
Applied Intelligence, 8, 21–32 (1998)
c© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The Evolution of Concurrent Programs

BRIAN J. ROSS

bross@cosc.brocku.ca

Department of Computer Science, Brock University, St. Catharines, ON, Canada L2S 3A1

Abstract. Process algebra are formal languages used for the rigorous specification and analysis of concurrent
systems. By using a process algebra as the target language of a genetic programming system, the derivation of
concurrent programs satisfying given problem specifications is possible. A genetic programming system based on
Koza’s model has been implemented. The target language used is Milner’s CCS process algebra, and is chosen for
its conciseness and simplicity. The genetic programming environment needs a few adaptations to the computational
characteristics of concurrent programs. In particular, means for efficiently controlling the exponentially large
computation spaces that are common with process algebra must be addressed. Experimental runs of the system
successfully evolved a number of non–iterative CCS systems, hence proving the potential of evolutionary approaches
to concurrent system development.

Keywords: genetic programming, process algebra, CCS, concurrency

1. Introduction

Genetic programming (GP) is an evolutionary learn-
ing technique used for the automatic synthesis of com-
puter programs [5]. Using the metaphor of Darwinian
“survival of the fittest”, a population of programs con-
structed in a programming language of interest are
bred and replicated according to some fitness criteria.
Programs that are fitter will survive and breed, while
weaker programs will perish. After a number of gen-
erations, a program that satisfies the fitness criteria of
the problem will hopefully arise.

Genetic programming has been successfully used
to derive sequential programs. Lisp is typically used
in GP work, due to its symbolic basis, and its effi-
ciency on single processor computers. Although Koza
states that genetic programming will work for any pro-
gramming language of interest, relatively little work
has applied it towards programming languages outside

of Lisp. Other programming paradigms which have
been used include RISC machine language [8], object–
orientation [2], C [14], and Prolog [14].

Concurrent and parallel programming continues to
be an active research area. Multiprocessor systems are
now common in multi–user servers, high–performance
workstations, and supercomputers. Concurrent com-
putations are inherently more complex than conven-
tional sequential ones, and writing correct and efficient
concurrent programs can be difficult to do. As a con-
sequence, much research effort has focussed on the
formal derivation and analysis of concurrent computa-
tions, for example [10, 9, 1, 3, 7]. To this end, process
algebra have been derived. Process algebra are mathe-
matical calculi used for modelling concurrency. Their
strengths include methods for abstraction, rigorous lan-
guage definitions, and robust theories of equivalence.

This paper uses a process algebra as a target lan-
guage for GP. The GP system requires some adapta-
tion to handle the concurrent paradigm as modelled by
process algebra. Concurrent programs can be highly

22 Ross

nondeterministic, and process algebra model this non-
determinism exhaustively. The GP system must deal
with a large syntactic program space (as with Lisp), as
well as combinatorially large computation spaces for
single concurrent programs (unlike Lisp). One chal-
lenge is to accommodate the often intractable nature
of nondeterministic computations, without overly in-
hibiting acceptable nondeterministic characteristics in
the population.

An overview of the CCS process algebra is given in
section 2. A few specific issues arising with the evo-
lution of concurrent systems are discussed in section
3. Section 4 discusses the genetic programming sys-
tem. Some examples runs that evolve concurrent parity
functions and scheduler programs are presented in sec-
tion 5. A discussion concludes the paper in section
6.

2. Process Algebra and CCS

The process algebra used is Milner’s Calculus of Com-
municating Systems, or CCS [7]. It is selected because
of its minimal set of primitives, its rigorous transitional
semantics, and its popular acceptance in the research
community. Since the problems studied in this research
are non-iterative, we consider CCS without recursion.
Please see [7] for an in-depth discussion.

CCS is an algebra which allows the description and
analysis of networks of communicating agents. An
agentor processis a mechanism whose behavior is
characterised by discrete actions. Agents are described
using a set ofagent expressions, E , recursively con-
structed as follows (E ranges overE):

α.E Prefix∑
i∈I Ei Summation

E1 | E2 Composition (or Interleaving)
E\L Restriction
E[f] Relabelling
0 Null

Milner defines the semantics of the other equational
operators using the transitional rules of Table 1. These
transitions are sequents in which the expression below
the line can be inferred when the expressions above (if
any) hold. The expressionE

