
Sylvain Gelly — Olivier Teytaud — Nicolas Bredeche

Marc Schoenauer

Universal Consistency and Bloat in GP

RSTI – RIA 20/2006

c© Hermes-Lavoisier

Universal Consistency and Bloat in GP

Some theoretical considerations about Genetic

Programming from a Statistical Learning Theory

viewpoint

Sylvain Gelly — Olivier Teytaud — Nicolas Bredeche
Marc Schoenauer

Equipe TAO - INRIA Futurs, LRI, Bat. 490
University Paris-Sud, F-91405 Orsay Cedex

ABSTRACT. In this paper, we provide an analysis of Genetic Programming (GP) from the Statis-
tical Learning Theory viewpoint in the scope of symbolic regression. Firstly, we are interested
in Universal Consistency, i.e. the fact that the solution minimizing the empirical error does
converge to the best possible error when the number of examples goes to infinity, and secondly,
we focus our attention on the uncontrolled growth of program length (i.e. bloat), which is a
well-known problem in GP. Results show that (1) several kinds of code bloats may be identified
and that (2) Universal consistency can be obtained as well as avoiding bloat under some con-
ditions. We conclude by describing an ad hoc method that makes it possible simultaneously to
avoid bloat and to ensure universal consistency.

RÉSUMÉ. Dans cet article, nous proposons une étude de la Programmation Génétique (PG) du
point de vue de la théorie de l’Apprentissage Statistique dans le cadre de la régression symbo-
lique. En particulier, nous nous sommes intéressés à la consistence universelle en PG, c’est-à-
dire la convergence presque sûre vers l’erreur bayésienne à mesure que le nombre d’exemples
augmente, ainsi qu’au problème bien connu en PG de la croissance incontrôlée de la taille du
code (i.e. le "bloat"). Les résultats que nous avons obtenus montrent d’une part que l’on peut
identifier plusieurs types de bloat et d’autre part que la consistence universelle et l’absence de
bloat peuvent être obtenues sous certaines conditions. Nous proposons finalement une méthode
ad hoc évitant justement le bloat tout en garantissant la consistence universelle.

KEYWORDS: genetic programming, statistical learning theory, symbolic regression, universal
consistency, bloat.

MOTS-CLÉS : programmation génétique, théorie de l’apprentissage, régression symbolique,
consistence universelle, bloat.

DRAFT. Original in: RSTI – RIA – 20/2006. New Methods in Machine Learning, pages 805

to 827

1. Introduction

This paper is about two important issues in Genetic Programming (GP), that is

Universal Consistency (UC) and code bloat. UC consists in the convergence to the

optimal error rate with regards to an unknown distribution of examples. A restricted

version of UC is consistency, which focus on the convergence to the optimal error

rate within a restricted search space. Both UC and consistency are well studied in the

field of statistical learning theory. Despite their possible benefits, they have not been

widely studied in the field of GP.

Code bloat is the uncontrolled growth of program size that may occur in GP when

relying on a variable length representation (Koza, 1992, Langdon, 1998). This has

been identified as a key problem in GP for which there have been several empirical

studies. However, very few theoretical studies addressed this issue directly.

The work presented in this paper is intended to provide some theoretical insights

on the bloat phenomenon and its link with UC in the context of GP-based learning

taking a statistical learning theory perspective (Vapnik, 1995). Statistical learning

theory provides several theoretical tools to analyze some aspects of learning accuracy.

Our main objective consists in performing both an in-depth analysis of bloat as well

as providing appropriate solutions to avoid it.

The following section gives an overview of current code bloat theories, describ-

ing the results presented in this paper from a GP perspective and providing a short

discussion on these results and their benefits for the GP practitioner. Section 2 and 3

formally prove all the aforementioned results about code bloat avoidance and UC and

suggest a new approach ensuring both. Section 4 finally concludes this paper with

a discussion on the consequences of those theoretical results for GP practitioners and

uncover some perspectives of work.

1.1. Code Bloat in Genetic Programming

As quoted from (Banzhaf et al., 1998, p. 182):

[...] in 1994, Angeline noted that many of the evolved solutions in Koza’s

book contained code segments that were extraneous. By extraneous, he

meant that if those code segments were removed from the solution, this

would not alter the result produced by the solution. Examples of such

code would be: (1) a = a + 0 or (2) b = b ∗ 1.

While bloat is well-defined and can be identified, there are currently no consensual

explanations on why it occurs. Indeed, three popular theories can be found in the

literature to explain it:

– The introns theory states that bloat acts as a protective mechanism in order to

avoid the destructive effects of operators once relevant solutions have been found

(Blickle et al., 1994, McPhee et al., 1995, Nordin et al., 1995). Introns are pieces

of code that have no influence on the fitness: either sub-programs that are never exe-

cuted, or sub-programs which have no effect;

– The fitness causes bloat theory relies on the assumption that there is a greater

probability to find a bigger program with the same behavior (i.e. semantically equiv-

alent) than to find a shorter one. Thus, once a good solution is found, programs nat-

urally tend to grow because of fitness pressure (Langdon et al., 1997). This theory

states that code bloat is operator-independent and may happen for any variable length

representation-based algorithm. As a consequence, code bloat is not to be limited to

population-based stochastic algorithm (such as GP), but may be extended to many

algorithms using variable length representation (Langdon, 1998);

– The removal bias theory states that removing longer sub-programs is more dan-

gerous to do than removing shorter ones (because of possible destructive conse-

quence), so there is a natural bias that benefits to the preservation of longer programs

(Soule, 2002).

While it is now considered that each of these theories somewhat capture part of the

problem (Banzhaf et al., 2002), there has not been any definitive global explanation of

the bloat phenomenon. At the same time, no definitive practical solution has been pro-

posed that would avoid the drawbacks of bloat (i.e. increasing evaluation time of large

trees) while maintaining the good performances of GP on difficult problems. Some

common solutions rely either on specific operators (e.g. size-fair crossover (Langdon,

2000), or different fair mutation (Langdon et al., 1999)), on some parsimony-based pe-

nalization of the fitness (Soule et al., 1998) or on abrupt limitation of the program size

such as the one originally used by Koza (Koza, 1992). Also, some multi-objective

approachs have been proposed ((Luke et al., 2002, Silva et al., 2003, Ekart et al.,
2002, De Jong et al., 2001, Bleuler et al., 2001)). Some other more particular solu-

tions have been proposed but are not widely used yet (Ratle et al., 2001, Zhang et al.,
1995).

1.2. Structural and Functional Bloat

Although code bloat is not clearly understood, it is yet possible to distinguish at

least two kinds of code bloat. We first define structural bloat as the code bloat that

necessarily takes place when no optimal solution can be approximated by a set of

programs with bounded length. In such a situation, optimal solutions of increasing

accuracy will also exhibit an increasing complexity (larger programs), as larger and

larger code will be generated in order to better approximate the target function. This

extreme case of structural bloat has also been demonstrated in (Gustafson et al., 2004).

