
Genetic Programming and Evolvable Machines, 1, 95–119 (2000)
c© 2000 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Size Fair and Homologous Tree Crossovers for
Tree Genetic Programming

W. B. LANGDON w.b.langdon@cwi.nl

Centrum voor Wiskunde en Informatica, Kruislaan 413, NL-1098 SJ Amsterdam

Received April 21, 1999; Revised August 26, 1999

Abstract. Size fair and homologous crossover genetic operators for tree based genetic pro-
gramming are described and tested. Both produce considerably reduced increases in program size
(i.e. less bloat) and no detrimental effect on GP performance.

GP search spaces are partitioned by the ridge in the number of program v. their size and depth.
While search efficiency is little effected by initial conditions, these do strongly influence which
half of the search space is searched. However a ramped uniform random initialisation is described
which straddles the ridge.

With subtree crossover trees increase about one level per generation leading to sub-quadratic
bloat in program length.

Keywords: genetic algorithms, genetic programming, bloat reduction, evolution of shape, sub-
quadratic length growth, linear depth growth, uniform initialisation, binary tree search spaces.

1. Introduction

It has been known for some time that programs within GP populations tend to
rapidly increase in size as the population evolves [13, 4, 30, 27, 25, 2, 41, 29]. If
unchecked this consumes excessive machine resources and so is usually addressed
either by enforcing a size or depth limit on the programs or by an explicit size
component in the GP fitness measure which penalises larger programs, although
other techniques may be used [13, 12, 42, 3, 36, 32, 39, 10]. Both main approaches
have problems [13, 30, 38], [9, 20]. Recently there has been increased interest in
the underlying causes of bloat [28, 38, 26].

It has been shown that the protective effect of inviable code (which does not
effect the fitness of the program) [27, 4] is not sufficient to explain all cases of
bloat and shown there are at least two mechanisms involved [26]. However we also
suggest these are manifestation of an underlying cause, which is: any stochastic
search technique, such as GP, will tend to find the most common programs in the
search space of the current best fitness. Since in general there are more of these
which are long than there are which are short (but GP starts with the shorter
ones) the population tends to be filled with longer and longer programs [21, 24, 18].
This is a general explanation, which does not rely on GP mechanisms, indeed we
have shown bloat occurs in several other stochastic search techniques using variable
length representations [22, 16]. The exponential growth in the number of programs
with size is a very strong driving factor. It may be the cause of bloat even if the

96 W. B. LANGDON

fitness function changes rapidly or we penalise programs with the same fitness as
their parents [23].

Using this argument we devised an unbiased tree mutation operator which care-
fully controls variation in size and produces much less bloat. In Section 3 we
introduce the corresponding crossover operator and in Section 4 we describe means
of extending it to increase the chance of crossover between like parts of parent trees
yielding a more homologous operator. We compare the evolution of tree size and
depth for the three crossover operators starting from three types of initial random
populations: standard “ramped half-and-half” [13, pages 92–93], “ramped half-and-
half” with bigger initial trees and ramped uniform random (described in Section 5).
In Section 6 we compare both new operators with standard subtree crossover on two
continuous domain problems (symbolic regression of the quintic and sextic poly-
nomials) and two discrete problems (Boolean 6 multiplexor and 11 multiplexor).
This is followed by a discussion in Section 7 and we conclude in Section 8. However
first we review what is known about the distribution of programs and reiterate our
claims about the distribution of their fitnesses.

2. Distribution of Programs and their Fitnesses

In genetic programming it is possible to have function sets that contain functions
of different arities. I.e. for program trees to have internal nodes of more than one
branching factor. However many GP experiments use only binary functions, e.g. the
symbolic regression experiments described in Section 6. Therefore in this section
we will concentrate upon the case where all the functions are binary (i.e. have two
arguments) and so the programs are expressed as binary trees. This avoids dealing
with mixtures of arities which complicates the analysis and for which there is little
existing work (for example [37] deals with two cases: binary and unrestricted arity
trees). We don’t expect such additional complexity to increase our understanding
at this stage.

There are

|T |(l+1)/2|F |(l−1)/2 × (l − 1)!
((l + 1)/2)!((l − 1)/2)!

different programs of size l, where |T | is the number of terminals and |F | is the
number of functions [13, 1, page 213]. Note this formula is relatively simple as
each function (internal node) has two arguments. The number of programs rises
rapidly with increasing program length l. Of course if no bounds are placed on the
size or depth of programs then the number of them is unbounded, i.e. the search
space is infinite. Figure 1 plots the number of different binary tree shapes against
their size and the number of different functions for our four benchmark problems.
(Size = number internal nodes + number leafs = l). Note while the multiplexor
experiments use functions with one, two and three inputs the shape of their curves
are similar to the binary cases. Figure 1 clearly shows the number of different
programs (for all but the shortest) grows essentially exponentially with their size 1.

We now consider how the number of programs varies with their size and their
maximum depth. These are of course related. A tree of a given size cannot exceed

SIZE FAIR AND HOMOLOGOUS CROSSOVERS 97

0.1

1

10

100

1000

10000

1 10 100 1000

N
um

be
r

of
 P

ro
gr

am
s

(lo
g

10
)

Program Size

Quintic, Sextic Polynomial
11 Multiplexor
6 Multiplexor
Binary Trees

Figure 1. Size of Program Search Spaces (note log log scale)

a certain maximum depth (that of a tree of the chosen size but composed of only
one long chain of functions, all side branches terminating immediately in leafs).
Similarly its depth cannot be less than a minimum (given by a (nearly) full tree
where every branch is continued and leafs only occur at the maximum depth (or one
depth closer to the root)). In the case of binary programs (i.e. those composed only
of two input functions) the maximum and minimum depths are given by (l + 1)/2
and dlog2(l + 1)e. In fact most programs lie between these two extremes, see
Figures 2–4.

In binary trees the number of programs of a given size and depth is

|T |(l+1)/2|F |(l−1)/2

times the number possible tree shapes of that size and depth. Note this depends
on tree size but not tree depth. Therefore Figure 2 can be readily converted from
number of tree shapes to number of programs by increasing the gradient parallel to
the size axis and so retaining its basic shape. (This also holds for non-binary trees
if their internal nodes all have the same branching factor).

Figure 3 shows a plan view of Figure 2 in which the spread in the distribution
of number of trees can be seen. The distribution is slightly asymmetric and so the
peak lies to one side of the mean but close to it. Also note the theoretical large tree
quadratic limit [8] to which the mean approaches slowly. Similarly Figure 4 shows a

98 W. B. LANGDON

 Full

 Peak

Minimal

0
5

10
15

20
25

30

Depth

0
10

20
30

40
50

60

Length

0

2

4

6

8

10

12

14

16

Log number

Figure 2. Distribution of binary trees by size (length) and height (depth). Note log scale. The
dotted lines show the projection of the bushiest trees (Full), the (Peak) and the sparsest (Minimal),
points onto the x-y plane.

plan view of part of Figure 2, where the arrows indicate the direction of maximum
increase in numbers of trees (using a simple nearest neighbour three point fit).

