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Abstract

Under NASA’s new Earth Observing System (EOS),
satellite imagery is expected to arrive back on Earth at
rates of gigabytes/day. Techniques for the extraction
of useful information from such massive data streams
must be efficient and scalable in order to survive in
petabyte archive situations, and they must overcome
the opacity inherent in the data by classifying or es-
timating pixels according to user-specified categories
such as crop-type or forest health.
We are in the process of applying GP to several re-
lated satellite remote sensing (RS) classification and
estimation problems in such a way as to surmount the
usual obstacles to large-scale exploitation of imagery.
The fitness functions used for training are based on
how well the discovered programs perform on a set
of cases from Landsat Thematic Mapper (TM) im-
agery. Programs are rated on how well they perform
on out-of-training-set samples of cases from the same
imagery.
We have carried out a number of preliminary experi-
ments on a relatively simple binary classification task.
Each case is a set of 7 spectral intensity readings for a
pixel and an associated ground truth class: 1 for sur-
face water, 0 for none. The GP system very rapidly
discovers simple relations that correctly predict 98%+
for training and testing data sets. The key problem
with the results we have observed so far is that the sim-
ple solutions rapidly drive out diversity in the popula-
tion. Several approaches will be taken in further study
in order to try to maintain diversity in the population.

Problem Description

A current hotbed of research in the satellite remote-
sensing community involves the problem of extracting
useful information from digital imagery and making
that information as generally accessible as possible -
as exemplified by the recent NASA Cooperative Agree-
ment Notice (CAN), "Public Use of Earth and Space
Science Data Over the Internet." Any approach to
solving this problem must eventually surmount two
major obstacles: data volume and data opacity.

Under NASA’s new Earth Observing System (EOS)
(Congress, 1994), satellite imagery is expected to ar-
rive back on Earth at the rate of 220 GB/day; the data

volumes to be processed through and managed by the
EOS information system are measured in petabytes.
Most methods for the extraction of useful information
from image data can be categorized as classification
techniques or as estimation techniques (Aronoff, 1989;
Ch. 3). The goal of classification techniques is to as-
sign correctly (i.e. with known accuracy) each (po-
tentially multibyte, multispectral) image pixel to one
of a finite set of (not necessarily previously known)
classes, such as land-cover classes (water, forest, crops,
rock, ...). The aim of image estimation techniques is
to calculate correctly (with known accuracy) the rela-
tive proportions of each class in the image, but with no
commitment to the correct classification of any given
pixel taken alone. Classification and estimation tech-
niques to be deployed by EOS and similar systems will
have to confront efficiency and scalability issues as a
first priority.

The second major obstacle to extracting useful infor-
mation from satellite imagery is the inherent opacity
of the data: direct visualizations of multispectral im-
agery are practically meaningless to users not trained
in their interpretation.

Frameworks for the development (or automatic dis-
covery) of classification and estimation algorithms for
satellite imagery must be examined in the light of these
obstacles - if they are to be evaluated as to their long-
term viability. Specifically, the framework must deliver
methods which are

¯ easy to create using supervised learning without ex-
pert knowledge of remote sensing or machine learn-
ing;

¯ easy to understand without cumbersome and time-
consuming visualization techniques;

¯ easy to apply to fresh imagery data without expert
knowledge of remote sensing or machine learning;
and

¯ computationally efficient and scalable to petabyte-
sized archives of data objects.

We suggest Genetic Programming (GP) as a frame-
work which stands to fare favorably under each of these
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criteria as a long-term solution to the information ex-
traction problem, and we have begun to explore such
applications of GP in the research-in-progress reported
here.

Previous Work

Three basic paradigms have been applied to the prob-
lem of image classification and estimation in remote
sensing:

¯ "classical" statistics-based techniques, e.g.
(Schowengerdt, 1983);

¯ knowledge-based approaches (Kartikeyan et al.,
1995) (Goodenough et al., 1994) (Ton et al., 1991)
(Wharton, 1987); and

¯ supervised learning with artificial neural networks
(ANN’s) (Wu and Westervelt, 1994) (Civco, 
(Bischof et al., 1992) (Heermann and Khazenie,
1992).
The development of classification and estimation

methods based on classical statistical techniques is in-
herently very difficult - these techniques are only ac-
cessible to highly-trained and experienced researchers.
A high level of expertise is often required to interpret
the results correctly, as well. These disadvantages con-
spire to reduce greatly the potential long-term viability
of these techniques for general use in the environment
described above.

Although the use of knowledge-based techniques can
be very helpful in organizing large corpora of inter-
related classification and estimation methods, these
techniques actually exacerbate the disadvantages of
statistics-based techniques in that expertise is required
not only in the underlying image-analysis technology,
but also in the area of knowledge engineering.

A similar objection applies to the use of ANN-based
techniques in remote sensing: due to the level of hu-
man intervention currently required to cajole ANN’s
into training appropriately in a given problem domain,
the researcher or research team must bring expertise to
bear not only from remote sensing but also from neu-
rocomputing. In addition, both successfully and un-
successfully trained ANN’s are inherently difficult to
understand and interpret - even for highly-qualified ex-
perts in the techniques employed. Although high-level
graphical visualization tools may aid researchers in ex-
amining the patterns of synaptic weights derived dur-
ing training, the relationship between these patterns
and recognizable phenomena in the problem domain is
anything but straightforward.