The authors use some polynomial functions of increasing difficulty, and demonstrate

that a precise fit can only be obtained through an increased bloat (see also (Daida et
al., 2001) for related issues about problem complexity in GP).

Another form of bloat is the functional bloat, which takes place when program

length keeps on growing even though an optimal solution (of known complexity) does

lie in the search space. In order to clarify this point, let us use a simple symbolic

regression problem defined as follow: given a set S of test cases, the goal is to find a

function f (here, a GP-tree) that minimizes the Mean Square Error (or MSE). If we

intend to approximate a polynomial (e.g. 14 ∗ x2 with x ∈ [0, 1]), we may observe

code bloat since it is possible to find arbitrarily long polynomials that gives the exact

solution (e.g. 14x2+0∗x3+. . .), or sequences of polynomials of length growing to ∞
and accuracy converging to the optimal accuracy (e.g. Pn(x) = 14x2 +

∑n
i=1

1
n!i!x

i).

Most of the works cited earlier are in fact concerned with functional bloat which is the

most surprising, and the most disappointing kind of bloat.

We will consider various levels of functional bloat: cases where the length of

programs found by GP runs to infinity as the number of test cases run to infinity

whereas a bounded-length solution exists, and also cases where large programs are

found with high probability by GP whereas a small program is optimal.

1.3. Universal Consistency

Another important issue is to study the convergence of the function given by GP,

under some sufficient conditions, when the number of test cases goes to infinity, to-

ward the actual function used to generate the test cases. This property is known in

statistical learning as Universal Consistency (UC). Note that this notion is slightly

different from that of universal approximation, to which people usually refer when

doing symbolic regression in GP: because polynomial for instance are known to be

able to approximate any continuous function, GP search using operators {+, ∗} is

also assumed to be able to approximate any continuous function. However, UC is

concerned with the behavior of the algorithm when the number of test cases goes to

infinity: the existence of a polynomial that approximates a given function at any arbi-

trary precision does not imply that any polynomial approximation built from a set of

sample points will converge to that given function when the number of points goes to

infinity.

1.4. Results Overview

The UC of GP is investigated in Sections 2 and 3, with a detailed study of structural

and functional bloats that might occur when searching a program space with GP. A

formal and detailed definition of the space of programs that we consider in this paper

is given in Definition 2.1. Note that various definitions could be considered also,

the main elements being: i) universal approximation, and ii) a measure of program-

complexity which leads to the finiteness of the VC-dimension for a given program-

complexity. Two types of results are derived: i) UC-related results, that is whether

the probability of misclassification of GP-solutions converges to the optimal value

when the number of test cases goes to infinity, and ii) bloat-related results, regarding

first structural bloat and then functional bloat with various fitness penalization and

complexity bounds.

Let us now state precisely, yet informally, the main results of this paper. Sec-

tion 2 precisely defines the computing machine under examination, and proves the

resulting GP search space fulfills the conditions of some standard statistical learning

theorems listed in Appendix A. Applying those statistical learning theorems to GP

lead to Theorem 2.4, which demonstrates the UC of GP when the fitness measure

includes some complexity penalization. Proposition 2.5, a bloat-related theoretical

result, unsurprisingly proves that if optimality can not be reached within finite com-

plexity, then converging to the optimal error implies an infinite increase of bloat. And

then, Theorem 2.6 proves a negative result about bloat, that is minimizing the MSE

alone might lead to bloat even if an optimal function with bounded length belongs to

the program search space (i.e. empirical solutions complexity goes to infinity with the

sample size).

Then in Section 3, Theorems 2.7 and 3.1 show that it is possible to carefully ad-

just the parsimony pressure in order to obtain both UC and bounds on the empirical

solution complexity (i.e. no bloat). These are the best positive results one could ex-

pect considering the previous findings. Note that, though all proofs in Section 2 are

stated and proved in the context of binary classification (i.e. find a function from R
d

into {0, 1}), their generalization to regression (i.e. find a function from R
d into R) is

straightforward.

2. A First Step Towards No Bloat

The following pages present formal proofs of the results detailed in previous sec-

tion. Note there are intensive references to elements from statistical learning theory

that are presented in the Appendix A. The reader unfamiliar with this theory is advised

to read the appendix before reading the present section.

First, Definition 2.1 precisely defines the programs space under examination and

Lemma 2.2 carefully shows that it satisfies the hypotheses of Theorems A.1 to A.4

of Appendix A. As stated by Theorem 2.3, this allows the evaluation of the VC-

dimension (Vapnik, 1995) of sets of programs. Then, Theorem 2.4, Proposition 2.5

and Theorem 2.6 are derived from these preliminary results.

It should be noted the mildness of the hypothesis behind Lemma 2.2. We con-

sider any programs of bounded length, working with real variables, provided that the

computation time is a priori bounded. Usual families of programs in GP verify this

hypothesis and much stronger hypothesis. For example, usual tree-based representa-

tions avoid loops and therefore all quantities that have to be bounded in lemma below

(typically, number of times each operator is used) are bounded for trees of bounded

depths. This is also true for direct acyclic graphs. We here deal with a very general

case; much better constants can be derived for specific cases, without changing the

fundamental results in the sequel of the paper. Lemma 2.2 is necessary because The-

orem A.4 deals with the VC-dimension of one program with parameters, whereas we

want to deal with families of programs. Lemma 2.2 provides a (tedious, but concep-

tually simple) generalization of Theorem A.4 to families of programs, by simulating

a family of programs by a computing machine that is a general parametric program.

Then, Theorem 2.4, Proposition 2.5 and Theorem 2.6 are derived from these prelimi-

nary results.

Definition 2.1 (Set of programs studied). Let F (n, t, q, m, z) be the set of functions
from R

z−m towards {0, 1} which can be computed by a program with a maximum of
n lines as follows:

– The program uses at most t operations.

– Each line contains one operation among the followings.

The operations are taken among the following set of instructions:

– Operations α 7→ exp(α) (at most q times);

– Operations +, −, ×, and /;

– Jumps conditioned on >, ≥, <, ≤, and =;

– Output 0;

– Output 1;

– Labels for jumps;

– Constants (at most m different);

– Variables (at most z different, with z ≥ m).

We note F (n, t, q,m, z) as F for short when there is no ambiguity. The parameters
n, t, q, m, z are then implicit.

Lemma 2.2 (Computing machine for the set of programs studied). We note log2(x)
the integer part (ceil) of log(x)/ log(2).

With F (n, t, q, m, z) as defined in the Definition 2.1 above, following the notations
of Theorem A.4, there exists a parameterized program h such that F (n, t, q, m, z) is
included in H = {x 7→ h(a, x); a ∈ R

d}, where h is a program with at most:

– t′ = T (n, t, z) = t + tmax(3 + log2(n) + log2(z), 7 + 3 log2(z)) + n(11 +
max(9 log2(z), 0) + max(3 log2(z) − 3, 0)) instructions.

