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Abstract: It has been previously established that genetic programming can be used as an 
automated invention machine to synthesize designs for complex structures. In 
particular, genetic programming has automatically synthesized structures that 
infringe, improve upon, or duplicate the functionality of 21 previously 
patented inventions (including six 21st-century patented analog electrical 
circuits) and has also generated two patentable new inventions (controllers). 
There are seven promising factors suggesting that these previous results can be 
extended to deliver industrial-strength automated design of analog circuits, but 
two countervailing factors. This chapter explores the question of whether the 
seven promising factors can overcome the two countervailing factors by 
reviewing progress on an ongoing project in which we are employing genetic 
programming to synthesize an amplifier circuit. The work involves a 
multiobjective fitness measure consisting of 16 different elements measured 
by five different test fixtures. The chapter describes five ways of using general 
domain knowledge applicable to all analog circuits, two ways for employing 
problem-specific knowledge, four ways of improving on previously published 
genetic programming techniques, and four ways of grappling with the multi-
objective fitness measures associated with real-world design problems. 
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1. INTRODUCTION 

Genetic programming is an automatic method for solving problems. It is 
an extension of the genetic algorithm (Holland 1975). Genetic programming 
starts from a high-level statement of the requirements of a problem and 
attempts to automatically create a computer program that solves the 
problem. Specifically, genetic programming starts with a primordial ooze of 
thousands of randomly created computer programs and uses the Darwinian 
principle of natural selection (fitness-based selection); analogs of 
recombination (crossover), mutation, gene duplication, gene deletion; and 
certain mechanisms of developmental biology to progressively breed an 
improved population over a series of generations (Koza 1992, Koza 1994; 
Koza, Bennett, Andre, and Keane 1999; Koza, Keane, Streeter, Mydlowec, 
Yu, and Lanza 2003; Banzhaf, Nordin, Keller, and Francone 1998; Langdon 
and Poli 2002).  

Genetic programming can be used as an automated invention machine to 
synthesize designs for complex structures. In particular, genetic 
programming has automatically synthesized complex structures that infringe, 
improve upon or duplicate in a novel way the functionality of 21 previously 
patented inventions (e.g., analog electrical circuits, controllers, and 
mathematical algorithms), including six post-2000 patented inventions. 
These 21 patented inventions are listed in Table 8.14.1 of (Koza, Streeter, 
and Keane 2003). In addition, genetic programming has generated two 
patentable new inventions (both controllers) for which patent applications 
are currently pending (Keane, Koza, and Streeter 2002). Genetic 
programming has also generated numerous additional human-competitive 
results involving the automated design of quantum computing circuits 
(Spector 2004) and antennae (Lohn, Hornby, and Linden 2004). Genetic 
programming has generated results involving the automated design of 
networks of chemical reactions and metabolic networks (Koza, Mydlowec, 
Lanza, Yu, and Keane 2001) and genetic networks (Lanza, Mydlowec, and 
Koza 2000).  

The six 21st-century patented inventions that were re-created by genetic 
programming were analog electrical circuits. Automatic synthesis of analog 
circuits from high-level specifications has long been recognized as a 
challenging problem. As Aaserud and Nielsen (1995) noted:  

“[M]ost … analog circuits are still handcrafted by the experts or 
so-called ‘zahs’ of analog design. The design process is 
characterized by a combination of experience and intuition and 
requires a thorough knowledge of the process characteristics and 
the detailed specifications of the actual product.  
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“Analog circuit design is known to be a knowledge-intensive, 
multiphase, iterative task, which usually stretches over a 
significant period of time and is performed by designers with a 
large portfolio of skills. It is therefore considered by many to be a 
form of art rather than a science.”  

And, as Balkir, Dundar, and Ogrenci (2003) stated: 
“The major reason underlying this lack of analog design 
automation tools has been the difficulty of the problem, in our 
opinion. Design in the analog domain requires creativity because 
of the large number of free parameters and the sometimes obscure 
interactions between them. … Thus, analog design has remained 
more of an ‘art’ than a ‘science.’ ” 

There are seven promising factors suggesting that the previous results 
can be extended to deliver industrial-strength automated design of analog 
circuits and there are two countervailing factors that impede progress. 

