
A Pipelined Hardware implementation of Geneti


Programming using FPGAs and Handel-C

Peter Martin

Department of Computer S
ien
e, University of Essex,

Wivenhoe Park, Col
hester, CO4 3SQ, UK.

Abstra
t A 
omplete Geneti
 Programming (GP) system implemented

in a single FPGA is des
ribed in this paper. The GP system is 
apable

of solving problems that require large populations and by using parallel

�tness evaluations 
an solve problems in a mu
h shorter time that a


onventional GP system in software. A high level language to hardware


ompilation system 
alled Handel-C is used for implementation.

1 Introdu
tion

The motivation for this work is that as problems get harder, the performan
e of

traditional 
omputers 
an be severely stret
hed despite the 
ontinuing in
rease

in performan
e of modern CPUs. By implementing a GP system dire
tly in hard-

ware the aim is to in
rease the performan
e by a su�
iently large fa
tor to be

able to ta
kle harder problems and to make investigations into the operation of

GP easier. This paper is an update to the work presented in [9℄ whi
h des
ribes

how a GP system that in
ludes initial population 
reation, �tness evaluation,

sele
tion, and breeding operators 
an be implemented in a Field Programmable

Gate Array (FPGA) using a high level language to hardware 
ompilation te
h-

nique. Two major areas were singled out for further work in order to improve

the performan
e: 1) extend the implementation to handle larger populations; 2)

the use of pipelining to improve the parallelism of the hardware.

The 
hanges needed and the results of implementing the 
hanges are de-

s
ribed in this paper. The paper begins with a brief survey of previous work

using FPGAs for evolutionary te
hniques and a short summary of the Handel-C

language and the target hardware. This is followed by a des
ription of the re-

vised design that stores the population in o�-
hip Stati
 Random A

ess Memory

(SRAM) and that also uses pipelining. The experimental setup is presented to-

gether with some results that illustrate the e�e
t of the 
hanges. The 
hanges

are then dis
ussed and areas for further work are suggested.

2 Previous work using FPGAs in Evolutionary

Computing

FPGAs have featured in the �eld of evolutionary 
omputing under three distin
t

headings:



1) as a means of implementing the �tness fun
tions of Geneti
 Algorithms or

Geneti
 Programming [6,17℄;

2) as a platform for implementing a Geneti
 or Evolutionary Algorithm

[3,4,12,13,14℄;

3) in relation to evolving hardware by means of an evolutionary te
hnique

[2,8,15,16℄.

A more detailed review of this and other work 
an be found in [9℄.

3 Des
ription of Handel-C and the target hardware

Handel-C is a high level language that is at the heart of a hardware 
ompilation

system known as Celoxi
a DK1 [1℄ whi
h is designed to 
ompile programs writ-

ten in a C-like high level language into syn
hronous hardware. Sin
e Handel-C

targets hardware, there are some programming restri
tions when 
ompared to

using ISO-C, and these need to be 
onsidered when designing 
ode that 
an be


ompiled by Handel-C. Some of these restri
tions parti
ularly a�e
t the building

of a GP system. Firstly, there is no sta
k available, so re
ursive fun
tions 
annot

be dire
tly supported by the language. Se
ondly, there is a severe limit to the

size of memory that 
an be implemented using standard logi
 
ells on an FPGA

be
ause implementing memory is expensive in terms of sili
on real estate. How-

ever, some FPGAs have internal RAM that 
an be used by Handel-C whi
h is

supported by the ram storage spe
i�er.

The target hardware for this work is a Celoxi
a RC1000 FPGA development

board �tted with a Xilinx XCV2000E Virtex-E FPGA having 43,200 logi
 
ells

and 655,360 bits of blo
k ram, a PCI bridge that 
ommuni
ates between the

RC1000 board and the host 
omputer's PCI bus, and four banks of Stati
 Ran-

dom A

ess Memory (SRAM). Logi
 
ir
uits isolate the FPGA from the SRAM,

allowing both the host CPU and the FPGA to a

ess the SRAM, though not


on
urrently.

