
Towards Automatic Discovery of Building Blocks in
Genetic Programming

Justinian P. Rosea
Computer Science Department

University of Rochester

Rochester NY 14627

rosca@cs.rochester.edu

Abstract

This paper presents an algorithm for the discovery of build-
ing blocks in genetic programming (GP) called adaptive
representation through learning (ARL). The central idea
ARL is the adaptation of the problem representation, by
extending the set of terminals and functions with a set of
evolvable subroutines. The set of subroutines extracts com-
mon knowledge emerging during the evolutionary process
and acquires the necessary structure for solving the problem.
ARL supports subroutine creation and deletion. Subroutine
creation or discovery is performed automatically based on
the differential parent-offspring fitness and block activation.
Subroutine deletion relies on a utility measure similar to
schema fitness over a window of past generations. The tech-
uique described is tested on the problem of controlling an
agent in a dynamic and non-deterministic environment. The
automatic discovery of subroutines can help scale up the GP
technique to complex problems.

1 Introduction

Holland hypothesized that genetic algorithms (GAs)
achieve their search capabilities by means of "block"
processing (see [Holland, 1975], [Goldberg, 1989]).
Blocks are relevant pieces of a solution that can be as-
sembled together, through crossover, in order to gener-
ate problem solutions. Goldberg argues in favor of the
hypothesis of building block processing by looking also
for arguments in nature:

"...simple life forms gave way to more complex
life forms, with the building blocks learned at ear-
lier times used and reused to good effect along the
way. If we require similar building block process-
ing, perhaps we should take a page out of nature’s
play book, testing simple building blocks early in
a run and using these to assemble more complex
structures as the simulation progresses".

However, recent GA experimental work disputes the
usefulness of crossover as a means of communication of
building blocks between the individuals of a population
[Jones, 1995]. The class of problems and problem repre-
sentations for which block processing is useful remains

an open research topic. This topic is even more chal-
lenging for genetic programming (GP,) which involves
semantic evaluation of the structures evolved.

A more detailed perspective of GA block processing
is offered by the Messy Genetic Algorithm (mGA) ap-
proach [Goldberg et al., 1989], [Goldberg et al., 1990].
The mGA attempts to solve the linkage problem, a
problem of representations in which features are not
tightly coded together. The messy genetic algorithm
explicitly attempts to discover useful blocks of code,
being guided by the string structure of individuals.

In contrast, we argue that GP should rely entirely
on the function of blocks of code. A lesson is learned
by contrasting the GP analogy to schemata theorem
from [O’Reilly and Oppacher, 1994] and modularization
approaches in GP.

Modularization approaches disregard the structure
of manipulated subtrees. Among them, the adaptive
representation (AR) GP extension [Rosca and Ballard,
1994a] points out the importance of considering fit
blocks of code.

This paper discusses in detail the usefulness of block
processing in GP and presents the main features of an
improved AR algorithm called Adaptive Representation
through Learning that has builtin features for the dis-
covery and generalization of salient blocks of code.

The paper is organized as follows. Section 2 re-
views the messy GA representation and block process-
ing paradigm that it proposes. Section 3 considers two
alternative views of building blocks in GP. The first is
a direct descendant from schema theory and is based
on the structure of individuals. The second is given by
modularization approaches.

From a practical point of view it is important to be
able to automatically detect building blocks. Section 4
discusses the drawbacks of various block selection ap-
proaches from the GP literature and presents a new
approach based on block"activation." This method is
used in an improved AR method, ARL. The ARL al-
gorithm is described in section 5. Section 6 presents
experimental results. Finally, section 7 summarizes the
main ideas of this paper.

78

From: AAAI Technical Report FS-95-01. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

2 The Messy Genetic Algorithm

In standard GAs it is hard to get the right combination
of alleles for blocks with high defining length or high
order. Moreover it is hard to preserve them in the pop-
ulation in order to combine them with other building
blocks. Last but not least, it is more difficult to com-
bine building blocks whose bit positions are interleaved,
based on fixed crossover operators and the mutate op-
erator. Solving these problems would enable solving
bounded deceptive problems [Goldberg, 1989], and, in
general, the linkage problem defined above.