One promising factor is the unusually high success rate of previous work. 
Multiple runs of a probabilistic algorithm are typically necessary to solve a 
non-trivial problem. However, all 11 runs involving the six post-2000 
patented circuits (ignoring partial runs used during debugging) yielded a 
satisfactory solution. This high rate suggests that we are currently nowhere 
near the limit of the capability of existing techniques.  

A second promising factor (discussed in section 2) is that genetic 
programming has historically demonstrated the ability to yield progressively 
more substantial results in synchrony with the relentless increase in 
computer power tracked by Moore’s law (thereby suggesting that evermore 
complex problems can be solved as increased computer power becomes 
available).  

A third promising factor (discussed in section 3) is that our previous 
work (and most other previous work) involving the automated synthesis of 
circuits intentionally ignored many pieces of elementary general domain 
knowledge about analog circuits. For example, none of our previous runs 
culled egregiously flawed circuits, such as those drawing enormous amounts 
of current or those that lacked a connection to the circuit’s incoming signal, 
output port, or power supplies. Instead, our previous work approached each 
problem with a relatively “clean hands” orientation—using as little human-
supplied domain knowledge about electrical circuits as possible. Although 
this “clean hands” orientation highlighted the ability of genetic programming 
to produce human-competitive results in a “clean hands” setting, this 
orientation is entirely irrelevant to a practicing engineer interested in 
designing real-world circuits.  

A fourth promising factor (discussed in section 4) is that our previous 
work (and most other previous work) intentionally ignored opportunities to 
employ problem-specific knowledge about the to-be-designed circuit. For 
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example, the starting point for circuit development in our previous runs 
usually consisted merely of a single modifiable wire. Genetic programming 
was then expected to automatically create the entire circuit from scratch. 
However, a practicing engineer does not start each new assignment from 
first principles. Instead, the starting point for real-world design typically 
incorporates a core substructure that is known to provide a good head start.  

A fifth promising factor (also discussed in section 4) is that the genetic 
programming techniques used in our previous work to produce the six post-
2000 patented circuits were intentionally rigidly uniform. This uniformity 
had the advantage of emphasizing the ability of genetic programming to 
produce human-competitive results in a relatively “clean hands” setting. For 
example, we did not use automatically defined functions (subroutines) even 
on problems with manifest parallelism, regularity, symmetry, and 
modularity. However, a practicing engineer does not “reinvent the wheel” on 
each occasion requiring an already known solution to a sub-problem.  

A sixth promising factor (discussed in section 5) is that current 
techniques used for circuit synthesis can be improved by applying various 
aspects of the theory of genetic algorithms and genetic programming. Many 
of the current techniques go back to early work on automated circuit 
synthesis and have not been critically reexamined since then.  

A seventh promising factor is that considerable work has been done in 
recent years to accelerate the convergence characteristics and general 
efficiency of circuit simulators. For example, we used a version of the 
SPICE3 simulator (Quarles, Newton, Pederson, and Sangiovanni-Vincentelli 
1994) that we modified in various ways (as described in Koza, Bennett, 
Andre, and Keane 1999). Today, there are numerous commercially available 
simulators that are considerably faster (e.g., up to 10 times faster).  

There are, however, at least two countervailing factors that impede 
progress toward industrial-strength automated design of analog circuits.  

The first countervailing factor (discussed in section 6) concerns the 
multi-objective fitness measures that are typically associated with industrial-
strength problems. The fitness measures used in previously published 
examples of the synthesis of analog circuits by means of genetic 
programming (and genetic algorithms) typically consist of only a few 
different elements (rarely as many as four). In contrast, the data sheets used 
to specify commercial circuits typically contain a dozen or more different 
performance requirements. It is difficult to quantify the tradeoff between 
disparate elements of a fitness measure. Moreover, as the number of 
disparate elements in a fitness measure increases, the strategy for combining 
the various (“apples and oranges”) elements of the fitness measure usually 
becomes vexatious. If, for example, gain, bias, and distortion (three 
characteristics that are relevant to amplifier design) are naively assigned 
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equal weight in a fitness measure, an unadorned wire will immediately 
achieve a very good score (because a wire introduces no distortion and no 
bias to an incoming circuit). What’s worse, almost any single modification 
applied to this wire will be highly deleterious—thereby creating a local 
optimum from which escape is difficult. The search for an amplifier may 
easily become trapped in an area of the search space containing distortion-
free and bias-free circuits that deliver no amplification at all. Thus, the 
handling of the type of multi-objective fitness measures associated with 
industrial-strength design problems is a major issue.  

