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Abstract A complete Genetic Programming (GP) system implemented
in a single FPGA is described in this paper. The GP system is capable
of solving problems that require large populations and by using parallel
fitness evaluations can solve problems in a much shorter time that a
conventional GP system in software. A high level language to hardware
compilation system called Handel-C is used for implementation.

1 Introduction

The motivation for this work is that as problems get harder, the performance of
traditional computers can be severely stretched despite the continuing increase
in performance of modern CPUs. By implementing a GP system directly in hard-
ware the aim is to increase the performance by a sufficiently large factor to be
able to tackle harder problems and to make investigations into the operation of
GP easier. This paper is an update to the work presented in [9] which describes
how a GP system that includes initial population creation, fitness evaluation,
selection, and breeding operators can be implemented in a Field Programmable
Gate Array (FPGA) using a high level language to hardware compilation tech-
nique. Two major areas were singled out for further work in order to improve
the performance: 1) extend the implementation to handle larger populations; 2)
the use of pipelining to improve the parallelism of the hardware.

The changes needed and the results of implementing the changes are de-
scribed in this paper. The paper begins with a brief survey of previous work
using FPGAs for evolutionary techniques and a short summary of the Handel-C
language and the target hardware. This is followed by a description of the re-
vised design that stores the population in off-chip Static Random Access Memory
(SRAM) and that also uses pipelining. The experimental setup is presented to-
gether with some results that illustrate the effect of the changes. The changes
are then discussed and areas for further work are suggested.

2 Previous work using FPGAs in Evolutionary
Computing

FPGAs have featured in the field of evolutionary computing under three distinct
headings:



1) as a means of implementing the fitness functions of Genetic Algorithms or
Genetic Programming [6,17];

2) as a platform for implementing a Genetic or Evolutionary Algorithm
[3,4,12,13,14];

3) in relation to evolving hardware by means of an evolutionary technique
[2,8,15,16].
A more detailed review of this and other work can be found in [9].

3 Description of Handel-C and the target hardware

Handel-C is a high level language that is at the heart of a hardware compilation
system known as Celoxica DK1 [1] which is designed to compile programs writ-
ten in a C-like high level language into synchronous hardware. Since Handel-C
targets hardware, there are some programming restrictions when compared to
using ISO-C, and these need to be considered when designing code that can be
compiled by Handel-C. Some of these restrictions particularly affect the building
of a GP system. Firstly, there is no stack available, so recursive functions cannot
be directly supported by the language. Secondly, there is a severe limit to the
size of memory that can be implemented using standard logic cells on an FPGA
because implementing memory is expensive in terms of silicon real estate. How-
ever, some FPGAs have internal RAM that can be used by Handel-C which is
supported by the ram storage specifier.

The target hardware for this work is a Celoxica RC1000 FPGA development
board fitted with a Xilinx XCV2000E Virtex-E FPGA having 43,200 logic cells
and 655,360 bits of block ram, a PCI bridge that communicates between the
RC1000 board and the host computer’s PCI bus, and four banks of Static Ran-
dom Access Memory (SRAM). Logic circuits isolate the FPGA from the SRAM,
allowing both the host CPU and the FPGA to access the SRAM, though not
concurrently.

4 System Architecture

The lack of a stack in Handel-C means that a standard tree based representation
is difficult to implement because recursion cannot be handled by the language.
Instead, a linear program representation is used [11], though other compact rep-
resentations such as Cartesian Genetic Programming [10] in which programs are
represented as graphs, are also worth considering. Using a linear representation,
a program consists of a sequence of words which are interpreted by the problem
specific fitness function. To ease the design, each program has a fixed maximum
length that it can grow to. Crossover is performed by selecting crossover points
at random in two individuals and swapping the nodes after the crossover points.
If the length of a program would exceed the maximum, it is simply truncated
to the maximum. Mutation is performed on an individual by replacing a word
with a new randomly generated word which has the potential effect of changing



both the functionality and the terminals of that node. The operators are cho-
sen using an 8 bit random number and bit masks which eliminates less-than or
greater-than comparisons which are inefficient in terms of logic. The probability
of selecting each operator is 31/255 (12%) for mutation, 63/255 (24.5%) for copy
and the remainder (63.5%) for crossover.