α→ E′ represents the tran-
sition of agentE into derivativeE′, generating the ac-
tion α in the process. When multiple transitions occur,

as inE
α1→ · · · αn→, thenα1 · · ·αn anaction sequenceof

E. Given an expressionE, the transition rules can be
repeatedly applied, resulting in a set of possible traces.

Descriptions of the transitions in Table 1 are as fol-
lows. (i) Act: This describes an agent transition in
terms of its immediate actionsα. A is a set of ac-
tion names, andA is the set ofco-names. The set of
labelsL is L = A ∪ A. The set ofactionsAct is
Act = L ∪ {τ}, whereτ is a distinguished silent ac-
tion. For convenience,α.0 is denotedα. (ii) Sumj : In
E1 + E2, E1 andE2 are alternate choices of behavior.
The notation

∑
Ei denotesE1+E2+...+Ek fork ≥ 1.

(iii) Comi: Agent composition represents how agents
behave, both autonomously (Com1, Com2) and inter-
actively (Com3). Com3 models ahandshake, which
is a simultaneous communication between two agents.
In order for a handshake to occur, two agents simul-
taneously execute identical actions of opposite signs.
For example, in(a.P + b.Q) | (a.R + c.S), a commu-
nication can occur betweena.P anda.R, and results
in a hiddenτ . An expression is said to be indeadlock
if it cannot generate a visible action orτ . Then it is
equivalent to thenull process0, which is inactive. (iv)
Res: Restriction hides the specified actions in setL
from being observed. (v)Rel: A relabelling function
f renames actions.

A significant part of CCS theory is devoted to various
concepts of behavioral equivalence. Abisimilarity is
an observed equivalence amongst agents. One bisim-
ilarity practical for this paper isobservation equiva-
lence, which is denoted by the≈ equivalence relation.

LetA
α̂⇒ A′ represent the transition ofA intoA′ where

the stream̂α has all “τ ” actions removed. ThenP ≈ Q
iff, for all α ∈ Act,

(i) WheneverP
α→ P ′, then for someQ′,

Q
α̂⇒ Q′, andP ′ ≈ Q′.

(ii) WheneverQ
α→ Q′, then for someP ′,

P
α̂⇒ P ′, andP ′ ≈ Q′.

This states that agents with identical initial transitions
and derivatives are considered congruent. Another
bisimilarity is trace equivalence. Two agents are trace
equivalent if they generate the same visible actions after
all τ ’s are removed. Further discussion of equivalence
is in the next section.

Concurrent Programs 23

Table 1. Transitional semantics of CCS operators

Act
α.E

α→ E
Sumj

Ej
α→ E′j∑

Ei
α→ E′j

Res
E

α→ E′

E\L α→ E′\L
(α, α 6∈ L)

Com1
E

α→ E′

E|F α→ E′|F
Com2

F
α→ F ′

E|F α→ E|F ′
Com3

E
`→ E′ F

`→ F ′

E|F τ→ E′|F ′

Rel
E

α→ E′

E[f]
f(α)→ E′[f]

3. Some concurrency issues

3.1. Observing concurrent program behavior

When a finitary CCS program is executed, the process
may generate an indefinite sized stream, a number of
different streams, or no activity at all. CCS does not use
a notion of time, and hence expression efficiency and
the relative time interval between actions is not mod-
eled. This implies that an observer cannot ascertain
if the expression has terminated, unless a termination
convention is established [4], or the user has access to
the internal state of the CCS interpreter (which is un-
reasonable). A means for identifying the end of a trace
is therefore required.

CCS is a nondeterministic language, and nondeter-
minism arises from the “+” and “|” operators. Non-
determinism means that separate executions of a given
CCS program may result in differing output. Many
problems require the evaluation of all possible behav-
iors of a CCS program, while others may only require
that a program behaves well in most circumstances.
The transitional semantics of CCS models all possible
execution behaviors of expressions. If a CCS expres-
sion is being interpreted, then the interpreter can ex-
ecute the expression exhaustively, and return a set of
traces which the expression will generate. Of course,
successfully accomplishing this depends on the size of
the finite trace space, which may be exponentially large
with respect to the expression size, and hence imprac-
tical to obtain and process.

Of practical significance to GP is the choice of a suit-
able equivalence relation to use within evaluation func-
tions. One convenient way of analysing CCS programs
is by checking for a bisimilarity between the candidate
program and some predefined test cases. These tests
may elicit both positive and negative behaviors for the

fitness score. Test cases may be implemented as CCS
expressions that interact with the program being eval-
uated, or explicit trace sets that are compared to the
trace output of the program.

