
Evolving Protein Motifs Using a Stochastic Regular Language with
Codon-Level Probabilities

Brian J. Ross
Deptartment of Computer Science

Brock University
St. Catharines, ON, Canada L2S 3A1

email: bross@cosc.brocku.ca

ABSTRACT
Experiments involving the evolution of protein motifs
using genetic programming are presented. The motifs
use a stochastic regular expression language that uses
codon-level probabilities within conserved sets (masks).
Experiments compared basic genetic programming with
Lamarckian evolution, as well as the use of “natural”
probability distributions for masks obtained from the se-
quence database. It was found that Lamarckian evolu-
tion was detrimental to the probability performance of mo-
tifs. A comparison of evolved and natural mask probability
schemes is inconclusive, since these strategies produce in-
compatible characterisations of motif fitness as used by the
genetic programming system.

KEY WORDS
genetic programming, stochastic regular expressions, pro-
tein motif

1 INTRODUCTION

Identifying biosequence characteristics at the primary
structure or sequence level is commonly done, and has been
a subject of research for a number of years [1]. Advan-
tages of sequence-level characterizations of biosequences
are their usefulness as means of database lookup, and their
tractability in terms of interpretation and automatic acqui-
sition using a variety of algorithms and machine learning
techniques. A popular sequence-level motif is the use of
regular expressionsto characterize the region shared by
a family of related proteins sequences. Protein sequence
databases such as PROSITE use this style of motif repre-
sentation [3].

Genetic programming (GP) is a machine–learning
paradigm that uses a genetic algorithm to evolve popula-
tions of programs [6]. GP has been applied to a number
of bioinformatics problems, including the evolution of mo-
tif expressions for protein sequences. Hu uses a combi-
nation of GP and local motif refinement to evolve protein
motifs for unaligned sequences [5]. The target language
used is identical to the regular expression language used by
PROSITE. Some of his evolved motifs were nearly identi-
cal to their PROSITE equivalents. Kozaet al. apply GP

towards motif synthesis for a number of protein families
[7]. Their target language is a constrained one that does
not use variable-length gaps. In one instance, the evolved
motif improved upon the accepted PROSITE motif expres-
sion.

Earlier work by this author proposed the use of
stochastic regular expressions (SRE-DNA) as a motif lan-
guage for protein sequences. Firstly, SRE-DNA motifs
were synthesized for aligned protein sequences using GP
[12]. A number of restricted variations of SRE-DNA were
studied, to determine the most practical subset of SRE-
DNA for the protein motif problem. Next, SRE-DNA
motifs for unaligned sequences were successfully evolved
[13]. In summary, motifs for small- to moderate-sized
aligned or unaligned sequences were shown to be directly
evolvable with GP, without the need for local optimization
of motif fields. Evolution benefits from the stochastic na-
ture of the motif language, since sequence probabilities are
directly incorporated into fitness scores within the GP sys-
tem. Furthermore, variable-length gaps within motifs are
elegantly handled by SRE-DNA’s probabilisticskipexpres-
sion.

This research continues work in evolving protein mo-
tifs by addressing a few issues encountered in the afore-
mentioned earlier research. One possible weakness of pre-
vious SRE motif representations is that uniform probabil-
ity distributions are used for converved sets ormasksof
codons. For example, in the mask[filmv] , each codon has
an equal probability of 0.20 (i.e. 1/(mask size)). It seems
reasonable that a mask with variable probabilities for dif-
ferent elements might yield more precise probabilistic char-
acterizations of protein sequences.

An inadvertent weakness in the implementation of
SRE-DNA used in previous work is that motifs permitted
gap expressions to terminate motif expressions, for exam-
ple,

(sequence expression) : x∗.5

Here, the skip termx∗.5 denotes a variable-length gap. Al-
though this motif schema is not erroneous, we found that
it appeared in virtually all evolved motifs. This happens
because the skip term reduces the size of sequences to be
recognized by the motif, by skipping a large terminating
subsequence of each example. This is advantageous dur-

ing evolutionary computation, since expression fitness is
improved. Such loopholes are often exploited by genetic
algorithms. A more robust motif would not skip important
portions of sequences.