In earlier work [24, 18] we suggest in general the distribution of fitness values does
not change much with their length, provided they are bigger than some problem
and fitness level dependent threshold. (A few special case counter examples have
been found). In all examples so far, bloat continues above the threshold and so the
threshold can be ignored for the purposes of explaining bloat. We suggest that in
general for the bulk of the search space in simple GP problems the proportion of
programs with a given level of performance is independent of their size (and further
we assume independent of their shape). Thus the number of programs with a given
level of performance will be distributed like the total number of programs, i.e. it
will have the same shape as the curves shown in Figures 2–4.

To restate our explanation for bloat it is: after a period GP (or any other stochas-
tic search technique) will find it difficult to improve on the best trial solution it has
found so far and instead most of the trial solutions it finds will be of the same or
worse performance. Selection will discard those that are worse, leaving only those
that are as good as the best-so-far active. In the absence of bias, the more plentiful
programs with the current level of performance are more likely to be found. But

SIZE FAIR AND HOMOLOGOUS CROSSOVERS 99

0

200

400

600

800

1000

0 20 40 60 80 100

N
um

be
r

of
 in

te
rn

al
 n

od
es

 a
nd

 te
rm

in
al

s

Tree Depth

5% peak 95%full

 minimal

mean and SD
Flajolet

Figure 3. Distribution of binary trees by size and maximum depth, cf. Figure 2. Solid line and
error bars indicate the mean and standard deviation of the depth for trees of a give size. The dash

line is the large tree limit for the mean, i.e. 2
√
π(internal nodes) (ignoring terms O(N1/4)). The

full tree and minimal tree limits are shown with dotted lines, as are the most likely shape (peak)
and the 5% and 95% limits (which enclose 90% of all programs of a given size).

as the previous paragraph has argued, the distribution of these is similar to that
shown in Figures 2–4, therefore we expect the search to evolve in the direction of
the arrows given in Figure 4. [26] confirms this in various diverse problems when
using GP with standard crossover.

In the remainder of this paper we discuss two new crossover operations which
are carefully constructed so that the fitness landscape they provide to the GP
population is unbiased. Instead of the population seeing the huge exponential
growth in programs the landscape is tailored to be more even, with an equal chance
of selecting a link in the landscape to a shorter program as to a longer one. In
this way the population (once the performance plateau has been reached) can be
expected to execute a random walk in the space of program lengths rather than
in the space of all possible programs. On average very little change in size will be
produced by such a random walk whereas a random walk on the landscape shown
in Figures 2–4 results on average in rapid motion in the direction of the arrows.
Like subtree crossover, both new crossover operators produce offspring that are on
average the same size as their parents.

100 W. B. LANGDON

0

10

20

30

40

50

60

0 5 10 15 20 25 30

N
um

be
r

of
 in

te
rn

al
 n

od
es

 a
nd

 te
rm

in
al

s

Tree Depth

full, minimal
5%

peak
95%

Figure 4. Arrows show gradient in distribution of binary trees by size and height, cf. Figure 2.
Note near vertical arrows actually point towards ridge (peak).

3. Size Fair Crossover

In size fair crossover we select two parents and one crossover point in the normal
way. (I.e. conduct two independent tournaments, each between seven randomly
chosen individuals in the population). The crossover point in the first parent,
i.e. the one from which the child inherits its root node, is selected at random from
all the nodes in the first parent. We follow standard GP and ensure on average 90%
of crossover points are internal nodes, while the remaining 10% (pUnRestrictWt 10)
are chosen at random from both terminals (leafs) and functions. As with standard
crossover, a crossover point in the other tree is chosen, and the subtree rooted at
it, is copied and inserted into (a copy of) the first parent at its crossover point,
deleting the subtree that was there originally. The difference between size fair and
normal crossover is the choice of the second crossover point.

The size of the subtree to be deleted is calculated and this is used to guide
the random choice of the second crossover point. In a single pass across the second
parent, the size of every subtree in it is calculated. As with size fair mutation [16, 26]
we place a bound on the amount of genetic change in one operation. Subtrees
bigger than 1+2× |subtree to be deleted| are prevented from being inserted into the
first parent. (Note each offspring will be no more than |subtree to be deleted| + 1

SIZE FAIR AND HOMOLOGOUS CROSSOVERS 101

nodes longer than its first parent. Although apparently generous, removing the
upper bound appears to encourage bloat. On average, at the end of 50 runs of the
quintic problem, programs were 2.5 times larger when this restriction was removed.)
Excluding these big subtrees, we count the number that are shorter (n−), the same
(n0) and longer (n+) than the subtree to be deleted. We also calculate the mean
size difference for both smaller (mean−) and bigger (mean+) subtrees. If there
are no smaller or no bigger trees then the only way to ensure a balance between
increasing and decreasing the size of the tree is to not change it, therefore we set
the size of the inserted subtree to be equal to that of the subtree to be deleted.
Note this means a terminal is always replaced by another terminal. If there are no
subtrees in the second parent the same size as the subtree to be deleted, we go back
and randomly select a crossover point in the first parent and start again.

If there are both smaller and bigger suitable subtrees then we choose between
them all at random using a biased roulette wheel to select the length of the subtree.
If there is more than one subtree of the desired length, we choose between them
uniformly at random. Thus the chance of a subtree being selected falls in proportion
to the number of other subtrees in the second parent of the same size.

The roulette wheel is biased so if there are subtrees of the same size as the subtree
to be deleted the chance of choosing one of them is p0 = 1/|subtree to be deleted|.
This somewhat arbitrary choice was made by analogy with conventional subtree
crossover where the chance the child is the same size as the parent falls rapidly
as the size of the subtree crossed over increases. All the shorter lengths have the
same probability of being selected, as do all the longer lengths. However we use
the mean size difference to balance these two probabilities so that on average there
is no change of length. I.e. the chance of choosing any of the longer sizes is

p+ =
1− p0

n+(1 +mean+/mean−)

4. Homologous Crossover

Standard GP crossover moves code fragments from one program to another. It is
assumed that since the code fragment has survived the selection process, it must
have some worth and so using it to create a new program is more likely to produce
a better program. However it can be anticipated that the worth of a code fragment
will depend upon the context within which it is executed. Moving into a different
program at a random location may destroy this context [33]. Secondly the presence
of bloat may indicate that the code fragment is not good, only that it has survived
the selection process by being not harmful. With this in mind several context
preserving crossovers have been suggested [7, 34] (and [31] for linear GP). These
aim to increase the chance of moving the code fragment to a (syntactically) similar
part of the recipient program and thus preserve its context and so worth. Some of
these have only had mixed success and so we propose a new homologous crossover
operator based on fair crossover described in the previous section.