The evolution of CCS programs is more efficient
if the equivalence used is as unrestrictive as possible.
Trace equivalence and observation equivalence are two
such bisimilarities. With trace equivalence, interme-
diate τ ’s can be discarded from traces. This greatly
prunes the trace space, permitting more efficient evalu-
ation of expressions, as well as widening the window of
possible solutions within the search space. The use of
coarser bisimilarities, however, means that behavioral
precision is lost during evaluation, and the programs
evolved might not have the nondeterministic properties
necessary in more discriminating applications. The fi-
nal decision of this issue entirely depends upon the
problem application.

3.2. Evaluation Function Strategies

When designing a fitness function for CCS program
evolution, special attention must be given to the nonter-
minals selected for the problem. For example, a nonde-
terministic program may be needed in which interleav-
ing via “|” is the most natural mechanism for nonde-
terminism. If the evaluation function unduly penalizes
programs having a large number of traces, perhaps by
tallying into the score the cardinality of the trace set,
then programs with “|” may be harshly penalized, and
will perish from the population. To avoid this problem,
care must be taken that evaluation scores do not dis-
criminate against the nonterminals being used, while
balancing with the need for identifying and avoiding
intractable programs.

Programs being analyzed may be embedded within
a program wrapperor output interface [5], which is a

24 Ross

program expression acting as a context or environment
within which to test the behavior of a sub–program.
Typically, a single expression will be executed con-
secutively within a number of wrappers, in order to
precisely test it in a variety of contexts. Most impor-
tantly, program wrappers give the GP system a special-
ized context within which to evolve the population, and
hence focus the search.

When constructing wrappers within evaluation func-
tions, case must be taken that the wrapper does not too
generously underspecify the problem. For example,
consider this wrapper that tests expressionE:

(E | (a.x + b.y)) \ {a, b, x, y}

This wrapper is intended to test for the following be-
havior: WhenE receivesa, it generatesx, or else when
E receivesb, it producesy. The terminals inE are
{a, b, x, y}. Note that this terminal set prohibits
internal communication inE: no τ ’s can be gener-
ated withinE itself, since a communication requires
the synchronization of both an action and its co-action.
Restriction hides all extraneous traces not conforming
to the above desired results, since without restriction all
the non–communicating traces betweenE and the rest
of the expression will be produced. If this wrapper is
interpreted, the desired output will be seen via the trace
“τ.τ ” – both terms on the right-hand side will generate
this trace. Care must be taken that the other two possi-
ble traces, “τ ” and null, are checked for as well. The
first represents an instance in whichE accepts one or
both ofa or b, but then does not respectively generate
x and/ory. A null trace meansE has deadlocked, and
does not communicate with the rest of the expression
at all.

The problem in the above approach, however, is that
the expressionE may be the following:

a | b | x | y

This expression generates all permutations of the ter-
minal set, and when placed within the above wrapper,
perfectly satisfies the intended test. Deadlock does
not arise. Unfortunately, this expression is a degener-
ate solution that satisfiesall similarly constructed test
environments. The problem arises because this test en-
vironment is underspecifying the problem: restriction
is hiding too many behaviors withinE, and hence the
problem is trivially satisfied. Note that this generic so-

lution is syntactically simple, and is likely to evolve
with genetic programming.

A preferable strategy is to use wrappers like the
above in concert with additional analyses of the trace
output of the program. A simple heuristic that penalizes
overly–large trace sets ofE will effectively prohibit
exhaustive interleaving resulting from “|”. Incorpo-
rating such a penalty permits the wrapper to straight–
forwardly testE for the desired communicative behav-
ior, while the trace penalty prevents trivial solutions.

4. A Genetic Programming Environment for CCS

The genetic programming algorithm used is in Ta-
ble 2, and is modeled on Koza’s system [5]. The ini-
tial population at step 1 uses a ramped half–and–half
scheme for random expression generation. Fitness–
proportional selection is done. Oversampling is per-
mitted in which the initial population is made larger
than that used in subsequent generations. A minor de-
sign decision taken to reduce premature convergence is
in step 2b(iii). When a child created via crossover ex-
ceeds the syntactic depth limit, that child is disregarded,
and no contribution is made to the population by the
parent or child. This differs from Koza’s approach, in
which the parent is replicated into the population.