4 System Ar
hite
ture

The la
k of a sta
k in Handel-C means that a standard tree based representation

is di�
ult to implement be
ause re
ursion 
annot be handled by the language.

Instead, a linear program representation is used [11℄, though other 
ompa
t rep-

resentations su
h as Cartesian Geneti
 Programming [10℄ in whi
h programs are

represented as graphs, are also worth 
onsidering. Using a linear representation,

a program 
onsists of a sequen
e of words whi
h are interpreted by the problem

spe
i�
 �tness fun
tion. To ease the design, ea
h program has a �xed maximum

length that it 
an grow to. Crossover is performed by sele
ting 
rossover points

at random in two individuals and swapping the nodes after the 
rossover points.

If the length of a program would ex
eed the maximum, it is simply trun
ated

to the maximum. Mutation is performed on an individual by repla
ing a word

with a new randomly generated word whi
h has the potential e�e
t of 
hanging



both the fun
tionality and the terminals of that node. The operators are 
ho-

sen using an 8 bit random number and bit masks whi
h eliminates less-than or

greater-than 
omparisons whi
h are ine�
ient in terms of logi
. The probability

of sele
ting ea
h operator is 31/255 (12%) for mutation, 63/255 (24.5%) for 
opy

and the remainder (63.5%) for 
rossover.

4.1 Extending the population size

Large populations are supported by storing the entire population in o�-
hip

SRAM. The Celoxi
a RC1000 board has 8 MiB

1

of SRAM arranged as 4 banks of

2 MiB that 
an be dire
tly addressed by the FPGA, and ea
h bank is 
on�gured

as 512 Ki 32bit words. In pra
ti
e, one bank is reserved for storing the results

of the run (�tness and lengths of ea
h individual), leaving three banks available

for the population. The total population size is determined by the program size


hosen and the size of the program nodes. Table 1 illustrates the potential range

that 
an be a

ommodated for a node size of 32 bits.

Table 1. Possible population sizes when using three 2 MiB memory banks and a word

size of 32 bits for di�erent program sizes.

Max. Program Length (words) 16 32 64 128 256 512 1024

Max. population size 98,304 49,152 24,576 12,288 6,144 3,072 1,536

External SRAM 
an only be written to or read from on
e per 
lo
k 
y
le,

so 
are was taken in the design to ensure that parallel a

ess to memory 
annot

o

ur. Similarly, the on-
hip blo
k sele
t RAM must not be a

essed more than

on
e per 
lo
k 
y
le. Con
urrent a

ess to the blo
k sele
t RAMs is a
hieved by

partitioning the rams into smaller blo
ks that 
an be a

essed in parallel. A

ess

to the SRAM is 
ontrolled by the pipeline.

4.2 Using pipelines to improve performan
e

Implementing algorithmi
 parallelism or pipelining is a frequently used te
hnique

in hardware design that redu
es the number of 
lo
k 
y
les needed to perform


omplex operations. Pipelines 
an be implemented at a number of levels and in

this work pipelines have been used in several pla
es; a high-level 
oarse grained


ontrol pipeline, and �ne grained pipelines in the �tness evaluation fun
tion

and fun
tions that 
opy data to/from SRAM. The four major GP operations

are divided among the stages of the pipeline: sele
tion of individuals from the

population for breeding, breeding new individuals, �tness evaluation of the in-

dividuals, and repla
ement of the new individuals in the population. Be
ause of

the need to 
ontrol a

ess to the main population in SRAM during the sele
tion

phase whi
h reads individuals from SRAM into blo
k ram, and writing modi�ed

programs ba
k to SRAM, these two operations are 
ombined into one stage. This

1

This paper uses the IEC re
ommended pre�xes for binary multiples. MiB indi
ates

2

20

bytes.



