markov Models (Krogh et
al. 1994). Since full SRE-DNA is likely too unwieldy
to be practical, this research investigates what restric-
tions to the language are practical for biosequence clas-
sification. To do this, genetic programming (GP) is
used to evolve SRE-DNA motifs for aligned sequences.
SRE-DNA’s probabilistic basis can be exploited during
fitness evaluation in GP evolution.

A second goal of this research is to test the practi-
cality of logic grammar-based genetic programming
in an application of bioinformatics. The system
used is DCTG-GP, a logic grammar-based GP sys-
tem based on definite clause translation grammars
(DCTG) (Ross 2001a). With DCTG-GP, a variety of
constrained grammatical variations of SRE-DNA are
straight-forwardly defined and applied towards motif
discovery.

Generally speaking, motif discovery for aligned se-
quences is a simpler problem than for unaligned se-
quences. With aligned sequences, the basic problem
of determining the common subsequences amongst a
set of sequences has been already determined. Never-
theless, a number of fundamental issues regarding the
viability of SRE-DNA are more clearly addressable if
aligned data is studied initially. In the course of these
experiments, it was discovered that motif discovery for
some families of aligned data is very challenging. This



justifies studying aligned sequences before commenc-
ing on unaligned data.

Section 2 gives an overview of biosequence identifi-
cation, stochastic regular expressions and DCTG-GP.
Section 3 discusses experiment design and preparation.
Results are reported in Section 4. A discussion con-
cludes the paper in section 5.

2 BACKGROUND

2.1 Biosequence Identification

DNA molecules are double-stranded sequences of the
four base nucleic acids adenine (A), thymine (T), cyto-
sine (C) and guanine (G) (Alberts et al. 1994). The A
and T bases bond together, as do the C and G. Other
molecular forces will cause the strand to bend and con-
volute, creating a 3-dimensional double-bonded struc-
ture essentially unique to the molecule, and critical to
various organic functions. In terms of sequence char-
acterization, one of the strands of bases is adequate
for identification purposes, since the other strand of
bonded base pairs is complementary. A complete
molecule, or a portion of it denoting a particular struc-
ture of interest, is denoted by a sequence of A, T, C
and G bases. A higher level of representation is often
used, in which the 20 unique amino acids created from
triples of nucleic acids are represented. This results in
smaller sequences using a larger alphabet.

The representation and automatic identification of
subsequences in organic molecules has attracted much
research effort over the years, and has resulted in
a number of practical applications. New sequences
can be searched for instances of known subsequences
(“aligned”), which can indicate organic properties of
interest, and hence identify their genetic functionality.
Families of sequences can be classified by their distin-
guishing common sequence patterns. Sequence pat-
terns are natural interfaces for biosequence database
access. Sequences are also conducive to mathematical
and computational analyses, which makes them natu-
ral candidates for automated synthesis and search al-
gorithms.

A variety of representation languages have been used
for biosequence identification, including regular lan-
guages (Arikawa et al. 1993, Brazma et al. 1998b),
context–free and other languages (Searls 1993, Searls
1995), and probabilistic representations (Krogh et
al. 1994, Sakakibara et al. 1994, Karplus et al. 1997).
Although languages higher in the Chomsky hierarchy
are more discriminating than lower-level representa-
tions, they may be less efficiently parsed or synthesized

than than lower–level languages. In many cases, sim-
ple languages such as regular languages are the most
practical representation for biosequence identification
and database access. The PROSITE database, for ex-
ample, uses a constrained regular expression language.

Much work has been done on machine learning tech-
niques for families of biosequences using regular lan-
guages as a representation language (Brazma et al.
1998a, Baldi and Brunak 1998). GP has been used
successfully to evolve regular motifs for unaligned se-
quences (Hu 1998, Koza et al. 1999).