The homologous crossover operator works identically to the size fair crossover
operator up to the last step. Instead of randomly choosing between all the avail-

102 W. B. LANGDON

Figure 5. An example of homologous crossover. The shaded subtree (size 4) is chosen in the first
parent (top left) to be removed. In the second parent (middle, size 24) all subtrees except the root
node and its left argument are eligible to be crossed over. A crossover fragment size 3 is chosen.
There are two possibilities (shaded). The left hand one is chosen because the path (heavy lines)
connecting it to the root is more similar to the path connecting the subtree to be removed from
the first parent than the that for the right hand. The child produced is shown at the bottom.

able subtrees in the second parent of the desired size, in homologous crossover we
deterministically choose the one closest to the subtree in the first parent.

Here we define the distance between the two crossover points using only their
locations and the shapes of the two trees, i.e. ignoring the functions at each node
within the trees. We do this by tracing back up the tree to the root node. The
closeness of two points within the trees is given by the depth at which their routes
back to the root diverge. See Figure 5. Note homologous crossover on two identical
trees will produce an identical offspring if the offspring is of the same size.

5. Ramped Uniform Initialisation

In [38] binary tree populations are shown evolving away from both full or sparse
trees. In fact towards the most common tree shape [26]. In this section we describe
a new means of creating the initial population in which the population starts with
common trees of a range of lengths. We anticipate that such a population will
evolve to bigger trees but remain near the most common tree shape (for a given
length).

There are enormously more long programs than short ones, so uniform sampling
as described by [11] not only ensures almost all the initial population has one of
the common shapes but also ensures they are near the maximum possible length.
We adopt a more gradualist approach similar to “ramped half-and-half” [13, pages
92–93] and [6], and instead generate a uniform range of program sizes. ([5] pro-

SIZE FAIR AND HOMOLOGOUS CROSSOVERS 103

vides another initialisation algorithm based upon exact uniform sampling trees of
a bounded depth and therefore it predominately generates programs of nearly the
maximum depth).

The first stage of our algorithm is to chose uniformly at random a program length
between the minimum and maximum allowed and then generate a random program
of this length. Thus choosing the program size is a simple procedure and this avoids
some of the numerical problems reported by [11] where a more complex procedure
is required. The algorithm to generate a random tree of a given length is, like Iba’s,
based upon Alonso’s bijective algorithm [1]. If the functions set contains more than
one arity, e.g. the multiplexor function set includes functions which take one, two
and three arguments, then, in general, there are multiple combinations of function
arities which yield a program of the chosen length. Before Alonso’s algorithm can
be used one of these must be chosen. Since each combination of arities corresponds
to a different number of programs, the random choice is biased in proportion to this
number. Tables for each length are precalculated before the GP run starts. Once a
random tree has been created it is converted to a random program by labeling its
internal nodes with functions of the same arity chosen at random from the function
set. Similarly the tree leafs are labeled with terminals chosen at random from the
terminal set. (In the case of the two symbolic regression problems on average the
input variable x is chosen half the time and one of the constants is chosen the other
half). Figure 6 shows ramped uniform produces more programs with shapes near
the peak in the search space, while “ramped half-and-half” produces many more
large full trees.

Our algorithm is similar to Iba’s but is fast and since our implementation is based
upon logarithms it is stable even for large trees. (It can readily generate random
trees in excess of 1000 nodes even if they contain functions of several arities). It is
substantially the same as that given in [15, Appendix A] 2.

6. Experiments

The four benchmark problems are symbolic regression of the quintic polynomial [14]
symbolic regression of the sextic polynomial [14] learning the Boolean 6-multiplexer
[13, page 187] and the Boolean 11-multiplexer functions [13]. Apart from the use of
different crossover operators and different means of creating the initial populations,
the absence of size or depth restrictions and the use of tournament selection, our
GP runs are essentially the same as [14] and [13]. Parameters are summarised in
Tables 1 and 2. We speed up GP on the two Boolean problems by extending the
bit packing technique described in [35] to IF. This enabled us to evaluate 32 fitness
cases simultaneously.

To test the importance of the initial population we carried out experiments with
both the standard “ramped half-and-half” method and also using it to create bigger
trees with maximum depths between 5 and 8, corresponding to binary trees up to a
length of 255. (In the multiplexor runs maximum depth 8 gives trees up to 3280 in
principle although the maximum observed was 611). Duplicate prevention was not
used. The range of random program sizes created using the ramped uniform method

104 W. B. LANGDON

0

10

20

30

40

50

60

0 2 4 6 8 10 12

P
ro

gr
am

 L
en

gt
h

Program Depth

5%

 peak

 95%

full

 minimal

R 2-6, mean and SD

 U 3-25, mean and SD

Ramped half-and-half 2-6
Ramped Uniform 3-25

Figure 6. 100 random quintic polynomial program shapes produced by ramped half-and-half (2–
6) and ramped uniform. Error bars indicate the means and standard deviations. The full tree
and minimal tree limits are shown with dotted lines, as are the most likely shape (peak) and
the 5% and 95% limits (which enclose 90% of all programs of a given size). Noise (δx = 0 . . . 1,
δy = 0 . . . 2) has been added to spread data points.

was chosen to have the same minimum size and similar mean size to standard
“ramped half-and-half”. (Note “ramped half-and-half” produces a small fraction
of very big trees; much bigger than the biggest we created using ramped uniform).
See Figure 6.

For each of the four problems we performed fifty independent runs for each com-
bination of crossover type and means of creating the initial population. The results
of these 4 × 50 × 3 × 3 runs (about 50 billion fitness evaluations) are summarised
in Table 3.