4.1 Extending the population size

Large populations are supported by storing the entire population in off-chip
SRAM. The Celoxica RC1000 board has 8 MiB! of SRAM arranged as 4 banks of
2 MiB that can be directly addressed by the FPGA, and each bank is configured
as 512 Ki 32bit words. In practice, one bank is reserved for storing the results
of the run (fitness and lengths of each individual), leaving three banks available
for the population. The total population size is determined by the program size
chosen and the size of the program nodes. Table 1 illustrates the potential range
that can be accommodated for a node size of 32 bits.

Table 1. Possible population sizes when using three 2 MiB memory banks and a word
size of 32 bits for different program sizes.

Max. Program Length (words) 16 32 64 128 256 512 1024
Max. population size 98,304 49,152 24,576 12,288 6,144 3,072 1,536

External SRAM can only be written to or read from once per clock cycle,
so care was taken in the design to ensure that parallel access to memory cannot
occur. Similarly, the on-chip block select RAM must not be accessed more than
once per clock cycle. Concurrent access to the block select RAMs is achieved by
partitioning the rams into smaller blocks that can be accessed in parallel. Access
to the SRAM is controlled by the pipeline.

4.2 Using pipelines to improve performance

Implementing algorithmic parallelism or pipelining is a frequently used technique
in hardware design that reduces the number of clock cycles needed to perform
complex operations. Pipelines can be implemented at a number of levels and in
this work pipelines have been used in several places; a high-level coarse grained
control pipeline, and fine grained pipelines in the fitness evaluation function
and functions that copy data to/from SRAM. The four major GP operations
are divided among the stages of the pipeline: selection of individuals from the
population for breeding, breeding new individuals, fitness evaluation of the in-
dividuals, and replacement of the new individuals in the population. Because of
the need to control access to the main population in SRAM during the selection
phase which reads individuals from SRAM into block ram, and writing modified
programs back to SRAM, these two operations are combined into one stage. This

! This paper uses the IEC recommended prefixes for binary multiples. MiB indicates
229 bytes.



leaves the breeding and fitness evaluation/replacement operations. Breeding is
closely tied to selection and needs to occur before evaluation can take place so
this is combined into the selection phase. Figure 1 illustrates the resultant ar-
chitecture and the coarse-grained control pipeline. Stagel is a pseudo random
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Figure 1. Overall architecture of the pipelined GP system.

number generator based on a logical feedback shift register (LFSR), which runs
continuously, generating a new random number every clock cycle. The random
numbers are available to the rest of the machine with no overhead. Stage2 is the
main GP machine and consists of two sub-stages. Communication between the
WriteBack/Select /Breed sub-stage (stage 2a) and the Evaluate/Replace sub-
stage (stage 2b) is via a two dimensional array of individuals in block ram,
indexed by a global phase index which is toggled each time stages 2a and 2b
complete. The WriteBack phase updates the main population in SRAM with
the result of the preceding Evaluate/Replace phase. The Select phase selects a
series of two parents using tournament selection and copies the selected individ-
uals from SRAM to the on-chip working RAM and the Breed phase then creates
a series of new individuals ready for stage 2b to use. Stage 2b performs parallel
evaluations of the individuals and then determines which individuals should be
replaced. Parallel evaluation is achieved by replicating the hardware for fitness
evaluation. The individuals identified for replacement are in turn written back to
the main population at the start of the next WriteBack/Select/Breed sub-stage.
The wait between evaluation and replacement is needed because both selection
and replacement require access to the global fitness vector. In practice this only
comes into play when the evaluation phase takes less time than WriteBack and
Selection, which only happens for very simple fitness functions.

A finer grained level of pipelining is implemented in the fitness evaluation
function. FPGAs are synchronous devices, meaning that a clock is used to latch
data into registers. In Handel-C all expressions are implemented using combina-
torial logic, which if allowed to grow in depth can restrict the maximum frequency



the FPGA can be clocked at. This is because of the delays introduced by the
combinatorial paths. Therefore, to reduce logic depth, and hence improve on the
clock frequency, it is often advantageous to split a complex expression into more
but simpler expressions. This usually requires more clock cycles, but by pipelin-
ing the operations an effective single cycle throughput can be achieved. In this
design, the function read, and decode is pipelined with the function evaluation,
though the effectiveness of this is problem specific.