2.2 Stochastic Regular Expressions

Stochastic Regular Expressions (SRE) is a probabilis-
tic regular expression language (Ross 2000). It is es-
sentially a conventional regular expression language
(Hopcroft and Ullman 1979), embellished with prob-
ability fields. It is similar to a stochastic regular lan-
guage proposed by (Garg et al. 1996), where a number
of mathematical properties of the language are proven.

Let E range over SRE, α range over atomic actions, n
range over integers (n ≥ 1), and p range over proba-
bilities (0 < p < 1). SRE syntax is:

E ::= α | E : E | E∗p | E+p

| E1(n1) + ...+ Ek(nk)

The terms denote atomic actions, concatenation, iter-
ation (Kleene closure and ’+’ iteration), and choice.
Plus iteration, E+p, is equivalent to E : E∗p. The
probability fields work as follows. With choice, each
term Ei(ni) is chosen with a probability equivalent to
ni/Σj(nj). With Kleene closure, each iteration of E
occurs with a probability p, and the termination of E
occurs with a probability 1− p. Probabilities between
terms propagate in an intuitive way. For example, with
concatenation, the probability of E : F is the proba-
bility of E multiplied by the probability of F . With
choice, the aforementioned probability of a selected
term is multiplied by the probability of its chosen ex-
pression Ei. Each iteration of Kleene iteration also
includes the probability of the iterated expression E.
The overall effect of this probability scheme is the def-
inition of a probability distribution of the regular lan-
guage denoted by an expression. Each string s ∈ L(E)
has an associated probability, while any s 6∈ L(E) has
a probability of 0. It can be shown that SRE defines
a well-formed probability function (the sum of all the
probabilities for all s ∈ L(E) is 1).

An example SRE expression is (a : b∗0.7)(2) + c∗0.1(3).
It recognizes string c with Pr = 0.054 (the term with
c can be chosen with Pr = 3

2+3 = 0.6; then that term



iterates once with Pr = 0.1; finally the iteration ter-
minates with Pr = 1 − 0.1 = 0.9, giving an overall
probability of 0.6 × 0.1 × 0.9 = 0.054). The string bb
is not recognized; its probability is 0.

An SRE interpreter is implemented and available for
GP fitness functions. To test whether a string s is a
member of an SRE expression E, the interpreter at-
tempts to consume s with E. If successful, a proba-
bility p > 0 is produced. Unsuccessful matches will
result in probabilities of 0. The SRE-DNA interpreter
only succeeds if an entire SRE-DNA expression is suc-
cessfully interpreted. For example, in E1 : E2, if E1

consumes part of a string, but E2 does not, then the
interpretation fails and yields a probability of 0.

As with conventional regular expressions (Hopcroft
and Ullman 1979), string recognition for SRE expres-
sions is of polynomial time complexity. Note, however,
that the interpretation of regular expressions can be
exponentially complex with respect to overall expres-
sion size. For example, in ((a+ b)∗)∗, even though the
expression’s language is equivalent to that for (a+b)∗,
there is a combinatorial explosion in the number of
ways the nested iterations can be interpreted with re-
spect to one other: a string of size k can be interpreted
2k different ways.

SRE-DNA, a variant of SRE, is used in this paper. A
number of embellishments and constraints are used,
which are practical for biosequence identification. De-
tails are given in Section 3.1.

2.3 DCTG-GP

expr ::= guardedexpr^^A, expr^^B
<:>
(construct( E:F ) ::- A^^construct(E),

B^^construct(F)),
(recognize(S, S2, PrSoFar, Pr) ::-

check_prob(PrSoFar),
A^^recognize(S, S3, PrSoFar, Pr1),
check_prob(Pr1),
B^^recognize(S3, S2, Pr1, Pr)).