– q′ = q exponentials.

– d′ = 1 + m dimensions of parameters.

written with the same set of instructions.

Interpretation 1. This lemma states that a family of programs as defined above is
included in the parameterizations of one well-chosen program. Equivalently, we can
say that for any n ∈ N, t ∈ N, q ∈ N, m ∈ N and z ∈ N, there exists some program h
(constrained by t′, q′ and d′ as stated above) such that any program in F (n, t, q, m, z)
is of the form x 7→ h(a, x) for some a ∈ R

d. This replaces a family of programs by
one parametric program (i.e. a computing machine), and that will be useful for the
evaluation of the VC-dimension of a family of programs by Theorem A.4.

Proof. In order to prove this result, we define below a program h as in theorem A.4

that can emulate any of the programs in F (n, t, q, m, z), with at most t′ = T (n, t, z),
q′ = q, and d′ = 1 + m. Let x be the input variable of dimension dim(x) ≤ z − m.

The program goes as follow:

– Label INPUT;

– Initialize variable(1) with value x(1);

– Initialize variable(2) with value x(2);
. . .

– Initialize variable(dim(x)) with value x(dim(x));

– Label CONSTANTS;

– Initialize variable(dim(x) + 1) with value a1;

– Initialize variable(dim(x) + 2) with value a2;

. . .

– Initialize variable(dim(x) + m) with value am;

– Label DECODE-INTO-C;

– Operation decode c;

– Label BEGIN-OF-MAIN-LOOP;

– Label LINE(1);

– Operation c(1, 1) with variables c(1, 2), c(1, 3), and c(1, 4);

– Label LINE(2);

– Operation c(2, 1) with variables c(2, 2), c(2, 3), and c(2, 4);
. . .

– Label LINE(n);

– Operation c(n, 1) with variables c(n, 2), c(n, 3), and c(n, 4);

– Label OUTPUT(0);

– Output 0;

– Label OUTPUT(1);

– Output 1.

We need m real numbers, for parameters, and 4n integers c(., .) for decoding inputs.

“Operation decode c” translates each input real number y (in [0, 1]) into a set of four

integers c(., .). This operation can be developped as follows :

1) Let y ∈ [0, 1];

2) For each i ∈ [1, . . . n]:

- c(i, 1) = 0;

- y = y ∗ 2;

- If (y > 1) then c(i, 1) = 1 and y = y − 1;

- y = y ∗ 2;

- If (y > 1) then c(i, 1) = c(i, 1) + 2 and y = y − 1;

- y = y ∗ 2;

- If (y > 1) then c(i, 1) = c(i, 1) + 4 and y = y − 1.

3) For each j ∈ [2, 4] and i ∈ [1, . . . n]:

- c(i, j) = 0;

- y = y ∗ 2;

- If (y > 1) then c(i, j) = 1 and y = y − 1;

- y = y ∗ 2;

- If (y > 1) then c(i, j) = c(i, j) + 2 and y = y − 1;

- y = y ∗ 2;

- If (y > 1) then c(i, j) = c(i, j) + 4 and y = y − 1;

. . .

- y = y ∗ 2;

- If (y > 1) then c(i, j) = c(i, j) + 2log2(z)−1 and y = y − 1.

After decoding, c(i, 1) stands for the code instruction, c(i, 2) and c(i, 3) gives the

memory addresses where input values can be reached, and c(i, 4) gives the memory

address where the output value should be written.

The cost of this is n (3 + max (3 log2 (z) , 0)) “if then”, and

n (3 + max (3 log2 (z) , 0)) operators ×, and n (2 + max (3 (log2 (z) − 1) , 0))
operators +, and n (3 + max (3 log2 (z) , 0)) operators −. The overall sum is

bounded by n (11 + max (9 log2 (z) , 0) + max (3 log2 (z) − 3, 0)).

The result then derives from the rewriting of “operation c(i, 1) with variables

c(i, 2), c(i, 3), and c(i, 4)”. This operation interprets one code instruction and its

parameters (as decoded before). It can be developed as follows:

– If c(i, 1) == 0 then goto OUTPUT(1);

– If c(i, 1) == 1 then goto OUTPUT(0);

– If c(i, 2) == 1 then c = variable(1);

– If c(i, 2) == 2 then c = variable(2);
. . .

– If c(i, 2) == z then c = variable(z);

– If c(i, 1) == 7 then goto LINE(c) (must be encoded by dichotomy with log2(n)
lines);

– If c(i, 1) == 6 then goto EXPONENTIAL(i);

– If c(i, 3) == 1 then b = variable(1);

– If c(i, 3) == 2 then b = variable(2);
. . .

– If c(i, 3) == z then b = variable(z);

– If c(i, 1) == 2 then a = c + b;

– If c(i, 1) == 3 then a = c − b;

– If c(i, 1) == 4 then a = c × b;

– If c(i, 1) == 5 then a = c/b;

– If c(i, 4) == 1 then variable(1) = a;

– If c(i, 4) == 2 then variable(2) = a;

. . .

– If c(i, 4) == z then variable(z) = a;

– Label END-OF-INSTRUCTION(i).

For each such instruction, at the end of the program, we add the following three lines:

– Label EXPONENTIAL(i);

– a = exp(c);

– Goto END-OF-INSTRUCTION(i).

Each sequence of the form “if x=... then” (p times) can be encoded by dichotomy

with log2(p) tests “if ... then goto”. Hence, the expected result.

Theorem 2.3 (Finite VC-dimension of the computing machine). Consider q′, t′ and
d′ ≥ 0. Let F (n, t, q, m, z) be the set of programs described by Definition 2.1, where
q ≤ q′, T (n, t, z) ≤ t′, and 1 + m ≤ d′.

V Cdim(F) ≤ t′2d′ (d′ + 19 log2(9d′))

≤ (d′(q′ + 1))2 + 11d′(q′ + 1)(t′ + log2(9d′(q′ + 1)))

If q = 0 (no exponential) then V Cdim(F) ≤ 4d′(t′ + 2).

Interpretation 2. The theorem demonstrates that interesting and natural families of
programs have finite VC-dimension. Effective methods can associate a VC-dimension
to these families of programs.

Proof. Just plug Lemma 2.2 in Theorem A.4.

We now consider how to use such results in order to ensure UC. In all of this paper,

Pr(.) denotes probabilities, as the traditional notation P (.) is used for programs.

First, we show why simple empirical risk minimization (i.e. minimizing the error

observed without taking into account programs complexity) does not ensure consis-

tency. More precisely, for some distribution of test cases and some i.i.d. (independent

identically distributed) sequence of test cases {(x1, y1), . . . , (xn, yn), . . .}, there ex-

ists P1, . . . , Pn, . . . such that

∀n ∈ N,∀i ∈ {1, 2, . . . , n} Pn (xi) = yi,

and however

∀n ∈ N Pr (Pn (x) = y) = 0.