In conventional steady-state GP, once an individual has been evaluated it
replaces the worst individual in the population. In a hardware implementation
with parallel fitness evaluations this is expensive to implement since a global
search is required. An alternative to this called survival-driven evolution, has
been successfully used by Shackleford et al [14]. In this scheme only offspring
that are fitter than the worst of their two parents will survive into the next
generation by replacing one of the parents. This removes the need for any global
search and this scheme was adapted to the current work by maintaining a record
of the parents of each individual.

To compare the performance of different implementations a way of measuring
the number of cycles used by the FPGA is needed. One possibility is to use the
DK1 simulator, but in large designs with long running times this can take many
hours of running which is often impractical. An alternative is to include a cycle
counter in the design which can be read by external programs. The internal cycle
counter runs in parallel with the rest of the hardware, incrementing a counter
once per clock cycle. This approach could be extended to providing fine-grained
measurement of the cycles required by the individual phases which would be
valuable for evaluating the detailed performance of the design.

Once the GP machine has finished a run, the best program needs to be
communicated to the outside world. The individual programs are already in
SRAM, so they can be read directly by the host. The program fitness and lengths
are written to SRAM when the GP machine has finished so they can also be
read by the host. In addition, the cycle count(s), and other parameters are made
available to the host via SRAM.

5 Experimental setup

To evaluate the effect of the changes made, two experiments were performed.
Firstly, a direct comparison with the previous design using the XOR problem
was run. This was done to gauge the overall effect of storing the population
in off-chip SRAM, and of implementing the pipelines. Next the Santa Fe Ant
problem was implemented both as a demonstration of a hard problem and an
example of where the function set is equivalent to that of a traditional CPU
instruction set.

Each experiment was run using four different environments. Firstly, an ISO-
C version of the algorithm was developed to prove the operation of the program
because debugging tools for standard C are readily available, and the develop-
ment time for C is considerably shorter than when using Handel-C and FPGA



tools. Secondly, a PowerPC simulator was used to measure how many cycles
the algorithm needed when run on a typical Reduced Instruction Set Computer
(RISC) and thirdly, the design was implemented on an FPGA. Each problem
was implemented with a range of parallel evaluations. Lastly to get a feel for the
total effect of implementing a GP system in hardware when compared to using
a popular software GP system, the problems were implemented using lilgp and
a comparison made of the performance.

When the design is implemented on an FPGA, a host control program config-
ures the FPGA, sets up the random number seed and other control parameters
in SRAM, and initiates the GP run. Once the GP run has finished, the FPGA
signals the host program and the host control program reads the fitness val-
ues from SRAM, decides which program(s) are suitable, reads the appropriate
SRAM locations and outputs the program in a usable form. For the two experi-
ments, host programs were also written to verify the programs, and in the case
of the ant problem, display a simple graphical trace of the ant’s behavior.

6 Experiment Descriptions and Results

6.1 Exclusive Or Problem

Description The 2 bit XOR function z = (ab) + (@b) uses the four basic two
input logic primitives AND, OR, NOR and NAND which take two registers, R,
and Ryp. The result is placed into R,. These functions have been shown to be
sufficient to solve the boolean XOR problem [5]. Execution is terminated when
the last instruction in the program has been executed. The two inputs a and b
were written to registers Rg and Ry before the fitness evaluation, and the result
z read from register Ry after the fitness evaluation. The full set of parameters is
given in Table 2.

Table 2. Parameters for the XOR, problem

Parameter Value

Population Size 16

Functions AND(R.,Rs), OR(R4,Rs), NOR(Rq,R5), NAND(R,,Ry)

Terminals 4 registers

Max Program Size 16

Generations 511

Fitness Cases 4 pairs of values of a and b

Raw Fitness The number of fitness cases that failed to yield the expected
result.