Figure 1: DCTG rule for SRE-DNA concatenation

DCTG-GP is a grammatical genetic programming sys-
tem (Ross 2001a). It is inspired by other work in gram-
matical GP (Whigham 1995, Geyer-Shulz 1997, Ryan
et al. 1998), and in particular, the LOGENPRO sys-
tem (Wong and Leung 1997). Like LOGENPRO,
DCTG-GP uses logical grammars for defining the tar-
get language for evolved programs. The logic grammar
formalism used is the definite clause translation gram-

mar (DCTG) (Abramson and Dahl 1989). A DCTG
is a logical version of a context-free attribute gram-
mar, and it permits the complete syntax and seman-
tics of a language to be defined in one unified frame-
work. DCTG-GP is implemented in Sicstus Prolog
3.8.5 (SICS 1995).

In a DCTG-GP application, the syntax and seman-
tics of a target language are defined together. Each
DCTG rule contains a syntax field and one or more
semantic fields. The syntax field is the grammatical
definition of a language component, while the seman-
tic fields encode interpretation code, tests, and other
language and problem specific constraints. The gen-
eral form of a rule is:

H ::= B1, B2, ..., Bj
<:>
S ::− G1, G2, ..., Gk.

The rule labeled with nonterminal H is a grammar
rule. Each term Bi is a reference to a terminal or non-
terminal of the grammar. Embedded Prolog goals may
also be listed among the Bi’s. These grammar rules
are used to denote programs in the population, which
are in turn implemented as derivation trees. Hence
DCTG-GP is a tree-based GP system. The rule la-
beled S is a semantic rule associated with nonterminal
H. Its goals Gi may refer to semantic rules associated
with the nonterminal references Bi, or calls to Prolog
predicates.

Figure 1 shows the DCTG-GP rule for SRE-DNA’s
concatenation operator. The grammatical rule states
that concatenation consists of a guarded expression
followed by an expression. The A and B variables are
used for referencing parts of the grammar tree for these
nonterminals within the semantic rules. The first se-
mantic rule construct builds a text form for the rule,
for printing purposes. The “:” operator denotes con-
catenation. The second semantic rule recognize is
used during SRE-DNA expression interpretation. The
argument S is a string to be consumed, and S2 is the
remainder of the string after consumption. The value
PrSoFar is the overall probability thus far in the in-
terpretation, and Pr is the probability after this ex-
pression’s interpretation is completed. The references
to recognize in the semantic rule are recursive calls
which permit the two terms in the concatenation to
recognize portions of the string. Finally, check prob
determines if the current running probability is larger
than the minimal required for interpretation to con-
tinue.



3 EXPERIMENT DETAILS

3.1 SRE-DNA Variations

1. expr ::= guard | choice | guard :expr
| expr∗p | expr+p

choice ::= guard(n) + guard(n)
| guard(n) + choice

guard ::= mask | mask :skip
skip ::= x∗p | x+p

2. expr ::= guard | guard :expr | expr+p

guard ::= mask | mask :skip
skip ::= x+p

3. expr ::= guard | guard :expr | expr :guard
| expr∗p | expr+p

guard ::= mask | mask :skip
skip ::= x∗p | x+p

4. expr ::= guard | choice | expr :expr
| expr∗p | expr+p

choice ::= guard(n) + guard(n)
| guard(n) + choice

guard ::= mask | mask :skip
skip ::= x∗p | x+p

Figure 2: SRE-DNA Variations

A goal of this research is to explore how language
constraints affect the quality of motif solutions. To
this end, four different grammatical variations of SRE-
DNA are defined in Figure 2. SRE-DNA embellishes
SRE as follows. Firstly, masks are introduced. The
mask [α1...αk] denotes a choice of atoms αi each with a
probability 1/k. This is equivalent to α1(1)+...+αk(1)
in SRE. Secondly, skip terms are defined. A skip term
x∗p is a Kleene closure over the wild-card element x,
which substitutes for any atom. The skip expression
x+p is equivalent to x :x∗p.