This can be proved by considering that x is uniformly distributed in [0, 1] and y
is a constant equal to 1. Then, consider Pn, the program that compares its entry to

x1, x2, . . . , xn, and outputs 1 if the entry is equal to xj for some j ≤ n, and otherwise

outputs 0. With probability 1, this program output 0, whereas almost surely the desired

output y is 1.

We therefore conclude that minimizing the empirical risk is not enough for en-

suring any satisfactory form of consistency. Let’s now show that structural risk min-

imization (i.e. taking into account a penalization for complex structures) can ensure

UC and fast convergence when the solution can be written within finite complexity.

Theorem 2.4 (Universal consistency of genetic programming with structural risk min-

imization). Consider qk, tk, mk, nk, and zk increasing integer sequences. Define
Fk the set of programs with at most tk lines executed, zk variables, nk lines, qk

exponentials, and mk constants (Fk = F (nk, tk, qk,mk, zk) of Definition 2.1) and
F = ∪kFk. Then with q′k = qk, t′k = T (nk, tk, zk), and d′k = 1 + mk, define Vk

as:

– If ∀k qk = 0, then Vk = 4d′k(t′k + 2).

– Otherwise, Vk = (d′
k(q′k + 1))2 + 11d′

k(q′k + 1)(t′k + log2(9d′
k(q′k + 1))).

Now given s test cases, consider P ∈ F minimizing L̂(P) +
√

32
s V (P) log(es),

where V (P) = Vk where k is minimal such that P ∈ Fk. Then,

– The generalization error, with probability 1, converges to L∗;

– If one optimal function belongs to Fk, then for any s and ε such that
Vk log(es) ≤ sε2/512, the generalization error with s test cases is larger than
L∗ + ε with probability at most ∆exp(−sε2/128) + 8sVk exp(−sε2/512) where
∆ =

∑∞
j=1 exp(−Vj).

Interpretation 3. This theorem shows that genetic programming for binary classifi-
cation, provided that structural risk minimization is performed (i.e. if we optimize an
ad hoc compromise between complexity of programs and accuracy on empirical data),
is universally consistent and verifies some convergence rate properties.

Proof. Just plug Theorem A.5 in Theorem 2.3. Note that ∆ is finite because we

assumed that the integer sequences were increasing.

We now prove the non-surprising fact that if it is possible to approximate the opti-

mal function (the Bayesian classifier) without reaching it exactly, then the complexity

of the program runs to infinity as soon as there is convergence of the generalization

error to the optimal one.

Proposition 2.5 (Structural bloat in genetic programming). Consider F1 ⊂ F2 ⊂
F3 ⊂ . . . , where FV is a set of functions from X to {0, 1} with VC-dimension
bounded by V . Consider (V (s))s∈N

a non decreasing sequence of integers and
(Ps)s∈N a sequence of functions such that Ps ∈ FV (s).

Define LV = infP∈FV
L(P) and V (P) = inf{V ;P ∈ FV } and suppose that

∀V LV > L∗. Then,
(

L(Ps)
s→∞−→ L∗

)

=⇒
(

V (Ps)
s→∞−→ ∞

)

.

Interpretation 4. This is structural bloat: if the space of programs approximates but
does not contain the optimal function and cannot approximate it within bounded size,
then bloat occurs. Note that the assumption ∀V LV > L∗ holds simultaneously for
all V for many distributions, as we consider countable unions of families with finite
VC-dimension (e.g. see (Devroye et al., 1997, chap. 18)).

Proof. Define ε(V) = LV − L∗. ε is non-increasing as the Fi are nested. Consider,

as assumed in the proposition, that L(Ps)
s→∞−→ L∗. Consider V0 a positive integer

and let’s prove that if s is large enough, then V (Ps) ≥ V0. There exists ε0 such that

ε(V0) > ε0 > 0. So, for s large enough, L(Ps) ≤ L∗ + ε0 =⇒ LVs
≤ L∗ + ε0 =⇒

L∗ + ε(Vs) ≤ L∗ + ε0 =⇒ ε(Vs) ≤ ε0 =⇒ Vs ≥ V0.

We now show that, even in cases in which an optimal short program exists, the

usual procedure (known as the method of Sieves; see also (Silva et al., 2004)) defined

below, consisting in defining a maximum VC-dimension depending upon the sample

size (as usually done in practice and as recommended in Theorem A.3) and then using

a moderate family of functions, leads to bloat.

Theorem 2.6 (Bloat with the method of Sieves). Let F1, . . . ,Fk, . . . be non-empty
sets of functions with finite VC-dimensions V1, . . . , Vk, . . . , and let F = ∪nFn. Then
given s i.i.d. test cases, consider P̂ ∈ Fs minimizing the empirical risk L̂ in Fs.

From Theorem A.3, we already know that if Vs = o(s/ log(s)) and Vs → ∞, then

Pr
(

L(P̂) ≤ L̂(P̂) + ε(s, Vs, δ)
)

≥ 1 − δ

and almost surely
L(P̂) → inf

P∈F
L(P).

We now state that if Vs → ∞, and noting V (P) = min{Vk;P ∈ Fk}, then
∀V0, δ0 > 0, ∃Pr, a distribution of probability on X and Y , such that ∃g ∈ F1 such

that L(g) = L∗, and for s sufficiently large Pr
(

V (P̂) ≤ V0

)

≤ δ0.

Interpretation 5. The result in particular implies that for any V0, there is a distri-
bution of test cases such that ∃g;V (g) = V1 and L(g) = L∗, with probability 1,
V (f̂) ≥ V0 infinitely often as s increases. This shows that bloat can occur if we use
only an abrupt limit on code size, if this limit depends upon the number of test cases (a

Smallest
Error

Complexity Vk

L*

L

Fkin

HatL

V1 V0 Vs of family Fk

PSfrag replacements

Fk

Complexity Vk

of family Fk

L
L̂

L∗

V0

V1

Vs

Figure 1. Illustration of the proof of Theorem 2.6 . For V0, δ0 and Pr fixed, there
exists V1 such that inff∈F1

L(f) = L∗, that is to say there exists a simple solution (in
F1) of error L∗. However, even if the limit Vs ensures that L(argminf∈Fk,Vk≤Vs

L̂)
is close to L∗, the complexity of the solution can be arbitrarily high (≥ V0 for any V0)

fortiori if there’s no limit). Note that this result, proved thanks to a particular distribu-
tion, could indeed be proved for the whole class of classification problems for which
the conditional probability of Y = 1 (conditionally to X) is equal to 1

2 in an open
subset of the domain.

