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Abstract 
 
 
Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk 
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and 
ranking statements according to the predicted risk. Designing a risk evaluation formula is 
often an intuitive process done by human software engineer. This paper presents a Genetic 
Programming approach for evolving risk assessment formulæ. The empirical evaluation 
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations 
can consistently outperform many of the human-designed formulæ, such as Tarantula, 
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform 
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2 
(ITE2) structure, or even outperform it against other program structures. 

                                                
1 The program spectra data used in the paper, as well as the complete empirical results, are available from: 
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html. 
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Abstract

Grow and graft genetic programming (GGGP) can automatically evolve an existing state-of-
the art program to give more accurate predictions of the secondary structures adapted by RNA
molecules using their base sequence alone. That is, genetic improvement (GI) can make func-
tional as well as non-functional source code changes.



1 Introduction

Biology is now a data rich science. The central dogma of Biology states that the fundamental information
for all forms of life is transcribed from DNA into messenger RNA, which intern is translated into protein.
Like DNA, RNA is a long chain polymer principally composed of 4 bases (G, U, A, and C). Each RNA
molecule’s sequence of bases is known as its primary structure. Much of the interesting Biology occurs
when RNA is a single strand (unlike the more stable double stranded DNA helix). Like DNA the four bases
can form relatively weak temporary bonds with their complementary base. (C pairs with G, and A with U.)
In some commercially important species, perhaps half the DNA is transcribed into RNA but only a tiny
fraction of that is translated into protein. Other than conveying information for protein manufacture, there
are some well known biological uses of RNA. For example, some RNA molecules are known to act as
enzymes which catalyse reactions between biomolecules. Also it is thought some of the transcribed RNA
is used to regulate gene expression. Much of the chemistry of biomolecules is determined by their three
dimensional shape. These areas are relatively new, and this, and other uses of RNA, have sparked renewed
interest in RNA and its structure.

Figure 1: Folding pattern (secondary structure) for RNA molecule PDB 00996 (sequence GGUGAAG-
GCUGCCGAAGCCa). Left: prediction made by mutated RNAfold (code changes given in Section 3.3).
This structure has a Matthew’s Correlation Coefficient (MCC, page 4) of 0.784133 with the true structure
(centre) as recorded by RNA STRAND v2.0 [1]. (See also Figure 5, page 7.) Red lines in the middle im-
age indicate non-standard RNA base-to-base binding, which RNAfold assumes does not happen [2]. Right:
one of true three dimensional structures [3].

First principles computer programs have had some success at predicting RNA secondary structure, i.e., the
folding patterns of real RNA molecules (see Figure 1). Mostly these are based on estimating the energy
associated with each possible secondary structure using dynamic programming and assuming the molecule
will adapt the structure with the lowest energy. In principle considering all possible RNA folding patterns
is exponential but many patterns can be discarded as not being biologically plausible. For example, the
structure of many RNA molecules is known and very few known structures have knots. Indeed in RNA
molecules of known structure, on average 95% of the structure is also free of pseudoknots [1, Table 1].
It is common for structure prediction software to assume that RNA contains no knots [4]. Such dynamic
programming based approaches scale approximately O(n3), where n is the number of bases in the RNA
molecule. Nonetheless great savings can be made by running such algorithms on parallel hardware [5].
The state of the art in RNA secondary structure prediction is RNAfold from the ViennaRNA package [6].
It has been widely used, for example it is a key component of the eteRNA citizen science project [7].

Grow and graft genetic programming (GGGP) [8, 9, 10, 11, 5, 12, 13] has built on existing genetic im-
provement (GI) work [14, 15]. GI has been used to improve the performance of existing software, e.g. by
reducing runtime [16], energy [17] or memory consumption [18], but (apart from software transplant-
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ing [19] and automatic bug fixing [20]) it usually tries not to change programs’ output. GGGP builds on
GI which is very much hands off (i.e. let the computer solve the problem) by admitting more human as-
sistance. We applied GGGP to RNAfold [21]. Using traditional manual methods to identify performance
critical components, recoding them using Intel’s SSE vector instructions and then using computational
evolution to further improve the new code. Unfortunately, evolution only found small increments on the
human code and so, so far, only the manually written code has been adopted. However it has been included
into the standard ViennaRNA package since 2.3.5 (14 April 2017)1. It is also being used by the eteRNA
development team internally [22].