A summary of the SRE-DNA variants in Figure 2 is
as follows. Grammar 1 uses constrained concatenation
and choice expressions, in which guards are used. A
guard is a term borrowed from concurrent program-
ming, and specifies a constrained action. Guards pro-
mote efficient interpretation, because expressions are
forced to consume string elements whenever a guard
is encountered. It also reduces the appearance of iter-
ation and choice in concatenation expressions, which
helps reduce the scope of the target expressions. An
intention for doing this is to try to make SRE-DNA
have similar characteristics to conventional motif lan-
guages such as PROSITE’s. In addition, the grammar
prohibits nested iteration. This prevents some of the

efficiency problems discussed in Section 2.2. Three
minor variations of grammar 1 are used, each having
different maximum iteration ranges (“i”): 1a (i=0.5);
1b (i=0.1); and 1c (i=0.2).

Grammar 2 is the closest to the PROSITE language.
Choice is not used, and all skip and iterations use “+”
iteration. It is also the only grammar that permits
nested iteration. Grammar 3 is a minor relaxation of
grammar 1, in which guards can be the first or second
term in a concatenation. Nested iteration is prohib-
ited. Finally, Grammar 4 is the least restrictive gram-
mar, where concatenation uses general SRE-DNA ex-
pressions in both terms. Choice expressions still use
guards, however, and nested iteration is prohibited.

It should be mentioned that a full version of SRE-
DNA without guards or nested iteration constraints
was initially attempted. Expression interpretation was
very inefficient in that language, due to the prepon-
derance of nested “*”–iterations, as well as iterations
within choice and concatenation terms. The above
constrained grammars are more efficient to interpret,
and do not suffer any practical loss of expressiveness,
at least with respect to the problem of motif recogni-
tion tackled here.

3.2 Fitness Evaluation

Fitness evaluation tests an expression’s ability to rec-
ognize positive training examples, and to reject nega-
tive examples. Positive examples comprise a set of N
aligned protein sequences. Negative examples are N
randomly generated sequences, each having approxi-
mately the same length as the positive sequences.

Consider the formula:

Fitness = N +NegFit− PosFit

where NegFit and PosFit are the negative and posi-
tive training scores respectively. A fitness of 0 is the
ideal “perfect” score. It is not attainable in practice,
because the probabilities incorporated into PosFit are
typically small.

Positive example scoring is calculated as:

PosFit =
∑

ei∈Pos
maximum(Fit(e′i))

where Pos is the set of positive training examples, and
e′i is a suffix of example ei (ie. ei = se′i, |s| ≥ 0). For
each example in Pos, a positive test fitness Fit is found
for all its suffixes, and the maximum of these values is
used for the entire example. Fitness evaluation incor-
porates two distinct measurements: the probability of



recognizing an example, and the amount of the exam-
ple recognized in terms of its length:

Fit(e) =
1
2

(
Pr(smax) +

|smax|
|e|

)
Here, smax is the longest recognized prefix of e, |smax|
is its length, and Pr(smax) is its probability of recog-
nition. The first term accounts for the probability ob-
tained when recognizing substring smax, and the sec-
ond term scores the size of the covered substring rel-
ative to the entire example. The fitness pressure ob-
tained with Fit is to recognize an entire example string
with a high probability. In early generations, the se-
quence cover term dominates the score, which forces
fitness to favour expressions that recognize large por-
tions of examples. The probability field comes into
consideration as well, however, and is especially perti-
nent in later generations when expressions recognize a
large proportion of the example set. At that time, the
probability fitness measure favours expressions that
yield high probabilities.

Negative fitness scoring is calculated as:

NegFit = maximum(Fit(ni)) ∗N

where ni ∈ Neg (negative examples). The highest
obtained fitness value for any recognized negative ex-
ample suffix is used for the score. A discriminating
expression will not normally recognize negative exam-
ples, however, and so Fit(ni) = 0 for most ni.

3.3 GP Parameters

Table 1 lists parameters used for GP runs. Although
most parameters are self–explanatory, some require ex-
planation. The initial population is oversampled, and
culled at the beginning of a run. Reproduction may
fail, for example, due to tree size limitations, and so a
maximum of 3 reproduction attempts are undertaken
before the reproduction is discarded. The terminals
are a subset of amino acid codons, determined by the
alphabet used in the positive training examples.

