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Abstract

This paper analyses the behavior of a hardware implementation of Ge-
netic Programming using Field Programmable Gate Arrays. Three crossover
operators that limit the lengths of programs are analyzed. A truncating op-
erator, a limiting operator that constrains the lengths of both offspring and a
limiting operator that only constrains the length of one offspring. The latter
has some interesting properties that suggest a new method of limiting code
growth in the presence of fitness.



1 Introduction

Previous work has described an implementation of Genetic Programming using
Field Programmable Arrays and a high level language to hardware compilation
system called Handel-C [6]. This was tested using the XOR and symbolic regres-
sion problems. Further work described a pipelined implementation that improved
the performance and demonstrated that the technique could be used to solve the ar-
tificial ant problem [7]. In both cases the work concentrated on the implementation
issues and increasing the clock speed of the implementation, but put to one side
the study of the behavior of the system with respect to standard GP. Now that the
raw throughput issues have been considered it is time to look at the behavior, and
investigate and analyze some alternative implementation issues.

Because of limited hardware resources in an FPGA and to keep the design
simple and therefore efficient, the maximum program size is fixed. To ensure
that crossover always generate programs that are shorter than the maximum, the
crossover operator limits the program size by truncating programs that exceed the
fixed maximum. The effect of this decision is investigated in this paper and then
some other alternative methods of limiting program length are explored.

The paper begins with a brief description of the implementation of a GP system
using FPGAs. This is followed by an analysis of the crossover operator, with
comparisons to standard GP systems. We then consider two alternative crossover
operators and analyze their behavior. The analysis is then discussed and finally
some further work is suggested and some conclusions are given.

2 A Hardware | mplementation of GP using FPGAs

For a review of previous work using FPGAs in Evolutionary Computing refer to

[6].

2.1 Description of Handel-C

Handel-C is a high level language that is at the heart of a hardware compilation
system known as Celoxica DK1 [1] which is designed to compile programs writ-
ten in a C-like high level language into synchronous hardware. The output from
Handel-C is used to create the configuration data for the FPGA. A description of
the process used by Handel-C to transform a high level language into hardware and
examples of the hardware generated can be found in [9]. Handel-C has its roots in
CSP and Occam.

The C-like syntax makes the tool appealing to software engineers with little or
no experience of hardware. They can quickly translate a software algorithm into
hardware, without having to learn about VHDL or FPGAs in detail. Handel-C has
extended the C syntax to support the parallelization of code.



2.2 Target Hardware

The target hardware for this work is a Celoxica RC1000 FPGA development board
fitted with a Xilinx XCV2000E Virtex-E FPGA [13] having 43,200 logic cells and
655,360 bits of block RAM, a PCI bridge that communicates between the RC1000
board and the host computer’s PCI bus, and four banks of static RAM.

2.3 Program Representation

Handel-C does not support a stack, which means that a standard tree based repre-
sentation is not straightforward to implement because recursion is not supported
by the language. An alternative to a tree representation is a linear representation
which has been used by others to solve some hard GP problems [8]. Using a linear
representation, a program consists of a sequence of words which are interpreted by
the problem specific fitness function.

3 Analysisof the Hardware | mplementation

The hardware design uses a linear program representation with a fixed maximum
size. The choice of a fixed maximum size was made to make the storage of pro-
grams in on-chip RAM and off-chip RAM efficient and simple to implement. Con-
sequently a method of limiting the program size during crossover was needed. The
first implementation used a truncating crossover. This is compared to a second
method of limiting lengths, called the limiting crossover operator.

3.1 Artificial Ant

This popular test problem was originally described by Jefferson [2] and in the con-
text of GP is described by Koza [3]. It involves finding a program for an ant-like
machine that enables it to navigate its way round a trail of food on a 32x32 toroidal
grid of cells within a fixed number of time steps. In the hardware implementation
the function set 7 = {IF_FOOD, PROGN2} where IF_FOOD is a two argument
function that looks at the cell ahead and if it contains food evaluate the first termi-
nal, otherwise evaluate the second terminal. PROGN?2 evaluates its first and sec-
ond terminals in sequence. The terminal set 7 = {LEFT, RIGHT, MOVE, NOP},
where LEFT and RIGHT change the direction the ant is facing, MOV E moves the
ant one space forwards to a new cell, and if the new cell contains food, the food is
eaten. NOP is a no-operation terminal and has no effect on the ant but is included
to make the number of terminals a power of 2, which simplifies the hardware logic.
Each time LEFT, RIGHT or MOVE is executed, the ant consumes one time step.
The run stops when either all the time steps have been used, or the ant has eaten all
the food. This test problem was chosen because it is known to be a hard problem
for GP to solve [4].