Proof. The proof is given for the part that is not Theorem A.3. Figure 1 gives an

illustration of the proof. Consider V0 > 0, δ0 > 0, α such that (eα/2α)V0 ≤ δ0/2,

s such that Vs ≥ αV0, and d = αV0. Consider that x1, . . . , xd are d points shattered

by Fd; such a family of d points exist, by definition of Fd. Define the probability

measure Pr by the fact that X and Y are independent and Pr(Y = 1) = 1
2 and

Pr(X = xi) = 1
d . Then, the following holds, with Q the empirical distribution (the

average of Dirac masses on the xi’s):

1) No empty xi: Pr(E1) → 0, where E1 is the fact that ∃i;Q(X = xi) = 0, as

s → ∞;

2) No equality: Pr(E2) → 0, where E2 is the fact that E1 occurs or ∃i; Q(Y =
1|X = xi) = 1

2 ;

3) The best function is not in FV0
: Pr(E3|¬E2) ≤ S(d, d/α)/2d, where E3 is

the fact that ∃g ∈ Fd/α=V0
; L̂(g) = infFd

L̂, with S(d, d/α) the relevant shattering

coefficient, that is the cardinal of Fd/α restricted to {x1, . . . , xd}.

It is now sufficient to rely on classical results. It is well known in the VC-theory

that S(a, b) ≤ (ea/b)b (see for example (Devroye et al., 1997, chap.13)), hence

S(d, d/α) ≤ (ed/(d/α))d/α and Pr(E3|¬E2) ≤ (eα)d/α/2d ≤ δ0/2. If s is suf-

ficiently large to ensure that Pr(E2) ≤ δ0/2 (we have proved above that Pr(E2) → 0
as s → ∞) then

Pr(E3) ≤ Pr(E3|¬E2) Pr(¬E2) + Pr(E2)

≤ Pr(E3|¬E2) + Pr(E2) ≤ δ0/2 + δ0/2 ≤ δ0

This concludes the proof.

Let’s now show that it is possible to optimize a compromise between optimality

and complexity in an explicit manner (e.g. by replacing 1% precision with 10 lines of

programs or 10 minutes of CPU).

Theorem 2.7 (Bloat-control for regularized empirical risk minimization with relevant

VC-dimension). Let F1, . . . ,Fk, . . . be non-empty sets of functions with finite VC-
dimensions V1, . . . , Vk, Let F = ∪nFn. Consider W a user-defined complexity
penalization term. Then, given s test cases, consider P ∈ Fs minimizing the regu-

larized empirical risk ˆ̃L(P) = L̂(P) + W (P) among Fs. If Vs = o(s/ log(s)) and
Vs → ∞, then L̃(P̂) → infP∈F L̃(P) almost surely, where L̃(P) = L(P) + W (P).

Interpretation 6. This theorem shows that, using a relevant a priori bound on the
complexity of the program and adding a user-defined complexity penalization to the
fitness, can lead to convergence toward a user-defined compromise (Zhang et al.,

1995, Zhang et al., 1997) between classification rate and program complexity (i.e.
we ensure almost sure convergence to a compromise of the form “λ1 CPU time + λ2

misclassification rate + λ3 number of lines”, where the λi are user-defined).

Remark 1. The drawback of this approach is that we have lost UC and consistency.
This means that the misclassification rate in generalization does not converge to the
Bayes error in the general case, and in spite of the fact that an optimal program exists,
there is not necessarily convergence to its efficiency.

Proof. See Figure 2 for an illustration of the proof. By Theorem A.2,

sup
P∈Fs

∣
∣
∣
ˆ̃L(P) − L̃(P)

∣
∣
∣ ≤ sup

P∈Fs

∣
∣
∣L̂(P) − L(P)

∣
∣
∣ ≤ ε(s, Vs)

and ε(s, Vs) → 0 almost surely.

Hence the expected result.

Previous results have shown that: i) UC can be reached thanks to usual results of

learning theory applied to GP (method of Sieves or structural risk minimization) but

Complexity Vk

of family Fk

HatL

LTilde

Smallest
Error

Fkin

HatLTilde

L

PSfrag replacements

Fk

Complexity Vk

of family Fk

L
L̂
ˆ̃L
L̃

L∗

V0

V1

Vs

Figure 2. Illustration of the proof of Theorem 2.7. In non-bold plots: smallest L̂

(upper plot) or L (lower plot) in Fk. Bold plots: smallest ˆ̃L (upper plot) or L̃ (loewer
plot) in Fk, i.e. error+penalization. With a larger k, Fk has a smaller best error L̂,
but the penalization is stronger than the gain of error by increasing the complexity

sometimes leads to bloat, and ii) bloat can be simply avoided by a strong penalization

of size, but this leads to a loss in terms of UC.

In the next section, results will make it possible to present a new approach that

combines an a priori limit on VC-dimension (i.e. size limit) and a complexity penal-

ization (i.e. parsimony pressure). Indeed, Theorem 3.1 will state that this leads to both

UC and convergence to an optimal complexity of the program (i.e. no bloat).

3. Universal Consistency without Bloat

In this section, we consider a more complicated case where the goal is to en-

sure UC, while simultaneously avoiding non-necessary bloat. This means that an

optimal program does exist in a given family of functions and convergence towards

the minimal error rate is performed without increasing the program complexity.

This is achieved by: i) merging regularization and bounding of the VC-dimension,

and ii) penalization of the complexity (i.e. length) of programs by a penalty term

R(s, P) = R(s)R′(P) depending upon the sample size and the program. R(., .) is

user-defined and the algorithm looks for a classifier with a small value of both R′

and L. In the following, we study both the UC of this algorithm (i.e. L → L∗)

and the no-bloat theorem (i.e. R′ → R′(P ∗) when P ∗ exists). Note that the bound

Vs = o(log(s)) is much stronger than the usual limit used in the method of Sieves (see

Theorem 2.6).

Theorem 3.1 (No-bloat theorem). Let F1, . . . ,Fk, . . . with finite VC-dimensions
V1, . . . , Vk, Let F = ∪nFn. Define V (P) = Vk with k = inf{t|P ∈ Ft}.
Define LV = infP∈FV

L(P). Consider Vs = o(log(s)) and Vs → ∞. Consider

also that P̂s minimizes ˆ̃L(P) = L̂(P) + R(s, P) in Fs, and assume that R(s, .) ≥ 0.
Then consistency is attained as whenever supP∈FVs

R(s, P) = o(1), we have that

L(P̂s) → infP∈F L(P) almost surely. Note that for well chosen family of functions,
infP∈F L(P) = L∗. Moreover, assume that ∃P ∗ ∈ FV ∗ L(P ∗) = L∗. With
R(s, P) = R(s)R′(P) and with R′(s) = supP∈FVs

R′(P), we get the following
results:

1) Non-asymptotic no-bloat theorem: For any δ ∈]0, 1], R′(P̂s) ≤ R′(P ∗) +
(1/R(s))2ε(s, Vs, δ) with probability at least 1 − δ. This result is in particular inter-
esting for ε(s, Vs, δ)/R(s) → 0, which is possible for usual regularization terms as in
Theorem A.5 of the Appendix;