leaves the breeding and �tness evaluation/repla
ement operations. Breeding is


losely tied to sele
tion and needs to o

ur before evaluation 
an take pla
e so

this is 
ombined into the sele
tion phase. Figure 1 illustrates the resultant ar-


hite
ture and the 
oarse-grained 
ontrol pipeline. Stage1 is a pseudo random

Start


End


CycleCount

Random

Number


Generator


Main

Initialisation


writeBack


Select


Breed


Output

Results


wait


Stage1
 Stage2


Stage2a
 Stage2b


Fitness

Evaluation


Replace


Main GP loop repeats until

the required number of

generations have been

processed


Create the initial

population in SRAM


Writes cycle count, fitness 

and length values to SRAM.


Figure 1. Overall ar
hite
ture of the pipelined GP system.

number generator based on a logi
al feedba
k shift register (LFSR), whi
h runs


ontinuously, generating a new random number every 
lo
k 
y
le. The random

numbers are available to the rest of the ma
hine with no overhead. Stage2 is the

main GP ma
hine and 
onsists of two sub-stages. Communi
ation between the

WriteBa
k/Sele
t/Breed sub-stage (stage 2a) and the Evaluate/Repla
e sub-

stage (stage 2b) is via a two dimensional array of individuals in blo
k ram,

indexed by a global phase index whi
h is toggled ea
h time stages 2a and 2b


omplete. The WriteBa
k phase updates the main population in SRAM with

the result of the pre
eding Evaluate/Repla
e phase. The Sele
t phase sele
ts a

series of two parents using tournament sele
tion and 
opies the sele
ted individ-

uals from SRAM to the on-
hip working RAM and the Breed phase then 
reates

a series of new individuals ready for stage 2b to use. Stage 2b performs parallel

evaluations of the individuals and then determines whi
h individuals should be

repla
ed. Parallel evaluation is a
hieved by repli
ating the hardware for �tness

evaluation. The individuals identi�ed for repla
ement are in turn written ba
k to

the main population at the start of the next WriteBa
k/Sele
t/Breed sub-stage.

The wait between evaluation and repla
ement is needed be
ause both sele
tion

and repla
ement require a

ess to the global �tness ve
tor. In pra
ti
e this only


omes into play when the evaluation phase takes less time than WriteBa
k and

Sele
tion, whi
h only happens for very simple �tness fun
tions.

A �ner grained level of pipelining is implemented in the �tness evaluation

fun
tion. FPGAs are syn
hronous devi
es, meaning that a 
lo
k is used to lat
h

data into registers. In Handel-C all expressions are implemented using 
ombina-

torial logi
, whi
h if allowed to grow in depth 
an restri
t the maximum frequen
y



the FPGA 
an be 
lo
ked at. This is be
ause of the delays introdu
ed by the


ombinatorial paths. Therefore, to redu
e logi
 depth, and hen
e improve on the


lo
k frequen
y, it is often advantageous to split a 
omplex expression into more

but simpler expressions. This usually requires more 
lo
k 
y
les, but by pipelin-

ing the operations an e�e
tive single 
y
le throughput 
an be a
hieved. In this

design, the fun
tion read, and de
ode is pipelined with the fun
tion evaluation,

though the e�e
tiveness of this is problem spe
i�
.

In 
onventional steady-state GP, on
e an individual has been evaluated it

repla
es the worst individual in the population. In a hardware implementation

with parallel �tness evaluations this is expensive to implement sin
e a global

sear
h is required. An alternative to this 
alled survival-driven evolution, has

been su

essfully used by Sha
kleford et al [14℄. In this s
heme only o�spring

that are �tter than the worst of their two parents will survive into the next

generation by repla
ing one of the parents. This removes the need for any global

sear
h and this s
heme was adapted to the 
urrent work by maintaining a re
ord

of the parents of ea
h individual.