6.1. Evolution of Size

In all 36 cases we see the GP population bloats. (The initial populations start with
mean sizes near 14, or 75 for R 5–8). However there is a clear separation between
standard crossover and the two new crossovers. In all cases standard crossover
produces far bigger trees. (The mean length of programs at the end of the runs is
given in column 9 of Table 3. While the last column gives the average size of the
biggest program at the end of the run). This is also reflected in the fact that it also

SIZE FAIR AND HOMOLOGOUS CROSSOVERS 105

Table 1. GP Parameters for the Symbolic Regression Problems

Objective: Find a program that produces the given value of the quintic polynomial x5 −
2x3 + x (sextic polynomial x6 − 2x4 + x2) as its output when given the value
of the one independent variable, x, as input

Terminal set: x and 250 floating point constants chosen at random from 2001 numbers be-
tween -1.000 and +1.000

Functions set: + − × % (protected division)
Fitness cases: 50 random values of x from the range -1 . . . 1
Fitness: The mean, over the 50 fitness cases, of the absolute value of the difference

between the value returned by the program and x5− 2x3 + x (x6− 2x4 + x2).
Hits: The number of fitness cases (between 0 and 50) for which the error is less than

0.01
Selection: Tournament group size of 7, non-elitist, generational
Wrapper: none
Pop Size: 4000
Initial pop: Created using “ramped half-and-half” with depths between 2 and 6, between

5 and 8 or using ramped uniform between 3 and 25 (63). (No uniqueness
requirement)

Parameters: 90% one child crossover, no mutation. 90% of crossover points selected at func-
tions, remaining 10% selected uniformly between all nodes.

Termination: Maximum number of generations 50

Experiments: 50 independent runs performed with each parameter setting

Table 2. GP Parameters for Multiplexor Problems (as Table 1 unless stated)

Objective: Find a Boolean function whose output is the same as the Boolean 6 (11) mul-
tiplexor function

Terminal set: D0 D1 D2 D3 (D4 D5 D6 D7) A0 A1 (A2)
Functions set: AND OR IF NOT
Fitness cases: All the 26 or 211 combinations of the 6 (11) Boolean arguments
Fitness: number of correct answers
Pop size: 500 (4000)
Initial pop: as Table 1 except ramped uniform between 2 and 25

produces bigger solutions. There isn’t such a clear cut difference between fair and
homologous crossover.

Figure 7 shows the evolution of program lengths in the population for the quintic
symbolic regression problem starting from R 2–6 initial populations. It shows the
typical behaviour, where both program size and the spread of sizes in the population
in runs using standard crossover grow rapidly and non-linearly. In contrast both
fair crossover and homologous crossover show the hoped for reduction in bloat. In
both these cases growth in program size is much slower and more linear.

6.2. Evolution of Depth

Figure 8 shows the evolution of program depths in the population for the quintic
symbolic regression problem starting from a normal population. It shows the typical
behaviour, where both program depth and the spread of depths in the population

106 W. B. LANGDON

Table 3. Results of 50 runs on each crossover and method of creating the initial population.
Columns 4–8 refer just to the runs which evolved a solution (num sol). While other data are the
means of 50 runs.

Problem Initiali- Crossover Num Effort Solution size End of run size time
sation sol ×1000 mean min– max mean max secs

Quintic R2–6 stand 39 660 218 15–1205 752 3276 324
R2–6 fair 38 630 63 15– 153 116 251 92
R2–6 homo 37 670 61 17– 157 85 162 81

Quintic R5–8 stand 29 1000 352 27–1871 815 3169 495
R5–8 fair 32 880 106 27– 337 147 277 146
R5–8 homo 29 970 77 25– 177 113 213 129

Quintic U3–25 stand 42 520 337 15–1485 1188 5124 514
U3–25 fair 39 610 60 15– 145 157 381 96
U3–25 homo 28 950 50 17– 119 147 354 100

Sextic R2–6 stand 13 3100 451 53–1209 735 2852 297
R2–6 fair 7 4400 75 15– 139 119 251 76
R2–6 homo 9 3900 61 15– 177 105 209 77

Sextic R5–8 stand 32 920 408 31–1019 919 3415 527
R5–8 fair 26 1300 116 29– 321 164 307 150
R5–8 homo 22 1300 88 27– 181 122 219 136

Sextic U3–63 stand 26 1300 633 61–2037 1332 5446 664
U3–63 fair 25 1300 123 35– 235 190 408 134
U3–63 homo 19 1900 107 15– 205 171 360 135

6 Multiplexor R2–6 stand 39 38 96 15– 275 731 2573 13
R2–6 fair 47 24 47 10– 160 138 260 5
R2–6 homo 46 32 42 10– 114 121 236 6

6 Multiplexor R5–8 stand 45 42 205 34– 845 852 2734 14
R5–8 fair 47 30 118 36– 324 206 349 6
R5–8 homo 45 44 110 28– 266 177 308 7

6 Multiplexor U2–25 stand 33 36 59 12– 435 655 2781 20
U2–25 fair 26 64 36 14– 104 133 283 8
U2–25 homo 24 75 35 10– 189 128 277 10

11 Multiplexor R2–6 stand 37 750 292 57–1344 684 2832 383
R2–6 fair 49 270 93 35– 228 176 368 138
R2–6 homo 47 290 79 25– 207 156 338 133

11 Multiplexor R5–8 stand 10 4100 439 223– 894 679 2349 532
R5–8 fair 43 540 212 83– 452 248 481 220
R5–8 homo 32 960 221 77– 504 244 463 221

11 Multiplexor U2–25 stand 36 680 251 90– 896 686 3172 392
U2–25 fair 18 1400 86 50– 116 179 399 140
U2–25 homo 24 930 86 53– 142 173 390 141

SIZE FAIR AND HOMOLOGOUS CROSSOVERS 107

0

200

400

600

800

1000

1200

1400

0 50000 100000 150000 200000

P
ro

gr
am

 L
en

gt
h

Number of Programs Created

Standard XO Mean
Fair XO Mean

Homologous XO Mean

Figure 7. Evolution of population program length from R 2–6 populations. Error bars indicate
standard deviation in population. Means of 50 runs of quintic polynomial problem.

in runs using standard crossover grow rapidly but apparently linearly. Over the last
3/4 of the run the mean growth is 1.2 layers per generation. Which greatly exceeds
0.2 measured in both fair and homologous crossover runs over the same period.

Figure 9 shows the evolution of program depths for each our four problems and
each of the three methods of creating the initial population. It is evident that
the linear growth in program mean depth is not a fluke but may be an important
property of standard subtree crossover (in the absence of depth or size limits).
Table 4 gives the mean and max program depths and their average rate of increase
over the last 38 generations of the runs. While not problem independent, Table 4
shows the rate of increase in depth is consistently close to unity.

6.3. Evolution of Shape

Figure 10 shows the evolution of program depth compared to size in ten of the 50
standard crossover quintic populations, shown in Figure 7 and 8. Figure 10 shows
for the quintic problem, GP population behave much as they do for other problems
[26], with programs tending both to grow bigger and deeper but also tending to be
near the combination of size and depth for which there are most programs.