To address these problems, this paper uses a refined
SRE-DNA motif language that incorporates codon-level
probabilities within mask terms, and prohibits skip expres-
sions at the end of motif expressions. In addition, the lan-
guage uses a minimal number of regular operators, fore-
going Kleene iteration and choice operators. This makes
it similar to PROSITE’s non-probabilistic regular language
[3]. The notion of canonically conserved codon sets is bor-
rowed from Hu [5], which should improve the rate of evo-
lution by introducing biologically meaningful conserved
sets of amino acids into motif expressions. Additional runs
that use local search (Lamarckian evolution) to refine mask
terms are undertaken, in hopes of improving mask expres-
sion quality. We also investigate an alternative approach to
mask probabilities, by using empirically measured proba-
bilities from the sequence database within masks.

The experimental setup is presented in Section 2. Re-
sults of the experiments are given in Section 3. Some sum-
mary discussions and conclusions end the paper in Section
4.

2 EXPERIMENT DESIGN

2.1 Stochastic Regular Expressions

exprtop ::= expr :mask
expr ::= guard | guard :expr
guard ::= mask | mask :skip
skip ::= x+p

mask ::= [a1(n1), a2(n2), ..., ak(nk)]

Figure 1. SRE-DNA Grammar

The motif language used is stochastic regular expres-
sions, or SRE-DNA. It is based on a fuller language in [10],
and is refined for the problem of biosequence representa-
tion. The language presented here is related to SRE-DNA
languages used in earlier work [12, 13].

The BNF grammar for SRE-DNA is given in Figure
1. SRE-DNA is a regular expression language [4], and its
operators have the usual semantics, but with a probabilistic
model overlaying them. See [10, 12, 13] for more details
about the semantics of SRE and SRE-DNA.

The salient features of this variant of SRE-DNA are as
follows. Skip expressions cannot terminate a motif. This
is ensured in theexprtoprule, which forces a mask term
to end the expression. Theguard rules ensure that there
cannot be consecutive skips terms. Probability values are
introduced inskip and maskrules. The skip term’sp is
a probability within some user-specified range, for exam-
ple, between 0.1 and 0.5. The skip expression uses the

“+” notation, whereE+ = E : E∗, andE∗ is Kleene
iteration. A mask represents a set of possible codons
that can arise at that position of the motif. A mask con-
sists of a set of codonsai paired with integersni. Each
ai has a probabilityni/

∑k
j=1 nj . For example, in the

mask[f(2), i(15), l(20), v(6)], the codoni has a probabil-
ity 15/43.

2.2 Biosequence data

Table 1. Protein data summary

Protein (accession #) Imax W S1 S2

Zinc finger 1, C2H2 (PS00028) 0.19 25 29 678
Zinc finger 2, C3HC4 (PS00518) 0.19 10 21 168
Sugar transport 1 (PS00216) 0.32 18 28 190
Sugar transport 2 (PS00217) 0.49 26 27 178
Snake toxin (PS00272) 0.49 21 18 127

Aligned training and testing sequences were obtained
from the PROSITE and TrEmbl online databases.1 Table
1 summarizes the data. In this table, the accession # is the
PROSITE identifier;Imax is the maximum skip iteration
limit permitted in SRE-DNA motifs;W is the maximum se-
quence length or window length that motifs need to cover;
S1 is the size of the training set; andS2 is the size of the
testing set.

Negative training and testing sets are composed of
random sequences of codons. Each negative example is
the size of a typical positive sequence. The negative sets
are the same size as the respective training and testing sets
for the protein in question.

2.3 GP Parameters

The DCTG-GP genetic programming system is used [11].
DCTG-GP is a grammatical GP system implemented in
Prolog. The target language is defined with a definite clause
translation grammar (DCTG), which is a logic-based at-
tribute grammar. The SRE-DNA grammar in figure 1 is di-
rectly encoded in the system with DCTG rules. These rules
also include the semantics of the operators, which means
that the grammar encodes an interpreter for the language.