To 
ompare the performan
e of di�erent implementations a way of measuring

the number of 
y
les used by the FPGA is needed. One possibility is to use the

DK1 simulator, but in large designs with long running times this 
an take many

hours of running whi
h is often impra
ti
al. An alternative is to in
lude a 
y
le


ounter in the design whi
h 
an be read by external programs. The internal 
y
le


ounter runs in parallel with the rest of the hardware, in
rementing a 
ounter

on
e per 
lo
k 
y
le. This approa
h 
ould be extended to providing �ne-grained

measurement of the 
y
les required by the individual phases whi
h would be

valuable for evaluating the detailed performan
e of the design.

On
e the GP ma
hine has �nished a run, the best program needs to be


ommuni
ated to the outside world. The individual programs are already in

SRAM, so they 
an be read dire
tly by the host. The program �tness and lengths

are written to SRAM when the GP ma
hine has �nished so they 
an also be

read by the host. In addition, the 
y
le 
ount(s), and other parameters are made

available to the host via SRAM.

5 Experimental setup

To evaluate the e�e
t of the 
hanges made, two experiments were performed.

Firstly, a dire
t 
omparison with the previous design using the XOR problem

was run. This was done to gauge the overall e�e
t of storing the population

in o�-
hip SRAM, and of implementing the pipelines. Next the Santa Fe Ant

problem was implemented both as a demonstration of a hard problem and an

example of where the fun
tion set is equivalent to that of a traditional CPU

instru
tion set.

Ea
h experiment was run using four di�erent environments. Firstly, an ISO-

C version of the algorithm was developed to prove the operation of the program

be
ause debugging tools for standard C are readily available, and the develop-

ment time for C is 
onsiderably shorter than when using Handel-C and FPGA



tools. Se
ondly, a PowerPC simulator was used to measure how many 
y
les

the algorithm needed when run on a typi
al Redu
ed Instru
tion Set Computer

(RISC) and thirdly, the design was implemented on an FPGA. Ea
h problem

was implemented with a range of parallel evaluations. Lastly to get a feel for the

total e�e
t of implementing a GP system in hardware when 
ompared to using

a popular software GP system, the problems were implemented using lilgp and

a 
omparison made of the performan
e.

When the design is implemented on an FPGA, a host 
ontrol program 
on�g-

ures the FPGA, sets up the random number seed and other 
ontrol parameters

in SRAM, and initiates the GP run. On
e the GP run has �nished, the FPGA

signals the host program and the host 
ontrol program reads the �tness val-

ues from SRAM, de
ides whi
h program(s) are suitable, reads the appropriate

SRAM lo
ations and outputs the program in a usable form. For the two experi-

ments, host programs were also written to verify the programs, and in the 
ase

of the ant problem, display a simple graphi
al tra
e of the ant's behavior.

6 Experiment Des
riptions and Results

6.1 Ex
lusive Or Problem

Des
ription The 2 bit XOR fun
tion x = (ab) + (ab) uses the four basi
 two

input logi
 primitives AND, OR, NOR and NAND whi
h take two registers, R

a

and R

b

. The result is pla
ed into R

a

. These fun
tions have been shown to be

su�
ient to solve the boolean XOR problem [5℄. Exe
ution is terminated when

the last instru
tion in the program has been exe
uted. The two inputs a and b

were written to registers R

0

and R

1

before the �tness evaluation, and the result

x read from register R

0

after the �tness evaluation. The full set of parameters is

given in Table 2.

Table 2. Parameters for the XOR problem

Parameter Value

Population Size 16

Fun
tions AND(R

a

,R

b

), OR(R

a

,R

b

), NOR(R

a

,R

b

), NAND(R

a

,R

b

)

Terminals 4 registers

Max Program Size 16

Generations 511

Fitness Cases 4 pairs of values of a and b

Raw Fitness The number of �tness 
ases that failed to yield the expe
ted

result.