Figure 11 shows the evolution program depth compared to size for the three
crossover operations. For clarity only the average behaviour of each group of 50

108 W. B. LANGDON

0

10

20

30

40

50

60

70

80

90

100

110

0 50000 100000 150000 200000

P
ro

gr
am

 d
ep

th

Number of Programs Created

Standard XO Mean
Fair XO Mean

Homologous XO Mean

Figure 8. Evolution of population program depth. Error bars indicate standard deviation in
population. Means of 50 quintic polynomial runs.

0

10

20

30

40

50

60

70

80

90

100

110

0 5 10 15 20 25 30 35 40 45 50

M
ea

n
P

ro
gr

am
 d

ep
th

Generations

 U 3-25 Quintic

 U 3-25 Sextic

 U 2-25 6 Mux

 U 2-25 11 Mux

Quintic
Sextic
6-Mux

11-Mux

Figure 9. Evolution of population program depth. Means of 50 runs with standard crossover for
each problem and initial populations.

SIZE FAIR AND HOMOLOGOUS CROSSOVERS 109

Table 4. Program Depth, standard crossover 50 runs

Problem Initialisation Final pop Growth per generation
(average and standard
deviation of last 38)

mean max mean max

Quintic R2–6 54 181 1.2 (.5) 4.0 (2.4)
R5–8 43 128 0.8 (.4) 2.4 (1.2)
U 3–25 101 332 2.2 (1.4) 7.0 (4.4)

Sextic R2–6 47 150 1.1 (.6) 3.5 (2.2)
R5–8 45 131 0.9 (.4) 2.5 (1.0)
U 3–63 98 312 1.9 (.7) 5.8 (2.9)

6 Multiplexor R2–6 39 101 0.8 (.3) 2.1 (.8)
R5–8 40 97 0.7 (.2) 1.9 (.9)
U 2–25 56 172 1.2 (.4) 3.6 (1.5)

11 Multiplexor R2–6 34 107 0.7 (.2) 2.1 (.7)
R5–8 32 90 0.5 (.3) 1.4 (1.0)
U 2–25 45 157 0.9 (.2) 2.9 (1.0)

0

200

400

600

800

1000

1200

0 20 40 60 80 100

P
ro

gr
am

 L
en

gt
h

Program Depth

 5% peak 95% full

minimal

Figure 10. Evolution of mean population program shape, tick marks every generation. The full
tree and minimal tree limits are shown with dotted lines, as are the most likely shape (peak) and
the 5% and 95% limits (which enclose 90% of all programs of a given size). The first 10 standard
crossover runs of quintic polynomial problem.

110 W. B. LANGDON

runs is plotted. We see both fair (×) and homologous (2) crossover producing
trees of similar shapes as standard crossover (+) (again near the peak number of
programs) but moving much more slowly along the same trajectory. (Because the
average size of programs is a non-linear function of their depth, large programs have
a disproportionate effect on the arithmetic mean leading to the population mean
depth v. size appearing to be initially outside the range of feasible trees).

Figure 12 shows the evolution of all 450 initial populations used in the quintic
polynomial problem. For clarity only the mean of each group of fifty runs is plotted.
As shown in [26, 38] for very different problems standard crossover evolves the
population towards the peak in the distribution of programs versus their shape.
However like [38] the population retains a long term memory of how it was initialised
and the mean evolutionary curves do not coalesce. This is consistent with the view
that on average populations follow close to the steepest gradient in the density
of programs. Figure 12 also plots (using black squares) the average of each of 50
runs using standard crossover but without the customary bias to chose functions as
crossover points rather than terminals (pUnRestrictWt 100). Figure 12 also shows
the evolution of populations initialised with sparse trees of depths between 2 and
6. It is clear that all populations using subtree crossover evolve towards the ridge.
However the normal crossover bias to chose functions rather than leafs appears

0

20

40

60

80

100

120

140

0 5 10 15 20

P
ro

gr
am

 L
en

gt
h

Program Depth

5%

 peak

 95%

full

 minimal

Standard XO
Fair XO

Homologous XO

Figure 11. Evolution of mean population program shape from R 2–6 initial populations. Tick
marks every generation. Means of 50 runs of quintic polynomial problem.

SIZE FAIR AND HOMOLOGOUS CROSSOVERS 111

10

100

1000

10 100

P
ro

gr
am

 L
en

gt
h

Program Depth

 5% peak
 95%

 full

 minimal

R 5-8

R 2-6 U 3-25

 Sparse 2-6

Standard XO
pUnRestrict 100, Standard XO

Fair XO
Homologous XO

Figure 12. Evolution of mean population program shape showing effect of four types of initial
populations. Ramped half-and-half 2–6, ramped half-and-half 5–8, ramped uniform and sparse.
Tick marks every 5 generations. Means of 50 of quintic polynomial runs. Note log scales.

to bias evolution slightly, so fuller trees remain on average on the fuller side of
the ridge and sparse trees remain to the sparse side. Without this bias all initial
populations appear to grow to become close to the ridge. However the ridge in the
distribution of program versus their shape is quite wide and the population mean
in individual runs wonders considerably either side of it as shown for example in
Figure 10. (It is not statistically significant that the R 2-6 subtree crossover plot
without bias (pUnRestrictWt 100) crosses to left of the ridge).

Again we see fair and homologous runs show much reduced bloat (the tick marks
every five generations are much closer together) and lie close to each other. However
both runs with bigger initial populations and those produced by ramped uniform
deviate from the mean shape followed by standard crossover runs and create deeper
trees. This may be because, while size change is carefully controlled, no specific
restrictions are placed on depth exploration, allowing the population to move more
freely in this direction. Future genetic operators might consider this aspect of bloat
too.

112 W. B. LANGDON

6.4. Sub-quadratic Bloat

As discussed in [26] and Section 2, if the programs within the population remain
close to the ridge in the number of programs versus their shape and they increase
their depth at a constant rate this leads to a prediction of sub-quadratic growth
in their lengths’. (A best fit of the ridge for sizes between 50 and 500 gives a
power law exponent of 1.3 (see dotted curve in Figure 13). Thus we expect for
modest size programs size O(gens1.3), rising to a limit of quadratic growth for
|program| � 1000, cf. [8, Table II]. Over the last 38 generations the mean measured
values are near O(gens1.3) for the quintic and sextic problems (which are solved with
binary trees) see Table 5. (The multiplexor problems have more complex trees and
so the distribution of number of programs v. their shape differs in detail).

It is clear that our simple model works reasonably well on average. There are
several reasons why the fit can not be exact.

1. The distribution of programs can only be approximately described by a power
law. The exponent obtained by fitting a power law curve to the ridge varies
slowly according to which part of the curve we try and fit. As bigger, deeper
parts of the curve are fitted the exponent rises. Thus even if our crude model
was exactly correct the measured exponent would vary according to how big
the programs in the population were.