Table 2 lists parameters used for GP runs, and are
based on earlier work outlined in Section 1 . The initial
population is oversampled, and culled at the beginning of
a run. Reproduction may fail, for example, due to tree size
limitations. A maximum of 3 reproduction attempts are
undertaken with selected parents before the reproduction is
discarded, and new parents are selected. The terminals are

1http://ca.expasy.org/

Table 2. GP Parameters

Parameter Value
GA type generational
Functions SRE-DNA
Terminals amino acid codons,

integers, probabilities
Population size (initial) 1500
Population size (culled) 1000
Unique population yes
Maximum generations 150
Maximum runs 20 (10 Lamarck)
Tournament size 4
Elite migration size 10
Retries for reproduction 3
Prob. crossover 0.90
Prob. mutation 0.10
Prob. internal crossover 0.90
Prob. terminal mutation 0.75
Prob. SRE crossover 0.25
Prob. SRE mutation 0.30
SRE mutation range 0.1
Max. depth initial popn. 12
Max. depth offspring 24
Min. grammar prob. 10−12

Min. skip limit 0.10
Max. mask size 6
Lamarckian elite set size 10
Lamarckian hill-climbing limit 5

the subset of amino acid codons, determined by the alpha-
bet used in the positive training examples.

Crossover and mutation use the methods commonly
applied by grammatical GP systems that denote programs
with derivation trees; see [11] for details. Some SRE
specific crossover and mutation operators are used. SRE
crossover permits mask elements in two parents to be
merged together. SRE mutation implements a number of
numeric and mask mutations, for example, number per-
turbation, and mask element insertion, deletion, and alter-
ation.

The minimum grammar probability value specifies
the minimal probability used by the SRE evaluator before
an expression interpretation is pre-empted. This stops the
interpretation of expressions with negligible probabilities.

Figure 2 shows the 13 conserved substitution groups
of amino acids used in the experiments, which were dis-
covered empirically in [2]. The tree shows the hierar-
chical relationships between these groups, as those lower
in the tree are subsets of parent groups. An analysis of
the PROSITE database shows that 81.2% of the conserved
sets used in all motifs are covered by these 13 predefined
groups. These same 13 groups are incorporated into SRE-
DNA expression generation, in an attempt to create more
rational masks. There is a 50% probability that a prede-

Figure 2. Conserved Groups of Amino Acids

fined conserved group is used when a mask is generated.
Otherwise, a random set is generated.

2.4 Lamarckian Evolution

Each experiment involves 10 runs with basic GP, and 10
runs with Lamarckian evolution [9]. The Lamarckian runs
are economical, as they apply local refinement to 10 fittest
individuals in the population. The local refinement uses a
hill-climbing search strategy, in which SRE terminal mu-
tation is applied to mask and skip terms. An expression
is repeatedly mutated until 5 failed attempts are tallied, at
which time the hill-climber terminates.

After every run, the best solution is optimized with re-
spect to mask fields by deleting extraneous mask elements.
This improves probability scores for the motif. The opti-
mization routine uses a hill-climber, in which every mask
with more than 1 element is processed as follows: an el-
ement is removed, and if the overall fitness of the motif
improves, that element is deleted permanently.

2.5 Fitness evaluation

A minor modification of the fitness evaluation strategy
from [12] is used. Fitness evaluation measures the abil-
ity to recognize N positive training examples, and to reject
N negative examples:

Fitness = N +NegFit− PosFit

whereNegFitandPosFitare the negative and positive train-
ing scores. Positive example scoring is calculated as:

PosFit =
∑

ei∈Pos
maximum(Fit(e′i))

wherePos is the set of positive training examples, ande′i
is a suffix of exampleei (ie. ei = se′i, |s| ≥ 0). For each
example inPos, a positive test fitnessFit is found for all
its suffixes, and the maximum of these values is used for
the entire example. Fitness evaluation considers both the
probability of recognizing an example, and the length of
the sequence recognized:

Fit(e) =

1
2

(
Pr(smax) + |smax|

|e|

)
: Pr(smax) ≤ |smax||e|

1
2

(
|smax|
|e|

)
: otherwise

Here, smax is the longest recognized prefix ofe, |smax|
is its length, andPr(smax) is its probability of recogni-
tion. The fitness pressure obtained withFit is to recognize
an entire example string with a high probability. The con-
ditional formulae ensure against degenerate conditions, in
which small terms with high probabilities overwhelm the
population. Negative fitness scoring is calculated as:

NegFit = maximum(Fit(ni)) ∗N

whereni ∈ Neg (negative examples). The highest ob-
tained fitness value for any recognized negative example
suffix is used for the score.

2.6 Natural mask probabilities

An alternative method for obtaining mask probabilities is
investigated. A given SRE-DNA motif is applied to the
database of training and testing sequences, and the frequen-
cies of using each mask element during interpretation is
recorded. These frequencies are then incorporated into the
original motif. This results in a “natural” probability distri-
bution for mask elements.

