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Abstract

We propose a Genetic Programming Markup Language (GPML), an XML-based standard for
the interchange of genetic programming trees, and outline the benefits such a format would bring.
We present a formal definition of this standard and describe details of an implementation.
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1 Introduction

Replicability is a cornerstone of the scientific method that facilitates the independent validation of
research findings. Conversely, independent researchers being unable to replicate findings is a means
by which erroneous research is rapidly purged from the scientific literature.

A great many of the studies published in evolutionary computing, including genetic programming,
are – perforce – both empirical and stochastic, and this imposes a particular difficulty from the
point of view of replication. Addressing the genetic programming community in particular, it has
become the universal practice to include algorithm parameters such as population size, crossover
and mutation rates, etc. in all publications. Although this is welcome, it generally does not give
complete information to allow accurate replication of the experiments being reported. For example,
complete reporting would require details of the random number generator algorithms employed, their
seed values and other details characterizing the stochastic experiments. It could be argued that an
adequate number of repetitions of the experiments ‘average out’ stochastic effects, but the generality
of this claim is far from clear.

Adopting standard software for all genetic programming (GP) might also be considered to address
the replication issue, but we would argue that independent implementation is an important aspect
of replication. Any bug in the ‘standard’ software might go undetected for many years, hindering
progress in the field. There are cautionary tales here from other disciplines. For example, it has been
reported that 1 in 5 of recent genetics research papers contain errors due to formatting problems in
the Microsoft Excel spreadsheet program (Washington Post, 2016).

The purpose of this report is to propose a standardised format for the interchange of GP trees.
A similar initiative has already been taken on benchmarking problems (White et al., 2013). As a
complement to agreed benchmarks, a standard interchange format would offer a number of significant
advantages:

1. The publication of the actual GP trees, as opposed to a (often partial) description of how the
trees were produced, would speed scientific progress in the area.

2. The ability to make direct comparison with the results of other researchers would speed scientific
progress, and eliminate the time, frustration and practical difficulties of trying to reproduce
others’ results, often with incomplete information.

3. Ultimately, the objective is for GP trees to be used as components in larger, complex systems.
The coupling of the end-application and the GP training/test software is a major inconvenience,
especially in embedded systems. A standard interchange format would allow trained/validated
GP trees to be treated as a ‘plug-in’ component in larger systems.

Since journals, and an increasing number of conferences, provide repositories for supplementary
material, it would be straightforward for authors to deposit data fully describing actual GP trees that
could be accessed by other researchers.

In essence, this paper proposes a standard interchange format based on XML/XML Schemas.
This will make it possible for researchers to share the actual trees generated during their research
thereby exposing them to greater scrutiny/validation by the community as a whole. This should
facilitate more rapid progress since researchers will not need to duplicate each other’s work in order
to make quantitative comparisons with alternative approaches and methods. In addition, GP trees
could be treated as a ‘plug-in’ element for more complex systems, such as robotics; decoupling the
training/testing from an application of trained GP trees will have a beneficial effect on the real-world
deployment and exploitation of GP.

Fortuitously, a suitable and mature framework for developing a GP interchange format already
exists: the eXtensible Markup Language (XML) defined by the World Wide Web Consortium (World
Wide Web Consortium, 2008). In Section 2, we briefly describe the relevant features of XML and its
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accompanying validation framework, XML Schemas. We describe an XML representation of a GP
tree in Section 3.

2 Extensible Markup Language (XML)

The eXtensible Markup Language (XML) is a standardised, highly-flexible, human-readable format for
information exchange specified by the World Wide Web Consortium (W3C) (World Wide Web Con-
sortium, 2008). Being a text-based representation, XML avoids the hardware-dependent difficulties
of binary files. XML itself comprises a series of elements and attributes arranged in a hierarchical
fashion – the intrinsic hierarchy in XML lends itself perfectly to describing GP trees, which are, of
course, typically represented as acyclic, hierarchical graphs. Further, the syntax of XML is very intu-
itive although human readability is probably a secondary consideration here since we envisage trees
being written/read mainly by computer. Nonetheless, the ability to visually inspect the tree structure
is valuable, and often requested by paper reviewers. (We give some simple examples of GP trees
represented as XML in Section 3.)

In XML, an element is specified by a syntax such as:

<elementName opt ion=‘A’>
. . .