2. Individual runs differ from the average behaviour. For example Figure 13 shows
the evolution of the population mean statistics in one quintic run plus the best
fit obtained by linear regression of log size v. generation. While the mean depth
(dashed line) increases approximately linearly over the last part of the run,
the population remains somewhat bushier than the ridge in the program shape
distribution. If depth increased exactly linearly and the average shape (dotted
line with +) coincided with the power law prediction (dotted line) exactly then
bloat (solid line with +) would fit a power law of time1.33. The best power law
fit over the last 38 generations (solid line) suggests size ∝ time1.2 however the
mean figure for 50 runs is 1.31 (cf. Table 5). I.e. our simple model gives an
indication of bloat in individual runs and works better as a predictor of average
behaviour across many runs.

Initial experiments extending evolution to many hundreds of generations and
fitting power laws to the bloated program sizes show the exponent does indeed
increase towards 2.0. Standard crossover ceases to be effective in producing changes
to large programs (> 100, 000 functions) behaviour and selection pressure falls.
This may explain why the predicted limit of quadratic increase in program size
with number of generations is not reached.

6.5. Search Efficiency

As shown in Table 3 in all four problems most of the nine experiments have similar
search efficiency in terms of number of solutions found or “effort” [13, page 194].

SIZE FAIR AND HOMOLOGOUS CROSSOVERS 113

0

200

400

600

800

1000

1200

0 50000 100000 150000 200000

P
ro

gr
am

 s
iz

e,
 D

ep
th

Number of Programs Created, Depth

size
(power law fit)

Figure 13. Evolution of population mean statistics for one run quintic run with standard crossover
from a standard population. Solid line (size) and dash line (depth) are plotted against time (hor-
izontal) while the dotted lines show size v. depth. Lines without crosses (shown every generation)
are Size = a+ b× gens1.2, depth = c + 1.37 × gens, the ridge in the distribution of binary trees
(steps) and power law fit to it, size O(depth1.33).

Even with 50 runs, there are two cases where the difference can be thought sta-
tistically reliable, even though in others the differences may be large. 1) all three
crossover operators perform slightly better with the two new means of creating the
initial random programs in the sextic polynomial and 2) in the 11-multiplexor prob-
lem standard crossover performs slightly worse on large initial programs. I.e. the
new operators perform at least as well as the original.

[18] shows the density of programs of a given fitness level will be much the same
in most of the search space. The similarity of the search efficiency of the operators
suggests that although they are searching different parts of the search space, these
different regions are similar. I.e. not only are their fitness levels similar but so too
are the adjacency links in the fitness landscapes provided by the various crossover
operators.

6.6. Homologous Measurements

It is disappointing that homologous crossover shows little performance gain over
fair crossover. In this section we investigate why this might be. We expect the

114 W. B. LANGDON

Table 5. Power law fit of mean program size in population over last 38 generations
v. generation. Means (and standard deviations) of 50 standard crossover runs.

Problem Initialisation Exponent

Quintic R2–6 1.34 (.28)
Quintic R5–8 1.32 (.35)
Quintic U 3–25 1.31 (.21)

Sextic R2–6 1.49 (.37)
Sextic R5–8 1.27 (.30)
Sextic U 3–63 1.20 (.18)

6 Multiplexor R2–6 1.28 (.21)
6 Multiplexor R5–8 1.34 (.34)
6 Multiplexor U 2–25 1.32 (.20)

11 Multiplexor R2–6 1.24 (.16)
11 Multiplexor R5–8 1.17 (.26)
11 Multiplexor U 2–25 1.26 (.15)

use of homologous crossover to increase the convergence of the GP populations. In
particular, in the multiplexor runs, we would hope to see common trees evolving
with combinations of address bits as the first arguments of IF functions and data
bits as the second and third arguments. Using population variety and number
of duplicate children produced we do see a little evidence for some convergence
but these are crude measures and the degree of commonality in the population
may be higher than they indicate. (They say two trees are different even if the
difference is small or they differ only in inviable code). However, if this higher
level of convergence does exists, it doesn’t appear to impact the spread of fitness
values. E.g. the spread of performance in the final populations, as measure by the
standard deviation in fitness, is not markedly different between homologous and
fair crossovers.

A possible explanation for the similarity in the results produced by size fair and
homologous crossovers might have been that the “homologous” aspect was not
operating, i.e. homologous crossover was not making a directed choice of second
crossover point (where size fair was making a random choice) because it had no
choice. So we measured how often this happened. In the 11 multiplexor runs the
homologous aspect influenced the outcome of crossover in 54% (uniform), 63% (half-
and-half 2–6), 78% (R 5–8) of the time. (The variation is probably accounted for
by the variation in program bloat between these three cases). However looking in
more detail at the first 11 multiplexor run, while in most crossovers the homologous
aspect was active, in only half of these did it produce a different offspring to that
which size fair would have produced and only a fraction of these had a different
fitness. In fact only about 10-15% of the population behaved differently because of
the directed choice of crossover points.

These results may indicate (in these problems and representations):

SIZE FAIR AND HOMOLOGOUS CROSSOVERS 115

1. subtrees have no particular value

2. the value is destroyed outside their particular context

3. the simple syntax rule used doesn’t describe the context well

4. even good subtrees are little help in improving programs to solve additional
fitness cases.

7. Discussion

The impressive suppression of bloat produced by size fair and homologous crossovers
was expected as it concurs with our theory of bloat [26] and similar results for fair
mutation. While they are designed with a view to reducing bloat by carefully con-
trolling how the search space is sampled (i.e. by sampling programs of neighbouring
lengths) an alternative view of their success, is by closely correlating the size of the
inserted subtree with that of the removed they suppress the “removal bias” [40]
bloat mechanism and remaining bloat is due to some other mechanism probably
inviable code [16].

Some of the reduced rate of growth derives from the upper bound on the size of the
replacement subtree in both cases. When this bound is removed larger programs are
evolved. To ensure size increases and decreases produced by size fair crossover are
balanced, bigger increasing crossovers will also mean more size reducing crossovers.
Thus the increased bloat from removing the limit indicates that big increases in
size have a disproportionate effect.

