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Abstract

Genetic programming is used to evolve min-
eral identification functions for hyperspec-
tral images. The input image set comprises
168 images from different wavelengths rang-
ing from 428 nm (visible blue) to 2507 nm
(invisible shortwave in the infrared), taken
over Cuprite, Nevada, with the AVIRIS hy-
perspectral sensor. A composite mineral im-
age indicating the overall reflectance percent-
age of three minerals (alunite, kaolnite, bud-
dingtonite) is used as a reference or “solu-
tion” image. The training set is manually se-
lected from this composite image. The task of
the GP system is to evolve mineral identifiers,
where each identifier is trained to identify one
of the three mineral specimens. A number
of different GP experiments were undertaken,
which parameterized features such as thresh-
olded mineral reflectance intensity and target
GP language. The results are promising, es-
pecially for minerals with higher reflectance
thresholds (more intense concentrations).

1 INTRODUCTION

Remote sensing using aircraft and satellite photogra-
phy is well-established technology. The use of hyper-
spectral imagery, however, is relatively new. Hyper-
spectral images are capable of precisely capturing nar-
row bands of spectra through a wide range of wave-
lengths. Since many organic and inorganic materials
exhibit unique absorption and reflection characteris-
tics at particular bandwidths, these spectra are use-
ful for remotely identifying various materials and phe-
nomena of interest. This is an important area of work,
since hyperspectral data permits the discovery of valu-
able natural resources in areas largely inaccessible by

foot. Literally any area of the Earth can be mapped by
hyperspectral imagery, be it with aircraft or satellites.

One complication in using this technology is the time
and expertise required to interpret the data. Hy-
perspectral imaging systems such as the NASA/JPL
AVIRIS1 sensor can capture over 200 bandwidths for
a single geographic location (Green et al. 1998). This
is denoted by a hyperspectral cube, which takes the
form of many hundreds of mega-bytes of information.
Interpreting this massive amount of data is difficult,
especially considering that the spectra obtained repre-
sent mixed spectral signatures of a variety of materi-
als. Moreover, noise and other unwanted effects must
be considered. Deciphering this enormous volume of
cryptic data is therefore next to impossible for humans
to do manually.

This paper uses genetic programming (GP) to evolve
mineral classifiers for use on hyperspectral images.
Separate mineral classifiers are evolved for three spe-
cific minerals – buddingtonite, alunite, and kaolinite.
The classifiers take the form of programs which, when
given a vector data from a particular pixel location on
a hyperspectral cube, determine whether the mineral
of interest resides there or not. Evolution proceeds by
evaluating the performance of classifiers on positive
and negative training sets. In addition, given the ef-
fects of noise at low reflectance levels, separate thresh-
old stages are examined. This is done in the hopes
that more accurate classification arises at higher re-
flectance levels, where there are more intense mineral
concentrations.

Section 2 reviews concepts in hyperspectral imaging.
The experimental design is outlined in Section 3. Sec-
tion 4 presents the results of the experiments. A dis-
cussion and comparison to related work concludes the
paper in Section 5.

1Airborne Visible/Infrared Imaging Spectrometer.



2 BACKGROUND

Figure 1: Cuprite, Nevada.

Figure 2: AVIRIS image, 2229nm.

The AVIRIS data used in this study was taken over
Cuprite, Nevada on June 12, 1996 (19:31UT). The sen-
sor acquires data in the wavelength region from 0.38
to 2.50 microns, with a ground sampling interval of
16.2m across track (horizontal) and 18.1m along track
(vertical). At-sensor radiance data were converted to
surface reflectance via an atmospheric correction using
the MODTRAN3 radiative transfer (RT) code, as im-
plemented in the imaging spectrometer data analysis
system (ISDAS) (Staenz and Williams 1997). This re-
moves spectral artifacts from solar flux and the earth’s
absorption bands (for example, water). This leaves
surface reflectance, which is the data of interest, as
it contains the spectral information pertinent to the
identification and mapping of specific minerals and
vegetation.

Figure 1 shows the Cuprite, Nevada, region studied

Figure 3: Spectra for alunite (AL), kaolinite (KA), and
buddingtonite (BU)

in this paper2. Cuprite is a well-studied test area for
remote sensing (Resmini et al. 1997). Figure 2 shows
an AVIRIS hyperspectral reflectance image of the same
area at the 2229nm bandwidth.