3 RESULTS

Table 3 summarizes the performance of the experiments.
Typedenotes the basic (B) or Lamarckian (L) runs.avg
pr is the average probability for the training example, aver-
aged over all the solutions obtained in the 10 runs. Thebest
pr is the average example probability for the best solution
of the 10 runs. The next 3 columns are testing results for
the best solution inbestpr. The%tp is the percentage of
true positives recognized, andpr is the average probability
over the positive testing set. Similarly,%fn is the percent-
age of false negatives (negative examples falsely identified
as positive). High%tpand low%fnscores are desirable.

Analyzing the results thus far, note that there are two
aspects of performance that must be considered when eval-
uating the solution motifs: overall probabilities during se-
quence recognition, and overall true positive and false neg-
ative performance when recognizing testing sets. This di-
chotomy is seen in the construction of the fitness strategy in
Section 2.5. These measurements are somewhat mutually
exclusive, as one must decide whether it is more important
to recognize fewer examples with a higher probability, or
more examples with a lower probability. Fortunately, the
fitness strategy used balances these performance aspects
fairly well.

In terms of probability performance, the Lamarckian
runs perform worse than the basic GP motifs in all but one
case (snake toxin). This indicates that Lamarckian opti-
mization of terminals is not beneficial. The Lamarckian
solutions have better training performance in terms of true
positive scores. However, given that all the best solutions
(B and L) almost always identified all the training exam-

Table 4. PROSITE comparison

Family #FP (tot) #FN (tot)

Zinc 1 4 (12) 1 (3)
Zinc 2 0 (5) 0 (12)
Sugar 1 9 (10) 7 (10)
Sugar 2 4 (10) 9 (10)
Snake - 0 (10)

ples, this is unclear whether this testing performance dif-
ference is due to the use of local optimization or not.

A selection of false positive and false negative se-
quences were obtained from PROSITE. These are se-
quences that are erroneously classified by the accepted
PROSITE motif. These sequences were given to the best
SRE-DNA motifs from the basic GP runs, and the results
are shown in Table 4. Here, low FP scores and high FP
scores are preferred.

The final 3 columns of Table 3 report testing perfor-
mance for the natural probability distributions for masks,
which were derived for the motifs from the basic GP runs
only. The “natural masks” resulted in higher probability
performance only for the zinc finger families, while other
families resulted in lower probabilities. The% higher
and% lower columns indicate the percentage of the test-
ing set that saw improved or worse probabilities with the
use of natural masks, compared to the original evolved
masks. These measurements indicate whether a natural
mask might improve the scores for more examples, even
though the overall probability for the testing set was re-
duced. Indeed, this was the case for the Sugar 1 and Snake
examples.

Figure 3 shows a few evolved motifs. The figure
shows the PROSITE regular motif (P), an example motif
evolved in earlier work in [12] (O), the best evolved SRE-
DNA motif having evolved mask probabilities (E), and the
same motif with natural mask probabilities (N). Note that
the old motifs (O) use a different variation of SRE-DNA
than used here, as masks terms have the same probabilities,
and entire terms can be subject to iteration (see the Sugar
2 (O) example). First, it is clear that the motifs evolved
here (E and N motifs) have solved the problem of skip
terms terminating motifs; both the O motifs have terminat-
ing skip terms. The similarity between the PROSITE and
SRE-DNA motifs for zinc finger 2 is especially apparent.
The new motifs also have more occurences of mask terms
than the old motifs. This is clear for zinc finger 2, where
the old (O) motif has no masks at all. The use of conserved
groups (Figure 2) during evolution was probably a strong
factor in their more frequent occurrence.

Table 5 shows some testing comparisons between the
best basic solutions from Table 3 (B entries) and some mo-
tifs evolved in earlier work in [12]. The motifs from this
earlier work generally show better performance than the
motifs from this research. However, those motifs were sim-

Table 3. Motif Performance

Training Testing (best soln.) Testing, natural prob. (best soln.)
Family Type avgpr bestpr %tp pr %fn avgpr % higher % lower

Zinc 1 B 4.54e-8 2.03e-7 86.4 3.02e-7 0 3.52e-7 37.9 48.7
L 2.78e-8 7.93e-8 83.0 7.83e-8 0 - - -

Zinc 2 B 6.48e-3 1.15e-2 72.6 8.97e-3 0 2.26e-2 66.1 6.5
L 6.23e-3 6.88e-3 85.7 3.57e-3 0 - - -