Comparing these results �rst with the results in [9℄ whi
h a
hieved a Speedup

time

of 6 times for 4 parallel evaluations, it 
an be seen that splitting the algorithm

into two sub-stages gives a useful in
rease in performan
e. However, the surpris-

ing result is that it takes longer to run the XOR problem when more evaluations

are performed in parallel, in parti
ular when 8 parallel evaluations are done.

Detailed investigation showed that this was a side e�e
t of the sele
tion method.



Table 3. Results of running the XOR problem. The results are the average of 10 runs

for ea
h 
on�guration, ea
h run using a di�erent random seed.

Measurement PowerPC HandelC

Parallel �tness evaluations n/a 1 2 4 8

Cy
les 13,723,187 74,819 73,232 72,184 81,767

Clo
k Frequen
y 200MHz 52MHz 48MHz 42MHz 37MHz

Number of Sli
es n/a 1238 1247 1725 2801

Speedup


y
les

1 183 187 190 167

Speedup

time

1 47 44 39 31

During sele
tion the number of individuals sele
ted from the main population

is the number of parallel �tness evaluations wanted, and these are sele
ted at

random from the population, but only those individuals that are not 
urrently be-

ing evaluated by the Evaluate/Repla
e sub-stage are valid 
andidates. When the

number of individuals required is half the population size, many more attempts

must be made by the sele
tion phase to �nd valid individuals. This explains why

when the number of parallel evaluations is 8, the run time is greater than when

only two individuals are being sele
ted.

The frequen
ies in table 3 for the Handel-C implementations is that reported

by the pla
e&route tools, and takes into a

ount the delays introdu
ed by the


ombinatorial logi
 and the delays introdu
ed by the routing resour
es used on

the FPGA. A lot of e�ort was spent to redu
e the logi
 and routing delays in

the design, with the result that this design runs substantially faster that the

previous design whi
h 
ould only rea
h 18 MHz.

Running this problem with lilgp required approximately 165� 10

9


y
les, or

more than 12 times the number of 
y
les needed by the linear implementation.

6.2 Arti�
ial Ant Problem

Des
ription The motivation for 
hoosing this problem for a hardware imple-

mentation is two fold: Firstly it is a hard problem for GP to solve [7℄, and

se
ondly it demonstrates that a 
ustom hardware design 
an e�
iently en
ode

the fun
tion and terminal set as native `instru
tions'. That is to say one of the

attra
tions of using an FPGA is that 
ustom instru
tions not normally found in

produ
tion CPUs 
an easily be 
onstru
ted. The full set of parameters is given

in Table 4. The ANT problem was exe
uted using the same environments as the

XOR problem and the results are presented in Table 5.

An example program from this problem found in one run is:

IF_FOOD(LEFT,RIGHT)

PROGN (NOP,RIGHT)

IF_FOOD (NOP,LEFT)

PROGN (MOVE,LEFT)

Figure 2 shows the speedup results for the Ant problem, and gives both the

Speedup


y
les

and Speedup

time

. These results show that for the Ant problem,

in
reasing the number of parallel �tness evaluations in
reases the Speedup


y
les



Table 4. Parameters for the ANT problem

Parameter Value

Population Size 512

Fun
tions IF_FOOD(T

a

,T

b

), PROGN(T

a

, T

b

)

Terminals MOVE, LEFT, RIGHT, NOP

Max Program Size 32

Generations 511

Fitness Cases One �tness 
ase. The program was run until 1024 timesteps had

elapsed or the ant had 
onsumed all the food.

Raw Fitness The number of pie
es of food not eaten in the time available.

