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ABSTRACT
We have developed a rule
learning system that employed

Grammar Based Genetic Program-
ming for knowledge discovery from
databases. A grammar is used
as a template for the rule format.
Grammar Based Genetic Program-
ming can guide the evolution and
the discovery of meaningful rules.
The technique Token Competition
is used to achieve the learning of
multiple rules simultaneously. We
have applied the approach to real-
life medical databases. The rules
discovered can provide insight into
and allow better understanding of
the medical domains.

1 Introduction

A database not only stores data but also contains pre-
cious knowledge. Many hidden and potentially useful re-
lationships may not be realized by the manual analyses.
Moreover, the size of data available now is beyond the ca-
pability of human analyses. Thus, the use of computers
is necessary. Data mining is a term to describe the auto-
mated process of discovering knowledge hidden in data.
Concept learning from data using genetic algorithm has
been studied by other researchers. In REGAL (Giordana
and Neri 1995), distributed genetic algorithm is used to
learn first-order logic concept descriptions. It uses a se-
lection operator, called Universal Suffrage operator, to
achieve learning of multi-modal concepts. Another sys-
tem GABIL (Jong et al. 1993) uses a flat string represen-
tation and the Pittsburgh’s approach: a single individual
corresponds to a set of rules. It has an adaptive feature

Man Leung Wong
Department of Computer Science and Engineering

The Chinese University of Hong Kong, Hong Kong
mlwong@cse.cuhk.edu.hk

Jack C. Y. Cheng

Department of Orthopaedics and Traumatology
The Chinese University of Hong Kong, Hong Kong
Jackcheng@cuhk.edu.hk

that can adaptively allow or prohibit certain genetic op-
erations for certain individuals. GIL (Janikow 1993) also
uses the Pittsburgh’s approach and utilizes 14 genetic op-
erators to perform generalization, specialization or other
modifications to the rules.

In this paper, the techniques and results of data min-
ing from real-life medical databases are presented. Rules
are used as the representation for the discovered knowl-
edge. A rule learning system is designed to capture the
special patterns that behave significantly above the av-
erage. We have employed Genetic Programming (GP)
(Koza 1992, Koza 1994) as the search algorithm. The
output is no longer a computer program but a set of rules
that can represent the discovered knowledge. Grammar
i1s employed for evolving valid rules.

This paper i1s organized as follows. Section 2 is an
overview of Grammar Based GP. Section 3 describes the
approach for rule learning. Section 4 presents the applica-
tions of the rule learning system on two real-life medical
databases. Section 5 is a conclusion.

2  Grammar Based GP
Grammar Based GP (Wong and Leung 1997, Wong and

Leung 1995) is an extension to the original GP. Tt uses
a grammar (Hopcroft and Ullman 1979) to control the
structure evolved. The grammar serves as a template
for the output. A suitable grammar is designed for the
problem. The structure evolved from Grammar Based
GP will follow this grammar.

Table 1 is an example of a grammar. The symbols with
the 1talic fonts are the non-terminals and the symbols
with normal fonts are the ferminals. A production rule
with the form a — § specifies how a non-terminal is
expanded. « — B|vis a short hand of two production
rules {a = B,a — v }. The start symbol is assumed to
be the first symbol of the first line.

Grammar Based GP uses a derivation tree as the repre-



Ezpr — ( if Boolean Real Real )

Boolean — ( Operator Real Real )

Boolean — T | F

Operator — = | < | > | <= | >=

Real — varl | var2 | var3

Real - 0| 1|23 |4|5]|6]|7]|8]9
Table 1 An example grammar. The symbol if
returns the second argument if the first argument
is true, or else the third argument
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Figure 1 An individual in Grammar Based GP
representing the expression (if (> varl 9) 3 4).

sentation of each individual. An individual is created by
a complete derivation from the start symbol of the given
grammar. Choices are randomly made if there are more
than one possible derivation. Figure 1 is an example of
an individual derived from the grammar in Table 1.