</elementName>

where elementName and option are user-defined identifiers, and A is a quoted text string. Alternat-
ively, an equivalent single-line version where the element does not nest other elements is:

<elementName opt ion=‘A’/>

Crucially for the present application, XML elements can also embed other XML elements, as in:

<elementName opt ion=‘A’>
<otherElementName . . . >
</otherElementName>
<thirdElementName . . . >
</thirdElementName>
. . .

</elementName>

and so on to arbitrary levels of nesting. XML can thus straightforwardly represent hierarchical struc-
tures. See Castro (2001) for a concise but comprehensive introduction to XML.

In a given application, an XML file has to conform to a specified structure. The need for validating
the structure of XML files has led to the development of XML Schemas (van der Vlist, 2002; World
Wide Web Consortium, 2012) for this purpose. XML Schemas – themselves XML-compliant – are
able to specify an XML file structure using a syntax reminiscent of the extended Backus Naur format
(EBNF) widely used for specifying the grammar of programming languages; importantly for the
present application, XML Schemas are able to specify recursive structures for validation.

In terms of implementation, a large number of proprietary and mature open source XML libraries
are available, for example, Xerces (Apache Software Foundation), with bindings to a range of program-
ming languages. In addition, many XML implementations for Matlab are available (e.g. (Mathworks
Inc.)). Consequently, there seems no technical impediment to adopting XML as an interchange format.

We term the interchange format proposed here a Genetic Programming Markup Language (GPML)
to denote its GP-specialisation over plain XML.

To date, XML has found little application in the GP community. In a rare example, Tanev and
Shimohara (2010) have used the Document Object Model (DOM) (WHATWG, 2018), a representation
of an XML structure in memory, directly for GP evolution although the DOM is probably not ideal
for this purpose.
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3 GPML Specification

In this section, we describe GPML, a standardised XML interchange format.
Making use of the intrinsic hierarchy, GPML recursively encodes the tree structure. Different

types of nodes and their corresponding information are identified and recorded in various elements
and attributes in GPML. By recursively interpreting the element name and attribute information of
each node starting from the root node down, the GP tree can be saved and restored.

With elements and attributes arranged in a nested, hierarchical fashion, GPML can be used to
describe GP trees intuitively. Typically, the nodes in GP trees can be classified as one of four types:
terminal nodes, unary nodes, binary nodes and ternary nodes. These four different nodes corres-
pond to four elements in GPML, namely, terminalNode, constantNode, unaryNode, binaryNode and
ternaryNode, with user-specified information described in the respective attributes.

For the purpose of illustration, consider the simple GP tree shown in Figure 1 that represents the
mapping y = f(x) where y ∈ R and x ∈ R

N (although there is no restriction with GPML on the
input/output being real numbers, or indeed that the elements of x are even of the same type). This
mapping can be straightforwardly represented by the GPML code shown in Listing 1. The intuitively
obvious correspondences should be apparent.

In Figure 1, terminal nodes in the GP tree indicate elements of the input vector. We have used
the vectorIndex attributes of the terminalNode elements as indices into the input vector x. For
constant nodes, the exact values are specified in the attributes in GPML.

In GP, each unary node has a single child node, which could be any type of node, including another
unary node type. In GPML, a unary node is represented by an element unaryNode, and its operator
is specified by its attribute. Similarly, binary nodes and ternary nodes have two and three child nodes,
respectively. In GPML, specific operators are specified by their attributes, like the nodes shown in
Figure 1 and their GPML representations in Listing 1.

Note that each GPML document has exactly one root element, which encloses all the other ele-
ments. In GPML, the element name of the XML root node is gpTree. The single attribute of the
root node noVectorElements defines the number of regressors used in the mapping, which can be
exploited for validation of a GPML document. The indices of terminal nodes in GPML are restricted
to the ranges of either [0 . . . (noVectorElements− 1)] or [1 . . . noVectorElements], depending on the
(implementation-defined) convention adopted for indexing vectors in the actual implementation. Con-
sequently, the attribute firstIndex ∈ {‘0’|‘1’} unambiguously associates tree inputs with elements in
the input vector. The value of vectorIndex in a terminalNode element needs to fall in the appro-
priate range otherwise a validation error occurs that can be straightforwardly detected and notified
to the user. It is also a trivial matter to use a tree that has been trained in a system with zero-index
vectors in a (separate) system using vectors indexed from unity, and vice versa.