CCS’s simple syntax is well–suited for manipula-
tion during reproduction. Figure 1 shows a CCS ex-
pression’s parse tree, in a similar format to a Lisp S-
expression. During crossover, grammatical correct-
ness is preserved by selecting crossover nodes that will
result in syntactically valid offspring (Figure 2).

CCS’s transitional semantics in Table 1 are a means
for directly implementing a CCS interpreter for use by
the fitness function. The transitional rules concisely
model the behavior of the operators, and all the rules
taken together form the basis of an implementable se-
mantics for the language.

A variety of standard control parameters are used,
and will be seen in section 5. A few parameters address
the computational characteristics of the CCS language.
Concurrent computations can generate a combinatorial
explosion of different output behaviors. In addition, a
vast number of interpretation paths can generate a sin-
gle trace. A trace limit parameter permits the user to
control the interpretation of CCS expressions as used
by evaluation functions. Two values can be controlled
– the maximum number of unique traces, and the maxi-
mum number of all traces (both uniqueandduplicated).

Concurrent Programs 25

Table 2. Genetic Programming Algorithm

1. Generate initial population

2. Loop while current generation< Max generationand nor-
malized fitness of best so far> error tolerance

Loop while next generation population size< Max pop-
ulation size

Select a genetic operation:
(a) Pr −→ Replication:

i. Select one individual based on fitness.
ii. Perform replication.

iii. Add new individual to new population.
(b) Pc −→ Crossover:

i. Select two individuals based on fitness.
ii. Perform crossover.

iii. If offspring depth≤ maximum depth
Then add offspring to new population.

3. If solution foundThen output “success”.
Print best solution obtained.

Should a trace limit be reached, the interpreter will re-
turn an empty set in response, which lets the evaluation
function know that an expression was pre-empted. One
other parameter permits a suite of simplifying transfor-
mations to be carried out on expressions.

5. Examples

The problems studied in this section typically use the
prefix, composition, and choice operators as nontermi-
nals. Other CCS operators are often used in the evalu-
ation functions. The full set of CCS operators could be
conceivably used as nonterminals if needed, but were
not used in the interest of parsimony.

Fig. 1. Grammar tree for:(a.b | c.d.e) \ {a, d}.

Table 3. Parameters: Parity-2

Parameter Value
Functions +, |, .
Terminals x, x, t, f
Initial population size 750
Population size 500
Maximum generations 50
Probability replication 0.10
Probability crossover 0.90
Probability internal crossover 0.90
Max. depth initial population 6
Max. depth crossover offspring 17
Error tolerance 0.001
Trace limit 50 unique, 100 total
Simplify offspring off

5.1. Parity

The even–parity function is a problem studied by Koza
[5]. It is necessary to reimplement the problems for
CCS since, unlike Lisp, CCS does not have logical
expression primitives. Rather than evaluate Boolean
expressions, the CCS expression will instead read in a
sequence of input values denoting true and false input
signals. After reading the required number of inputs,
the appropriate parity output will be generated.

5.1.1. Even-Parity-2 The even–parity–2 function
(or equivalence function) generatestrue if both inputs
aretrue or false, or else outputsfalse. The parameters
for this problem are in Table 3. The terminalsx andx
represent the input’strueandfalsevalues respectively.
The input will be read sequentially as two consecu-

Fig. 2. Crossover of two CCS expressions.

26 Ross

tive signals. For example,x.x is the transmission of
two true signals. The terminalst and f denote the
functions output oftrueandfalserespectively. The in-
tended solution programE should run in the following
environment:

(E | P) \ {x}

where processP generates a sequence of size 2 ofx
andx, andE returnst orf appropriately. For example,

(E | x.x) \ {x} t→ 0

One successful evaluation strategy is as follows. The
entire set of traces from an individualE is obtained
from the interpreter. Since trace equivalence will be
used, all theτ ’s are filtered from the traces. This is
necessary, because thex andx actions may interact via
“ |” within E. Duplicate traces are also removed. These
filtered traces are then compared to the truth table of
desired function behavior:

Fig. 3. Fitness curve, Even–parity–2.

Fig. 4. Cumulative probability of success, Even–parity–2.

I1 I2 Out
x x t
x x f
x x f
x x t

The overall score is computed as:

Score =

 100 (if trace limits exceeded)

1
2 (4−#hits + #misses)2

Expressions that exceed the trace limit are penalized,
which effectively removes them from the population.
Otherwise, the number of hits (maximum of 4) are
counted and subtracted from the sum, and the number
of misses (arbitrary high) are added to it. The value4
ensures the sum does not go negative, and also penal-
izes trace sets that have fewer than4 misses in total.
Finally, squaring this sum creates a polynomial that is
weighted towards better individuals, and scaling by a
half makes the scores more manageable.