Crossover and mutation use the methods commonly
applied by grammatical GP systems that denote pro-
grams with derivation trees. For example, when a sub-
tree node of nonterminal type t is selected in one par-
ent, then a similar node of type t will be selected in
the other parent, and the two selected subtrees are
swapped. Some SRE specific crossover and mutation
operators are used. SRE crossover permits mask el-
ements in two parents to be merged together. SRE
mutation implements a number of numeric and mask
mutations. The SRE mutation range parameter speci-

Table 1: GP Parameters

Parameter Value
GA type generational
Functions SRE-DNA variants
Terminals amino acid codons,

integers, probabilities
Population size (initial) 2000
Population size (culled) 1000
Unique population yes
Maximum generations 150
Maximum runs 10
Tournament size 7
Elite migration size 10
Retries for reproduction 3
Prob. crossover 0.90
Prob. mutation 0.10
Prob. internal crossover 0.90
Prob. terminal mutation 0.75
Prob. SRE crossover 0.25
Prob. SRE mutation 0.30
SRE mutation range 0.1
Max. depth initial popn. 12
Max. depth offspring 24
Min. grammar prob. 10−12

Max. mask size 5

fies that a numeric field is perturbed ±10% of its orig-
inal value. Mask mutations include adding, removing,
or changing a single item from a mask.

The minimum grammar probability value specifies the
minimal probability used by the SRE evaluator before
an expression interpretation is preempted. This im-
proves the efficiency of expression evaluation by prun-
ing interpretation paths with negligibly small proba-
bilities.

4 RESULTS

The initial test case is the amino acid oxidase fam-
ily of sequences. It is completely defined by a rela-
tively small example set (8 unique sequences in the
PROSITE database as of November, 2000). Table 2
shows the training results for the SRE-DNA grammars
in Figure 2. (Having only 8 examples precluded the
ability to perform testing on the results). ΣPr is the
sum of recognized probabilities for all the positive ex-
amples. The best fitness and ΣPr fields are given for
the top solution in the 10 runs for each case, while the
average ΣPr is an average of all the solutions from the
10 runs. In the 60 solutions obtained in all these runs,
only one expression was unable to recognize the entire



PROSITE ⇒ [ilmv](2) : h : [ahn] : y : g : x : [ags](2) : x : g : x(5) : g : x : a
Grammar

1a [iglv] : x+.12 : h : x+.12 : y : (g : x+.45 : g : x+.47 : [ghqs] : x+.47 :
(g : x+.47(947) + [fghqs] : x+.14(101) + [chmvy] : x+.14(842)))+.12

1b [ilv] : x+.1 : h : x+.1 : y : g : x+.1 : g : x+.1 : [gq] : x+.1 : [ghis] : x+.1

: g : x+.1 : ([aqst](325) + [afsw] : x∗.1(210) + [fhnqs](223))∗.1

1c [ilv] : x+.1 : h : x+.1 : y : x∗.19 : g : x+.19

: (g : x+.19 : [gtq] : x+.19 : [ghs] : x+.1 : g : x+.1 : a)+.1

2 [ilv] : x+.1 : h : x+.1 : y : x+.1 : [afh] : x+.1 : [gs] : x+.1 : g : x+.19

: [smqt] : x+.19 : [wy] : g : x+.1 : (a+.11)+.1

3 [ilv] : x+.11 : h : x+.1 : y : g : x+.19 : [sg] : x+.19 : g : x+.1 : [aqst]
: x+.1 : [ghs] : x+.13 : g : x+.1 : a