Similar to GP, there are three genetic operators. Re-
production copies one individual into the new population.
Crossover (Figure 2) and mutation (Figure 3) alter the
structure in the derivation tree. Crossover produces one
child from two parents. One parent is designated as the
primary parent and the other is designated as the sec-
ondary parent. A subtree of the primary parental deriva-
tion tree is selected and replaced by another subtree se-
lected from the secondary parent. However the selection
of the replacing subtree is restricted by the grammar. A
validation check is made to ensure the new replacing node
can match with a production rule of the grammar. Mu-
tation replaces a subtree in the derivation tree by a ran-
domly generated subtree. A node is selected, and the
grammar is used to derive a new subtree to replace the
subtree on this node. Again, a check is needed to make
sure the new tree does not violate the given grammar.
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Figure 2 Crossover in Grammar Based GP,
evolving the child expression (if (= 5 var2) 3 4).
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Figure 3 Mutation in Grammar Based GP,
evolving the child (if (<= var2 var3) 3 4).

Grammar Based GP is used for rule learning because
the grammar can define the format of the rule we want.
In pure GP, the function set must satisfy the closure re-
quirement (Koza 1992): Each function must accept, as
its arguments, any value and data type returned by any
function or assumed by any terminal. Grammar Based
GP relaxes this requirement because the placement of a
symbol must conform with the grammar. The evolved
structure can have different kinds of symbols, and each
kind of symbols will only appear in the suitable place.

3 System Design
3.1

The flowchart of the rule learning system is shown in Fig-
ure 4. A grammar is provided as a template for rules. A
set of rules is created by using this grammar to make up
the initial population. Fach rule is evaluated to get a raw
fitness score. The evaluation is described in section 3.5.
Token competition and replacement, described in section
3.6, aim to retain a set of good individuals and increase
the diversity of population. New rules are evolved by
three genetic operators, which are detailed in section 3.4.
In each generation, an equal number of new individuals
are evolved from the original population, but only the
best half will be passed to the next generation.

Our system differs from traditional GP by not using
reproduction operator, and keeping all parents as com-
petitors in the new generation. Reproduction is not used
because we do not want a good rule to replicate itself and
dominate the population. Rather, token competition is
used in order to find several good rules and diversify the
population. On the other hand, we allow them to com-
pete with the offspring, so that good individuals still have
chances to live in the next generation.

3.2

The grammar can govern the format of the rules to be
learned. The format of rules in each problem can be dif-
ferent. The grammar must be written for each problem
to best fit the domain. In general, the grammar spec-
ifies a format “if [antecedents] then [consequent]”. The
antecedent part is a conjunction of descriptors. The con-
sequent part is a descriptor. A descriptor is a description
on the attribute value. It can specify a value for a nom-
inal attribute, a range for a continuous attribute, or a
comparison with other attributes.

As an example, consider a database with 4 attributes.

System flows

Grammar
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Figure 4 The system flowchart

Rule — if Antes , then Consq .
Antes — Atirl and Atir2 and Atir3
Attrl — any | Attrl_descriptor
Attr2 — any | Attr2.descriptor
Attr3 — any | Attr3.descriptor
Attri_descriptor — attrl = ercl
Attr2_descriptor — attr2 between erc2 erc2
Attr3_descriptor — attr3 Comparator Atir3_term
Comparator — = | !'=| <= | >=| < | >
Attr3_term — attr2 | erc3
Consq — Attr4_descraptor
Attr4 descriptor — attr4d = boolean_erc

Table 2 An example grammar for rule learning.

We want to learn rules about attr4, which is boolean.
The attribute attril is nominal and encoded with 0, 1
or 2. The attribute attr2 is continuous between 0-200.
The domain of attr3 is similar to attr2 and we want
the rule to compare them. Thus the context free gram-
mar in Table 2 can be used. The symbols ercil, erc2,
erc3 and boolean_erc are ephemeral random constants
(ERCs). Each ERC has it own range for instantiation:
ercl is within {0,1,2}, erc2 and erc3 is between 0-200,
boolean_erc can only be T or F. The symbol ‘any’ serves
as a wild-card in the rule. An attribute will not be con-
sidered in the rule if its attribute descriptor is ‘any’. This
grammar allows rules like:

o if attrl = 0 and attr2 between 100 150 and attr3

=50, then attr4 = T.

e if attrl = 1 and any and attr3 >= attr2, then
attr4d = F.

The grammar is used for creating individuals. The start
symbol is Rule and a complete derivation is performed.
Then the ERCs are instantiated. These constants can
be instantiated randomly, or by using seeds. If seeds are
used, the constants are assigned values from a random
record in the training set.