There is much ongoing research regarding the interpre-
tation of hyperspectral reflectance imagery, and a sur-
vey is beyond the scope of this paper. A representative
approach to the interpretation of reflectance data is
the Tetracorder system(Clark and Swayze 1995). Iden-
tification is performed by the application of a least-
squares fitting procedure to the total set of spectral
data and reference spectra. Features in the absorption
patterns of materials are enhanced during this fitting
process, in order to promote effective identification.
Multiple materials can be fitted simultaneously using
this technique. Artificial neural networks are also com-
monly applied to the automatic analysis and classifi-
cation of remote sensing data, including AVIRIS data
(Ridd et al. 1992, Civco 1993, Dreyer 1993, Merenyi
et al. 1993, Foody and Arora 1997, Yang et al. 1999,
Aguilar et al. 2000).

Evolutionary computation has been applied to multi-
spectral image analysis and remote sensing. (Larch
1994) uses genetic algorithms to evolve categoriza-
tion production rules for Landsat images. (Daida et
al. 1996) evolve genetic programs that identify ice-flow
ridges from ERS SAR images. Images from aircraft
are analyzed using GP in (Howard and Roberts 1999).
(Rauss et al. 2000) evolve genetic programs for cate-
gorizing hyperspectral imagery. The GENIE system
is used for hyperspectral image classification, which

2North is downwards in this and all the maps in this
paper.



uses a hybrid combination of linear genetic program-
ming with conventional classifier algorithms (Harvey
et al. 2000, Perkins et al. 2000, Brumby et al. 2001).
Among other things, GENIE has been used to classify
features such as forest fires and golf courses.

Figure 3 shows the signature spectra for the minerals
studied in this paper. Such spectra are measured in
the laboratory, and represent reflectance signatures for
various organic and inorganic materials. When miner-
als like these are resident in the environment, hyper-
spectral imaging will capture similar spectra. Tetra-
corder uses these lab spectra as guides for identifying
minerals in hyperspectral data.

3 EXPERIMENT DESIGN

3.1 Hyperspectral data preparation

The reflectance data from Cuprite derived from the
AVIRIS hyperspectral data set was analysed by
(Neville et al. 1998). The mineral fraction maps which
resulted from their work are used as the training so-
lution for this study. From the full AVIRIS bandset
available, we started with data at 0.428 microns and
eliminated bands near 1.4 and 1.9, where strong ab-
sorption in the atmosphere occurs due to water vapour.
This left 168 bands of data as input for our GP exper-
iment.

3.2 Training set sampling

The general goal is to evolve a separate identifier for
each of the three minerals being studied. The train-
ing scheme requires positive examples (pixels where
the target mineral is resident) and negative examples
(pixels where the mineral is absent). The solution data
is given in a mineral distribution map. This is an RGB
bitmap of the Cuprite area whose red, green, and blue
channels denote the relative reflectance intensity for
AL, KA, and BU respectively. Since these minerals
are often mixed throughout the Cuprite site, the RGB
channels represent mixed intensities of the minerals.

The majority of the Cuprite area is covered by weak
mixtures of the minerals. For example, KA and BU ex-
hibit weak distributions over most of the map. These
weak areas will negatively influence evolved results,
given both the low intensity of resident spectra and
existence of spectra from other incident minerals not
being studied. Our hypothesis is that better quality
results will be obtained for areas with more intense
reflectance values for the minerals of interest. Hence
mineral identifiers will be evolved for different thresh-
olds of reflectance intensity. Thresholds are used to

Table 1: Training Set Sizes

Threshold
0.0 0.05 0.15 0.25 0.35 0.50

AL pos: 40 40 31 26 20 11
neg: 80 80 89 94 100 109

KA pos: 75 72 57 46 38 23
neg: 80 83 98 109 117 132

BU pos: 77 73 30 19 12 10
neg: 90 94 137 148 155 157

determine the level of reflectance constituting a pos-
itive example. A threshold of 25% means that the
reflectance value is considered positive if it has an in-
tensity of at least 25% relative to the maximum re-
flectance observable (100%). Otherwise, it is treated
as a negative instance.

The sizes of the training sets for different thresholds
are given in Table 1. Initially, positive and negative
example sets were obtained manually, by sampling a
diverse selection of pixels throughout the entire map
area. The sizes of these sets are listed in the 0% thresh-
old column. The thresholded example sets are refined
from these initial sets, by moving positive examples
that do not meet the threshold requirements into the
negative set. Hence, the positive set sizes decrease as
the thresholds are raised.