Table 5. Results of running the ANT problem

Measurement PowerPC HandelC

Parallel �tness evaluations n/a 2 4 8 16 32

Cy
les 2.695e9 42.58e6 23.19e6 13.15e6 7.53e6 4.2e6

Clo
k Frequen
y 200MHz 40 38 36 33 31

Number of Sli
es n/a 1,835 2,636 4,840 7,429 14,908

Speedup


y
les

1 69 116 204 358 642

Speedup

time

1 13 22 36 59 99

fa
tor linearly, but be
ause the routing delay on the FPGA in
reases with larger

designs, the maximum 
lo
k frequen
y de
reases, o�setting some of the gains

made by in
reasing the parallelism. The number of sli
es used for 32 parallel

Figure 2. The speedup fa
tors for the number of 
y
les (Speedup


y
les

) and the time

(Speedup

time

) for the Ant problem.

evaluations is nearly 80% of the total available on the 
hip. This is e�e
tively the

limit for the XCV2000E FPGA. It is worth remarking that a PC with 750 MiB

of RAM was required to run the Handel-C 
ompiler and the pla
e&route tools

before this design 
ould be implemented, and a PC with a 1.4G Hz Athlon CPU

required nearly four hours to 
omplete the pla
e&route. This is in 
ontrast to a

modest 500 MHz Pentium ma
hine 
apable of 
ompiling and running lilgp and

other popular GP pa
kages.

Running this problem using lilgp in the PPC simulator needed approximately

8:6�10

9


y
les, or over three times the number required by the linear implemen-



tation on a PPC pro
essor, giving the FPGA using 32 parallel �tness evaluations

a Speedup


y
les

of 2047 and a Speedup

time

of approximately 300 times over lilgp.

7 Dis
ussion

7.1 E�e
t of Implementing Pipelines and in
reasing parallelism

A dire
t 
omparison between the work in [9℄ showed for the XOR problem that

using a pipeline in the main 
ontrol loop, and in the �tness fun
tion provides

a useful speedup, but be
ause the �tness evaluation is mu
h shorter than the

WriteBa
k/Sele
t/Breed sub-stage, there is no bene�t to in
reasing the number

of parallel �tness evaluations. It was also 
lear that for small populations there is

a limit to the number of parallel �tness evaluations that 
an be a

ommodated.

However, the situation is reversed in the Ant problem be
ause the time needed

for �tness evaluation is mu
h larger than the WriteBa
k/Sele
t/Breed phase.

Clearly for other problems where the �tness fun
tion takes a long time it would

be worth devising e�
ient pipelines for the �tness evaluation fun
tions.

7.2 Comparison to a popular Software GP system.

While this may appear to be an unfair 
omparison, a lot of work in GP is 
entered

around exploring the detailed operation of GP, whi
h often requires hundreds

or thousands of runs with minor parameter 
hanges, and performan
e is still

likely to be an issue even with pro
essors running at 2 GHz and beyond. This


omparison was done to see if using a hardware implementation would be of

bene�t to resear
hers. The results show that where a �xed problem type needs

to be run many times, a hardware implementation using many parallel �tness

evaluations 
ould redu
e the time required for extended runs by over two orders

of magnitude. While this looks promising, it must also be noted that 
hanging

parameters for a FPGA run requires a large investment in time and the hardware

approa
h may not always be suitable.

7.3 Handel-C as an Implementation Language

Using Handel-C to implement this design has highlighted two major bene�ts:

Firstly, the design of the system by someone trained as a software engineer with

limited hardware experien
e was relatively straightforward. Se
ondly, it meant

that the algorithm 
ould be tested and debugged using traditional software tools.

This is important when the time to 
ompile a Handel-C design for the larger

problems into a simulation on a 1.4 GHz PC is of the order of 25 minutes, and

to pla
e and route 
ould take an hour or more. In 
ontrast, 
ompilation of the


ode using the GNU 
ompiler took se
onds.

An impli
ation of using Handel-C is that to get the best throughput some fa-

miliar programming 
onstru
ts must be abandoned and new te
hniques adopted.