Sugar 1 B 2.14e-6 7.52e-6 74.7 1.65e-6 0 1.00e-6 47.4 32.6
L 8.08e-7 1.40e-6 81.6 4.82e-7 1.6 - - -

Sugar 2 B 9.82e-8 3.68e-7 86.0 1.30e-7 1.7 2.71e-8 25.8 60.1
L 7.63e-8 2.22e-7 88.2 2.38e-7 0.6 - - -

Snake B 4.80e-5 1.23e-4 55.9 8.64e-5 0 7.56e-6 42.5 13.4
L 7.94e-5 2.58e-4 70.9 6.07e-5 0 - - -

Zinc 2 P ⇒ c : x : h : x : [filmvy] : c : x(2) : c : [ailmvy]

O ⇒ c : x+.1 : h : x+.19 : c : x+.19 : c : x+.1

E ⇒ c : x+.1 : h : x+.1 : [(f, 97), (i, 65), (l, 6), (m, 49), (v, 3)] : c : x+.19 : c : [(i, 79), (l, 31), (m, 89), (v, 22)]

N ⇒ c : x+.1 : h : x+.1 : [(f, 112), (i, 6), (l, 16), (m, 4), (v, 5)] : c : x+.19 : c : [(i, 71), (l, 43), (m, 7), (v, 22)]

Sugar 2 P ⇒ [filmv] : x : g : [afilmv] : x(2) : g : x(8) : [fily] : x(2) : [eq] : x(6) : [kr]

O ⇒ [filmv] : x+.19 : (g : x+.48 : g : x+.48 : [fgily] : x+.48 : [ailtv] : (x)+.48)+.21

E ⇒ [(f, 23), (i, 97), (l, 27), (m, 80), (v, 32)] : x+.12 : g : x+.48 : g : x+.48 : [(f, 23), (t, 27), (v, 32)] : x+.48

: [(e, 43), (g, 91), (l, 27), (v, 89)] : x+.48 : [(a, 39), (p, 85), (t, 23), (v, 32)] : x+.47 : [(k, 7), (r, 73)]

N ⇒ [(f, 15), (i, 52), (l, 56), (m, 7), (v, 50)] : x+.12 : g : x+.48 : g : x+.48 : [(f, 35), (t, 66), (v, 79)] : x+.48

: [(e, 44), (g, 22), (l, 64), (v, 50)] : x+.48 : [(a, 69), (p, 36), (t, 20), (v, 55)] : x+.47 : [(k, 40), (r, 140)]

Figure 3. Motif Comparisons: PROSITE (P), Old SRE-DNA (O), SRE-DNA evolved mask (E), SRE-DNA natural mask (N)

Table 5. Testing Performance Comparison (best solns)

New Old
Family %tp %fn %tp %fn

Zinc 1 86 0 93 1
Zinc 2 73 0 100 0
Sugar 1 75 0 88 0
Sugar 2 86 2 100 12
Snake 56 0 51 0

pler than the ones here, in that skip expressions were per-
mitted at the end of the motifs. This is readily seen in the
two examples shown in Figure 3 for the old (O) entries, and
especially in the sugar transport 2 motif, which ends with a

x+.48 term.

4 CONCLUSION

The motifs in this paper successfully solve the problem
of skip terms terminating motifs, as were common in ear-
lier work [12, 13]. A result of this, however, is that the
sequence recognition problem is more difficult. Conse-
quently, testing scores reported in Table 3 were often worse
than earlier experiments with respect to true positive recog-
nition rates. In other words, the motifs are overly discrimi-
natory. On the other hand, these motifs yield higher overall
probabilities for some protein families compared to their
equivalents in previous work. It was also found that the
evolved motifs made more use of mask terms, likely due to
the use of conserved groups during expression generation.

It is surprising that Lamarckian evolution is not bene-
ficial in our runs. Although the Lamarckian solutions were
always more concise with respect to mask size, this did not
result in better probability scores, contrary to our expec-
tations. It is unclear whether the higher testing scores for
the Lamarckian solutions is accidental, or an effect of local
optimization.