Rationale of GP Approach

Genetic Programming (GP) uses the ideas of natu-
ral selection to create computer programs that solve
user-specified problems (Koza, 1992). GP has been
applied to a wide variety of standard machine-learning
problems, from robot control to time-series prediction

(Koza, 1992, 1994a) (Kinnear, 1994a). In the last 
ple of years, GP has begun to be applied to "real
world" problems, e.g. in the classification of amino
acids sequence domains (Koza, 1994b). Of particular
relevance to Remote Sensing (RS), GP has been used
in binary classification of objects based on features ex-
tracted from IR images of landscapes (Tackett, 1993).
And most recently, GP has been applied to extracting
features from satellite images (Daida et al., to appear).

The results obtained with GP so far, especially the
recent results on very difficult problems, recommend
GP as a technique for discovering algorithms to ex-
tract information from satelite imagery. GP seems well
suited to solving the information extraction problems
outlined in Section 1, to wit:
¯ Good results often can be obtained without relying

on detailed domain knowledge supplied by experts;
instead, sufficiently good classifiers for new themes
can be created rapidly using supervised learning on
a supply of training cases.

¯ The results are usually readily interpretable, and
they are easily transformed into efficient implemen-
tations in conventional image-processing platforms.

¯ When large volumes of data must be used to achieve
high accuracy, GP can readily be run in parallel,
with large populations and numbers of generations
(Koza, 1994b).

Furthermore, GP offers several additional advan-
tages over the standard techniques described above:

¯ The same basic GP techniques might be used to
achieve different accuracy requirements. For exam-
ple, GP could be used to rapidly discover an estima-
tor or classifier with 80% accuracy, which for many
situations is all that is required (e.g. an estimator
for percent crop cover, or a classifier for data-mining
in image archives). For other situations, more GP
resources could be used to discover much more ac-
curate classifiers (e.g. for thematic mapping of land-
cover categories).

¯ Results might be transferrable from one task to other
related ones, e.g. in the form of reusable Automatic
Defined Functions (ADFs) (Koza, 1994a).
For these reasons we are currently using GP to au-

tomatically discover algorithms to extract information
from satelite imagery, as described in the next section.

Current and Projected Work

We are in the process of applying GP to several re-
lated RS classification and estimation problems. For
both estimation and classification, there are two types
of problems we are working with initially, based on
whether there are two or more classes to be distin-
guished:

¯ binary classes: for example, classify each pixel as
representing either water or not-water; or give an
estimate of the percentage of water in an image
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¯ nominal classes: for example, classify each pixel as
to whether it represents forest, field, water, bare-
ground, wetlands, or urban territory

For all problems, the basic plan is to use GP to au-
tomatically discover algorithms which solve the classi-
fication or estimation task. The fitness functions used
for training will be based on how well the discovered
programs perform on a set of cases from Landsat The-
matic Mapper imagery (i.e., we will be doing super-
vised learning). For evaluation and comparison of the
results to those obtained by other techniques (or by
other GP parameter settings), programs will be rated
on how well they perform on out-of-training-set sam-
ples of cases from the same imagery.

The imagery data consists of pixel-by-pixel intensity
values for 7 spectral bands (4 visible, 3 near and mid
infrared, 1 far (thermal) infrared). Each pixel corre-
sponds to a 30m by 30m area on the ground. The 7
bytes of band data for each pixel in the training set
are joined by a ground-truth value representing the
information to be extracted from the image (e.g. land-
cover class). Thus, given the availability of ground-
truth data for the same area as that covered by the
Landsat image, it is possible to generate literally mil-
lions of fitness cases for training and testing sets: a
single Landsat TM image contains about 36 million
pixels, corresponding to a 185km by 185km area on
the ground.

We plan to use data sets of varying difficulty, includ-
ing:

¯ data sets constructed from real data, in which we
manipulate the complexity of solutions required, the
amount of noise in the data, the amount of category
overlap, and so on;

¯ real data sets with known optimal solutions; and

¯ real data sets with unknown optimal solutions.

By using data sets with known solutions and com-
plexity, we will be able to systematically test and com-
pare the results obtained using different modifications
of the basic GP approach, as in (Tackett and Carmi,
1994).

Preliminary Results and Discussion

We have carried out a number of preliminary experi-
ments on a relatively simple binary classification task
for which a near-optimal solution is known. The data
sets were extracted from a segment of recent Land-
sat TM imagery covering about 1,000 square kilome-
ters of West Central Louisiana. Each case is a set of
seven spectral-band intensity readings (integers from 
to 255) and an associated "ground truth" class: 1 for
water or 0 for not water. Thus the goal is to find rules
(programs) that can predict whether the pixel repre-
sents water or not, given the intensity readings at the
various spectral bands available.