2) Almost-sure no-bloat theorem: If for some α > 0, R(s)s(1−α)/2 = O(1), then
almost surely R′(P̂s) → R′(P ∗) and if R′(P) has discrete values (such as the number
of instructions in P or many complexity measures for programs) then for s sufficiently
large, R′(P̂s) = R′(P ∗);

3) Convergence rate: For any δ ∈]0, 1], With probability at least 1 − δ,

L
(

P̂s

)

≤ inf
P∈FVs

L (P) + R (s) R′(s)
︸ ︷︷ ︸

=o(1) by hypothesis

+2ε (s, Vs, δ) ,

where

ε (s, V, δ) =

√

4 − log (δ/ (4s2V))

2s − 4

is such that with probability at least 1 − δ, ε (s, V, δ) ≥ ε (s, V) where

ε (s, V) = sup
f∈FV

|L̂ (f) − L (f) |,

given by Theorem A.1.

Interpretation 7. Combining a code limitation and a penalization leads to UC with-
out bloat.

Remark 2. The usual R(s, P) as used in Theorem A.5 or Theorem 2.4 provides con-
sistency and non-asymptotic no-bloat, when this penalization term is used in con-
junction with a limitation depending on the sample size s (P ∈ Fs with s much
more restrictive than in the method of Sieves). A stronger regularization leads to
the same results, plus almost sure no-bloat. The asymptotic convergence rate de-
pends upon the regularization. The result is not limited to GP and could be used

in other areas. The strongest limitation to this results is not the GP-framework, but
the fact that, as shown in Proposition 2.5, the no-bloat results require the fact that
∃V ∗∃P ∗ ∈ FV ∗ L(P ∗) = L∗.

Proof. Let’s define ε(s, V) = supf∈FV
|L̂(f) − L(f)|. For any P , L̂(P̂s) +

R(s, P̂s) ≤ L̂(P) + R(s, P). On the other hand, L(P̂s) ≤ L̂(P̂s) + ε(s, Vs). So

consistency is proved by the following:

L(P̂s) ≤
(

inf
P∈FVs

(L̂(P) + R(s, P))

)

− R(s, P̂s) + ε(s, Vs),

≤
(

inf
P∈FVs

(L(P) + ε(s, Vs) + R(s, P))

)

− R(s, P̂s) + ε(s, Vs),

≤
(

inf
P∈FVs

(L(P) + R(s, P))

)

+ 2ε(s, Vs).

As ε(s, Vs) → 0 almost surely (see Theorem A.2) and infP∈FVs
(L(P) + R(s, P)) →

infP∈F L(P), we conclude that L(P̂s) → infP∈F L(P) almost surely.

Let’s now focus on the proof of the no-bloat result. By definition of the algorithm,

for s sufficiently large to ensure P ∗ ∈ FVs
, L̂(P̂s) + R(s, P̂s) ≤ L̂(P ∗) + R(s, P ∗),

hence with probability at least 1 − δ,

R′(P̂s) ≤ R′(P ∗) + (1/R(s))(L∗ + ε(s, Vs, δ) − L(P̂s) + ε(s, Vs, δ)),

≤ R′(V ∗) + (1/R(s))(L∗ − L(P̂s) + 2ε(s, Vs, δ)).

As L∗ ≤ L(P̂s), this leads to the non-asymptotic no-bloat version of the theorem.

The almost-sure no-bloat theorem is derived as follows.

R′(P̂s) ≤ R′(P ∗) + 1/R(s)(L∗ + ε(s, Vs) − L(P̂s) + ε(s, Vs)),

≤ R′(P ∗) + 1/R(s)(L∗ − L(P̂s) + 2ε(s, Vs)),

≤ R′(P ∗) + 1/R(s)2ε(s, Vs).

All we need is the fact that ε(s, Vs)/R(s) → 0 almost surely.

For any ε > 0, we consider the probability of ε(s, Vs)/R(s) > ε, and we sum over

s > 0. By the Borel-Cantelli lemma1, the finiteness of this sum is sufficient for the

almost sure convergence to 0. The probability of ε(s, Vs)/R(s) > ε is the probability

of ε(s, Vs) > εR(s). By Theorem A.1, this is bounded above by O(exp(2Vs log(s)−
2sε2R(s)2)). This has finite sum for R(s) = Ω(s−(1−α)/2).

1. If
P

n
Pr(Xn > ε) is finite for any ε > 0 and Xn > 0, then Xn → 0 almost surely.

Let us now consider the convergence rate. Consider s sufficiently large to ensure

LVs
= L∗. As shown above during the proof of the consistency,

L(P̂s) ≤ inf
P∈FVs

(L(P) + R(s, P)) + 2ε(s, Vs),

≤ inf
P∈FVs

(L(P) + R(s)R′(P)) + 2ε(s, Vs),

≤ inf
P∈FVs

(L(P)) + R(s)R′(s) + 2ε(s, Vs).

So with probability at least 1 − δ,

L(P̂s) ≤ inf
P∈FVs

L(P) + R(s)R′(s) + 2ε(s, Vs, δ).

4. Conclusion

In this paper, we have proposed a theoretical study of two important issues in

Genetic Programming (GP) known as Universal Consistency (UC) and code bloat.

We have shown that the understanding of the bloat phenomenon in GP could benefit

from classical results from statistical learning theory.

The first limit of our work is the fact that all these results consider that GP finds a

program which is empirically the best, in the sense that given a set of test cases and a

fitness function based on the empirical error (and possibly including some parsimony

penalization), it will be assumed that GP does find one program in that search space

that minimizes this fitness – and it is the behavior of this ideal solution, which is a

random function of the number of test cases, that is theoretically studied.

Of course, we all know that GP is not such an ideal search procedure, and hence

such results might look rather far away from GP practice, where the user desperately

tries to find a program that gives a reasonably low empirical approximation error.

Nevertheless, UC is vital for the practitioner too: indeed, it would be totally pointless

to fight to approximate an empirically optimal function without any guarantee that

this empirical optimum is anywhere close to the ideal optimal solution we are in fact

looking for. Furthermore, the bloat-related results give some useful hints about the

type of parsimony that has a chance to efficiently fight the unwanted bloat, while

maintaining the UC property.

Application of theorems from learning theory has led to two original outcomes

with both positive and negative results. Firstly, results on UC of GP: there is almost

sure asymptotic convergence to the optimal error rate in the context of binary classi-

fication with GP. Secondly, results on code bloat: i) if the ideal target function does

not have a finite description then code bloat is unavoidable (structural bloat), and ii)

code bloat can be avoided by simultaneously bounding the length of the programs

with some ad hoc limit and using some parsimony pressure in the fitness function

(functional bloat). An important point is that all methods leading to no-bloat use a

regularization term.