3.3 Temporal Order and Causality

The use of grammar can ensure syntactical correctness in
the rule, but not semantical correctness. For example, in
a medical domain, the rule “if treatment is plaster, then
diagnosis is Radius fracture” is inappropriate. This rule
does not make sense, because an operation is taken based
on the treatment, not the other way round. This rule
does not provide any hint on the cause of treatment. It is
desirable to eliminate meaningless cause in the search pro-
cess. This requires a certain degree of knowledge on the
causality between the attributes. However, this knowl-
edge may not be readily available. A simple way is to
order the attributes according to the temporal relation-
ship. An event that occurs later will not be a cause of an
event occurred earlier! This information can be incorpo-
rated in the design of the grammar. An attribute should
not be place in the ‘if” part if it occurs later then the
attribute in the ‘then’ part. This causality model is easy
to construct and applicable to all problems. The search
space can be reduced drastically and meaningless rules
can be eliminated.

3.4 Genetic Operators

New rules are evolved by using three genetic operators:
crossover, mutation and dropping condition. These op-
erators modify the structure of the derivation tree and
thus change the attribute descriptors of the rules. Par-
ents for these operators are selected using rank selection
(Goldberg 1989).

Crossover replaces a subtree of a primary parental
derivation tree by a subtree from a secondary parental
derivation tree. Crossover may occur at a random point
in the derivation tree, but the grammar can maintain the
validity of the rule. A conjunction of descriptors can only
crossover with another conjunction of descriptors. A sin-
gle descriptor can only crossover with another descriptor
of the same attribute. Mutation re-creates a subtree of
the derivation tree using the grammar. Mutation may
also occur at a random point. It can mutate the whole
rule, an attribute descriptor or just an ERC in the rule.

Due to the probabilistic nature of GP, redundant con-
straints may be generated in the rule. For example, sup-
pose the actual knowledge is ‘if A<20 then X=T". We
may learn rules like ‘if A<20 and B<20 then X=T".
This rule is correct but does not completely represent
the actual knowledge. The rule can be generalized if one
descriptor in the antecedent part i1s dropped. Dropping
condition selects randomly one attribute descriptor, and
then turn it into ‘any’. Thus that particular attribute is



no longer considered in the rule.

3.5 Evaluation of Rules

The support-confidence framework (Agrawal et al. 1993)
is employed as the evaluation measure. Support measures
the coverage of a rule while confidence factor measures
the consistency of a rule.

The data set should be partitioned into a training set
and a testing set. In the evaluation process,; each rule is
checked with every record in the training set. The discov-
ered rules after the learning process are further evaluated
with the unseen testing set, so as to verify their accuracy.

The confidence factor (cf) is the ratio of the number
of records matching both the antecedents and the conse-
quence to the number of records matching only the an-
tecedents. But a rule with a high confidence factor does
not imply it behaves significantly different from the av-
erage. We need to compare with the average probability
(prob) of consequent, which is the occurrence of the con-
sequent over total number of records in the training set.
This value measures the confidence for the consequence
under no particular antecedent.

We defined c¢f_part as

ef part =2 x cf x log(i)
prob
This value is based on two factors : ¢f and ¢f/prob. The
log function measures the order of magnitude of the ratio
ef/prob. A high value of ¢f _part requires the rule to have
a high accuracy (cf) and cf is higher than the average
probability (prob).

A rule can have a high accuracy but the rule may be
just because of chance and based on a few training ex-
amples. This kind of rule does not have enough support.
The value support is the ratio of the number of records
covered by the rule to the total number of records. If
support is below a minimum required support, min_supp,
the confidence factor of the rule should not be considered.

We define our fitness function to be :

raw_fitness
= support, if support < min_supp

= wi X support + wy X cf _part + ws, otherwise

where the weights wy, ws and ws are user-defined. By
tuning these weights, the user can control the balance
between the confidence and support. The values we used
are 1, 8 and 0.03 respectively. The value of min_supp is
set to 3%.

3.6 Token Competition

A rule learning system should be able to learn as many
interesting rules as possible. Thus the problem should be
modeled as the searching of multiple peaks in the search
space. We follow the Michigan approach (Holland and
Reitman 1978, Booker et al. 1989): Each individual corre-
sponds to one rule, and the population provides a rule set

to represent the knowledge. The technique token compe-
tition (Leung et al. 1992) is employed to achieve the nich-
ing effect; so that good individuals in different niches are
maintained in the population. Token competition does
not need to define and calculate the similarity between
individuals. It simply regards two individuals to be sim-
ilar if they cover the same record.