4 ([ligv] : x+.14 : h : x+.11 : y : g : x+.17 : [gs] : x+.18 : g : x+.17)+.11

: [astqi] : x+.15 : ([hgs] : x+.11 : g : x+.19(567) + ([ihswl] : x+.15

: ([hi] : x+.11)+.15 : ([ligv] : x+.11 : h : x+.11 : (y : g : x+.19)+.12

: [gs] : x+.17(567) + (h : x+.14)+.15(4)) : g : x+.17)+.11

: (((y : g : x+.19)+.12 : [gs] : x+.18 : g : x+.19)+.12 : [gs] : x+.17(567)
+g : x+.1)+.15(4)) : g : x+.17 : g : x+.17(4))

Figure 3: Best solutions for various grammars: amino acid oxidase

Table 3: Solution statistics for other families (grammar 2)
Training Testing (best soln)

Family Set size Seq size 100% solns Set size True pos (%) False neg (%)
a) Aspartic acid 44 12 10 452 100 0.2
b) Zinc finger, C2H2 type 29 23 9 678 93 1
c) Zinc finger, C3HC4 type 21 10 10 168 100 0
d) Sugar transport 1 18 18 0 190 88 1
e) Sugar transport 2 18 26 2 178 100 12
f) Snake toxin 18 21 10 127 51 0
g) Kazal inhibitor 20 23 10 125 93 0

Table 2: Solution statistics (training) for SRE-DNA
variations: amino acid oxidase. Grammars 1a, 1b, and
1c use maximum iteration limits of 0.5, 0.1, and 0.2
respectively.

Best Best Avg
Grammar Fitness Σ Pr Σ Pr
1a 3.999611 0.00078 0.000140
1b 3.999977 0.00005 0.000009
1c 3.999044 0.00191 0.000356
2 3.998157 0.00369 0.000588
3 3.992940 0.01412 0.002502
4 3.999396 0.00121 0.000272

training set. Clearly, version 3 of SRE-DNA (unre-
stricted, but no choice operator) yielded the strongest
solutions.

Figure 3 shows the best solutions obtained for the runs
in Table 2, along with the PROSITE expression used

to obtain the training set. Note that PROSITE mo-
tifs are typically made manually by scientists, and are
error-prone. While similarities are often seen between
the GP solutions and PROSITE expression, there are
also differences in the way consensus patterns are han-
dled between them. Note how E+p, S∗p, and x∗p are
nonexistent in the best overall solution (grammar 3).
It seems to contradict conventional GP wisdom that
this richer grammar containing these superfluous op-
erators performs better than grammar 2, which omits
these operators in the first place. One hypothesis for
this is that the iterative terms in grammar 3 help con-
serve and transport useful genetic material from early
generations, but disappears later.

The solution motif that least matches the others is the
one from grammar 4 (unrestricted with choice). This
expression suffers from bloat, in which intron mate-
rial is attached to low-probability choice terms. Even
though such intron material may not contribute to lan-
guage membership, it definitely has a negative impact



a) Aspartic P : c : x : [dn] : x(4) : [fy] : x : c : x : c
S : c : x+.19 : [dn] : x+.19 : [fy] : x+.1 : c : x+.1 : c

b) Zinc C2H2 P : c : x(2, 4) : c : x(3) : [cfilmvwy] : x(8) : h : x(3, 5) : h
S : c : x+.19 : c : x+.19 : [afkr] : x+.19 : [fhqrs] : x+.19 : [ahlrs] : x+.19 : [hlnt] : x+.19

: [hikrv] : x+.19

c) Zinc C3HC4 P : c : x : h : x : [filmvy] : c : x(2) : c : [ailmvy]
S : c : x+.1 : h : x+.19 : c : x+.19 : c : x+.1

d) Sugar 1 P : [agilmstv] : [afgilmsv] : x(2) : [ailmsv] : [de] : x : [afilmvwy] : g : r
: [kr] : x(4, 6) : [agst]