The next stage was to apply GGGP to improve the accuracy of RNAfold’s predictions. Notice here we allow
(nay encourage, require) evolution to change the output of the program. I.e. to make functional changes,
The next section describes our GP [23] system, whilst Section 3 describes the results of applying it to
RNAfold’s C source code. We conclude (Section 3.4) that instead of manipulating the code itself, perhaps
we should apply evolution directly to the constants [18] used to specify the energy of each potential way
RNA might fold up.

2 Genetic Improvement System

Evolution uses a BNF grammar to control the mutations it can make. The grammar ensures that after
each mutation the new code is still syntactically correct [16, 24, 25, 13, 26]. The grammar was created
automatically line by line from the 74 RNAfold .c source files (release 2.3.0, 60 636 lines of code). To
simplify fitness testing, the file holding the main(), RNAfold.c, is excluded from the BNF grammar in
order to ensure evolution cannot modify it.

2.1 Profiling with GNU gcov to Direct Evolution to Used Code

The goal of preprocessing is essentially to direct evolution to mutate only code that is in use. Whereas
in [16] we used an especially instrumented version of the automatically generated grammar to record which
lines of source code where used most heavily, here (like [21]) we used the GNU gcov profiling tool.

We compiled the unmodified released sources using the GNU C compiler (v4.8.5) with command line
options -g -pg -ftest-coverage and -fprofile-arcs and ran the resulting exe on all 1555
training RNA sequences (using the same command line as will be used in fitness evaluation, section 2.7,
i.e. the defaults plus --noPS). Then the profiler was run (gcov *.gcda) and the line numbers of the
lines used were extracted from *.gcov using gawk. The line numbers are used to set binary (0 or 1)
weights as to the importance of which rules to mutate when the BNF grammar is used by evolution.

2.2 BNF Grammar Types

Each line of the source code is represented by one or more rules in the BNF grammar. Evolution can change
the contents of the code but it cannot change its structure. So the .h and .inc include files are excluded,
and function and variable declarations cannot be changed. However, evolution can substantially change the
code inside functions and between flow control statements including whether functions are called or not.
Each variable rule belongs to one of seven types. Mutations only move code between rules of the same
type.

The BNF grammar contains 94 810 rules, of these in principle 34 154 can be modified. Most (19 576) are
lines of C source code which can in principle be moved, inserted or substituted for other lines of source
code within the same source file. (There are 74 .c files.) There are 6 375 IF rules (whose conditions can
be replaced by the conditions from other rules within the same source code). 2603 for loops whose three
components can be substituted by the similar part of other for loops. 324 WHILE rules and 70 ELSE

1To use the SSE code, ViennaRNA must be configured with ./configure --enable-sse when it is compiled.
https://www.tbi.univie.ac.at/RNA/documentation.html
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rules. However these numbers fall dramatically when we include the weights (see Section 2.1). Using the
binary weights imposes the restriction that a line of code must have been used at least once when processing
all 1555 examples in the RNA STRAND training data in order to be a target for mutation. (Unused lines,
within the same source file, can still be inserted before or used to replace target lines.) Only 20 .c files are
used when processing RNA STRAND. The number of simple source lines that can be modified or used
to modify others falls to 4518. There are corresponding reductions in the numbers of rules of each type:
1904 IF, 371 for, 27 WHILE and 10 ELSE.

We force loop termination via the Unix limit cputime command (see also page 4).

2.3 Sandbox Protection Against Rogue Mutants

As well as ensuring evolution cannot cause processes to continue indefinitely we checked the source code
for system calls.

RNAfold makes limited use of files, so it was straightforward to confirm that the grammar does not allow
evolution to modify how files are used. Especially it cannot change which files are used or how they are
opened (although of course it can change the contents of files that RNAfold normally writes to).

In principle, evolution could still cause problems by causing an existing RNAfold output file to grow
enormously, potentially filling the disk. However such a rogue mutant would still be limited by the CPU
limit. Disk quotas can also be used. We had intended to run the fitness evaluation on a scratch disk to isolate
it however the problem never arose in practise and GGGP was run on a conventional shared network drive
(albeit with disk quotas enabled).