The second countervailing factor arises from the need to evaluate 
candidate circuits at the “corners” of various performance envelopes. For 
example, circuit behavior depends on temperature. A real-world circuit 
might be required to operate correctly over a range between, say, –40° C and 
+105° C, not merely at room temperature (27° C). Separate simulations (or, 
if reconfigurable hardware is being used, separate test scenarios with 
different ambient temperatures) are required to measure the circuit’s 
performance at each corner of the temperature envelope. Each additional 
simulation multiplies the required computer time by a factor of two (if only 
the two extreme values are considered), three (if the nominal value and two 
extremes are considered), or more (if more values are considered because of 
non-linear behavior). Similarly, a real-world circuit will be expected to 
operate correctly in the face of variation in the circuit’s power supply (e.g., 
when the battery or other power supply is delivering, say, 90% or 110% of 
its nominal voltage). Again, separate simulations are required to measure the 
circuit’s performance at each voltage corner. In addition, a real-world circuit 
will be expected to operate correctly in the face of deviations between the 
behavior of an actual manufactured component and the component’s 
“model” performance. For example, separate measurements may be required 
for a entire circuit’s “fast,” “typical,” and “slow” behavior or when a 
particular component is 75% or 125% of its nominal value. Circuits may 
also be expected to operate correctly in the face of variations in load, input, 
or other characteristics.  

Thus, the answer to the question as to whether genetic programming can 
deliver industrial-strength automated design of analog electrical circuits 
depends on whether the seven promising factors overcome the two 
countervailing factors.  

The remainder of this chapter reports on progress on an ongoing project 
in which we employed genetic programming to automatically synthesize 
both the topology and sizing of an amplifier circuit.  
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2. ABILITY OF GENETIC PROGRAMMING TO 

PROFITABLY EXPLOIT INCREASED 
COMPUTER POWER 

Genetic programming generally requires significant computational 
resources to solve non-trivial problems. Fortunately, the computer time 
necessary to achieve human-competitive results has become increasingly 
available in recent years because (1) the speed of commercially available 
single computers continues to double approximately every 18 months in 
accordance with Moore’s law, (2) genetic programming is amenable to 
efficient parallelization, and (3) Beowulf-style parallel cluster computer 
systems can be assembled at relatively low cost.  

As shown in Table 8-1, GP has historically demonstrated the ability to 
yield progressively more substantial results, given the increased computer 
power tracked by Moore’s law. Column 1 lists the five computer systems 
used to produce our group’s reported work on GP in the 15-year period 
between 1987 and 2002. Column 4 shows the speed-up of each system over 
the system shown in the previous row of the table. Column 7 shows the 
number of human-competitive results generated by each computer system.  

 
Table 8-1. Human-competitive results produced by GP with five computer systems. 

 
System Period Petacycles 

per day 
Speed-up over 

first system 
Used for work in 

book 
Human-

competitive 
results 

Texas 
Instruments 

LISP 
machine 

1987–
1994 

0.002 1 (base) Genetic 
Programming I and II 

0 

64-node 
Transtech 
transputer 
machine 

1994–
1997 

0.02 9 A few problems in 
Genetic 

Programming III 

2 

64-node 
Parsytec 
machine 

1995–
2000 

0.44 204 Most problems in 
Genetic 

Programming III 

12 

70-node 
Alpha 

machine 

1999–
2001 

3.2 1,481 8 of problems in 
Genetic 

Programming IV 

2 

1,000-node 
Pentium II 
machine 

2000–
2002 

30.0 13,900 28 of the problems in 
Genetic 

Programming IV 

12 
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The first entry in Table 8-1 is a serial computer and the next four entries 
are parallel computer systems. The presence of four increasingly powerful 
parallel computer systems reflects the fact that genetic programming has 
successfully taken advantage of the increased computational power available 
by means of parallel processing.  