All the results in this section use the Santa Fe trail, which has 89 pellets of
food. Each experiment was run 500 times and the average of all the runs taken. In
all cases, unless stated otherwise, the population size is 1024, the maximum pro-
gram length is 31 and all experiments were run for 32 generations. The maximum
number of time steps for the ant to complete its trail is 1024 instead of the usual 600
time steps. This is because in order to make the logic as efficient as possible, loop
iterators in the design are required to be a power of two. This is so that by testing
the carry bit, loop termination can be detected without the need to implement wide
comparators which can introduce significant delays into the design.

3.2 Behavior Analysis

The measurement of overall GP behavior is frequently limited to plotting the aver-
age population fitness vs. generation. This is shown for the artificial ant problem
using the original hardware implementation in Figure 1. This will be used as a
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Figure 1: GP Performance of the original design

baseline when looking at changes to the original design. However, when look-
ing for the reasons to explain why a feature of an operator or representation has
an effect, raw performance gives us a very restricted view of what is happening,
and more analytical methods are needed. One such method is to consider one or
more aspects of the internal population dynamics during a run. Recently a lot of
work has been done to develop exact schema theories for Genetic Programming
[11][12], which, among other things, give us a description of the expected changes
in the program length distribution during a GP run. The asymptotic distribution of
program lengths is important to us because it is a way of comparing the sampling
behavior (search bias) of different crossover operators and replacement strategies.

Two separate implementations were used during the analysis. Firstly, a simple
one that simulated the effects of crossover was used to show the expected program
length distributions in the absence of fitness. We call this the GP simulator in this
paper. Secondly, the hardware implementation was used to obtain results both with
and without fitness.

Starting with the GP simulator with a uniform initial length distribution and
ignoring the effects of fitness, Figure 2 shows the expected length distribution for



generations 0,1,10 and 31. In this case there is no maximum program size. This
agrees with the results in [12] where the distribution asymptotically converges to a
discrete Gamma distribution.
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Figure 2: Program length distribution for standard GP crossover using a linear
program representation, a global replacement strategy, non-steady state and a flat
fitness landscape.

3.3 Truncating Crossover Operator

This crossover operator ensures programs do not exceed the maximum program
length by selecting crossover points in two individuals at random and exchang-
ing the tail portions up to the maximum program length. Crossovers that result
in programs exceeding the maximum length are truncated at the maximum length.
This crossover operator was chosen to minimize the amount of logic required and
the number of clock cycles needed. This is illustrated in Figure 3. For two pro-
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Figure 3: Truncating crossover operator

grams a and b that have lengths |5 and I, two crossover points x5 and X, are
chosen at random so that 0 < X5z < Iz and 0 < xp < lp. The program size limit
iS Lmax. After crossover the new lengths are 15 = min((Xa + lp — Xb),Lmax) and
b =Mmin((Xp+ la—Xa), Lmax)-



When the GP simulator is modified to implement the truncating crossover, the
result is shown in Figure 4 for the flat fitness landscape case. The behavior of the
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Figure 4: Program length distribution with truncating crossover for standard GP on
a flat fitness landscape.

hardware implementation using the truncating crossover operator is shown in Fig-
ure 5. A feature of these results is that there is initially a large peak at the maximum
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Figure 5: Program length distribution using truncating crossover using a linear

program representation on a flat fitness landscape. From the hardware implemen-

tation.

program size of 31, but in subsequent generations the distribution tends to resem-
ble a Gamma distribution like the one in Figure 2. However, it is important to note
that it not the same Gamma distribution, because the mean program length tends
to decrease with this crossover operator. The reason is that with the truncation the
amount of genetic material removed from the parents when creating the offspring
may be bigger than the amount of genetic material replacing it. The differences be-
tween Figures 4 and 5 are believed to arise because the simulator uses generational
GP, while the hardware implementation uses steady state GP.

When fitness is used, the length distribution changes as shown in Figure 6, but
it still retains some of the features of a Gamma distribution. The striking feature is
the large peak at the maximum program length limit which represents 13% of the
total population.
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Figure 6: Program length distribution using truncating crossover using a linear
program representation with fitness. From the hardware implementation.