The fitness curve for a run of the above problem is in
Figure 3. In this and other fitness graphs in this paper,
the vertical axis uses a logarithmic scale in order to
accommodate both the best and average scores. One
of the best individuals of the initial generation was the
program

x.x.t

which had a fitness score of4.5. On the other hand, a
bad program with a fitness score of5000.0 happened
to be

(x.x | x | 0) | (0 | x) | (0 + f)

The best individuals in the next 8 generations had a
similar score of4.5. In generation 10, the fittest pro-
gram

x.x.f + x.x.((t + 0) + 0) + 0

≈ x.x.f + x.x.t

evolved, with a fitness of2.0 (the right–hand term is a
simplified version of the actual evolved program on the
left). No stronger individual was seen until generation
18, in which

x.x.f + x.x.(t + 0) + x.x.(t + 0)
≈ x.x.f + x.x.t + x.x.t

Concurrent Programs 27

appeared with a fitness of0.5. This score continued to
be the best until generation 29 found the solution

x.x.f + (x.x.f + x.x.t) + x.x.t

As can be seen, a tier of progressively fitter programs
evolved, in which an additional number of correctly
handled terms were included in successively fitter gen-
erations. Typically, populations would have multiple
superlative individuals that covered different terms of
the truth table. Crossover merged these terms into off-
spring that combine these different terms, until the so-
lution handling all four finally arose.

Interestingly, the “|” operator tended to quickly
evolve out of the population. This is because the scor-
ing mechanism penalizes large trace sets, which is a
likely phenomenon when this operator is present. In
this problem, however, the presence of interleaving did
not burden the search. A few runs were done that
excluded interleaving as a nonterminal, and solutions
were obtained in generations 38 and 47.

Figure 4 shows a graph of the cumulative probabil-
ity of finding a solution to the even–parity–2 problem.
The probability of success asymptotically reaches ap-
proximately 80% after generation 100, which means
there is a 20% chance that a solution is unlikely for any
run.

5.1.2. Even-Parity-3 The even–parity–3 problem is
considerably more complex. The parameters used are
in Table 4. Besides increasing the population size and
maximum generation limit, expression simplification
was turned on. Early runs with unsimplified expres-
sions resulted in a population full of large expressions
containing many irrelevant terms, and in particular,
deeply nested variations of “+0” and “0+”. Simplifi-
cation removed the null process from expressions.

The evaluation function was similar to the even–
parity–2 case. The following truth table was used:

I1 I2 I3 Out
x x x t
x x x f
x x x f
x x x t
x x x f
x x x t
x x x t
x x x f

Table 4. Parameters: Parity-3

Parameter Value
Functions +, .
Terminals x, x, t, f
Initial population size 1200
Population size 750
Maximum generations 200
Probability replication 0.10
Probability crossover 0.90
Probability internal crossover 0.90
Max. depth initial population 6
Max. depth crossover offspring 17
Error tolerance 0.001
Trace limit off
Simplify offspring on

Fitness is computed similarly:

Score =

 100 (if trace limits exceeded)

1
2 (8−#hits +

∑
(|miss|))2

Fig. 5. Fitness curve, Even–parity–3.

Fig. 6. Structural complexity, Even–parity–3.

28 Ross

The difference is that, instead of tallying the number of
misses, the size of each trace that is a miss is summed.
This penalizes long terms, resulting in populations with
simpler expressions.

The fitness curve of one run that evolved a solution
is in Figure 5. The solution obtained in generation 60
is:

(x.x.x.f + (x.x.x.t.0 + x.x.x.f + x.x.x.f.0)
+x.(x.x.t + x.x.f.0) + (x.x.x.t + x.x.x.f)
+x.x.x.t.0) + x.x.x.t + x.x.x.t.0 + x.x.x.t.0

Note that there are 12 terms here, when only 8 suffice,
as the evaluation function did not penalize duplicates.
This solutionE could then be used as follows:

(E | x.x.x) \ {x} t→ 0

Figure 6 shows how the structural complexity of the
population, measured in expression tree depth, in-
creases as evolution commences.