Comparing these results first with the results in [9] which achieved a Speedupyim.
of 6 times for 4 parallel evaluations, it can be seen that splitting the algorithm
into two sub-stages gives a useful increase in performance. However, the surpris-
ing result is that it takes longer to run the XOR problem when more evaluations
are performed in parallel, in particular when 8 parallel evaluations are done.
Detailed investigation showed that this was a side effect of the selection method.



Table 3. Results of running the XOR problem. The results are the average of 10 runs
for each configuration, each run using a different random seed.

Measurement PowerPC HandelC

Parallel fitness evaluations n/a 1 2 4 8
Cycles 13,723,187 74,819 73,232 72,184 81,767
Clock Frequency 200MHz 52MHz 48MHz 42MHz 37MHz
Number of Slices n/a 1238 1247 1725 2801
Speedupeycies 1 183 187 190 167
Speeduptime 1 47 44 39 31

During selection the number of individuals selected from the main population
is the number of parallel fitness evaluations wanted, and these are selected at
random from the population, but only those individuals that are not currently be-
ing evaluated by the Evaluate/Replace sub-stage are valid candidates. When the
number of individuals required is half the population size, many more attempts
must be made by the selection phase to find valid individuals. This explains why
when the number of parallel evaluations is 8, the run time is greater than when
only two individuals are being selected.

The frequencies in table 3 for the Handel-C implementations is that reported
by the place&route tools, and takes into account the delays introduced by the
combinatorial logic and the delays introduced by the routing resources used on
the FPGA. A lot of effort was spent to reduce the logic and routing delays in
the design, with the result that this design runs substantially faster that the
previous design which could only reach 18 MHz.

Running this problem with lilgp required approximately 165 x 10° cycles, or
more than 12 times the number of cycles needed by the linear implementation.

6.2 Artificial Ant Problem

Description The motivation for choosing this problem for a hardware imple-
mentation is two fold: Firstly it is a hard problem for GP to solve [7], and
secondly it demonstrates that a custom hardware design can efficiently encode
the function and terminal set as native ‘instructions’. That is to say one of the
attractions of using an FPGA is that custom instructions not normally found in
production CPUs can easily be constructed. The full set of parameters is given
in Table 4. The ANT problem was executed using the same environments as the
XOR. problem and the results are presented in Table 5.
An example program from this problem found in one run is:

IF_F0OD (LEFT,RIGHT)
PROGN (NOP,RIGHT)
IF_F00D (NOP,LEFT)
PROGN (MOVE,LEFT)

Figure 2 shows the speedup results for the Ant problem, and gives both the
Speedupcycies and Speedupiim.. These results show that for the Ant problem,
increasing the number of parallel fitness evaluations increases the Speedupcycies



Table 4. Parameters for the ANT problem

Parameter Value

Population Size 512

Functions IF_FOOD(Ta,T},), PROGN(Ta, Ty)

Terminals MOVE, LEFT, RIGHT, NOP

Max Program Size 32

Generations 511

Fitness Cases One fitness case. The program was run until 1024 timesteps had
elapsed or the ant had consumed all the food.

Raw Fitness The number of pieces of food not eaten in the time available.

Table 5. Results of running the ANT problem

Measurement PowerPC HandelC

Parallel fitness evaluations n/a 2 4 8 16 32
Cycles 2.695e9  42.58e6 23.19¢6 13.15e6 7.53e6 4.2e6
Clock Frequency 200MHz 40 38 36 33 31
Number of Slices n/a 1,835 2,636 4,840 7,429 14,908
Speedupcycies 1 69 116 204 358 642
Speeduptime 1 13 22 36 59 99

factor linearly, but because the routing delay on the FPGA increases with larger
designs, the maximum clock frequency decreases, offsetting some of the gains
made by increasing the parallelism. The number of slices used for 32 parallel
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Figure 2. The speedup factors for the number of cycles (Speedupeycies) and the time
(Speeduptime) for the Ant problem.

evaluations is nearly 80% of the total available on the chip. This is effectively the
limit for the XCV2000E FPGA. It is worth remarking that a PC with 750 MiB
of RAM was required to run the Handel-C compiler and the place&route tools
before this design could be implemented, and a PC with a 1.4G Hz Athlon CPU
required nearly four hours to complete the place&route. This is in contrast to a
modest 500 MHz Pentium machine capable of compiling and running lilgp and
other popular GP packages.