To solve such problems, an mGA encodes objects as
variable length strings with position independent genes.
Each gene is tagged with an index representing its orig-
inal position. A basic assumption is that the mapping
from tag sets to building blocks is unknown, i.e. a parti-
tioning of the set of string bit positions that corresponds
to building blocks is not given initially.

An toGA attempts the building block processing
problem by decomposing the search problem into three
steps. First, the initialization phase generates all pos-
sible substrings of length k. A better alternative to
generating useful combinations of alleles is the prob-
abilistically complete initialization discussed in [Gold-
berg et al., 1993]. Second, proportions of good sub-
strings are increased and new substrings are generated
by gene deletion operations. In order to evaluate sub-
strings, the missing positions of the substring are filled
with the bit values taken from a competitive template
(see figure 1). Third, a standard GA is run to juxta-
pose the already detected good building blocks. The
GA uses two special genetic operators, cut and splice.
Cut generates two individuals from a parent by cutting
the parent at a randomly chosen position. Splice con-
catenates two strings into one. Besides, the mutation
operator may also be used.

Population string: ((I O) (4 O) (5 1)

Competitive template

Figure 1: In order to evaluate a partially defined string
(top), an mGA uses a template (bottom) that is a locally
optimal structure and is named competitive template. The
string elements are pairs of the form (index-tag, allele).

A string can be chosen as a competitive template for
level k when it is optimal, i.e. no k bit changes can
improve its fitness. Thus, a competitive template is a
locally optimal structure. Only strings that achieve a

fitness value better than that of the competitive tem-
plate are candidate building blocks at that level. A
greedy procedure is used to generate such templates.
Prior domain knowledge may also be used in this pro-
cess.

The mGA raises two problems and offers possible
solutions to them: (1) evaluation of a block or par-
tially defined string, and (2) population enrichment
with salient blocks. Once salient blocks are separately
created on the basis of procedures for (1) and (2), it
hoped that the mechanics of GA crossover eventually
combines the locally optimal blocks and speeds up the
genetic search process.

3 Building Blocks in GP
3.1 Structural Approach
The above discussion of the mGA representation points
out the explicit role of the structure of an individual in
a genotype encoding as well as the idea of block evalu-
ation. The analysis of schemata in GA processing also
relies on the structure of an individual. It is natural
to question whether structure information could pro-
vide hints in the analysis of building blocks in genetic
programming.

A GP analogy along the lines of GA schemata the-
ory and GA building block hypothesis has been at-
tempted in [O’Reilly and Oppacher, 1994]. The main
goal was understanding if GP problems have building
block structure and when GP is superior to other search
techniques. Next, we overview this analysis.

A GP schema was defined to be a collection of
tree fragments [Koza, 1992]. This intuitive definition
was generalized to a collection of trees possibly hav-
ing subtrees removed [O’Reilly and Oppacher, 1994].
An individual instantiates a schema in case it "cov-
ers" (matches) all the fragments. Overlappings between
fragments are not allowed.

The probability of tree disruption by crossover was
estimated based on this latter definition. A couple of
problems specific to GP had to be overcome. First, sub-
trees are free to move anywhere in a tree structure as
a result of crossover. Multiple copies of a subtree can
appear within the same individual, so that instances of
a tree fragment should be counted. A count value, rep-
resenting the number of appearances of that fragment
in a tree, is attached to each schema fragment. Second,
the notion of schema order or specificity changes. Speci-
ficity is a relative measure, as the size of GP individuals
is variable.

A characterization of schema processing was difficult
in the structural approach offered by the GP schema
definition. [O’Reilly and Oppacher, 1994] conclude that
schema processing, as defined, does not offer an appro-
priate perspective for analyzing GP.

A structural approach is also at the basis of "con-
structional problems" [Tackett, 1995], i.e. problems
in which the evolved trees are not semantically eval-
uated. Instead, tree fitness is based on the decomposi-

79

tion into target expressions, similar to the generalized
GP schelna, to which are assigned fitness values. By
ignoring the semantic evaluation step, the analysis of
constructional problems is not generalizable to GP in
general.

3.2 Functional Approach

A GP structural theory analogous to GA schemata the-
ory, as attempted in [O’Reilly and Oppacher, 1994]
side-stepped the functional role of the GP representa-
tion. In contrast, modularization approaches take a
functional perspective. Modularization addresses the
problems of inefficiency and scaling in GP. Modulariza-
tion approaches consider the effect of encapsulating and
eventually generalizing blocks of code.