S : [agilm] : x+.32 : [dilr] : x+.32 : g : r : x+.32 : [gilmv] : x+.32

e) Sugar 2 P : [filmv] : x : g : [afilmv] : x(2) : g : x(8) : [fily] : x(2) : [eq] : x(6) : [kr]
S : [filmv] : x+.19 : (g : x+.48 : g : x+.48 : [fgily] : x+.48 : [ailtv] : (x)+.48)+.21

f) Snake P : g : c : x(1, 3) : c : p : x(8, 10) : c : c : x(2) : [denp]
S : g : c : x+.12 : c : x+.49 : [gkrv] : x+.48 : [gl] : x+.48 : c : c : x+.12 : [kt] : x+.1

g) Kazal P : c : x(7) : c : x(6) : y : x(3) : c : x(2, 3) : c
S : c : x+.39 : [cp] : x+.39 : [acdgs] : x+.39 : y : x+.11 : [nsy] : x+.1 : c : x+.38 : c+.11

Figure 4: PROSITE (P) and best solutions (S) for other families (grammar 2)

on the overall probability distribution of a motif.

The solutions generated from a single experiment can
often vary considerably. Consider this alternate solu-
tion from the grammar 1c runs (ΣPr = 0.00007):

[ilv] : [iv] : h : x+.1 : y : x+.19 : [ghs] : x+.19 : g
: x+.19 : [ghst] : x+.19 : g : x+.19

Comparing it with the solution for 1c in Figure 3, it
more precisely discriminates the beginning of the se-
quence.

Experiments using other families of sequences were un-
dertaken using grammar 2. Training and testing re-
sults are shown in Table 3. The maximum iteration
limit was changed for different families, in an attempt
to address the relative range of skipping allowed in the
corresponding PROSITE expressions. “100% solns”
indicate the number of solutions from the 10 runs that
recognize the entire set of training examples, “True
pos” is the proportion of true positives (positive ex-
amples correctly identified from the testing set), and
“False neg” is the proportion of the false negatives
(negative examples falsely identified as being member
sequences). The positive and negative testing sets are
the same size.

The testing results suggest that nearly all of the ex-
periments found acceptable solutions. One exception
is the snake toxin case, whose positive testing results
are poor. This is probably due to over-training on an
inadequately small training set. The sugar transport
examples (d and e) were also challenging. Experiment
(d) yielded no expressions which completely recognized
the entire training set. Considering the results of Ta-
ble 2, better results might have arisen if grammar 3

had been used instead of grammar 2. Also note that
a strong overall probability score does not necessar-
ily directly correlate with a high testing score. This
is because a motif might recognize a lower-proportion
of true positives, but with high probabilities. A good
solution will balance the probability distribution and
positive example recognition.

The motif expressions for the best solutions in Table 3
are given in Figure 4. In the aspartic and zinc C3HC4
experiments (a, c), all the runs generated the identi-
cal expression. In the aspartic case, the solution is
nearly a direct match to the PROSITE expression, ex-
cept that SRE-DNA’s probabilistic skipping is used.
In the solution for experiment (c), evolution chose
skip expressions instead of the PROSITE [filmvy] and
[ailmvy] terms. The preference of skip terms instead
of masks was not always the case, as is seen in other
solutions in Figure 4.

An interesting characteristic of many of the evolved
motifs using grammar 2 is that the + iteration oper-
ator usually evolved out of final expressions. In the
80 grammar 2 motifs evolved for all the protein fam-
ilies studied, only 28 motifs used the iteration opera-
tor. In three families (aspartic acid, zinc finger 2, and
snake toxin), none of the solution motifs used itera-
tion. When iteration arose, it was often highly nested,
indicating that it was being used as intron code. Even
though iteration is not an important operator for ex-
pressing these motifs, it does seem to be beneficial for
evolution performance, as was seen earlier in Table 2.