5.1.3. Scalability of Parity-K In order to measure
how well the parity–K experiments scale upwards for
higher values of K, the best fitness for 35 runs was
recorded and averaged, for each K value of 2 through 5
(see Figure 7). The maximum number of generations
is 75. The performance of the K=4 and K=5 runs is
not good. This reflects Koza’s experience with higher–
order parity experiments. In fact, Koza did not obtain a
solution for the parity–5 case. Given that the parity–K
experiments performed using CCS are more difficult
than the Lisp equivalents, the results of Figure 7 are
not surprising.

Fig. 7. Average best fitness for Parity–K (35 runs).

Higher–order parity–K problems are feasible for ge-
netic programming if alternate evolution strategies are
considered. For example, Koza used automatic func-
tion definition to obtain more satisfactory performance.
Alternately, Figure 8 plots the average best fitness for
35 runs of parity–K problems, using a steady–state GP
system with tournament selection. The performance
is considerably better than in the previous graph. The
parity–2 and parity–3 runs all found solutions by gener-
ations 21 and 37 respectively. There is a noticeable im-
provement in the K=4 runs, and even the K=5 runs have
a downward trend. Further improvements are likely if
ADFs were to be used as well. The conclusion from
these scalability experiments is that the CCS language
is not a contributing factor to the difficulty of higher–
order parity problems, but rather, more sophisticated
evolutionary strategies are necessary.

5.2. Scheduler

The next experiment is a simple scheduler. A set of
communication lines{α1, α2, ...} are defined. The or-
dering of these lines,α1 < α2 < · · ·, denotes their
scheduling order. Each communication line has a start
and finish communication signal associated with it,
designated byαi andαfi respectively. The rules for a
scheduler with K lines are:

1. All actions must be seen once and only once.
2. The start signalαi must be transmitted before any

αj(j > i) can be accepted.
3. After anαi is received, the finish signalαfi for

that line must be eventually transmitted.

Fig. 8. Average best fitness, steady state system with tournament
selection.

Concurrent Programs 29

Table 5. Parameters: Scheduler-2

Parameter Value
Functions +, |, .
Terminals a, a′, b, b′

Initial population size 750
Population size 500
Maximum generations 50
Probability replication 0.10
Probability crossover 0.90
Probability internal crossover 0.90
Max. depth initial population 6
Max. depth crossover offspring 17
Error tolerance 0.001
Trace limit unique = 40, total = 90
Simplify offspring off

5.2.1. Scheduler-2 Given the above specification,
the scheduler-2 parameters are set as in Table 5. The
actionsa andaf are the start and finish signals for line
a, andb andbf for line b, which is scheduled aftera.

An intention here is to evolve a program that ex-
ploits the interleaving operator “|”. One challenge is
to define an evaluation function that does not unduly
penalize programs with interleaving. The evaluation
strategy combines separate scores from the program’s
performance within a set of wrappers and the evalua-
tion of the trace output from the program:

Score =

 500 (if trace overflow)

Score1 + Score2

A program whose trace set was pre–empted due to over-
flow is penalized to ensure its demise.

The first score, the wrapper test, is computed as fol-
lows. The set of wrappers testing candidate program
E are:

(E | (a.af.b.bf)) \ {a, b, af, bf}
(E | (a.b.af.bf)) \ {a, b, af, bf}
(E | (a.b.bf .af)) \ {a, b, af, bf}

These three wrappers together completely define what
we would like of our scheduler. Each case is a statement
of observable behavior desired from the scheduler, and
if correct should derive the stream

...
τ→ τ→ τ→ τ→ 0.

Internal communication withinE is not possible with
the given set of terminals. Should

τ→ τ→ τ→ 0 be ob-
served with the first wrapper expression, then the final
bf action was not sent byE. Smaller output traces
mean similarly deadlocked states were encountered.

After duplicate traces are filtered, the scoring of the
trace results from the 3 wrapper tests is then:

Score1 = (
∑

(4− |ti|)) + (50×#overflows)

ti is an interpreted trace output of a wrapper, where
0 ≤ |ti| ≤ 4. Therefore, correct traces of size4 do
not increase the score. The first factor perfectly favors
correct programs (Score = 0), while it most heavily pe-
nalizes programs that deadlock early. The latter factor
penalizes wrapper tests that exceed their alloted trace
overflow limits.