Three main approaches to modularization, discussed
in the GP literature, are automatically defined func-
tions (ADFs) [Soza, 1992], module acquisition (MA)
[ingeline, 1994b] and adaptive representation (AR)
[Rosca and Ballard, 1994a].

A first approach to modularization was the idea of en-
capsulation or function definition, introduced in [Koza,
1992]. The encapsulation operation, originally called
"define building block" was viewed as a genetic opera-
tion that identifies a potential useful subtree and gives it
a name so that it can be referenced and used later. En-
capsulation is a particular form of function definition,
with no arguments. In general, a function or subroutine
is a piece of code that performs common calculations
parameterized by one or more arguments.

[Koza, 1992] also introduced the idea of automatic
function definition. Ill this approach each individ-
ual program has a dual structure. The structure is
defined based on a fixed number of components or
branches to be evolved: several function branches,
also called automatically defined functions, and a main
program branch. Each function branch (for instance
ADFo, ADF1) has a fixed number of arguments. The
main program branch (Program-Body) produces the
result. Each branch is a piece of LISP code built out
of specific primitive terminal and function sets, and
is subject to genetic operations. The set of function-
defining branches, the number of arguments that each
of the function possesses and the "alphabet" (function
and terminal sets) of each branch define the architecture
of a program.

GP has to evolve the definitions of functions with a
fixed number of arguments and a value-returning ex-
pression (main program) that combines calls to these
functions. During evolution, only the fitness of the com-
plete program is evaluated.

Genetic operations on ADFs are syntactically con-
strained by the components on which they can operate.
For example, crossover can only be performed between
subtrees of the same type, where subtree type depends
on the function and terminal symbols used in the deft-
nition of that subtree. An example of a simple typing
rule for an architecturally uniform population of pro-

grams is branch typing. Each branch of a program is
designated as having a distinct type. In this case the
crossover operator can only swap subtrees from analo-
gous branches.

The second approach to modularization is called
module acquisition ([Angeline, 19945], [Angeline,
1994a]). A module is a function with a unique name de-
fined by selecting and chopping off branches of a subtree
selected randomly from an individual. The approach
uses the compression operator to select blocks of code
for creating new modules, which are introduced into a
genetic library and may be invoked by other programs
in the population. Two effects are achieved. First the
expressiveness of the base language is increased. Sec-
ond modules become frozen portions of genetic mate-
rial, which are not subject to genetic operations unless
they are subsequently decompressed.

The third approach is called Adaptive Representation
(AR) [Rosca and Ballard, 1994a]. The basic idea is
automatically extract common knowledge in the form
of subroutines that extend the problem representation.
AR explicitly attempts to discover new good functions
or subroutines, based on heuristic criteria in the form of
domain knowledge. Good subroutines would represent
building blocks in GP.

In order to control the process of subroutine discov-
ery, AR keeps track of small blocks of code appearing in
the population. A key idea is that although one might
like to keep track of blocks of arbitrary size, only moni-
toring the merit of small blocks is feasible. Useful blocks
tend to be small. Blocks are generalized to subroutines
([Rosca and Ballard, 19945]) and the process can
applied recursively to discover more and more complex
useful blocks and subroutines. Newly discovered sub-
routines dynamically extend the problem function set.

Consequently, AR takes a bottom-up approach to sub-
routine discovery and evolves a hierarchy of functions.
At the basis of the function hierarchy lie the primi-
tive functions from the initial function set. More com-
plex subroutines are dynamically built based on the
older functions, adapting the problem representation
(see Figure 2).

Discovered functions or function-defining branches
will be called subroutines in the rest of the paper.

4 Block Selection
4.1 Existent Approaches

MA randomly selects a subtree from an individual and
randomly chops its branches to define a module and
thus decide what part of genetic material gets frozen.