Running this problem using lilgp in the PPC simulator needed approximately
8.6 x 10° cycles, or over three times the number required by the linear implemen-



tation on a PPC processor, giving the FPGA using 32 parallel fitness evaluations
a Speedupcycies of 2047 and a Speedupim. of approximately 300 times over lilgp.

7 Discussion

7.1 Effect of Implementing Pipelines and increasing parallelism

A direct comparison between the work in [9] showed for the XOR problem that
using a pipeline in the main control loop, and in the fitness function provides
a useful speedup, but because the fitness evaluation is much shorter than the
WriteBack/Select /Breed sub-stage, there is no benefit to increasing the number
of parallel fitness evaluations. It was also clear that for small populations there is
a limit to the number of parallel fitness evaluations that can be accommodated.
However, the situation is reversed in the Ant problem because the time needed
for fitness evaluation is much larger than the WriteBack/Select/Breed phase.
Clearly for other problems where the fitness function takes a long time it would
be worth devising efficient pipelines for the fitness evaluation functions.

7.2 Comparison to a popular Software GP system.

While this may appear to be an unfair comparison, a lot, of work in GP is centered
around exploring the detailed operation of GP, which often requires hundreds
or thousands of runs with minor parameter changes, and performance is still
likely to be an issue even with processors running at 2 GHz and beyond. This
comparison was done to see if using a hardware implementation would be of
benefit to researchers. The results show that where a fixed problem type needs
to be run many times, a hardware implementation using many parallel fitness
evaluations could reduce the time required for extended runs by over two orders
of magnitude. While this looks promising, it must also be noted that changing
parameters for a FPGA run requires a large investment in time and the hardware
approach may not always be suitable.

7.3 Handel-C as an Implementation Language

Using Handel-C to implement this design has highlighted two major benefits:
Firstly, the design of the system by someone trained as a software engineer with
limited hardware experience was relatively straightforward. Secondly, it meant
that the algorithm could be tested and debugged using traditional software tools.
This is important when the time to compile a Handel-C design for the larger
problems into a simulation on a 1.4 GHz PC is of the order of 25 minutes, and
to place and route could take an hour or more. In contrast, compilation of the
code using the GNU compiler took seconds.

An implication of using Handel-C is that to get the best throughput some fa-
miliar programming constructs must be abandoned and new techniques adopted.
It is not possible to completely ignore the hardware aspects of a design, for ex-
ample when interfacing to SRAM, and when trying to squeeze the last few nano
seconds out of the design during the final place and route stages.



8 Further Work

The latest Virtex-II FPGAs from Xilinx are bigger and faster than the Virtex-
E device used so far. These devices promise even better speedups, and initial
studies using these devices have indicated that a further speedup of two to
three times is possible. The Virtex-II devices also have larger gate counts and
bigger on-chip block RAMs. The largest of these devices - the XC2V8000 could
theoretically support up to 128 parallel fitness evaluations for the artificial ant
problem. The initial indication is that by combining the faster clock frequency
and more parallel fitness evaluations the ant problem could see a further 10 times
speedup. Further work needs to be done to verify this.

Whilst the performance gains are substantial for one of the problems looked
at, the costs associated with using this technology need to be evaluated with
respect to software engineering effort, capital equipment costs and operational
considerations, so that practitioners can make the appropriate choices when
choosing a technology for implementing a GP system.

9 Conclusions

Moving the population storage to off-chip SRAM has allowed the design to solve
problems requiring larger population sizes, an example of which is the Ant prob-
lem. Pipelining the breed, selection and evaluation phases gives a performance
boost to problems that have short evaluation time requirements like the XOR
problem. For problems like the Ant problem that require extended fitness evalu-
ation times the benefits of using a pipeline are even greater, allowing the number
of parallel fitness evaluations to be increased and the performance increasing in
a nearly linear relationship.
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