In cases where the initial population is much smaller than the necessary size of
the solution it may be growth restricting crossover or mutation operators will not
perform as well as subtree crossover. If the minimum size of the solutions is known
or can be estimated in advance, then it may be an advantage to start with an initial
population containing programs of approximately this size. On the other hand if
this is not known in advance, and a small initial population is created, then rapid
growth in size may help. If such growth is driven by fitness based selection it is not
what we normally call bloat (which by definition is not driven by fitness). While the
maximum rate of program size increase is more restricted in size fair crossover and
mutation and homologous subtree crossover than in normal subtree crossover, they
do allow growth in program size at much higher rates than are observed in bloating
populations. Hence, while they may be at a disadvantage in these circumstances,
the difference need not be large. (As an illustration: suppose all solutions are eight
times bigger than the initial population. When two programs of the same size are
crossed over using subtree crossover the biggest possible child is twice as big as its
parents. But if size fair is used it is only 50% bigger. Thus in a big population
it will take at least 3 generations for subtree crossover to create a program of the
required size, while subtree sized will need at least 5.1 generations. Whether a 2.1
generations head start is important depends upon what happens after a program
of the required size has been created. We suspect that in general in problems

116 W. B. LANGDON

requiring such large solutions, a difference of 2.1 generations will be unimportant.
Admittedly this is somewhat artificial example.)

The linear growth in mean depth of near one level per generation gives a simple
problem independent prediction of when a population will be severely affected by
a depth limit. In particular we predict that standard GP starting from an initial
population created with the usual “ramped half-and-half” parameters will run into
the common depth limit of 17 levels in about 12 generations [17].

Using the curve indicating the peak in the distribution of programs against their
size and shape, a predicted depth can be converted into a predicted program size.
The curve is known for programs with only two inputs [37] and can be precalculated
for more complex function sets. Thus we predict that generally standard GP will
run into common size limits (which can be as low as 50 or 200 nodes), within a few
generations and certainly before the 50 generations commonly use, see [17].

8. Conclusions

We have presented and demonstrated on four benchmark problems a new bloat
reduced crossover operator, a new homologous crossover operator and a new mech-
anism for creating random populations for tree based genetic programming. The
results in terms of reduction in growth of both mean and maximum program and
solution sizes are impressive and are achieved without reduction in search efficiency.

While we have demonstrated the homologous crossover operator is effective at
finding solutions and reducing bloat, we have not yet shown it to be greatly more
efficient. Growth in program sizes was found not to depend overly on the initial
population. However it does have a dominant role in the evolution of program
shapes. The ridge in the distribution of number of programs for each size and
shape acts to divide the search space. “Ramped half-and-half” does not search a
large part of the search space corresponding to long thin trees (and vice-versa an
initial population of long thin trees does not search the part of the search space
corresponding to short bushy trees).

Average growth in program depth when using standard subtree crossover is near
linear in these problems. When combined with the known distribution of number
of programs of any given size and depth, this yields a prediction of subquadratic
growth in program size. This indicates GP populations using standard crossover
(and no parsimony techniques) will quickly reach bounds on size or depth commonly
used.

Acknowledgments

I would like to thank Paul Vitanyi and Andrei Kotlov for helpful suggestions and
references concerning the distribution of random trees.

SIZE FAIR AND HOMOLOGOUS CROSSOVERS 117

Notes

1. C++ code to calculate the number of different programs can be found in ftp://ftp.cs.bham.

ac.uk/pub/authors/W.B.Langdon/gp-code/ntrees.cc.

2. C++ code to generate programs uniformly at random can be found in ftp://ftp.cs.bham.ac.

uk/pub/authors/W.B.Langdon/gp-code/rand tree.cc.

References

1. Laurent Alonso and Rene Schott. Random Generation of Trees. Kluwer Academic Publishers,
Boston, MA, USA, 1995.

2. Peter John Angeline. Genetic programming and emergent intelligence. In Kenneth E. Kin-
near, Jr., editor, Advances in Genetic Programming, chapter 4, pages 75–98. MIT Press,
1994.

3. Tobias Blickle. Evolving compact solutions in genetic programming: A case study. In
Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors,
Parallel Problem Solving From Nature IV. Proceedings of the International Conference on
Evolutionary Computation, volume 1141 of LNCS, pages 564–573, Berlin, Germany, 22-26
September 1996. Springer-Verlag.

4. Tobias Blickle and Lothar Thiele. Genetic programming and redundancy. In J. Hopf, editor,
Genetic Algorithms within the Framework of Evolutionary Computation (Workshop at KI-
94, Saarbrücken), pages 33–38, Im Stadtwald, Building 44, D-66123 Saarbrücken, Germany,
1994. Max-Planck-Institut für Informatik (MPI-I-94-241).

5. Walter Bohm and Andreas Geyer-Schulz. Exact uniform initialization for genetic program-
ming. In Richard K. Belew and Michael Vose, editors, Foundations of Genetic Algorithms
IV, pages 379–407, University of San Diego, CA, USA, 3–5 August 1996. Morgan Kaufmann.

6. Kumar Chellapilla. Evolving computer programs without subtree crossover. IEEE Transac-
tions on Evolutionary Computation, 1(3):209–216, September 1997.

7. Patrik D’haeseleer. Context preserving crossover in genetic programming. In Proceedings of
the 1994 IEEE World Congress on Computational Intelligence, volume 1, pages 256–261,
Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

8. Philippe Flajolet and Andrew Oldyzko. The average height of binary trees and other simple
trees. Journal of Computer and System Sciences, 25:171–213, 1982.

9. Chris Gathercole and Peter Ross. An adverse interaction between crossover and restricted
tree depth in genetic programming. In John R. Koza, David E. Goldberg, David B. Fogel,
and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 291–296, Stanford University, CA, USA, 28–31 July 1996. MIT Press.

10. Dale C. Hooper, Nicholas S. Flann, and Stephanie R. Fuller. Recombinative hill-climbing:
A stronger search method for genetic programming. In John R. Koza, Kalyanmoy Deb,
Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic
Programming 1997: Proceedings of the Second Annual Conference, pages 174–179, Stanford
University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

11. Hitoshi Iba. Random tree generation for genetic programming. In Hans-Michael Voigt,
Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Parallel Problem Solving
from Nature IV, Proceedings of the International Conference on Evolutionary Computation,
volume 1141 of LNCS, pages 144–153, Berlin, Germany, 22-26 September 1996. Springer
Verlag.

12. Hitoshi Iba, Hugo de Garis, and Taisuke Sato. Genetic programming using a minimum
description length principle. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Pro-
gramming, chapter 12, pages 265–284. MIT Press, 1994.

13. John R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

14. John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, Cambridge Massachusetts, May 1994.

118 W. B. LANGDON

15. William B. Langdon. Fitness causes bloat: Simulated annealing, hill climbing and pop-
ulations. Technical Report CSRP-97-22, University of Birmingham, School of Computer
Science, 2 September 1997.

16. William B. Langdon. The evolution of size in variable length representations. In 1998 IEEE
International Conference on Evolutionary Computation, pages 633–638, Anchorage, Alaska,
USA, 5-9 May 1998. IEEE Press.