Since the shape of the spectral histogram of sun-
light reflecting off of surface water through the Earth’s
atmosphere is known (decreasing monotonically in in-
tensity from blue through red to the near and mid in-
frared), the presence of surface water is conventionally
detected by merely checking for such a monotonic de-
crease - this method is robust for different absolute
intensities (brighter days) and for large variations 
inter-band slopes (muddier water). In Landsat-TM im-
agery, the bands resulting from multispectral scanning
are as follows:

1: blue (0.45-0.52 microns)
2: green (0.52-0.60 microns)
3: red (0.63-0.69 microns)
4: near-infrared (0.76-0.90 microns)
5: mid-infrared (1.55-1.75 microns)
6: thermal-infrared (10.4-12.5 microns)
7: mid-infrared (2.08-2.35 microns)

Therefore, the rule for detecting surface-water from
bands 1 through 7 can be expressed as

(B1 > B2 >/33 >B4 >B5 > BT)

where Bi is the intensity-value of the i’th band. Note
that thermal-IR, intensities are irrelevant to this rule.
Also note that for some particular data sets, a subset
of this rule, e.g, (B3 > B4), is sufficient to correctly
categorize a high percentage of the points.

To solve this using GP, we used a terminal set

T = {B1 B2 B3 B4 B5 B6 B7 R}

which supplies values at each band and random
ephemeral constants in the range [-7,7]. The function
set used was

F={-I- - /* < >= AND OR}.

We have tried two versions: one with mixed types and
one with all integer types, each with the appropriate
wrappers, operator protection and result conversions.
Typical population sizes were 200 to 500, and maxi-
mum generations run was 50. We have tried two raw
fitness functions: %Corrrect, and a correlation mea-
sure C which runs from -1 (completely wrong) through
zero (random guesses) to 1 (complete correct) (Koza,
1994). Each was mapped into a standardized fitness
running from 0 to 1.

In the runs we have done so far, the GP system
very rapidly discovers simple relations (e.g., B3 > B4)
that correctly predict 98%+ for training and testing
data sets. These results were obtained using both the
mixed-type and integer versions, and for several data
sets. This is very encouraging, even given the simplic-
ity of the solutions found, in part because it is unlikely
that an Artificial Neural Net approach would have ob-
tained such good performance as rapidly, and of course
the ANN solution would not be as clearly interpretable
as the GP programs we obtained (being directly re-
ferrable to known reflectance properties as they are).
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As mentioned earlier, rules that can correctly classify
85% or more of the cases are often all that is required;
being able to find such rules rapidly and robustly is
exactly one of the results we hope to show GP can
produce.

However, for some tasks it is necessary to get very
high percent-correct rates, e.g. for thematic mapping.
For these tasks, we will want the GP to go beyond
the simple but pretty good solutions, to discover more
complex solutions that get that last few percentage of
cases correct as well.

The key problem with the results we have observed
so far is that the simple solutions rapidly drive out di-
versity in the population. In particular, the logical op-
erators are completely lost from the population. Once
that happens, there is no way for the GP to create
plausible candidate solutions by recombining existing
solutions. This loss of diversity was observed using
both fitness proportionate (FP) selection and binary
tournament selection (TS). However, we did note that
diversity was maintained longer using TS, as would be
expected given its reduced selection pressure.

These results highlight what will be a key issue
for tasks in which the goal is to find a very high-
performance classifier: how to maintain population di-
versity so that the system will not get stuck on easily-
found local optima, but instead continue on to find so-
lutions that require more complex programs involving
all the basic functions and feature values.

Over the next few months, we plan to try a number
of approaches to maintaining diversity in populations.
In particular we plan to explore:

¯ controlling selection pressure, e.g. by scaling fitness
values or by using a lower threshold for lower fitness
individuals to win in binary TS;

¯ subpopulation mixing approaches (demes), e.g. 
used in (Tackett and Carmi, 1994) or in (Koza,
1994a); and

¯ coevolution of fitness cases, to give more weight to
those cases that are not solved by simple expressions,
e.g. as done in (Siegel, 1994).

We may also explore the use of special operators
besides the standard subtree-swapping crossover. For
example, it may be useful to have a recombination op-
erator that combines subtrees by introducing logical
operators to join them. For example, if one individ-
ual has discovered (> B3 B4) and another (perhaps in
a separate subpopulation) has discovered (> B2 B3),
the operator could combine these using AND to form
(AND (> B3 B4) (> B2 B3)), which is a step on 
way toward complex relations like (B1 > B2 > B3 
B4 > Bs). Similar operators could introduce other
logical or conditional connectives.

We also plan to explore the use of various types
of Automatically Defined Functions (Kinnear, 1994b).
For example, ADFs will probably be useful for discov-
ering systematic operations that can be applied to a

pixel and its neighbors, to include information about a
pixel’s context in deciding how to classify it. However,
that work will not be the focus of this paper.

Additional Results
A longer version of this paper, including all the results
discussed at the AAAI Fall Workshop, can be obtained
via anonymous ftp from pscs.physics.lsa.umich.edu/
papers/95/gp1-long.tar.gz, which includes both
postscript and dvi copies.
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