It is not possible to 
ompletely ignore the hardware aspe
ts of a design, for ex-

ample when interfa
ing to SRAM, and when trying to squeeze the last few nano

se
onds out of the design during the �nal pla
e and route stages.



8 Further Work

The latest Virtex-II FPGAs from Xilinx are bigger and faster than the Virtex-

E devi
e used so far. These devi
es promise even better speedups, and initial

studies using these devi
es have indi
ated that a further speedup of two to

three times is possible. The Virtex-II devi
es also have larger gate 
ounts and

bigger on-
hip blo
k RAMs. The largest of these devi
es - the XC2V8000 
ould

theoreti
ally support up to 128 parallel �tness evaluations for the arti�
ial ant

problem. The initial indi
ation is that by 
ombining the faster 
lo
k frequen
y

and more parallel �tness evaluations the ant problem 
ould see a further 10 times

speedup. Further work needs to be done to verify this.

Whilst the performan
e gains are substantial for one of the problems looked

at, the 
osts asso
iated with using this te
hnology need to be evaluated with

respe
t to software engineering e�ort, 
apital equipment 
osts and operational


onsiderations, so that pra
titioners 
an make the appropriate 
hoi
es when


hoosing a te
hnology for implementing a GP system.

9 Con
lusions

Moving the population storage to o�-
hip SRAM has allowed the design to solve

problems requiring larger population sizes, an example of whi
h is the Ant prob-

lem. Pipelining the breed, sele
tion and evaluation phases gives a performan
e

boost to problems that have short evaluation time requirements like the XOR

problem. For problems like the Ant problem that require extended �tness evalu-

ation times the bene�ts of using a pipeline are even greater, allowing the number

of parallel �tness evaluations to be in
reased and the performan
e in
reasing in

a nearly linear relationship.

Referen
es

1. Celoxi
a. Web site of Celoxi
a Ltd. www.
eloxi
a.
om, 2001. Vendors of Handel-C.

Last visited 15/June/2001.

2. T. Fogarty, J. Miller, and P. Thompson. Evolving Digital Logi
 Cir
uits on Xilinx

6000 Family FPGAs. In P. Chawdhry, R. Roy, and R. Pant, editors, Soft Computing

in Engineering Design and Manufa
turing, pages 299�305. Springer-Verlag, 1998.

3. P. Graham and B. Nelson. Geneti
 Algorithms In Software and In hardware -

A Performan
e Analysis Of Workstation and Custom Computing Ma
hine Imple-

mentations. In K. Po
ek and J. Arnold, editors, Pro
eedings of the Fourth IEEE

Symposium of FPGAs for Custom Computing Ma
hines., pages 216�225, Napa

Valley, Califormia, Apr. 1996. IEEE Computer So
iety Press.

4. M. Heywood and A. Zin
ir-Heywood. Register based geneti
 programming on

FPGA 
omputing platforms. In R. Poli, W. Banzhaf, W. Langdon, J. Miller,

P. Nordin, and T. Fogarty, editors, Geneti
 programming, pro
eedings of eu-

rogp'2000, volume 1802 of LNCS, pages 44�59, Edinburgh, 15-16 April 2000.

Springer-Verlag.



5. J. Koza. Geneti
 programming: on the programming of 
omputers by means of

natural sele
tion. MIT Press, Cambridge, MA, USA, 1992.

6. J. Koza, F. Bennett III, J. Hut
hings, S. Bade, M. Keane, and D. Andre. Rapidly

re
on�gurable �eld-programmable gate arrays for a

elerating �tness evaluation in

geneti
 programming. In J. Koza, editor, Late breaking papers at the 1997 geneti


programming 
onferen
e, pages 121�131, Stanford University, CA, USA, 13�16 July

1997. Stanford Bookstore.

7. W. Langdon and R. Poli. Why ants are hard. In J. Koza, W. Banzhaf, K. Chel-

lapilla, K. Deb, M. Dorigo, D. Fogel, M. Garzon, D. Goldberg, H. Iba, and R. Riolo,