ADF samples the space of subroutines by modify-
ing automatically defined functions at randomly cho-
sen crossover points. This may not be a good strategy
due to the the non-causality problem of ADF [Rosca
and Ballard, 1995]. The causality perspective analyzes
how natural or smooth perturbations of solutions can
be generated through crossover and are advantageous.
Non-causality relates small changes in the structure of

8O

c

b

a

"nrnc
C URRF~N~I" SOLUTION
POPULATION . "~

f

DF4 / , ~ DF5

~ DF3 ~

Figure 2: A hypothetical call graph of the extended flmc-
tion set in the AR method. The primitive function set is
extended hierarchically with subroutines (DF1, DF2, etc.)
discovered at generation numbers a, b, c.

a parse tree with drastic effects of such changes on the
properties or behavior of the individual (such as the
results or side effects of executing the function repre-
sented by the parse tree). Causality, or smooth behav-
ior change in response to small genotypic changes (also
called strong causality), would be needed in late stages
of evolution for tuning evolved structures.

However, ADF does not appear to favor such fine ad-
justments. In most cases, crossover changes in either a
subroutine or the result producing branch of an individ-
ual create an offspring with a totally changed behavior.
For example, a change in a subroutine at the basis of the
hierarchy of ADFs is amplified through the hierarchy of
calls drastically changing the individual behavior. Sim-
ilarly, a change in the result producing branch may also
determine a drastical change in behavior. Due to lexi-
cal scoping for ADF calls, calls to ADFs from the other
parent will now refer to local and potentially different
subroutines, drastically changing the semantics of the
individual program. Such non-causal changes may de-
termine a loss of beneficial evolutionary changes. ADF
counteracts the non-causality effect at some waste in
computational effort by employing a bottom-up stabi-
lization of subroutines. Also, the implicit biases of GP
search (regarding expected height of crossover points,
position of subtrees involved in crossover, effective code
and structure exploitation in GP) alleviate the problem
[Rosca and Ballard, 1995]. Early in the process changes
are focused towards the evolution of more primitive
functions. Later in the process the changes are focused
towards the evolution of program control structures, i.e.
at higher levels in the hierarchy.

The search control structure of AR explicitly favors
the bottom-up definition of a hierarchy of subroutines.
In contrast to uninformed or random manipulation of
blocks of code as in ADF, AR takes an informed or
heuristic approach to sift through all new blocks of code

based on block fitness. Determining fit or salient blocks
of code is a critical problem. What is a salient block of
code and how can it be used to define new subroutines?

In AR, the elements of the hierarchy of subroutines
are discovered by using either heuristic information as
conveyed by the environment or statistical information
extracted from the population. The heuristics are em-
bedded in block fitness functions which are used to de-
termine fit blocks of code. The hierarchy of subroutines
evolves as a result of several steps:

1. Select candidate building blocks from fit small blocks
appearing in the population

2. Generalize candidate blocks to create new subrou-
tines

3. Extend the representation with the new subroutines.

The generation intervals with no function set changes
represent evolutionary epochs. At the beginning of each
new epoch, part of the population is extinguished and
replaced with random individuals built using the ex-
tended function set [Rosca and Ballard, 1994a]. The
extinction step was introduced in order to make use of
the newly discovered subroutines.

Evaluation should be based on additional domain
knowledge whenever such knowledge is available. How-
ever, domain-independent methods are more desirable
for this goal. Unfortunately, simply considering the fre-
quency of a block in an individual [Tackett, 1993], in the
population [Rosea and Ballard, 1994c], the block’s con-
structional fitness or schema fitness [Altenberg, 1994] is
not sufficient.

Constructional fitness takes into account the prolifer-
ation rate of the block within the population. However,
such a measure has inherent drawbacks. First, con-
structional fitness is biased due to the extremely small
population sizes considered [O’Reilly and Oppacher,
1994]. Second, it is computationally expensive to keep
track of all possible blocks of code and block frequency
can be misleading [Rosca and Ballard, 1994a]. Third, a
block of code may rarely have a stationary distribution
in its effects on the fitness of programs, a necessary con-
dition to make constructional fitness useful [Altenberg,
1994].

Schema fitness, also called conditional expected fit-
ness of a block [Tackett, 1995] is the average fitness of
all the members of the population which contain the
block. Tackett performs an off-line analysis of condi-
tional fitness. Problems encountered when considering
block frequency appear again when trying to determine
saliency based on conditional fitness: salient traits have
high conditional fitness but high fitness does not neces-
sarily imply salience.

ARL discovers potential salient blocks of code based
on two notions, differential offspring-parent fitness and
"active" blocks. These notions are presented next.

81

Figure 3: Differential fitness distributions over a run of GP.