Regular expressions are coarse representations of the
3D structure relevant to a protein’s organic functional-
ity. Nevertheless, it is interesting to consider whether



any of the evolved motifs have captured the essential
biological feature of the given protein. In some cases,
the important features were indeed found. For exam-
ple, in the snake toxin example, the four c’s evident
in both the PROSITE and SRE-DNA motifs are in-
volved in disulfide bonds. In the aspartic acid motif,
the hydroxylation site at the d or n codon is correctly
identified. In the sugar 1 example, part of a strong
sub-motif “g : r : [kr]” in the PROSITE source is seen
in the SRE-DNA motif (the “g : r” term was found).

5 CONCLUSION

This research establishes that SRE-DNA is a viable
motif language for protein sequences. SRE-DNA ex-
pressions were successfully evolved using grammatical
GP, as implemented with the DCTG-GP system. A
number of families were tested, and acceptable re-
sults were usually obtained. Like other regular mo-
tif languages, SRE-DNA is most practical for small-
to medium-sized sequences, since larger sequences re-
quire correspondingly large expressions that generate
relatively miniscule probabilities. Variations of SRE-
DNA were tried, and preliminary results show that
the most successful variation is one with unrestricted
non-nested iteration, guards, and no choice operator.
The choice operator is definitely detrimental, as it in-
creases the frequency of intron material. Although the
iteration operator was not important in final solutions,
using it enhances evolution performance. One hypoth-
esis for this is that iteration acts as a transporter of
genetic material in early generations. Further testing
on more families of sequences should confirm these re-
sults.

The style of motifs obtained is highly dependent upon
grammatical constraints. Besides the kinds of gram-
mar restrictions tested in the experiments, such factors
as minimum and maximum iteration limits and max-
imum mask sizes are also critical factors in the char-
acter of realized motifs. Mask usage can be increased
by reducing the maximum skip iteration limit, thereby
increasing the likelihood of more guarded terms, and
hence masks. Increasing the maximum mask size, how-
ever, does not result in better solutions. Larger masks
tend to generate less discriminating motifs (higher
false negative rates), and also are less efficiently in-
terpreted. If the maximum iteration limit is set too
large, evolved expressions tend to take the form:

(unique prefix) : (x)+.9 : (unique suffix)

In other words, evolution tends to find an expression
that has two discriminating components for the begin-
nings and ends of sequences, while it skips the majority

of the sequence in between. By reducing the iteration
limit, more interesting motifs are obtained.

Multiple runs often find varying solutions that iden-
tify different consensus patterns within sequences. It
is worth considering whether there is some means
by which different solutions might be reconciled or
“merged” together. Of course, the best way to judge a
consensus pattern is to allow a biologist to examine it,
in order to determine whether the identified patterns
are biologically meaningful. It is worth remembering
that grammatical motifs are crude approximations of
the real relevant biological factor - the 3D shape of the
protein molecule.

One automatic optimization that is easily applied to
evolved motifs is to simplify mask terms by removing
extraneous elements. This has two effects. First, it in-
creases the probability performance of expressions, be-
cause smaller masks have proportionally larger proba-
bilities for selected elements. Secondly, smaller masks
make expressions more discriminating. This is easy to
see, since a mask of one element is the most discrim-
inating, while a skip term is the least (it is akin to a
mask of all elements).

Recently, SRE-DNA has been applied successfully
in synthesizing motifs for unaligned sequences (Ross
2001b). The results in this paper have been indispens-
able for this new work, since it is now known which
versions of SRE-DNA are apt to be most successful.
The knowledge that the choice operator is impractical
and should be ignored is very helpful.

This research is similar in spirit to that by Hu, in which
PROSITE-style motifs were for unaligned protein se-
quences (Hu 1998). Hu used demes and local optimiza-
tion during evolution, unlike this work, which used a
single population and no local optimization. Hu also
seeds the initial population with terms generated from
the example proteins. (Koza et al. 1999) have used
GP to evolve regular motifs for proteins. One solution
performed better than the established motif created
by experts. Their use of ADF’s was advantageous for
the proteins analyzed, given the many instances of re-
peated patterns.
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