editors, Geneti
 programming 1998: pro
eedings of the third annual 
onferen
e,

pages 193�201, University of Wis
onsin, Madison, Wis
onsin, USA, 22-25 July

1998. Morgan Kaufmann.

8. D. Levi and S. Gu

ione. Geneti
 FPGA: Evolving Stable Cir
uits on Mainstream

FPGA Devi
es. In A. Stoi
a, D. Keymeulen, and J. Lohn, editors, Pro
. of the

First NASA/DoD Workshop on Evolvable Hardware, pages 12�17. IEEE Computer

So
iety, July 1999.

9. P. Martin. A Hardware Implementation of a Geneti
 Programming System using

FPGAs and Handel-C. Geneti
 Programming and Evolvable Ma
hines, 2(4):317�

343, 2001.

10. J. Miller and P. Thomson. Cartesian geneti
 programming. In R. Poli, W. Banzhaf,

W. Langdon, J. Miller, P. Nordin, and T. Fogarty, editors, Geneti
 programming,

pro
eedings of eurogp'2000, volume 1802 of LNCS, pages 121�132, Edinburgh, 15-16

April 2000. Springer-Verlag.

11. P. Nordin and W. Banzhaf. Evolving turing-
omplete programs for a register ma-


hine with self-modifying 
ode. In L. Eshelman, editor, Geneti
 algorithms: pro-


eedings of the sixth international 
onferen
e (i
ga95), pages 318�325, Pittsburgh,

PA, USA, 15-19 July 1995. Morgan Kaufmann.

12. S. Perkins, R. Porter, and N. Harvey. Everything on the 
hip: a hardware-based self-


ontained spatially-stru
tured geneti
 algorithm for signal pro
essing. In J. Miller,

A. Thompson, P. Thomson, and T. Fogarty, editors, Pro
. Of the 3rd Int. Conf. on

Evolvable Systems: From Biology to Hardware (ICES 2000), volume 1801 of Le
ture

Notes in Computer S
ien
e, pages 165�174, Edinburgh, UK, 2000. Springer-Verlag.

13. D. S
ott, S. Seth, and A. Samal. A Hardware Engine for Geneti
 Algorithms.

Te
hni
al Report UNL-CSE-97-001, University of Nebraska-Lin
on, Dept Com-

puter S
ien
e and Engineering, University of Nebraska-Lin
on., 4 July 1997.

14. B. Sha
kleford, G. Snider, R. Carter, E. Okushi, M. Yasuda, K. Seo, and H. Ya-

suura. A High Performan
e, Pipelined, FPGA-Based Geneti
 Algorithm Ma
hine.

Geneti
 Programming and Evolvable Ma
hines, 2(1):33�60, Mar. 2001.

15. A. Thompson. Sili
on evolution. In J. Koza, D. Goldberg, D. Fogel, and R. Ri-

olo, editors, Geneti
 programming 1996: pro
eedings of the �rst annual 
onferen
e,

pages 444�452, Stanford University, CA, USA, 28�31 July 1996. MIT Press.

16. G. Tufte and P. Haddow. Prototyping a GA pipeline for 
omplete hardware evo-

lution. In A. Stoi
a, D. Keymeulen, and J. Lohn, editors, Pro
. of the First

NASA/DoD Workshop on Evolvable Hardware, pages 18�25. IEEE Computer So-


iety, July 1999.

17. Y. Yamagu
hi, A. Miyashita, T. Marutama, and T. Hoshino. A Co-pro
essor

System with a Virtex FPGA for Evolutionary Computation. In R. Hartenstein

and H. Grunba
her, editors, 10th International Conferen
e on Field Programmable

Logi
 and Appli
ations (FPL2000), volume 1896 of Le
ture notes in Computer

S
ien
e, pages 240�249. Springer-Verlag, Aug. 2000.