Table 8-1 shows the following:  
• There is an order-of-magnitude speed-up (column 3) between each 

successive computer system in the table. Note that, according to 
Moore’s law, exponential increases in computer power 
correspond approximately to constant periods of time.  

• There is a 13,900-to-1 speed-up (column 4) between the fastest and 
most recent machine (the 1,000-node parallel computer system) 
and the slowest and earliest machine (the serial LISP machine).  

• The slower early machines generated few or no human-competitive 
results, whereas the faster more recent machines have generated 
numerous human-competitive results.  

Four successive order-of-magnitude increases in computer power are 
explicitly shown in Table 8-1. An additional order-of-magnitude increase 
was achieved by making extraordinarily long runs on the largest machine in 
the table (the 1,000-node Pentium® II parallel machine). The length of the 
run that produced the genetically evolved controller for which a patent 
application is currently pending (Keane, Koza, and Streeter 2002) was 28.8 
days—almost an order-of-magnitude increase over the 3.4-day average for 
runs that our group has made in recent years. If this final 9.3-to-1 increase is 
counted as an additional speed-up, the overall speed-up is 130,660-to-1.  

Table 8-2 is organized around the five just-explained order-of-magnitude 
increases in the expenditure of computing power. Column 4 of this table 
characterizes the qualitative nature of the results produced by genetic 
programming. This table shows the progression of qualitatively more 
substantial results produced by genetic programming in terms of five order-
of-magnitude increases in the expenditure of computational resources.  

The order-of-magnitude increases in computer power shown in Table 8-2 
correspond closely (albeit not perfectly) with the following progression of 
qualitatively more substantial results produced by genetic programming:  

• toy problems,  
• human-competitive results not related to patented inventions,  
• 20th-century patented inventions, 
• 21st-century patented inventions, and 
• patentable new inventions.  
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The progression in Table 8-2 demonstrates that genetic programming is 
able to take advantage of the exponentially increasing computational power 
tracked by iterations of Moore’s law.  
 
Table 8-2. Progression of qualitatively more substantial results produced by genetic 
programming in relation to five order-of-magnitude increases in computational power. 

 
System Period Speed-up 

over previous 
Qualitative nature of the results produced by 
genetic programming 

Texas 
Instruments 

LISP machine 

1987–
1994 

1 (base) • Toy problems of the 1980s and early 1990s 
from the fields of artificial intelligence and 
machine learning  

64-node 
Transtech 
transputer 

1994–
1997 

9 •Two human-competitive results involving one-
dimensional discrete data (not patent-related) 

64-node 
Parsytec 
machine 

1995–
2000 

22 • One human-competitive result involving two-
dimensional discrete data  
• Numerous human-competitive results 
involving continuous signals analysed in the 
frequency domain 
• Numerous human-competitive results 
involving 20th-century patented inventions 

70-node Alpha 
machine 

1999–
2001 

7.3 • One human-competitive result involving 
continuous signals analysed in the time domain 
• Circuit synthesis extended from topology and 
sizing to include routing and placement (layout) 

1,000-node 
Pentium II 
machine 

2000–
2002 

9.4 • Numerous human-competitive results 
involving continuous signals analysed in the 
time domain 
• Numerous general solutions to problems in the 
form of parameterized topologies 
• Six human-competitive results duplicating the 
functionality of 21st-century patented inventions 

4-week runs 
of 1,000-node 

Pentium II 
parallel  
machine 

2002 9.3 • Generation of two patentable new inventions 
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3. EXPLOITING GENERAL KNOWLEDGE ABOUT 

CIRCUITS 

The previously reported work involving the six 21st-century patented 
circuits intentionally did not take advantage of even the most elementary 
domain knowledge applicable to analog circuits. As part of our ongoing 
project of synthesizing commercially marketed amplifier circuits by means 
of genetic programming, we have incorporated general domain knowledge 
about circuits into our work in several ways.  