Interestingly, all those results (both positive and negative) about code bloat are also

valid in different contexts, such as for instance that of Neural Networks (the number

of neurons replaces the complexity of GP programs). Moreover, results presented

here are not limited to the scope of binary classification problems, and may be applied

to variable length representation algorithms in different contexts such as control or

identification tasks.

Finally, going back to the debate about the causes of bloat in practice, it is clear

that our results can only partly explain the actual cause of bloat in a real GP run –

and tend to give arguments to the “fitness causes bloat” explanation (Langdon et al.,
1997). It might be possible to study the impact of size-preserving mechanisms (e.g.

specific variation operators, like size-fair crossover (Langdon, 2000) or fair mutations

(Langdon et al., 1999)) as somehow contributing to the regularization term in our final

result ensuring both UC and no bloat.

Acknowledgements

This work was supported in part by the PASCAL Network of Excellence. We

thank C. Gagné, anonymous reviewers and P. Ezequel for their help in improving the

quality of the final paper. We thank Bill Langdon for very helpful comments.

5. References

Antony M., Bartlett P., Neural Network Learning: Theoretical Foundations, Cambridge Uni-

versity Press, 1999.

Banzhaf W., Langdon W. B., « Some Considerations on the Reason for Bloat. », Genetic Pro-
gramming and Evolvable Machines, vol. 3, n˚ 1, p. 81-91, 2002.

Banzhaf W., Nordin P., Keller R., Francone F., Genetic Programming : an introduction, Morgan

Kaufmann Publisher Inc., San Francisco, CA, USA, 1998.

Bleuler S., Brack M., Thiele L., Zitzler E., « Multiobjective Genetic Programming: Reducing

Bloat Using SPEA2 », Proceedings of the 2001 Congress on Evolutionary Computation
CEC2001, IEEE Press, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu,

Seoul, Korea, p. 536-543, 27-30, 2001.

Blickle T., Thiele L., « Genetic Programming and Redundancy », in , J. Hopf (ed.), Genetic
Algorithms Workshop at KI-94, Max-Planck-Institut für Informatik, p. 33-38, 1994.

Daida J. M., Bertram R. R., Stanhope S. A., Khoo J. C., Chaudhary S. A., Chaudhri O. A.,

Polito J. A. I., « What Makes a Problem GP-Hard? Analysis of a Tunably Difficult Problem

in Genetic Programming », Genetic Programming and Evolvable Machines, vol. 2, n˚ 2,

p. 165 - 191, 2001.

De Jong E. D., Watson R. A., Pollack J. B., « Reducing Bloat and Promoting Diversity us-

ing Multi-Objective Methods », Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO-2001, Morgan Kaufmann Publishers, San Francisco, CA, p. 11-18,

2001.

Devroye L., Györfi L., Lugosi G., A Probabilistic Theory of Pattern Recognition, Springer,

1997.

Ekart A., Nemeth S., « Maintaining the Diversity of Genetic Programs », EuroGP ’02: Proceed-
ings of the 5th European Conference on Genetic Programming, Springer-Verlag, London,

UK, p. 162-171, 2002.

Grenander U., Abstract Inference, Wiley, New York, 1981.

Gustafson S., Ekart A., Burke E., Kendall G., « Problem difficulty and code growth in genetic

programming », Genetic Programming and Evolvable Machines, vol. 4, n˚ 3, p. 271-290,

2004.

Koza J. R., Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge, MA, USA, 1992.

Langdon W. B., « The Evolution of Size in Variable Length Representations », IEEE Inter-
national Congress on Evolutionary Computations (ICEC 1998), IEEE Press, p. 633-638,

1998.

Langdon W. B., « Size fair and homologous tree genetic programming crossovers », Genetic
Programming And Evolvable Machines, vol. 1, n˚ 1/2, p. 95-119, 2000.

Langdon W. B., Poli R., « Fitness Causes Bloat: Mutation », Late Breaking Papers at GP’97,

Stanford Bookstore, p. 132-140, 1997.

Langdon W. B., Soule T., Poli R., Foster J. A., « The Evolution of Size and Shape », Advances
in Genetic Programming III, MIT Press, p. 163-190, 1999.

Luke S., Panait L., « Lexicographic Parsimony Pressure », GECCO 2002: Proceedings of the
Genetic and Evolutionary Computation Conference, Morgan Kaufmann Publishers, p. 829-

836, 2002.

McPhee N. F., Miller J. D., « Accurate Replication in Genetic Programming », Genetic Algo-
rithms: Proceedings of the Sixth International Conference (ICGA95), Morgan Kaufmann,

Pittsburgh, PA, USA, p. 303-309, 1995.

Nordin P., Banzhaf W., « Complexity Compression and Evolution », Genetic Algorithms: Pro-
ceedings of the Sixth International Conference (ICGA95), Morgan Kaufmann, Pittsburgh,

PA, USA, p. 310-317, 15-19, 1995.

Ratle A., Sebag. M., « Avoiding the bloat with Probabilistic Grammar-guided Genetic Program-

ming », Artificial Evolution VI, Springer Verlag, 2001.

Silva S., Almeida J., « Dynamic Maximum Tree Depth : A Simple Technique for Avoiding

Bloat in Tree-Based GP », Genetic and Evolutionary Computation – GECCO-2003, LNCS,

Springer-Verlag, p. 1776-1787, 2003.

Silva S., Costa E., « Dynamic Limits for Bloat Control: Variations on Size and Depth. »,

GECCO (2), p. 666-677, 2004.

Soule T., « Exons and Code Growth in Genetic Programming », European Conference on Ge-
netic Programming (EuroGP 2002), vol. 2278 of LNCS, Springer-Verlag, p. 142-151, 2002.

Soule T., Foster J. A., « Effects of Code Growth and Parsimony Pressure on Populations in

Genetic Programming », Evolutionary Computation, vol. 6, n˚ 4, p. 293-309, 1998.

Vapnik V., The Nature of Statistical Learning Theory, Springer, 1995.

Zhang B.-T., Mühlenbein H., « Balancing Accuracy and Parsimony in Genetic Programming »,

Evolutionary Computation, 1995.

Zhang B.-T., Ohm P., Mühlenbein H., « Evolutionary Induction of Sparse Neural Trees », Evo-
lutionary Computation, vol. 5, n˚ 2, p. 213-236, 1997.

A. Elements of Statistical Learning Theory

In the frameworks of regression and classification, statistical learning theory (Vap-

nik, 1995) is concerned with giving some bounds on the generalization error (i.e. the

error on yet unseen data points) in terms of the actual empirical error and some fixed

quantity depending only on the search space. More precisely, we will use here the

notion of Vapnik-Chervonenkis dimension (in short, VC-dimension or V Cdim) of a

space of functions. Roughly, the VC-dimension is an indicator of the theoretical capa-

bility of a learning machine to discriminate data. It is often used to in the computation

of bounds on the difference between the empirical error and the generalization error.