Although the example shown here is for a conventional GP tree, GPML is sufficiently expressive
that it could be adapted to other GP variants, such as gene expression programming (Ferreira, 2002),
linear GP (Brameier and Banzhaf, 2010), or Cartesian GP (Miller, 2011).
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Figure 1: Simple example GP tree.

<?xml ve r s i on = ’1.0 ’ ?>
<gpTree noVectorElements= ‘2 ’ f i r s t I n d e x =‘1’>

<binaryNode opera t i on=‘+’>
<unaryNode operat i on=‘−’>

<constantNode value = ‘0.2 ’>
</unaryNode>
<binaryNode opera t i on=‘∗ ’>

<terminalNode vector Index=‘1’/>
<terminalNode vector Index=‘2’/>

</binaryNode>
</binaryNode>

</gpTree>

Listing 1: GPML representation of the tree in Figure 1.

In terms of extended Backus-Naur form (ISO/IEC 14977:1996, 1996) typically used to specify lan-
guages, we can formally describe the topmost-level gpTree element of GPML using:

gp-tree = "<gpTree", "noVectorElements=", xml-positive-integer , "firstIndex=", xml-integer ">",
node,
"</gpTree>";

where the terminal symbol noVectorElements is an XML-defined primitive of positive integer type (World
Wide Web Consortium, 2012), i.e. a number ∈ N

+ since the GP mapping is presumed to have at least
one input. The non-terminal symbol xml-positive-integer value indicates the number of elements in the
vector of input variables for the mapping described by the GP tree. As discussed above, firstIndex,
which takes the values of either 0 or 1, denotes whether the described GP tree indexs the input vector
starting from zero or from one.
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The non-terminal symbol node is defined as by:

node = terminal-node | constant-node | unary-node | binary-node | ternary-node;

where a node is one of either: a terminal node, a constant node, a unary node, a binary node or a
ternary node. In their turn, the set of node types, which we believe covers the practical totality of
genetic programming, are formally defined by:

terminal-node = "<terminalNode", "vectorIndex=", xml-non-negative-integer , "/>";

where xml-non-negative-integer is again an XML-defined primitive type for an integer quantity ≥ 0
(i.e. ∈ N

0), and:

constant-node = "<constantNode", "value=", xml-double, "/>";

where xml-double is an XML primitive denoting a double-precision floating-point number.
A unary node is defined by EBNF as:

unary-node = "<unaryNode", "operation=", operation,
[ "parameterString=", parameter-string , ]
">",
node,
"</unaryNode>";

in which operation is an XML-defined token type (i.e. a character string), and parameter-string is
an optional XML token. The operation element indicates the (implementation-dependent) operation
executed by the unary node; for a unary minus, for example, this might the string ‘-’, or for an
exponential function ‘exp’. For the cases where a unary node may take some (arbitrary number of
additional) parameters, these can be specified using the (optional) ‘parameterString’ by concaten-
ating all the function’s parameters in, say, a comma-separated list. These parameters can then be
simply ‘unpacked’ by the implementation code. This method of passing any additional parameters
is a carefully considered design decision for GPML, striking a balance between simplicity, generality
and clarity of GPML syntax. For example, the GP induction of a decision tree (Cao and Rockett,
2015) would typically contain (only) binary nodes that test the state of an element in the input vector
and follow the left or right child subtrees, respectively depending on whether the given input vector
element was < than or ≥ than some threshold. For this application, one possible implementation
would be for a node’s threshold value to be stored in the optional parameter attribute and extracted
by the implementation code.

The binary-node and ternary-node types in GPML are defined by:

binary-node = "<binaryNode", "operation=", operation,
[ "parameterString=", parameter-string , ]
">",
node,
node,
"</binaryNode>";

ternary-node = "<ternaryNode", "operation=", operation,
[ "parameterString=", parameter-string , ]
">",
node,
node,
node,
"</ternaryNode>";
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Yet again, operation indicates the operation to be performed by the binary or ternary nodes,
respectively, and the optional parameter-string conveys any additional parameters required.

The unary, binary or ternary operations specified by the above node types are deliberately left
undefined by GPML, and are implementation-dependent. Typically, in a regression problem, the unary
operation will be one of: unary minus, exponential function, sine function, etc. Similarly, the binary
operations implemented will be one of: addition, subtraction, multiplication, (protected) division, or
analytic quotient (Ni et al., 2013), while the ternary operation will typically be if-then-else. When
learning a boolean problem, on the other hand, the only unary operator would typically be the NOT

operation, and the binary operations would comprise: AND, OR, XOR, etc. This facility means that
GPML can be expanded to include arbitrary, domain-specific operations.