In the natural environment, once an individual has
found a good place for living, it will try to exploit this
niche and prevent other newcomers to share the resources,
unless the newcomer 1s stronger. The other individuals
are hence forced to explore and find their own niches.
In this way, the diversity of the search population is in-
creased.

Based on this mechanism, we assume each record in
the training set can provide resources called tokens. If
a rule can match a record, it will seize the token and
other weaker rules cannot get it. The priority of receiving
tokens 1s determined by the strength of the rules. A rule
with a high fitness score can exploit the niche by seizing
as many tokens as it can. The other rules entering the
same niche will have their strength decreased because it
cannot compete with the stronger rule. We defined the
modified fitness as :

modified_fitness = raw_filness X count/ideal
where count is the number of tokens that the rule actually
seized, ideal is the ideal number of tokens that it can
seize, which is equal to the number of records that the
rule matches, raw_fitness is the fitness score obtained
from the evaluation process.

From another point of view, each rule contributes to
the system by covering a portion of significant records of
the database. If a record has been covered by one rule,
then another rule covering the same record will make no
contribution to the system. Thus the fitness of this rule
should be discounted.

As a result of token competition, there will be rules
that cannot seize any token. These rules are redundant
as all of its records are already covered by stronger rules.
They can be replaced by new individuals so as to inject
a larger degree of diversity into the population.

4 Application on Real-life Medi-
cal Databases

The rule learning system has been applied to two real-life
medical databases. These databases are obtained from
the Orthopaedic Department, Prince Wales Hospital of
Hong Kong.

4.1

The first medical database contains admission records of
children with fractures admitted to the hospital. This
database has 6500 records and 7 attributes. The at-
tributes in the database are sex, age, admission date,
diagnosis, operation, surgeon of operation and length of

The fracture database



No. of cf ef/prob support
Rules mean max min mean | max | min | mean max min
Diagnosis 2 45.56% | 51.43% | 39.75% | 1.56 | 1.70 | 1.42 | 9.22% | 10.01% | 8.42%
Operation 8 42.64% | 74.05% | 27.96% | 1.99 | 2.86 | 1.14 | 5.38% | 16.22% | 3.19%
Length of stay 7 71.11% | 81.11% | 46.98% | 2.51 | 6.92 | 1.39 | 4.46% | 8.65% | 3.09%

Table 3

staying in hospital. These data can provide information
for the analysis of children fracture patterns.

We can divide the attributes into three causality mod-
els. Firstly, sex, age and admission date are the possible
causes of diagnosis. Secondly, the operation 1s taken after
the diagnosis. The possible causes of operation and sur-
geon are sex, age, admission date and diagnosis. Thirdly,
length of staying is the last event and has the other 6
attributes as the possible causes. This knowledge follows
directly from the temporal relationships.

A grammar is written as a template for these three
kinds of rules. A set of interesting rules is learned from the
database using our rule learning system, and the result is
summarized in Table 3.

From the rules about diagnosis, we found that humerus
fracture is the most common fracture for children between
2 and 5 years old. Radius fracture is the most common
fracture for boys between 11 and 13. The confidence fac-
tor is not high because the database did not have re-
lated attributes that strongly affect the value of diagno-
sis. However the ratio ¢f/prob shows that the patterns
discovered deviated significantly from the average.

The rules about operation/surgeon suggest that radius
and ulna fractures are usually treated with plaster. Op-
eration is usually not need for tibia fracture. Open reduc-
tions are more common for elder children with age larger
than 11, while young children with age lower than 7 have
a higher chance of not requiring operations. We did not
find any interesting rules about surgeons.

The rules about length of stay suggest that Femur and
Tibia fractures are serious injuries and have to stay longer
in hospital. If open reduction is used, the patient requires
longer time to recover because the wound has been cut
open for operation. If no operation is needed, it is likely
that the patient can return home within one day. Rela-
tively, radius fracture requires a shorter time for recovery.