17. William B. Langdon. Linear increase in tree height leads to sub-quadratic bloat. In Thomas
Haynes, William B. Langdon, Una-May O’Reilly, Riccardo Poli, and Justinian Rosca, editors,
Foundations of Genetic Programming, Orlando, Florida, USA, 13 July 1999.

18. William B. Langdon. Scaling of program tree fitness spaces. Evolutionary Computation,
7(4), 1999.

19. William B. Langdon. Size fair and homologous tree genetic programming crossovers. In
Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark
Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and Evolutionary Com-
putation Conference, volume 2, pages 1092–1097, Orlando, Florida, USA, 13-17 July 1999.
Morgan Kaufmann.

20. William B. Langdon and Riccardo Poli. An analysis of the MAX problem in genetic pro-
gramming. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,
Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the Sec-
ond Annual Conference, pages 222–230, Stanford University, CA, USA, 13-16 July 1997.
Morgan Kaufmann.

21. William B. Langdon and Riccardo Poli. Fitness causes bloat. In P. K. Chawdhry, R. Roy,
and R. K. Pant, editors, Soft Computing in Engineering Design and Manufacturing, pages
13–22. Springer-Verlag London, 23-27 June 1997.

22. William B. Langdon and Riccardo Poli. Fitness causes bloat: Mutation. In Wolfgang
Banzhaf, Riccardo Poli, Marc Schoenauer, and Terence C. Fogarty, editors, Proceedings of
the First European Workshop on Genetic Programming, volume 1391 of LNCS, pages 37–48,
Paris, 14-15 April 1998. Springer-Verlag.

23. William B. Langdon and Riccardo Poli. Genetic programming bloat with dynamic fitness. In
Wolfgang Banzhaf, Riccardo Poli, Marc Schoenauer, and Terence C. Fogarty, editors, Pro-
ceedings of the First European Workshop on Genetic Programming, volume 1391 of LNCS,
pages 96–112, Paris, 14-15 April 1998. Springer-Verlag.

24. William B. Langdon and Riccardo Poli. Boolean functions fitness spaces. In Riccardo Poli,
Peter Nordin, William B. Langdon, and Terence C. Fogarty, editors, Genetic Programming,
Proceedings of EuroGP’99, volume 1598 of LNCS, pages 1–14, Goteborg, Sweden, 26-27 May
1999. Springer-Verlag.

25. William B. Langdon. Data Structures and Genetic Programming: Genetic Programming +
Data Structures = Automatic Programming! Kluwer, Boston, 1998.

26. William B. Langdon, Terry Soule, Riccardo Poli, and James A. Foster. The evolution of
size and shape. In Lee Spector, William B. Langdon, Una-May O’Reilly, and Peter J.
Angeline, editors, Advances in Genetic Programming 3, chapter 8, pages 163–190. MIT
Press, Cambridge, MA, USA, June 1999.

27. Nicholas Freitag McPhee and Justin Darwin Miller. Accurate replication in genetic program-
ming. In L. Eshelman, editor, Genetic Algorithms: Proceedings of the Sixth International
Conference (ICGA95), pages 303–309, Pittsburgh, PA, USA, 15-19 July 1995. Morgan Kauf-
mann.

28. Peter Nordin, Wolfgang Banzhaf, and Frank D. Francone. Introns in nature and in sim-
ulated structure evolution. In Dan Lundh, Bjorn Olsson, and Ajit Narayanan, editors,
Bio-Computation and Emergent Computation, Skovde, Sweden, 1-2 September 1997. World
Scientific Publishing.

29. Peter Nordin. Evolutionary Program Induction of Binary Machine Code and its Applica-
tions. PhD thesis, der Universitat Dortmund am Fachereich Informatik, 1997.

30. Peter Nordin and Wolfgang Banzhaf. Complexity compression and evolution. In L. Eshelman,
editor, Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95),
pages 310–317, Pittsburgh, PA, USA, 15-19 July 1995. Morgan Kaufmann.

31. Peter Nordin, Wolfgang Banzhaf, and Frank D. Francone. Efficient evolution of machine code
for CISC architectures using instruction blocks and homologous crossover. In Lee Spector,

SIZE FAIR AND HOMOLOGOUS CROSSOVERS 119

William B. Langdon, Una-May O’Reilly, and Peter J. Angeline, editors, Advances in Genetic
Programming 3, chapter 12, pages 275–299. MIT Press, Cambridge, MA, USA, June 1999.

32. Peter Nordin, Frank Francone, and Wolfgang Banzhaf. Explicitly defined introns and destruc-
tive crossover in genetic programming. In Peter J. Angeline and K. E. Kinnear, Jr., editors,
Advances in Genetic Programming 2, chapter 6, pages 111–134. MIT Press, Cambridge, MA,
USA, 1996.

33. Una-May O’Reilly and Franz Oppacher. The troubling aspects of a building block hypothesis
for genetic programming. In L. Darrell Whitley and Michael D. Vose, editors, Foundations
of Genetic Algorithms 3, pages 73–88, Estes Park, Colorado, USA, 31 July–2 August 1994
1995. Morgan Kaufmann.

34. Riccardo Poli and William B. Langdon. Schema theory for genetic programming with one-
point crossover and point mutation. Evolutionary Computation, 6(3):231–252, 1998.

35. Riccardo Poli and William B. Langdon. Sub-machine-code genetic programming. In Lee
Spector, William B. Langdon, Una-May O’Reilly, and Peter J. Angeline, editors, Advances
in Genetic Programming 3, chapter 13, pages 301–323. MIT Press, Cambridge, MA, USA,
June 1999.

36. Justinian P. Rosca. Analysis of complexity drift in genetic programming. In John R. Koza,
Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo,
editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages
286–294, Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

37. Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algorithms.
Addison-Wesley, 1996.

38. Terence Soule. Code Growth in Genetic Programming. PhD thesis, University of Idaho,
Moscow, Idaho, USA, 15 May 1998.

39. Terence Soule and James A. Foster. Code size and depth flows in genetic programming.
In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi
Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second
Annual Conference, pages 313–320, Stanford University, CA, USA, 13-16 July 1997. Morgan
Kaufmann.

40. Terence Soule and James A. Foster. Removal bias: a new cause of code growth in tree
based evolutionary programming. In 1998 IEEE International Conference on Evolutionary
Computation, pages 781–186, Anchorage, Alaska, USA, 5-9 May 1998. IEEE Press.

41. Terence Soule, James A. Foster, and John Dickinson. Code growth in genetic programming.
In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic
Programming 1996: Proceedings of the First Annual Conference, pages 215–223, Stanford
University, CA, USA, 28–31 July 1996. MIT Press.

42. Byoung-Tak Zhang and Heinz Mühlenbein. Balancing accuracy and parsimony in genetic
programming. Evolutionary Computation, 3(1):17–38, 1995.