First, in previously reported work, the initial population was created 
entirely at random and new individuals were created during the run using the 
usual problem-independent probabilistic genetic operations (e.g., crossover, 
mutation). Many individuals in these populations inevitably represent 
unrealistic or impractical electrical circuits. One particularly egregious 
characteristic of some circuits is that the circuit fails to make a connection to 
all input signals, all output signals, and all necessary sources of power (e.g., 
the positive power supply and the negative power supply). Circuits that do 
not satisfy these threshold requirements are now being culled from the 
population (by severe penalization). The removal of such egregiously flawed 
circuits not only conserves computational resources, but also increases the 
amount of useful genetic diversity of the population (thereby further 
accelerating the evolutionary process).  

Second, another egregious characteristic of some circuits in unrestricted 
runs is that the circuit draws preposterously large amounts of current. In 
order to cull circuits of this type from the population, each circuit is 
examined for the current drawn by the circuit’s positive power supply and 
negative power supply. Circuits that draw excessive current are now being 
culled from the population.  

Third, the components that are inserted into a developing circuit need not 
be as primitive as a single transistor, resistor, or capacitor. Instead, 
component-creating functions can be defined to insert frequently occurring 
combinations of components that are known to be useful in practical 
circuitry. Examples include current mirrors, voltage gain stages, Darlington 
emitter-follower sections, and cascodes. Graeb, Zizala, Eckmueller, and 
Antreich (2001) identified (for a purpose entirely unrelated to evolutionary 
computation) a promising set of frequently occurring combinations of 
transistors that are known to be useful in a broad range of analog circuits. 
For the present work, we have implemented circuit-constructing functions 
that insert a current mirror, two types of voltage references, a loaded current 
mirror, and a level shifter from among these two-transistor groups. For 
certain problems, the set of primitives can be expanded to include higher-
level entities, such as filters, amplifiers, and phase-locked loops.  
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Fourth, minimization of a circuit’s total area is of great practical 
importance because the cost of manufacturing a chip depends directly on its 
size (because a given wafer contains more copies of a smaller chip and 
because a particular flaw on a wafer has a less deleterious effect on the 
wafer’s yield percentage when the flawed chip is smaller). Resistors are 
often implemented on a silicon chip by laying down a serpentine chain of 
small patches of resistive material. Capacitors are often created by laying 
down two areas of conductive material. Thus, in many situations, a circuit’s 
overall size is heavily influenced by the number of its resistors and 
capacitors. Our previous work on circuit synthesis typically permitted the 
creation of resistor and capacitor values over a very wide range (e.g., 10 
orders of magnitude). Practical work requires choices of component values 
that lie in a particular range of only about three orders of magnitude.  

Fifth, there are additional general principles of circuit design that might 
also be brought to bear on problems of circuit synthesis. For example, 
(Sripramong and Toumazou 2002) have combined current-flow analysis 
(and other improvements) into runs of genetic programming for the purpose 
of automatically synthesizing CMOS amplifiers.  

4. EXPLOITING  PROBLEM-SPECIFIC 
KNOWLEDGE 

The previously reported work involving the six 21st-century patented 
circuits intentionally did not take advantage of opportunities to use 
knowledge about the specific to-be-designed circuit. We have implemented 
such elementary knowledge in three areas as part of our ongoing project of 
synthesizing commercially marketed amplifier circuits by means of GP.  

First, there are basic substructures that are known by practicing analog 
engineers to be useful for particular types of circuits. Just as an engineer 
would begin a design using these known substructures, every individual in a 
run can be hard-wired with a substructure of known utility, thereby relieving 
genetic programming of the need to “reinvent the wheel.”  

As an example, the LM124 amplifier is a well-known commercial 
amplifier that delivers 100 dB of gain. This circuit (described in detail by the 
National Semiconductor data sheet available on the web at 
http://www.national.com/pf/LM/LM124.html) has 13 
transistors, two resistors, one capacitor, and four current sources. The 
LM124 has two inputs (an inverting input and non-inverting input) and one 
output. The circuit connects to a single +5 volt power source and ground. A 
differential pair that receives the inverting input and non-inverting input 
(shown in Figure 8-1) is a useful first stage in designing an amplifier with 
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the characteristics of the LM124. In the figure, there are three construction-
continuing subtrees (CCS1, CCS2, and CCS3) corresponding to the three 
output ports of the differential pair. After hard-wiring the differential pair, 
the evolutionary process is left with the task of automatically designing a 
satisfactory three-input sub-circuit that eventually connects to the overall 
circuit’s single output port. 