4.2 Differential Fitness
Global measures such as the population diversity or lo-
cal measures such as the differential fitness from parents
to offspring can be used to guide the creation of new
subroutines. ARL relies both on global and local infor-
mation implicitly stored in the population to determine
the utility of blocks of code.

First, blocks of code are selected from programs (i)
with the highest difference in fitness:

StdFitness(i) - rninpcParents(i) { StdFitness(p)

High differences in fitness are presumably created by
useful combinations of pieces of code appearing in the
structure of an individual. This is exactly what the
algorithm should discover. Figure 3 shows a 3D his-
togram of the differential fitness defined above for a
run of Even-5-Parity. Each slice of the 3D plot for
a fixed generation represents the number of individu-
als in a population of size 4000 for which the differ-
ential fitness has a given value. The figure suggests
that a small number of individuals improve on the fit-
ness on their parents (the right of the "neutral wall" for
DeltaFitness = 0). ARL will focus on such individuals
in order to discover salient blocks of code.

4.3 Block Activation
Program fitness is calculated as a result of program
evaluation. In some applications a program is evalu-
ated on a set of fitness cases. In other applications the
same program has to be evaluated a number of times on
the same problem instance. During repeated program
evaluation, some blocks of code are executed more of-
ten than others. The active blocks become candidate
blocks. Block activation is defined as the number of
times the root node of the block is executed. Salient
blocks are active blocks of code that prove to be useful.

The method requires that each node have an asso-
ciated counter recording its number of executions but
does not necessitate additional effort in an interpreted
GP system.

In contrast to [Tackett, 1995], salient blocks have to
be detected efficiently, on-line. Consequently, candi-
date blocks are only searched for among the blocks of
small height (between 3 and 5 in the current implemen-
tation) present in the population. This is done by using
a record of the dynamics of the population. Only new
blocks created through crossover are examined. All new
blocks can be discovered in O(M) time, where M is the
population size, by marking the program-tree paths ac-
tually affected by GP crossover and by examining only
those paths while searching for new blocks [Rosca and
Ballard, 1994a].

Nodes with the highest activation value are consid-
ered as candidates. In addition, we require that all
nodes of the subtree be activated at least once or a
minimum percentage of the total number of activations
of the root node. This condition is imposed in order to
eliminate from consideration blocks containing introns
(for a discussion of introns in GP see [Nordin et al.,
1995]) and hitch-hiking phenomena [Tackett, 1995].

5 Adapting Representation through

Learning

5.1 ARL Strategy

The central idea of the ARL algorithm is the dynamic
adaptation in the problem representation. The prob-
lem representation at generation t is given by the union
of the terminal set 7-, the function set ~r, and a set of
evolved subroutines St. 7- and ~ represent the set of
initial primitives and are fixed throughout the evolu-
tionary process. In contrast, St is a set of subroutines
whose composition may vary from one generation to
another. The intuition is that an alteration of the com-
position of St may dramatically change the search be-
havior of the GP algorithm. For example, the inclusion
of more complex subroutines, that turn out to be part of
a final solution, will result in less computational effort
spent during search for the creation of good candidate
solutions and will speed up search. The ARL algorithm
attempts to automatically discover useful subroutines
and grow the set St by applying the heuristic "pieces of
useful code may be generalized and successfully applied
in more general contexts."

St may be viewed as a population of subroutines that
extends the problem representation in an adaptive man-
ner. Subroutines compete against one another but may
also cooperate for survival. New subroutines are born
and the least useful ones die out. St is used as a pool
of additional problem primitives, besides 7- and ~r for
randomly generating individuals in the next generation,
t+l.

82

5.2 Discovery of Subroutines

New subroutines are created using blocks of genetic ma-
terial from the pool given by the current population.
The major problem here is the detection of what are
salient, or useful, blocks of code. The notion of useful-
ness in the subroutine discovery heuristic relies on the
idea of tracking active pieces of code, as described be-
fore. Useful active code is generalized and transformed
into useful subroutines.

Each block of code finally selected from a popula-
tion individual is transformed into a subroutine through
inductive generalization. Generalization replaces some
random subset of terminals in the block with variables.
Variables become formal arguments of the subroutine
created. This operation makes sense in the case when
the closure condition is satisfied by the sets of termi-
nals and functions. In typed GP [Montana, 1994], each
terminal selected for generalization will have a certain
type. The type is inherited by the variable introduced
in the corresponding place. Thus, the type information
of all the variables introduced and the type of the block
root node will define tile signature of the new subrou-
tine.