A new question arising from this research is how the
evolved and natural mask probability distributions compare
to one another. It was an unexpected discovery that the
evolved mask probability distributions did not conform to
the training sequence distributions. Moreover, when these
masks were replaced with the natural probability distribu-
tions, motif probability scores often decreased. After some
analyis, it was determined that the evolved mask probabil-
ities arise from a combined effect of the GP fitness strat-
egy, and the nature of probability assignment by SRE-DNA
expressions. Not all the sequences belonging to a family
have equal probabilities. Shorter sequences typically have
higher probabilities than longer ones, because skip expres-
sions are not used as often. Each skipped element in a
longer sequence reduces the overall probability. During
fitness evaluation, the scores for these shorter, high prob-
ability sequences often dominates the motif’s fitness score,
and often by a significant amount. This in turn directly in-
fluences the composition of mask probability distributions:
mask probabilities are favoured that result in higher scores
for the dominant higher-probability, short sequences.

To confirm this hypothesis, some separate genetic al-
gorithm runs were performed to evolve mask probabili-
ties directly for given motifs. The results were invariably
the same: one element dominate the probability for the
entire mask; for example,[(l,99),(i,1),(m,1),(v,1)]. This
occurs because thisl codon is used within short, high-
probability sequence(s), and the overall score for the motif
made higher when this codon is given top priority.

One solution that we investigated is the use of natu-
ral probabilities. Although this does not always result in
better overall scores for motifs, it may result in better per-
formance for more sequences in a family. Whether this is
a preferable solution in general is still an open question.
A possibility worth investigating is a new scoring scheme,
that attempts to factor in sequence length with the proba-
bility of a sequence. In any case, since SRE-DNA motifs
naturally favour short sequences, there is no clear solution
to this issue at present.

Work is under way to compare the motifs obtained
here with conventional statistical motifs, for example, Hid-
den Markov Models [8]. The results of this work may lend
insight into the above mask probability issue.

Acknowledgement: Thanks to Sheridan Houghton and
Betty Ombuki for their helpful comments. This research
is supported through NSERC Operating Grant 138467.

References

[1] A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert.
Approaches to the Automatic Discovery of Patterns
in Biosequences.Journal of Computational Biology,
5(2), 1998, 279–305.

[2] C.G.Nevill-Manning, T.D. Wu, and D.L. Brutlag.
Highly specific protein sequence motifs for genome
analysis.Proc. Natl. Acad. Sci. USA, 95, 1998, 5865–
5871.

[3] K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch.
The PROSITE database, its status in 1999.Nucleic
Acids Research, 27(1), 1999, 215–219.

[4] J.E. Hopcroft and J.D. Ullman.Introduction to Au-
tomata Theory, Languages, and Computation. (Addi-
son Wesley, 1979).

[5] Y.-J. Hu. Biopattern Discovery by Genetic Program-
ming. In J.R. Kozaet al, editor,Proceedings Genetic
Programming 1998, (San Francisco: Morgan Kauf-
mann, 1998), 152–157.

[6] J.R. Koza. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection.
(MIT Press, 1992).

[7] J.R. Koza, F.H. Bennett, D. Andre, and M.A. Keane.
Genetic Programming III: Darwinian Invention and
Problem Solving. (San Francisco: Morgan Kauf-
mann, 1999).

[8] A. Krogh, M. Brown, I.S. Mian, K. Sjolander, and
D. Haussler. Hidden Markov Models in Computa-
tional Biology. Journal of Molecular Biology, 235,
1994, 1501–1531.

[9] B.J. Ross. A Lamarckian Evolution Strategy for Ge-
netic Algorithms. In L. Chambers (Ed.),The Practi-
cal Handbook of Genetic Algorithms, 3 (Boca Raton:
CRC Press, 1997), 1–16.

[10] B.J. Ross. Probabilistic Pattern Matching and the
Evolution of Stochastic Regular Expressions.Inter-
national Journal of Applied Intelligence, 13(3), 2000,
285–300.

[11] B.J. Ross. Logic-based Genetic Programming with
Definite Clause Translation Grammars.New Genera-
tion Computing, 19(4), 2001, 313–337.

[12] B.J. Ross. The Evaluation of a Stochastic Regular
Motif Language for Protein Sequences. In L. Spec-
tor et al., editor,Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-2001),
(San Francisco: Morgan Kaufmann, 2001), 120–128.

[13] B.J. Ross. The Evolution of Stochastic Regular Mo-
tifs for Protein Sequences.New Generation Comput-
ing, 20(2), 2002, 187–213.