4.2 The Scoliosis database

The second database contains clinical records of patients
with Scoliosis. Scoliosis refers to the deformation of the
backbone. The database records measurements on the pa-
tients, such as the number of curves, the curve locations,
degrees and directions. It also records maturity of the
patient, class of Scoliosis and treatment. The database
has 500 records and 15 attributes.

There can be two types of rules mined from this do-
main. The first type is rules for classification of Scoliosis.
Scoliosis can be classified as Kings, Thoracolumbar(TL)

Summary of the rules for the fracture database

and Lumber(L), while Kings can be further subdivided
into King-I, IT, III, IV and V. According to the domain
knowledge, the classification mainly depends on the lo-
cations and degrees of the curves. The second type of
rule is for suggesting treatment. Treatment can be ob-
servation, surgery and bracing. According to the domain
knowledge, treatment mainly depends on age, laxity, de-
grees of the curves, maturity of the patient, displacement
of the vertebra and the class of Scoliosis. As Grammar
Based GP is used, the domain knowledge can be easily
incorporated in the design of the rule grammar.

For each class of Scoliosis, a number of rules are mined.
The results are summarized in Table 4. These results have
been compared with the knowledge of doctors. For King-
I and II, the rules have high confidence and generally
match with the domain knowledge. However there is one
unexpected rule for the classification of King-II. After an
analysis on the database, our rule revealed that serious
data errors existed in the current database.

For King-IIT and IV, the confidence of the rules discov-
ered is fairly low. According to the domain knowledge,
these two classes should have only one major curve. How-
ever the concept of ‘major curve’ is fuzzy and cannot be
deduced from just the degrees. Without this important
information, the system cannot find accurate rules for
these two classes .

For the class TL and L, the infrequent occurrences of
these two classes affects the learning performance. Nev-
ertheless, the rules show something different with the ex-
isting domain knowledge. According to our rules, the
classification depends on the first major curve, while ac-
cording to the domain knowledge, the classification de-
pends on the larger major curve. After discussion with
the domain expert, it is agreed that our rules are more
accurate than the existing domain knowledge.

The results of rules about treatment are summarized
in Table 5. The rules for observation and bracing have
high confidence factors, with a trade-off of lower supports
in the weights setting. For surgery, we failed to find any
interesting rules because surgery only occurred in 3.65%
of the database.

5 Conclusion

We have presented a rule learning system for discovery
knowledge from databases. Our approach has employed
several new techniques to tackle the task. Grammar
Based GP has been employed to enhance the evolutionary



Class No. of cf prob support
Rules mean max min mean max min
King-1 5 94.84% | 100% | 90.48% | 28.33% | 5.67% | 10.73% | 0.86%
King-11 5 80.93% | 100% | 52.17% | 35.41% | 6.61% | 14.38% | 1.07%
King-I11 4 23.58% | 25.87% | 16.90% | 7.94% | 1.56% | 2.58% | 0.86%
King-1V 2 24.38% | 29.41% | 19.35% | 2.79% | 1.18% | 1.29% | 1.07%
King-V 5 54.13% | 62.50% | 45.45% | 6.44% | 0.97% | 1.07% | 0.86%
TL 1 41.18% | 41.18% | 41.18% | 2.15% | 1.50% | 1.50% | 1.50%
L 3 54.04% | 62.50% | 45.45% | 4.51% | 2.00% | 2.79% | 1.07%
Table 4 Summary of the rules for classification of Scoliosis
Type No. of cf prob support
Rules mean max min mean | max min
Observation 4 98.89% | 100% | 95.55% | 62.45% | 3.49% | 6.01% | 1.07%
Bracing 5 79.57% | 100% | 71.43% | 24.46% | 1.03% | 1.29% | 0.86%
Surgery 0 - - - 3.65% - - -
Table 5 Summary of the rules about treatment

process. The grammar can ensure proper placement of
symbols in crossover and mutations, and thus can main-
tain the rule format. Token competition has been used for
learning multiple rules. This simple approach can force
the individuals to explore the search space and achieve
the niching effect.

Data mining can discover new knowledge as well as re-
fine our existing knowledge. The system has been applied
to two real-life medical databases. In the first database,
we can automatically uncover the relationships among the
variables. In the second database, we have discovered
unexpected rules that disagree with the existing domain
knowledge. After an analysis we have found out data er-
rors in the database. On the other hand, the existing
knowledge has been refined based on the new discovered
knowledge.
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