Note that the method of discovering building blocks
and creating new subroutines based on simple blocks of
code is applied recursively so that subroutines of any
complexity can be discovered.

New subroutines created in a generation are added
to ,St. St is used to randomly generate new individu-
als that enter the fitness proportionate selection com-
petition in the current population. Each subroutine is
assigned an utility value that averages the fitness of all
individuals that invoke it. The subroutine utility is up-
dated using a running average formula over successive
generations. Low utility subroutines are deleted in or-
der to make room to newly discovered subroutines. The
code of deleted subroutines is substituted in all places
where the subroutine is invoked.

6 Experimental Results

6.1 Test Case

We have tested the ARL algorithm on the problem of
controlling an agent in a dynamic environment, simi-
lar to the Pac-Man problem described in [Koza, 1992]).
The problem is to evolve a controller to drive the agent
(Pac-Man) in a dynamic and non-deterministic world
in order to acquire the maximum reward. A partial so-
lution to the problem is a program involving decisions
of what actions to take in every resulting world state.

Pac-Man is complex discrete-time, discrete-space
problem. Koza describes a GP implementation to the
Pac-Man problem, that involves a high enough problem
representation so as to focus on a single game aspect,
that of task prioritization [Koza, 1992]. Call this rep-
resentation A.

We have extended and changed representation A in
three ways:

¯ All the action primitives now return the distance from
the corresponding element.

¯ We have introduced relational (<, =, >=), logical
operators (and, or, not), and random integer con-
stants representing distance and direction.

¯ The iflte function was replaced by an if-then-else
function, ifte, which tests its condition and executes
either its then or its else branch.

The GP system uses point typing in the random gen-
eration of programs and in crossover operations under
this new representation B (see Table 1). The goal was
to evolve programs that express explicit conditions un-
der which certain actions are prescribed, as opposed to
the non-causal representation in [Koza, 1992] which cre-
ates programs that encode state information and rely
on side-effects.

The typed representation takes into account the sig-
nature of each primitive, i.e. the return type of each
function as well as the types of its arguments. It facil-
itates the evolution of explicit logical conditions under
which actions can be executed.

Table 1: Signatures of functions (type of result and argu-
ment types) in the typed Pac-Man representation.

[Function

I ifb
ifte

rand-dis
rand-direct

and
not
or

<

] sense-dis-food [dis

I act-a-pill [act

l Type [#Arg [Arg. Types

act 2 actj act
act 3 bool, act, act

dis 0
direct 0

Description

if monsters blue
if-then-else

random dis.
random direct.

bool, bool
bool
bool, bool

dis, dis
direct, direct

sense dis. to food

move to closest pill

6.2 ARL Runs

We examined the ability of the ARL algorithm to dis-
cover useful subroutines and to use them in a bene-
ficial way for generating problem solutions. We also
compared ARL with standard GP using the problem
representation from [Koza, 1992]. In all experiments
the population size was 500 and the algorithm was run
for 100 generations. The size of the set of subroutines
was 10. Other GP parameters were chosen as in [Koza,
199451.

Table 2 shows a sample of results for the best solu-
tions obtained using standard GP, ARL and by hand
coding.

The best-of-generation program evolved by ARL for
run number 3 is extremely modular, relying on 6 use-
ful subroutines. Only one of the subroutines is reused
a second time. All the others are invoked once only.
However, all six subroutines are effective in guiding the

83

18,000.0

16,000,0

14,000.0

12,000.0

io,ooo.o
ft.

8,00o.o
o.

6,000.0

4,000.0

2,000.0

0.0
0 l0 20 30 40 50 60 70 80

Generation

3.5

3.0

2.5

2.0

o
1.5 Iii

1.0

0.5

0.0
90

Figure 4: Variation of the number of hits, average fitness
and entropy for solution I (GP).