3.4 Limiting Crossover Operator

An alternative method of ensuring that programs do not exceed the fixed limit is
to choose crossover points that result in programs that are below the program size
limit Lax. For two programs a and b, with lengths I and Iy, two crossover points
Xa and Xy are chosen so that 0 < x5 < Iz and 0 < xp < l,. After crossover the new
lengths are simply 13 = Xa+ lp — Xp and I{, = Xp + la — Xa. 113 > Liax OF 1, > Linax
the selection of x5 and xy is repeated until I} < Liyax AND If, < L.

This is the approach taken in lilgp when the keep_t ryi ng parameter is enabled
[14], and other tree based GP systems, to limit the tree depth and the total number
of nodes in a program tree. When this crossover operator is implemented in the GP
simulator the program length distribution changes, as shown in Figure 7. A feature
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Figure 7: Program length distribution using limiting crossover operator and a
global replacement strategy on a flat fitness landscape.

of this result is that the mean program length moves towards smaller values. After
31 generations, the population size distribution shape resembles the one produced
with standard GP.

When this method of limiting the program length was implemented in the hard-
ware version, we obtained the distribution shown in Figure 8. In contrast to the GP
simulator the program length distribution remains reasonably static between gen-



erations 1 and 31. In an effort to understand the different behavior between the
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Figure 8. Program length distribution using limiting crossover on a flat fitness
landscape, from the hardware implementation.

results in Figures 7 and 8 it was noted that the hardware implementation required
both of the offspring programs a’ AND b’ to be shorter than Lyay but that the sim-
ulation only considered one offspring at a time, effectively requiring a’ OR b’ to be
shorter. The latter case is referred to as the single-child variant in the rest of this
paper, and the original the dual-child variant. In the case of the single-child variant,
if one of the programs was larger than the maximum, it was simply discarded and
the parent substituted in its place, and if both children were larger than the limit,
the two crossover points would be chosen again. If both children were smaller
than the limit, they would both be available as candidates in the next generation.
When the hardware implementation was modified to incorporate the single-child
variant limiting method, the result shown in Figure 9 was obtained, closely match-
ing that from the simulation. Again, the difference between Figure 7 and Figure 9
is believed to be due to the use of steady-state GP in the hardware implementation.
When fitness is enabled using the dual-child variant, there is a large bias in favor of
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Figure 9: Program length distribution using limiting crossover on a flat fitness
landscape and the single-child variant. From the hardware implementation.

longer programs as shown in Figure 10. An interesting artifact of this graph is the
sharp rise in program lengths for generations 10 and 31 above length 15, and the



plateau after length 15. This is likely to be due to the distribution of fitness in the
program search space and can be seen as a form of what is commonly termed bloat
[5]. However, when the program length distribution using the single-child variant
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Figure 10: Program length distribution using limiting crossover with fitness and
the dual-child variant. From the hardware implementation.

was plotted, shown in Figure 11, the length distribution peaks at around the mean
of Lmax. This unexpected behavior is interesting since it appears to have avoided
the phenomenon commonly known as bloat.
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Figure 11: Program length distribution using limiting crossover with fitness and
the single-child variant. From the hardware implementation.

The effect of using the limiting crossover operator with and without the single-
child variant on the behavior of the system is shown in Figure 12 together with the
original behavior. This graph shows that all three crossover implementations have a
similar rate of improvement, with the limiting crossover operator with single-child
variant maybe performing slightly better on the ant problem.

Finally, the distribution of 100% correct program lengths was measured for
truncating and both limiting crossovers. The hardware implementation was run
500 times, and if a 100% correct program was generated, the length was recorded.
These are shown in Figures 13, 14 and 15 respectively.

From these plots we can see that truncating crossover has allowed GP to find
more 100% correct programs than the limiting crossover using the dual-child vari-
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Figure 12: Comparative GP behavior of the hardware implementation for the ant
problem using truncating crossover and limiting crossover.
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Figure 13: Distribution of lengths of 100% correct programs using the truncating
crossover operator.

ant. However, when using the single-child variant, limiting crossover found the
most 100% correct programs.

It is interesting to note that the results shown in Figure 12 do not obviously
show this difference in the outcome, highlighting the weakness of using the stan-
dard measure of performance.

The results shown in Figures 13,14 and 15 suggest that for the artificial ant
problem implemented in hardware, programs of length 4 or 5 are most likely to
be correct. It was then observed that the peak program length in Figure 11 was
larger than length 4. From this is was conjectured that if the maximum program
length was reduced from 32, moving the peak closer to the program length that
occurred most frequently, that GP may find even more successful programs. Two
further experiments were therefore performed using maximum lengths of 16 and 8.
The results of running the hardware implementation with these modified lengths is
shown in Figures 16 and 17.