2.4 Avoiding Phenotypic Duplicates – Ensuring a Change is made

For simplicity (unlike some of our work with parallel GPU code using CUDA, e.g. [11]), we did not
enforce each new individual to be phenotypically unique. However to ensure mutation has had some
impact before fitness testing we did use a simple bit wise binary comparison of the mutated exe to ensure
they were all different from the unmutated program. In the run to be described in Section 3, only 16
mutant programs were identical. It seems reasonable that the unmutated exe is the most commonly binary
duplicated phenotype, suggesting there is little to be gain from enforcing exact binary phenotype diversity.
Indeed since only 16 duplicates were detected, this check could probably be remove with little loss.

2.5 Initial Population

The initial population of 500 × 10 GP individuals is created using mutation. The mutation script ensures
each member of the initial population is unique.

2.5.1 Over Sized Population

For simplicity (unlike some GGGP work on CUDA code [11]) we do not use scoping rules. Therefore,
there was a fear that many mutants would fail to compile. Since the expensive part of fitness evaluation is
running RNAfold and compiling code which contains errors is relatively cheap, it was decided to create ten
times as many individuals as needed at the start of each generation. This was done using the usual mutation
and crossover operations (see next section). However, on average (including the initial generation) only
32% of mutants failed to compile (see also Figure 3).

2.6 Mutation and Crossover

The genetic operators used are those we used in [11]. Briefly, each member of the breeding pool, i.e. the top
250 individuals from the previous generation, is allocated two children. One child is created by mutating
the parent. The second is created by crossover between it and another parent randomly selected from the
breeding pool.
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New mutations are appended onto the end of current mutation list. There are three types of code mutation:
1) delete a line, 2) copy and replace the target line and 3) copy and insert a line before the target line.

Two point crossover (similar to Koza’s sub-tree crossover [27]) creates a new child from the lists of code
changes from its two parents. If crossover is unable to create a new unique offspring after a five tries, the
child is created by mutating the first parent instead.

2.7 Fitness Function

Every generation, in order to be able to compare the genetically improved code with the original, the
first program compiled and run is always a copy of the default (manually written) code. I.e. at least 501
programs are compiled and run (see also Section 2.5.1.

When a compilation fails, or the resulting program exe is identical, the mutant is not tested and cannot be
a parent for children in the next generation.

The mutant exe is run on all the training data. I.e., one 1/3rd of RNA STRAND which are less than 155
bases long. This means running the mutant’s exe up to 681 times. In retrospect this is perhaps too many.
For example, in [16] we used just five but these were randomly changed every generation.

As the unmutated RNAfold is fast and all the of RNA molecules used for training are small, the per fitness
case CPU limit was the same in all cases (1 second).

RNAfold was run with option --noPS to suppress the production of nice pictures of the predicted struc-
ture. (The defaults were used for all other options.)

RNAfold produces its prediction as a text string composed on nested brackets (to indicate pairs of
bases which bind together) and “.” (unbound bases). This was piped in the standard Vienna-
RNA (2.3.0) utility b2ct which converted the bracket string into a .ct file format. The output from
b2ct was piped into a comparison gawk script which calculates the Matthew’s correlation coefficient
MCC = (TP×TN−FP×FN)√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
. Where:

• TP = true positives, number of predicted pairs which are in RNA STRAND’s .ct file.

• TN = true negatives, total number of possible pairings not in TP , FP or FN .
I.e. TN = n(n− 1)/2− TP − FP − FN (where n is the length of the RNA molecule).

• FP = false positives, number of predicted pairs which are not in RNA STRAND’s .ct file.

• FN = false negatives, number of pairs in RNA STRAND’s .ct file but not in the mutant’s prediction.

Naturally TN tends to be large, hence we follow [6] and use Matthew’s correlation coefficient as it deals
well with large class balances [6].

Should the mutated program fail to create a valid prediction on any training case, fitness testing of it is
aborted. Missing or invalid predictions are given an MCC of -1.

The population is sorted by the number of valid MCC each mutant has and then by their mean MCC (across
all 681 training cases). The top half of the list are then selected to be parents of the next generation. subject
to: they must have produced at least one prediction which has an MCC. In all generations, see next section,
the number of mutants eligible to be parents exceeded half the population (mean 411.4). Similarly, they all
produced a valid MCC on all the test cases. I.e. a mutation which did not produce a valid prediction on all
681 test cases was never selected to be a parent.
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Table 1: GGGP to improve RNAfold’s secondary structure predictions by mutating its C code sources.