Note also how a binaryNode, for example, ‘embeds’ two node types, each of which is defined as
being one of a: terminalNode, constantNode, unaryNode, (another) binaryNode or ternaryNode.
The GPML syntax is thus able to recursively define a GP tree of unbounded extent. Similarly, a
gp-tree ‘embeds’ a single node implying a single root node for the parent tree.

A user is, of course, free to add XML-compliant comments to a GPML file since these will be
subsequently ignored by any XML parser.

4 Implementation

Quite deliberately, we do not specify or indeed restrict implementation details for GPML. In this
section, we describe our initial implementation as a point of reference.

4.1 Writing GPML

Given a (trained) GP tree in memory, writing a valid GPML file involves a fairly straightforward
recursive descent of the tree. With reference to Listing 1, the first task is to output the preamble of
the GPML file that comprises the ‘gpTree’ information, the ‘noVectorElements’ and ‘firstIndex’
attributes, and the closing ‘>’ character. At this stage, the writing procedure recursively descends the
tree (in whatever form this has been implemented) and on ‘entering’ a node, it emits the appropri-
ate GPML element definition (‘<terminalNode’, ‘<constantNode’, ‘<unaryNode’, ‘<binaryNode’ or
‘<ternaryNode’). Then:

• If the GP node is a terminal (either a ‘<terminalNode’ or ‘<constantNode’ ) then it remains
only to emit either the ‘vectorIndex’ or ‘value’ attribute, respectively and a ‘/>’ element
terminating sequence, and then to return from the recursive call.

• If the current node is a non-terminal GP node, the ‘operation’ attribute field together with
the optional ‘parameterString’ field are emitted, and then the appropriate number of further
recursive calls made to visit the child node(s) of the current node. On return from the last of
these recursive calls, the function needs to emit a terminating ‘</unaryNode>’, ‘</binaryNode>’
or ‘</ternaryNode>’ field, and then return.

When the chain of recursive calls finally ends, the only remaining task is to emit the ‘</gpTree>’
terminating field.

4.2 Reading GPML

We have implemented the initial GPML system using the lightweight pugixml XML library1, largely
for simplicity and convenience. The pugixml library reads the specified XML file into memory as a
Document Object Model (DOM) (WHATWG, 2018), a hierarchical structure that can be traversed

1http://pugixml.org/
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using functions built into the XML library. (Implementation in terms of a DOM is not the only possible
approach; the Simple API for XML (SAX) model is equally viable and possibly faster in execution
although tends to be more involved in use.) Having created a DOM of the tree, it is a straightforward
matter to traverse this data structure, creating and linking GP nodes in an implementation-dependent
manner.

4.3 Validating GPML

One of the important elements presented in this work is an XML Schema for the validation of GPML.
The simple pugixml library we have used does not provide validating facilities although other XML lib-
raries, for example, Xerces (Apache Software Foundation) do although these tend to be more involved
to use. In practice, a range of other, convenient validation mechanisms are feasible, for example: the
xmllint2 command-line validator, which is part of the libxml library . Alternatively, the open-source
jEdit3 text editor has an XML plugin that performs validation against a specified schema.

We have made the XML Schema for GPML freely available under a GPL licence on the GitHub
repository (https://github.com/pirlite2/gpml-schema).

5 Conclusions

In scientific research, reproducibility and transparency are of the utmost importance since science can
only progress when the research results produced by an investigator can be independently corrobor-
ated by other researchers. The nature of genetic programming research is empirical and stochastic,
which imposes particular difficulties on reproducing research findings in the field. We have proposed
an XML-based standard for the interchange of genetic programming trees in the hope of speeding sci-
entific progress in the area. GP trees specified in GPML can be evaluated and compared directly by
researchers without the effort of having to reproduce others’ trees, often with incomplete information.

In terms of implementation, due to its hierarchical structure, GPML can be flexibly represented
in XML for which a number of mature, open source XML libraries are available. We have further
proposed an XML Schema for the validation of GPML, which is available under a GPL licence on
https://github.com/pirlite2/gpml-schema.

In addition, in larger systems, a trained-and-validated GP tree can be embedded as a ‘plug-in’
component using GPML, providing convenience and modularity.
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