This confirmed the idea that, by limiting the program lengths that GP is allowed
to create, that GP produced more 100% correct programs. The corresponding pro-
gram length distributions are shown in Figures 18 and 19. These both have similar
characteristics to Figure 11 and show that the program length distribution peaks
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Figure 14: Distribution of lengths of 100% correct programs using the dual-child
variant limiting crossover operator.
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Figure 15: Distribution of lengths of 100% correct programs using the the single-
child variant limiting crossover operator.

close to the peak of the successful programs.

4 Discussion

The differences between the dual-child and single-child variants can be explained
by considering first the dual-child case. Starting with a uniform distribution of pro-
gram lengths 0 < | < Lyay, the average program length is given by Layg = LTW and
the average crossover point is LLZVQ Every crossover produces two offspring, the av-
erage length of which is LTW with one smaller and one larger program produced.
When one of the offspring exceeds Lmax both crossover points are re-selected until
both programs satisfy the length constraint. The result is that the average program
length using this crossover will remain "T”W However, in the single-child case,
only one child needs to meet the length constraint. With one long and one short
offspring, the short offspring will be more likely to satisfy the constraint and so
be selected for propagation. Because the shorter program is preferred, the mean
program length will tend to continually decrease. In summary, in the absence of
fitness, the single-child variant selects programs that are on average smaller than
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Figure 16: Distribution of lengths of 100% correct programs using the the single-
child variant limiting crossover operator and a length limit of 16
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Figure 17: Distribution of lengths of 100% correct programs using the the single-
child variant limiting crossover operator and a length limit of 8

LTW. In the presence of fitness we believe that this pressure to decrease the mean
program length competes with the well documented tendency of GP programs to
grow in the presence of fitness. The result is that when using the single length con-
straint and an upper bound on the program length, the program length distribution
does not have a strong bias to longer lengths.

A side effect of using the single child variant is that when a long program is
rejected, a copy of the parent is propagated to the next generation. This means
that even if crossover is used as the only operator, a proportion of straightforward
reproduction will be present.

A practical penalty of the limiting crossover approach is that multiple passes
may be required to obtain two crossover points that satisfy the length constraints.
Depending on the implementation this could have an impact on the time needed to
complete a GP run. In practice for most problems the time required for crossover
in a standard GP system is much smaller than the time for evaluating programs,
and so will only extend the time required by a small factor. In the hardware im-
plementation, crossover is performed in parallel with evaluation, so there will be
no impact for most problems where fitness evaluation takes longer than selection
and breeding. For the artificial ant problem implemented in hardware, the limiting

12
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Figure 18: Program length distribution using limiting crossover with fitness and

the single-child variant. Maximum length limited to 16. From the hardware imple-
mentation.
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Figure 19: Program length distribution using limiting crossover with fitness and
the single-child variant. Maximum length limited to 8. From the hardware imple-
mentation.

crossover operators did not have any effect on the overall performance of the de-
sign, both the clock speed and number of clock cycles remained the same as the
truncating crossover implementation. It is worth noting that the single-child limit-
ing crossover will need fewer iterations to find a legal offspring, so this will have a
smaller effect on the overall performance.

The effect of adjusting the program length limit so that the peak in the length
distribution is closer to the peak of optimal program lengths suggests that allowing
programs to be unlimited in length may be detrimental to using GP effectively.

5 Further work

From the results in [11] we would expect similar behavior when these techniques
are applied to standard tree based GP, and this is currently being investigated.

Other techniques have been suggested for controlling the program size during
evolution, such as the smooth operators [10], homologous and size fair operators
[5] which could also be adapted to a hardware implementation.
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So far, only one problem has been analyzed using the hardware implementation
of GP and to get a more complete picture of the effects of the design decisions more
problems need to be implemented and analyzed.

6 Conclusions

This analysis, based on measuring the program length distributions was prompted
by the results from the work on a general schema theory of GP. It has led us to
an implementation of crossover that allows us to constrain the maximum program
lengths. For the ant problem implemented in hardware we have discovered a mech-
anism that avoids the effects of unconstrained program growth, and indeed allows
us to obtain far more correct programs.

In conclusion, all three crossover operators are effective in the hardware imple-
mentation when applied to the artificial ant problem, with the single-child limiting
crossover performing ahead of the other two. The behavior of the single-child
limiting crossover in the presence of fitness is interesting and suggests another
mechanism for controlling code growth.
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