Representation: Variable list of replacements, deletions and insertions into BNF grammar
Fitness: Compile modified code. Run on training data from RNA STRAND with less than 155

bases (681 molecules). Compare its answers with the real structure using MCC. See
Section 2.7.

Population: Panmictic, non-elitist, generational. 500 members. (Create ten times as many individuals
with mutation and crossover, mutation only in initial generation, as needed but only
accept the first 500 which compile. See Figure 3.)

Parameters: Initial population of random single mutants. 50% truncation selection. 50% two point
crossover, 50% mutation. No size limit.
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Figure 2: Best in generation for GGGP run (population 500). Crosses + show increase in MCC averaged
across 681 training examples. (I.e. increase above released code performance 0.663946). Dotted line shows
size of best in population (note change of scale). Run stopped after generation 128, when best individual
made 92 code changes.

3 Results

The GGGP was run with a population of 500 (see Table 1). The run was aborted after 22 days when the
3.6GHz Centos 7 desktop was rebooted. The evolution of training performance is given in Figure 2.

3.1 Post Evolution Tidy

It is common practise in GI to allow evolution to progressively increase the number of mutations per
individual [28]. Indeed, as it was anticipated that many changes would be required in large programs, in
some cases such bloat was deliberately encouraged [16]. (In fact it turns out in many cases that only a few
changes are actually required to make spectacular improvements [16].) Therefore it is common to include a
simple post evolution phase where each mutation is tested one at a time to see if it can be removed without
loosing the benefit of the whole change [16].

The number of possible combinations grows exponentially with the length of the evolved individually,
therefore we use a simple hill climbing scheme [28]. Start at the front of the best evolved individual in
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Figure 3: Apart from the initial generation, approximately two thirds of GGGP RNAfold mutants compile.

the population and progressively remove each mutation and test the new individuals on the training set. If
it fails or it performs worse than the evolved individual, the deleted mutation is restored, otherwise it is
deleted permanently. Continue until the end of the evolved individual so that each part has been checked.

Another strategy is to start with an empty individual and progressively add mutations to it, retaining only
those that improve performance [24, 25].

By generation 128 the best in the populations scored 0.673551 on the 681 short RNA molecules used for
training but had grown to 92 code changes. Running our simple hill climbing procedure removed 88, leav-
ing just 4 mutation. The cleaned up individual is <for1_params.c_291><for1_params.c_277>
<_params.c_350> <_params.c_339> <_model.c_860>

3.2 Generalisation Performance

The cleaned up individual retains its slight performance edge on the original code even when used to predict
the shapes of RNA molecules from RNA STRAND not used in training, including molecules of all lengths,
see Figure 4.

3.3 Code changes

3.3.1 <for1 params.c 291><for1 params.c 277>

This mutation replaces the first part of the for loop on line 291 with that from the for loop on line 277
in file params.c. (New code for(i = VRNA_GQUAD_MIN_STACK_SIZE;i<=MAXLOOP;i++).)
This causes the loop control variable i to be initialised with VRNA GQUAD MIN STACK SIZE (2) rather
than not being initialised but instead being set to the value which caused the previous loop to terminate 30.
Thus the mutation causes params->bulge[2..30] and params->internal_loop[2..30]
to be recalculated overwriting their existing values, which were derived from values stored in arrays
bulgedH[i] and internal_loopdH[i] respectively.
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3.3.2 < params.c 350>

This causes line 350 in params.c to be deleted: dd = dangle5 dH[i][j] - (dangle5 dH[i][j]
- dangle5 37[i][j])*tempf; Without this assignment to dd, params->dangle5[i][j]
will have different values. Depending upon the compiler, the new value may perhaps be similar to those in
dangle3.

3.3.3 < params.c 339>

This causes line 339 in params.c to be deleted. Without params->mismatchExt[i][j][k] =
(mm > 0) ? 0 : mm; array mismatchExt may be left at its initial values (0).

3.3.4 < model.c 860>

This mutation deletes line 860 from file model.c (i.e. md->noLP = noLonelyPairs;). This means
model parameter noLP is not set and instead retains its default value (0).

3.4 Lesson

All four code changes found by evolution work on the quality of RNAfold’s predictions indirectly. They
each modify the values of the energy parameters used in the dynamic programming’s energy calculation.
In the next set of experiments [29], instead of mutating the C code itself, we ask GGGP to directly evolve
the more than 50,000 parameters in RNAfold’s model of RNA.
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