The wrapper tests give little information about erro-
neous internal behavior of expressions. Therefore, the
programE is next interpreted by itself, and its trace
set is scored. All the desired traces conforming to the
scheduler specification are deleted, leaving a set of bad
tracesT of sizeNbad. While doing this, the number
Nuncov of desired tracesnot covered inT is deter-
mined. Next, each traceti ∈ Tbad is evaluated for the
following:

Mi = #missing actions from{a, b, af, bf}
Ri = #repeated actions
Oi = #times wherea, b are out of order
Pi = #instances a finish precedes its start

(eg. af beforea)

An overall score for all the bad traces forE is then
determined:

Score2 =
∑Tbad

i=1 (Mi + Ri + Oi + Pi)
Tbad

+ 3Nuncov

This computes theaveragebad score for the program.
The reason for an average rather than a sum is because
the latter would penalize programs having large trace
sets resulting from “|”. The number of tracesN not
covered byE is also tallied.

Runs with the above setup were usually successful.
One run’s fitness curve is in Figure 9, and the solution
obtained in generation 11 is

a.((b.bf) | af)

30 Ross

This is the syntactically simplest CCS expression solv-
ing this problem, and makes optimal use of interleav-
ing.

5.2.2. Scheduler–3The extension of the scheduler
problem to 3 lines significantly increased the complex-
ity of search. The parameters are the same as Table 5,
except terminalsc andcf are added. The main change
for the experiment was to relax the criteria for a so-
lution. The following formula is used to combine the
wrapper and badness scores in the evaluation function:

Score =


5000 (if trace overflow)

2∗Score1∗Score2
Score1+Score2

In this formula, the overall score becomes0 if either the
wrapper test or badness test are0. Relaxation occurs
because the wrapper test is less strict than the badness
evaluation; after all, the universal interleaving expres-
sion will solve all the wrapper tests. Such degenerate
solutions are avoided by using the trace limit parame-
ters, since heavily interleaved expressions will be ter-
minated by the interpreter. As before, the wrapper tests
for desired behavior, while the badness tests give a di-
rection to the search. The wrapper test,Score1, will
terminate evolution the moment that all the wrappers
are satisfied. Solutions obtained may thus generate su-
perfluous output, in addition to traces that solve the
problem. It would not be difficult to write a postpro-
cessor that takes a solution expression and removes
extraneous terms that do not contribute to the solution
trace set. Using the environment of the wrapper tests,
for example,

(E | a.b.bf .c.af.cf) \ {a, b, c, af, bf, cf}

Fig. 9. Fitness curve, Scheduler–2.

these erroneous traces are ignored via the restriction
list.

One successful run’s solution found the following at
generation 29:

a.((af | (b.c.cf + a) + bf | bf) | bf)

This expression creates extraneous traces via “bf | bf ”,
as well as a few with the final interleavedbf . However,
all correct scheduling events are seen if it is used in an
environment similar to the above. The fitness graph for
this run is in Figure 10.

Note that the scheduler–3 problem is exactly and
almost trivially solved if one exploits the scheduler–
2 result within it. Using the terminal set{a, af, x},
a genetic programming run was done. Thex action
here is treated by the evaluator as a substitutive la-
bel for a solved scheduler–2 program over the actions
{b, bf, c, cf}. Thisx is replaced by a scheduler–2 so-
lution, during evaluation. With this strategy, most runs
found a solution to scheduler–3 in the initial generation,
as the solution is the simple expression:

a.(af | x)

Performing the substitution on this,

a.(af | b.((c.cf) | bf))

results in the optimal solution for scheduler–3. Higher
scheduler–K problems scale upwards similarly.

After seeing the above optimal solutions for
scheduler–2 and –3, one might question the inclusion
of “+” as a nonterminal in those experiments. The rea-
son is that, without it, theonly solution possible is the
optimal solution: the search must converge to precisely
one single program, which is unreasonable. With the

Fig. 10. Fitness curve, Scheduler–3.

Concurrent Programs 31

inclusion of “+”, a variety of solutions are possible,
and a solution is more likely.

5.3. System implementation

The entire CCS genetic programming system is imple-
mented in Quintus Prolog 3.2 on a Silicon Graphics
150MHz R4400 system. A typical iteration of a sin-
gle scheduler–3 population with a population of 500
and trace limits set to(unique = 40, all = 90) takes
approximately 40 seconds. This includes 16 separate
calls to the CCS interpreter per individual, in addition
to trace analyses. The parity–3 runs take approximately
15 seconds per generation.