3.3 GP experiment preparation

Table 2: GP Parameters

Parameter Value
Population size 1000
Max. generations 100
Max. runs 10
Prob. crossover 0.90
Prob. mutation 0.10
Prob. leaf mutation 0.90
Max. initial depth 2 to 6
Max. depth 17
Tournament size, crossover 4
Tournament size, mutation 7

The GP system used is the typed lilGP 1.1 system
(Zongker and Punch 1995). LilGP is a C-based sys-
tem that implements basic tree-oriented GP. Typing
is useful since both integer and floating point values
are used in evolved programs (Montana 1995). Some



self-explanatory GP parameters are given in Table 2.
Our use of GP is straight-forward: each program in the
population is evaluated on the training examples, and
its performance in correctly classifying the examples is
measured.

Three target languages are used (Table 3). The lan-
guages test spectral properties at single pixel loca-
tions of the hyperspectral data. Spatial operators are
not used. The spectral operators extract hyperspec-
tral data at a pixel coordinate which is globally set
for the current program execution. Language L1 de-
notes a boolean decision tree, in which a true result
means that the target mineral resides at the pixel in
question. L1’s relational operators test floating point
expressions on hyperspectral image parameters p[I],
where I is an index (modulo 168) to the hyperspec-
tral image cube. The floating point function set F
is self-explanatory. The inc operator increments its
integer argument. Ephemeral numbers are randomly
generated constants.

L2 and L3 are floating point languages, in which eval-
uated values greater than zero are interpreted as pos-
itive identification of the mineral. The L2 language is
the subset of L1 without boolean expressions. The L3

language is L2 supplemented with floating point op-
erators that compute over vectors (contiguous ranges
of hyperspectral data). These 2-argument functions
compute the minimum, maximum, average, and stan-
dard deviation over data vectors. The first argument
denotes a starting level in the hyperspectral data. The
second argument is evaluated modulo 3, and denotes
the depth of the vector: 3, 7, or 11 levels. For exam-
ple, vavg(35, 2) computes the average at the current
pixel location for layers 35 through 45 inclusive.

The fitness value for a program is computed as:

Fitness = 1−
(ce
te
∗ cn
tn

)
where ce is the number of correctly identified positive

Table 3: Target Languages

Boolean language L1:
B ::= (if F<F then B else B) | F<F | true | false
F ::= p[I] | F+F | F-F | F*F | F/F |

min(F,F) | max(F,F) | ephem flt
I ::= inc(I) | ephem int

Float language L2: F, I from L1

Float language L3:
L2∪ vmin(F,F) | vmax(F,F) | vavg(F,F) | vsdev(F,F)

examples, te is the total number of positive examples,
cn is the number of correctly identified negative ex-
amples, and tn is the total number of negative exam-
ples. Since the negative training set dwarfs the positive
set at higher thresholds, this formula balances positive
and negative classification performance with respect to
one another.

4 RESULTS

Table 4: Testing and Training Results: % correctly
classified pixels

threshold
AL 0.05 0.15 0.25 0.35 0.5
testing:
avg overall 0.825 0.933 0.957 0.966 0.985

best soln 0.875 0.970 0.991 0.995 0.998
TP 0.420 0.587 0.593 0.722 0.644
TN 0.955 0.984 0.997 0.997 0.999

training:
avg overall 0.87 0.946 0.953 0.961 0.973

threshold
KA 0.05 0.15 0.25 0.35 0.5
testing:
avg overall 0.876 0.952 0.972 0.986 0.987

best soln 0.903 0.964 0.984 0.991 0.994
TP 0.731 0.838 0.869 0.906 0.830
TN 0.963 0.980 0.992 0.997 0.996

training:
avg overall 0.908 0.963 0.986 0.990 0.966

threshold
BU 0.05 0.15 0.25 0.35 0.5
testing:
avg overall 0.608 0.811 0.972 0.989 0.994

best soln 0.653 0.888 0.993 0.999 0.999
TP 0.797 0.314 0.366 0.592 0.768
TN 0.381 0.945 0.995 1.000 1.000