Pac-Man for certain periods of time. Among the six
subroutines, two parameterless subroutines appear to
be extremely interesting. One is successfully used for
attracting monsters:

(ifte (< (sense-dis-fruit) 50)
(act-a-fruit) (act-a-mon-1))

The second is used for carefully advancing to the pill.
It’s simplified code is:

(if (= (sense-direct-mon-1)
(sense-direct-pill))

(act-r-mort-i) (act-a-pill))

Figures 4 and 5 compare the evolutionary process for
GP (solution 1) and ARL (solution 3). ARL maintains
a high diversity (measured as entropy, see [Rosca, 1995])
due to the discovery and use of new subroutines and is
able to discover better solutions much faster.

GP solutions have poor generalization capability but
this may not be surprising taking into account that the
environment is non-deterministic. However, this is also
the case with human designed solutions which are writ-
ten so that they apply in the most general case (see

Table 2: Comparison between solutions obtained with stan-
dard GP and ARL and a carefully hand designed pro-
gram. Each solution has been tested on 100 different ran-
dora seeds simulating a non-deterministic environment. The
table shows the ma.-dmum number of points, average, stan-
dard deviation, and number of cycles of program execution
until the agent is eaten by Pac-Man.

[Run [Algorithm [Rep [Max [Avg [Std.Dev. [Cycles [
1 GP A 5720 2400 150 121
2 ARL A 14640 2568 308 1
3 ARL B 9200 2930 290 136
4 Hand B S560 2736 323 151

18,000.0 " 4.0

16,000.0 - 3_5

14,000.0
3.0

12,000.0
2.5

m,ooo.o
,, 2.0

8.~o.o o
g ks ’"

6,000.0 [

4,000.0 1.0

2,000.0 0.5

0.0 0.0
0 10 20 30 40 50 60 70

Generation

Figure 5: Variation of the number of hits, average fitness
and entropy for solution 2 (ARL).

solution 4 in table 2). Solutions obtained with ARL ap-
pear to be very interesting. They perform much better
than the ones evolved by means of GP or hand-coded,
and they are also evolved faster. The GP traces clearly
show the reach of local minima.

7 Conclusions

We proposed an improved version of the AR approach
called adaptive representation through learning (ARL).
ARL combines competition between individuals in a
population of programs with cooperation between indi-
viduals in a population of evolvable subroutines. ARL
does not require explicit block fitness functions. It eval-
uates blocks of code from highly improved offspring
based on block activation.

GP and ADF are based on a "blind" competition
between individuals. In contrast, in ARL, the popu-
lation of subroutines extracts common knowledge that
emerges during the evolutionary process. Subroutines
beneficial to some individuals could be invoked also by
other individuals. The end result is the collection of
subroutines that acquires the necessary structure for
solving the problem. It takes the form of a hierarchy of
subroutines as in figure 2. The population of subrou-
tines evolves through creation and deletion operations.

The ARL extension to GP maintains a fixed size pop-
ulation of programs (partial solutions) and a fixed size
population of discovered subroutines. Subroutines are
cumulatively rewarded for each invocation from newly
created programs or other subroutines. They also com-
pete for existence in the function set. The population
of subroutines evolves slowlier than the population of
programs.

We plan to experiment with duplication and muta-
tion operations on the population of subroutines. The

duplication operations are causal [Rosca and Ballard,
1995] and should have exploitative role, by increasing
the potential for specialization or generalization of the
behavior of programs, similarly to the creation and ad-
dition of ADF operations described in [Koza, 1994a].
The mutation operator will have an exploitative role
and enable the evolution of the set of functions. It
would determine the creation of new population indi-
viduals that would invoke the newly created functions.

A more thorough comparison among solutions ob-
tained using the GP, ADF and ARL algorithms is un-
dergoing.

References
[Altenberg, 1994] Lee Altenberg, "The Evolution of

Evolvability in Genetic Programming," In Kim Kin-
near, editor, Advances in Genetic Programming. MIT
Press, 1994.

[Angeline, 1994a] Peter J. Angeline, Evolutionary Al-
gorithms and Emergent Intelligence, PhD thesis,
Computer Science Department, Ohio State Univer-
sity, 1994.

[Angeline, 1994b] Peter J. Angeline, "Genetic Pro-
gramming and Emergent Intelligence," In Kim Kinn-
ear, editor, Advances in Genetic Programming. MIT
Press, 1994.

[Goldberg, 1989] David E. Goldberg, Genetic Algo-
rithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley, 1989.

