
Langdon & Alexander GI 2023 - ICSE

Genetic
Improvement
of OLC and H3
with Magpie

Getting more out of Magpie

William Langdon (UCL) and Brad Alexander (Optimatics)

1

Langdon & Alexander GI 2023 - ICSE

Motivation (1)

• Genetic Improvement (GI) works!
• Fixing Bugs, Porting Code, Improving Speed,

Reducing memory and energy consumption....
• Real, verifiable, improvements in real software.

• But a lot of this work used bespoke tooling
• Hard to set up
• Hard to transfer results

2Langdon & Alexander GI 2023 - ICSE

Langdon & Alexander GI 2023 - ICSE

Motivation (2)

• Frameworks have been produced to make GI easier

• Examples
• GIN – flexible GI for Java applications.
• PyGGI – Python tool for GI in multiple languages
• Magpie – Modular, flexible GI targetting multiple languages

• The tools are available – and they are getting better
• but we need a deeper body of practice in using and

improving them

3

Langdon & Alexander GI 2023 - ICSE

This work

• First use of Magpie on industrial source code
• Google’s OLC and Uber’s H3
• Improved program performance by changing C source code.
• We changed tooling for running and measuring program

performance
• Speedup is better than previous work targeting LLVM IR.

4

Langdon & Alexander GI 2023 - ICSE

Magpie

• Machine Automated General Performance
Improvement via Evolution of software

• Developed from PyGGI 2.0

• Separates search from operations
• In our case search is local search

• proven to be effective
• Operations can be in different domains.

• Examples: compiler optimization options, runtime
configurations, and Genetic Improvement

5

Langdon & Alexander GI 2023 - ICSE

Target Applications

• Google OLC

• Uber H3

• Both do coordinate translation

6

Langdon & Alexander GI 2023 - ICSE

Application Size

• OLC
• 14024 lines of code
• 207 to be optimized
• 134 with comments/blanks removed

• H3
• 15015 lines of code
• 3321 to be optimized
• 1615 with comments/blanks removed

7

Langdon & Alexander GI 2023 - ICSE

Setup

• Set up to do GI on source code

• Using GI per-line operators

• Optimized for execution speed

• Applied tests (10 cases)
• + checks for correctness

• Runtime chosen to ensure coverage

• Used Hill Climbing for search
• keeps it simple!

8

Langdon & Alexander GI 2023 - ICSE

Reducing Noise

• Noise can really slow down
evolution

• Need to adapt measurements to
take account of the noise
distribution...

9

Langdon & Alexander GI 2023 - ICSE

Noise Distributions (1)

• Wall clock time is noisy

• And is heavily
dependent on the run-
order of sample

Earlier repetitions of tests for
triangle (in red) are much slower!

wall-clock run time for triangle
program test cases

10

Langdon & Alexander GI 2023 - ICSE

Noise Distributions (2)

• Runtimes are heavily
skewed and tightly
bounded from below

can’t distinguish test cases by
using run times

wall-clock run time for OLC test cases

long tail of long-running
readings

distribution skewed
towards minimum run
time for each case

11

Langdon & Alexander GI 2023 - ICSE

Noise Distributions (3)

• Instruction counts show
much less noise..

• used
PERF_COUNT_HW_INSTRUCTIONS

less noise => less samples needed

• We use only 3 samples per test
and sample the lowest quartile of
all the tests.

Symbols denote tests with very small
timing spreads.

using CPU instructions, it is easy
to distinguish tests just by their
runtime!

12

Langdon & Alexander GI 2023 - ICSE

Other tricks

• More warmup evaluations on null patches

• Wrote harness for measuring instruction
counts in C.

• Called harness directly using Python’s c-types
interface

• Output directed from harness to a buffer
provided by python.

13

Langdon & Alexander GI 2023 - ICSE

Results (1)

• Tested both evolved OLC and H3 variants
• with and without GNU compiler -O3 flag

• Good speedups for both

• Passed all holdout tests

14

Langdon & Alexander GI 2023 - ICSE

Results (2)

• Pass rates – most variants generated during search passed

OLC

Failed Compile Failed a Test Passed All Tests

H3

Failed Compile Failed a Test Passed All Tests

15

Langdon & Alexander GI 2023 - ICSE

Results (3)

• Large inter-run variation – due to local search?

16

Langdon & Alexander GI 2023 - ICSE

Code produced

• Examples include:
• Removing redundant normalization

and checks
• Removing code that supports code

paths that aren’t executed

• Overlap with code
specialisation?

17

Langdon & Alexander GI 2023 - ICSE

Conclusions

• Magpie is easy to use and modify

• We were able to get useful and robust improvements.

• Measures to reduce noise are key

• Future work
• Richer set of mutations + crossover
• Move beyond hill climbing
• Co-evolution of training data
• Use profiling to focus search

18

Langdon & Alexander GI 2023 - ICSE

Credits

• Thanks to

• Aymeric Blot (Magpie)

• H.Wierstorf (gnuplot)

• Funded by the Meta Oops
project.

19

Langdon & Alexander GI 2023 - ICSE

Contacts

• Bill Langdon - W.Langdon@cs.ucl.ac.uk

• Brad Alexander – bradley.alexander@optimatics.com

Questions?

20

mailto:W.Langdon@cs.ucl.ac.uk
mailto:W.Langdon@cs.ucl.ac.uk
mailto:bradley.alexander@optimatics.com