training:
avg overall 0.834 0.919 0.986 0.990 0.990

Table 4 shows the training and testing performances
for the GP runs. Every mineral and threshold exper-
iment combines the results for 30 runs (3 target lan-
guages, 10 runs per language). The testing set is re-
mainder of the input data excluding the training pix-
els. Testing “avg overall” denotes the percentage of
correctly classified pixels averaged for all the solutions
from the 30 runs. The performance of the single best
solution obtained during the 30 runs is given in the
“best soln”, TP (true positive), and TN (true nega-



tive) entries. These values respectively report the per-
centages of correct pixel classifications for the entire
testing image, the positive pixels, and negative pixels.
The training “avg overall” is the percentage of positive
and negative training examples correctly classified, av-
eraged for all 30 solutions.

The training performance is fairly good amongst all
the solutions in the runs, and it improves at higher
thresholds. The solution (“best soln”) programs ob-
tained higher training performances than the averages
reported in the table; in higher threshold cases, the
best programs often had 100% training scores.

The testing performance of low-threshold results (es-
pecially at 0.05) is marginal. This is due to the noisy
reflectance values at that low threshold. The over-
all testing performance improves at higher thresholds.
For the best solutions, TN scores tend to be superior to
TP scores, which boosts the overall classification score.
The relative abundance of negative training examples
compared to positive examples at higher thresholds
may explain this.

With AL and KA, the best solutions’ TP performance
usually improves, while the best TN scores always im-
prove. However, the best TP scores decrease when go-
ing to the 0.5 threshold with these minerals, and this
was seen with other solutions obtained for these runs.
Again, the low number of positive training instances of
those minerals at this threshold may explain this (see
Figure 1).

For BU, raising the threshold from 0.05 to 0.15, the
TP fell from 79.7% to 31.4%. This was seen in most
other BU runs as well. The distribution of positive
examples of BU decreased dramatically from 73 to 30
examples when moving to the 0.15 threshold, and may
not adequately characterize the mineral at this thresh-
old.

Best solutions were distributed fairly evenly amongst
the three target languages. L3 solutions were generally
the smallest in terms of tree size, followed by L1 pro-
grams and L2 programs. L1 programs were the fastest
in wall clock time. L3 and L2 solutions were respec-
tively an average of 1.6 and 2.3 times slower than L1

programs. Overall, runs took between 1 to 20 min-
utes to complete, with a typical run taking about 6
minutes.

Figure 4 shows classification plots for the best solu-
tions listed in Table 4. In images (a) through (i), grey
(TN) and white (TP) are correct classifications, while
black denotes erroneous classifications. The classifiers
clearly have the most difficulty with the lowest thresh-
old value of 5%. For example, the BU example in

(g) only classifies 65.3% of the image correctly. Low-
threshold classifiers also varied widely in terms of out-
put characteristics. The classifiers do better at the
higher thresholds.

Image (j) deconstructs the classification errors in im-
age (g), by rendering false positives with black, false
negatives with white. and the remaining correctly clas-
sified pixels as grey. This particular classifier was eager
to classify mineral instances, hence its relatively high
TP score. Clearly, there is a distribution of BU at 5%
and higher throughout a large portion of the map area.

The evolved solution program (in l-expression form)
for images (g) and (j) is the following:

(- (p (inc 29199))
(p (inc (inc (inc 23424)))))

This simplifies to the expression “p[136] - p[75]”. This
is using the simple classification rule p2129 > p1155,
where p2129 is the pixel reflectance at the 2129nm
bandwidth. Upon first inspection, this rule does not
intuitively correspond to the BU spectra graph in Fig-
ure 3, where the BU reflectance at 2129nm is lower
than at 1155nm. However, the reflectance chart (k)
in Figure 4 shows that this simple relation correctly
characterizes BU at this low threshold. The chart was
created by finding the average intensity of pixels over
the range of spectra used in the testing set, for a con-
strained area that contained a high density of BU at
the 5% threshold. From this graph, it is clear that the
relation does in fact accurately classify weak densities
of BU. It must be realized, however, that the hyper-
spectral data at low 5% thresholds are likely poor indi-
cators for any of the minerals studied, given the noise
resident at that threshold. In addition, the 1155nm po-
sition is near a water vapour absorption feature, and
selection of this band by the GP solution may be an
artifact of the atmospheric correction procedure. This
will be investigated further.

Figure 5 shows the classification expression (simplified
from the L1 source program) for the the best solution
for BU at the 50% threshold. The expression uses 12
different frequencies over the entire span of hyperspec-
tral data used.