6. Conclusion

The main challenge in applying genetic algorithms to-
wards concurrent computations is the vast execution
space encountered with nondeterminism. If appropri-
ate user–defined controls are placed upon the execution
of the CCS interpreter, many concurrent problems are
indeed evolvable. This of course places constraints on
the genetic diversity of the population, since a heavily
interleaved program may have many desirable charac-
teristics, yet may be discarded due to trace overflow.
In addition, CCS is a lower–level language than Lisp,
and the styles of problems solved here are more chal-
lenging to realize in CCS. For example, the use of se-
quences of input signals for the even–parity functions
is a significant problem specification, since the actual
communication protocol must be evolved from scratch.
This is circumvented in a Lisp program which can ac-
cess parameters from the function header, and apply
boolean primitives to them directly.

While the experiments presented were selected for
their successful solution to the problems in question,
admittedly many unsuccessful runs were encountered.
One improvement would have been the use of tourna-
ment selection, which would require lessad hocevalua-
tion functions. Fitness–proportional selection schemes
as used here often requires numerical massaging of
the fitness functions to create a suitable search terrain,
which tournament selection does not need.

This research only addressed non–iterative concur-
rent problems, and the genetic programming of itera-
tive and recursive concurrent systems is currently be-
ing studied. One promising avenue is to look closely

at Koza’s ADF system, since concurrent programs are
modular in nature. Enhanced evolutionary strategies
such as coevolution and Lamarckism may be useful in
the difficult search space of concurrent programs [13].
Other process algebra could be studied, each of which
may present particular technical challenges for GP.

Applications of other machine learning paradigms to
concurrency have been attempted. [11, 12] discusses
the derivation of process algebraic expressions using
computational learning algorithms. This approach is
hampered by complexity issues, and requires severe re-
strictions on the scope of the process algebraic expres-
sions handled. Genetic programming is much more
promising in this regard, because the success of pro-
gram evolution is entirely dependent upon the existence
of suitable evaluation functions, and does not require
unreasonable restrictions on the target language. Work
in deriving concurrent genetic programming environ-
ments, for example [6], should not be confused with
this paper’s the genetic evolution of concurrent pro-
grams.

References

1. I.K. Aalbersberg and G. Rozenberg. Theory of Traces.Theo-
retical Computer Science, 60:1–82, 1988.

2. Wilker Shane Bruce.The Application of Genetic Programming
to the Automatic Generation of Object-Oriented Programs.
PhD thesis, School of Computer and Information Sciences,
Nova Southeastern University, December 1995.

3. M. Hennessy.Algebraic Theory of Processes. MIT Press,
1988.

4. E.C.R. Hehner and A.J. Malton. Termination Conventions and
Comparative Semantics.Acta Informatica, 25:1–14, 1988.

5. J.R. Koza.Genetic Programming. MIT Press, 1992.
6. S.R. Maxwell. Experiments with a Coroutine Execution Model

for Genetic Programming. InProceedings 1st IEEE Confer-
ence on Evolutionary Computation, pages 413–417, 1994.

7. R. Milner. Communication and Concurrency. Prentice Hall,
1989.

8. P. Nordin. A Compiling Genetic Programming System that
Directly Manipulates the Machine Code. In K.E. Kinnear,
editor, Advances in Genetic Programming, pages 311–331.
MIT Press, 1994.

9. E.-R. Olderog and C.A.R. Hoare. Specification-Oriented Se-
mantics for Communicating Processes.Acta Informatica,
23:9–66, 1986.

10. J.L. Peterson. Petri Nets.Computing Surveys, 9(3), September
1977.

11. B.J. Ross. The Inductive Inference of Cyclic Synchronized
Interleaving. InProceedings of the 11th European Conference
on Artificial Intelligence, Amsterdam, 1994. John Wiley and
Sons.

12. B.J. Ross. PAC Learning of Interleaved Melodies. In1995
IJCAI Workshop on Music and Artificial Intelligence, pages
96–100, Montreal, Quebec, 1995.

32 Ross

13. B.J. Ross. A Lamarckian Evolution Strategy for Genetic Al-
gorithms. In L. Chambers, editor,The Practical Handbook of
Genetic Algorithms, volume 3. CRC in Press.

14. M.L. Wong and K.S. Leung. Learning Programs in Different
Paradigms using Genetic Programming. InProceedings 4th
Congress of the Italian Association for AI, pages 353–364,
1995.

Brian Ross received a BSc from the University of Manitoba, MSc
from the University of British Columbia, and PhD from the Univer-
sity of Edinburgh. Currently he is an associate professor of computer
science at Brock University. His research interests include evolu-
tionary algorithms, concurrency, logic programming, and computer
music.