[Goldberg et al., 1993] David E. Goldberg, Kalyanmoy
Deb, and Bradley Korb, "Rapid, Accurate Opti-
mization of Difficult Problems Using Fast Messy Ge-
netic Algorithms," In Proceedings of the Fifth Inter;
national Conference on Genetic Algorithms. Morgan
Kaufmann Publishers, Inc, 1993.

[Goldberg et al., 1989] David E. Goldberg, Bradley
Korb, and Kalyanmoy Deb, "Messy Genetic Algo.
rithms: Motivation, Analysis, and First Results,"
Complex Systems, 3:493-530, 1989.

[Goldberg et al., 1990] David E. Goldberg, Bradley
Korb, and Kalyanmoy Deb, "Messy Genetic Algo-
rithms Revisited: Studies in Mixed Size and Scale,"
Complex Systems, 4:415-444, 1990.

[Holland, 1975] John H. Holland, Adaptation in Natu-
ral and Artificial Systems, An Introductory Analysis
with Applications to Biology, Control and Artificial
Intelligence, The University of Michigan, 1st edition,
1975.

[Jones, 1995] Terry Jones, "Crossover, Macromuta-
tion and Population-Based Search," Proceedings of
the Sixth International Conference on Genetic Algo-
rithms (ICGA95), pages 73-80, 1995.

[Koza, 1992] John 1%. Koza, Genetic Programming: On
the Programming of Computers by Means of Natural
Selection, MIT Press, 1992.

[Koza, 1994a] John R. Koza, "Architecture-Altering
Operations for Evolving the Architecture of a Multi-
Part Program in Genetic Programming," Computer
Science Department STAN-CS-TR-94-1528, Stan-
ford University, 1994.

[Koza, 1994b] John R. Koza, Genetic Programming II,
MIT Press, 1994.

[Montana, 1994] David J. Montana, "Strongly Typed
Genetic Programming," Technical Report 7866,
BBN, 1994.

[Nordin et al., 1995] Peter Nordin, Frank Francone,
and Wolfgang Banzhaf, "Explicitly defined introns
and destructive crossover in genetic programming,"
Technical Report NRL2, Univ. of Rochester, June
1995.

[O’Reilly and Oppacher, 1994] Una-May O’Reilly and
Franz Oppacher, "The troubling aspects of a build-
ing block hypothesis for genetic programming," In
Proceedings of the Third Workshop on Foundations
of Genetic Algorithms. Morgan Kaufmann Publish-
ers, Inc, 1994.

[Rosca, 1995] Justinian P. Rosca, "Entropy-Driven
Adaptive Representation," In Proceedings of the
Workshop: Genetic Programming: From Theory to
Real World Application, the Twelfth International
Conference on Machine Learning, pages 23-32. Univ.
of Rochester, June 1995.

[Rosca and Ballard, 1994a] Justinian P. Rosca and
Dana H. Ballard, "Genetic Programming with Adap-
tive Representations," Technical Report 489, Uni-
versity of Rochester, Computer Science Department,
February 1994.

[Rosca and Ballard, 1994b] Justinian P. Rosca and
Dana H. Ballard, "Hierarchical Self-Organization
in Genetic Programming," In Proceedings of
the Eleventh International Conference on Machine
Learning, pages 251-258. Morgan Kaufinann Pub-
lishers, Inc, 1994.

[Rosca and Ballard, 1995] Justinian P. Rosca and
Dana H. Ballard, "Causality in Genetic Program-
ming," Proceedings of the Sixth International Con-
ference on Genetic Algorithms (ICGA95), 1995.

[Rosca and Ballard, 1994c] Justinian P. Rosca and
Dana H. BMlard, "Learning by Adapting Represen-
rations in Genetic Programming," In Proceedings of
the IEEE World Congress on Computational InteUi-
gence, pages 407-412. IEEE Press, Orlando, 1994.

[Tackett, 1993] Walter Alden Tackett, "Genetic Pro-
gramming for Feature Discovery and Image Discrim-
ination," In Proceedings of the Fifth International
Conference on Genetic Algorithms. Morgan Kauf-
mann Publishers, Inc, 1993.

[Tackett, 1995] Walter Alden Tackett, "Mining the Ge-
netic Program," IEEE Expert Magazine, June 1995.

85