5 CONCLUSION

The hyperspectral mineral identifiers evolved by GP
work quite differently from conventional approaches.
With least-squares spectra fitting, signature spectra
for materials of interest are fitted to the hyperspec-
tral values at each pixel on the map. Identification
entails exaggerating the signature differences between



(a) AL, t = 0.05 (b) AL, t = 0.25 (c) AL, t = 0.50

(d) KA, t = 0.05 (e) KA, t = 0.25 (f) KA, t = 0.50

(g) BU, t = 0.05 (h) BU, t = 0.25 (i) BU, t = 0.50

(j) BU, t = 0.05, fp blk, fn wht (k) BU area reflectance, t = 0.05

Figure 4: Classification results for map area: alunite (a-c), kaolinite (d-f), and buddingtonite (g-j). In images
(a) through (i), grey is true negative, white is true positive, and black is false negative and false positive. In
image (j), grey is both true positive and true negative, black is false positive, and white is false negative.



if (max(2.1725 + ((min((p[136] - 1.16407), 0.538215) * 0.19977)), p[88])
/ ((p[30] * 0.19731 / p[163]) + 0.88465))

< (max(0.76650, p[14]) / min((0.18294 / p[11]), (0.00323 + max(-0.10691, p[74]))))
then ((-1.1482 / min((p[2] - 0.48504), min(0.70156, p[71]))) < p[31])
else (p[134] < p[151])

Figure 5: Evolved L1 classifier for BU, 50% threshold

materials, and looking for such fluctuations in the hy-
perspectral data. GP evolves classifiers that find some
spectral feature that correctly identifies the existence
or absence of a particular mineral. These classifiers
do not reference signature spectra, but rather, use the
mixed reflectance values as resident in the data set.
The success of the classifier depends upon its train-
ing performance in differentiating positive and nega-
tive examples for the mineral. As a result, material
mixtures are automatically accounted for. For exam-
ple, AL and KA are mixed in a large portion of the
Cuprite data set, and the positive training sets for
these minerals share many training points.

This implies that the effectiveness of the evolved classi-
fiers implicitly depends upon the context of other ma-
terials resident in the geographic area analyzed. The
classification logic evolved by GP is best characterized
as a function which identifies a mineral in the context
of the other minerals resident in the training set. We
have not yet tested our mineral identifiers on hyper-
spectral images from other locations to see how robust
these identifiers would be in the presence of materials
unseen in the training set. Future work needs to ex-
plore the generality of evolved classifiers, in order to
see whether a classifier is useful for other geographic
locations.

Training set quality is important in our experiments.
Our training sets were created by manually selecting
positive and negative training points spanning the map
area. Although manual sampling is fast and conve-
nient, future work needs to address training sample
quality more rigorously. A range of combinations of
minerals at various thresholds should be sampled for
the positive and negative training sets. This is prob-
ably best done via statistical sampling. Such training
sets would better represent the varieties of combina-
tions of mineral spectra resident in the images.

Although the fitness formula tries to balance the per-
formance of positive and negative example scoring,
many runs produce programs that tend towards be-
ing either liberal (eager to identify positive instances)
or conservative (eager to report non-instances). Some
solutions with very similar fitness scores often have
dramatically different classification behaviours, usu-

ally falling somewhere on this liberal or conservative
dichotomy. These results can mean that the training
sets are too small, and evolution is converging prema-
turely to inadequate solutions.

This work is closest in spirit to that in (Rauss et
al. 2000). Our L2 language is similar to theirs, and we
also use manually-selected training sets, albeit larger
in size than theirs. Their work classified grass from
non-grass in hyperspectral images, whereas we classify
one of three minerals in each classifier. Our approach
can also be compared to the GENIE system (Perkins
et al. 2000). The GENIE system’s application of GP
is a bit unusual, as it uses 6 “scratch images”, and
a fixed-length linear program that may or may not
reference these images. Hence the GENIE solution is
not as robust a program as a general l-expression pro-
gram. GENIE also uses conventional classifiers to help
analyze and post-process the results from the evolved
image analyzer. GENIE uses a large library of spectral
and spatial primitive operators, where we use a fairly
small set of exclusively spectral operators. When this
technology has matured in the future, more careful
comparisons between it and other paradigms needs to
be undertaken.
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