Consider a set of s examples (xi, yi)i∈{1,...,s}. These examples are drawn from

a distribution P on the couple (X, Y). They are independent identically distributed,

Y = {0, 1} (classification problem), and typically X = R
d for some dimension

d. For any function f , define the loss L(f) to be the expectation of |f(X) − Y |.
Similarly, define the empirical loss L̂(f) as the loss observed on the examples:

L̂(f) = 1
s

∑

i |f(xi)−yi|. Finally, define L∗, the Bayes error, as the smallest possible

generalization error for any mapping from X to {0, 1}.

The following four theorems are well-known in the statistical learning community:

Theorem A.1 (Bound on the empirical risk with finite VC-dimension). Consider F a
family of functions from a domain X to {0, 1} and V its VC-dimension. Then, for any
ε > 0,

Pr

(

sup
P∈F

|L(P) − L̂(P)| ≥ ε

)

≤ 4 exp(4ε + 4ε2)s2V exp(−2sε2),

and for any δ ∈]0, 1],

Pr

(

sup
P∈F

|L(P) − L̂(P)| ≥ ε(s, V, δ)

)

≤ δ,

where

ε(s, V, δ) =

√

4 − log(δ/(4s2V))

2s − 4
.

Interpretation 8. This theorem states that in a family of finite VC-dimension, the
empirical errors and the generalization errors are probably closely related.

Proof. See (Devroye et al., 1997, Th. 12.8, p. 206).

Other forms of this theorem have no log(n) factor; they are known as Alexander’s

bound, but the constant is so large that this result is not better than the result above

unless s is huge (see (Devroye et al., 1997, p. 207)). If s ≥ 64/ε2,

Pr

(

sup
P∈F

|L (P) − L̂ (P) | ≥ ε

)

≤ 16
(√

sε
)4096V

exp
(
−2sε2

)

We classically derive the following result from Theorem A.1:

Theorem A.2 (Convergence of the empirical error to the generalization error with

infinite number of examples). For s ≥ 0, consider Fs a family of functions from a
domain X to {0, 1} and Vs its VC-dimension. Then,

sup
P∈Fs

|L (P) − L̂ (P) | → 0 as s → ∞

almost surely provided that Vs = o(s/ log(s)) (i.e. Vs log(s)/s → 0).

Interpretation 9. The maximal difference between the empirical error and the gen-
eralization error goes almost surely to 0 if the VC-dimension is finite.

Proof. We use the classical Borel-Cantelli lemma, for any ε ∈ [0, 1]:

∑

s≥64/ε2

Pr(|L(P) − L̂(P)| > ε)

≤ 16
∑

s≥64/ε2

(
√

sε)4096Vs exp(−2sε2),

= 16
∑

s≥64/ε2

exp(4096Vs(log(
√

s) + log(ε)) − 2sε2),

which is finite as soon as Vs = o(s/ log(s)).

Theorem A.3 (Universal consistency with finite VC-dimension). Let F1, . . . ,Fk, . . .
families of functions with finite VC-dimensions, V Cdim(Fi) = Vi, and let F =
∪nFn. Then, given s examples, consider P̂s ∈ Fs minimizing the empirical risk L̂
among Fs. Then, if Vs = o(s/log(s)) and Vs → ∞, for any δ ∈]0, 1],

Pr
(

L(P̂s) ≤ L̂(P̂s) + ε(s, Vs, δ)
)

≥ 1 − δ,

Pr

(

L(P̂s) ≤ inf
P∈Fs

L(P) + 2ε(s, Vs, δ)

)

≥ 1 − δ.

Also, L(P̂s) → infP∈F L(P) almost surely. Note that for a well chosen family of
functions (typically programs), infP∈F L(P) = L∗ for any distribution. Thus, this
theorem leads to universal consistency (i.e. ∀P L(P̂s) → L∗), for a well-chosen
family of functions.

Interpretation 10. If the VC-dimension increases slowly enough as a function of
the number of examples, then the generalization error goes to the optimal one. If
the family of functions is well-chosen, this slow increase of VC-dimension leads to
universal consistency.

Proof. See (Devroye et al., 1997, Th. 18.2, p. 290) and (Grenander, 1981).

In the following theorem, we use d′, t′, q′ instead of d, t, q for the sake of consis-

tency of notations as in other results we need d, t and q but we will apply Theorem

A.4 with some ad hoc d′, t′ and q′.

Theorem A.4 (Bound on VC-dimension for a computing machine). Let Hh,d′ =

{x 7→ h(a, x); a ∈ Rd′} where h can be computed with at most t′ operations among
α 7→ exp(α); +, −, ×, /; jumps conditioned on >, ≥, <, ≤, =; output 0; output 1
(same set of instructions as in other parts of this paper). We note Hh,d′ as H when
there is no ambiguity.

Then: V Cdim(H) ≤ t′2d′(d′ + 19 log2(9d′)).

Furthermore, if exp(.) is used at most q′ times, and if there are at most t′ opera-
tions executed among arithmetic operators, conditional jumps, exponentials, then:

π (H, m) ≤ 2(d′(q′+1))2/2
(
9d′ (q′ + 1) 2t

)5d′(q′+1)
(

em
(

2t′ − 2
)

/d′
)d′

where π(H,m) is the mth shattering coefficient of H , and hence

V Cdim (H) ≤ (d′ (q′ + 1))
2

+ 11d′ (q′ + 1) (t′ + log2 (9d′ (q′ + 1)))

Finally, if q′ = 0 then V Cdim(H) ≤ 4d′(t′ + 2).

Interpretation 11. The VC-dimension of the set of the possible parameterizations of
a program as defined above is bounded.

Proof. See (Antony et al., 1999, 8.14 and 8.4).

Theorem A.5 (Structural risk minimization). Let F1,. . . ,Fk . . . with finite VC-
dimensions V Cdim(Fi) = Vi. Let F = ∪nFn. Assume that all distributions lead
to LF = L∗ where L∗ is the optimal possible error (spaces of functions ensuring

this exist). Given s examples, consider f ∈ F minimizing L̂(f) +
√

32
s V (f) log(es),

where V (f) is Vk with k minimal such that f ∈ Fk. Then:

– If additionally one optimal function belongs to Fk, then for any s and ε such
that Vk log(es) ≤ sε2/512, the generalization error is larger than ε with probability
at most ∆exp(−sε2/128) + 8sVk exp(−sε2/512) where ∆ =

∑∞
j=1 exp(−Vj) is

assumed finite;

– The generalization error, with probability 1, converges to L∗.

Interpretation 12. The optimization of a compromise between empirical accuracy
and regularization leads to the same properties as in Theorem A.3, plus a stronger
convergence rate property.

Proof. See (Vapnik, 1995) and (Devroye et al., 1997, p. 294).