 

 
CCS 2CCS 1

3 CCS 

Inverting InputNonInverting Input

Q3 Q4

Q2Q1

 
 

Figure 8-1. Substructure consisting of hard-wired differential pair. 
 
The forced insertion of a substructure of known utility can be 

implemented in two different ways. In one approach, the desired 
substructure can be hard-wired into the embryo, thereby starting the 
developmental process off with the desired substructure (Koza, Bennett, 
Andre, and Keane 1999, section 52.2). In the second approach, when the 
initial population (generation 0) is created, an S-sub-expression that 
develops into the desired hard-wired structure can be hard-wired into the top 
of every program tree. In later generations, the functions and terminals in 
this fixed S-expression may either be immunized from modification by the 
genetic operations or, if desired, they may be permitted to change.  

Second, previous work involving the six post-2000 patented circuits was 
intentionally uniform in terms of genetic programming technique in order to 
emphasize the ability of genetic programming to produce human-
competitive results in a relatively “clean hands” setting. Thus, for example, 
even when a problem had manifest parallelism, regularity, symmetry, and 
modularity, we intentionally did not permit the use of automatically defined 
functions (subroutines). The benefits of using automatically defined 
functions in problems having parallelism, regularity, symmetry, and 
modularity are considerable (Koza 1990, Koza and Rice 1991, Koza 1992, 
Koza 1994). A practicing engineer would recognize that reuse is pervasive in 
at least two of the six post-2000 patented circuits (namely the mixed analog-
digital integrated circuit for variable capacitance and the low-voltage high-
current transistor circuit for testing a voltage source) and would instinctively 
take advantage of opportunities to reuse substructures.  
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5. IMPROVING TECHNIQUES OF GENETIC 

PROGRAMMING 

Many of the current techniques for circuit synthesis by means of genetic 
programming originate with early work starting in 1995 (Koza, Bennett, 
Andre and Keane 1996). Many of these initially successful techniques have 
not been subjected to critical reexamination since then. We believe that these 
techniques can be improved in four ways by applying various principles of 
the theory of genetic algorithms and genetic programming.  

First, our earliest work on the automatic synthesis of circuits (Koza, 
Bennett, Andre and Keane 1996) employed the VIA function to connect 
distant points in a developing circuit. However, a connection could be made 
only when the circuit-constructing program tree contained two (or more) 
appropriately coordinated VIA functions. The PAIR_CONNECT function 
(Koza, Bennett, Andre, and Keane 1999) eliminated this shortcoming. 
Nonetheless, both the VIA and PAIR_CONNECT functions were brittle in 
the sense that they were easily disrupted when crossover was performed on 
the circuit-constructing program trees. The premise behind the crossover 
operation in genetic programming (and the genetic algorithm) is that an 
individual with relatively high fitness is likely to contain some local 
substructures which, when recombined, will (at least some of the time) 
create offspring with even higher fitness. In genetic programming, the 
conventional crossover operation recombines a subtree from one parent’s 
program tree with a subtree from the second parent. Over many generations, 
functions and terminals that are close together in a program tree tend to be 
preferentially preserved by crossover. In particular, smaller subtrees are 
preserved to a greater degree than larger ones. Moreover, when representing 
circuits by program trees containing the circuit-constructing (developmental) 
functions that we generally use, a subtree tends to represent a local area in 
the fully developed circuit. However, the VIA and PAIR_CONNECT 
functions are highly context-dependent. They have the disadvantage that 
when a subtree of one circuit-constructing program tree is swapped with a 
subtree of another circuit-constructing program tree, the connectivity of a 
point within both the crossover fragment and a point within the remainder is, 
almost always, dramatically altered in a highly disruptive way. That is, 
crossover usually significantly disrupts the nature of the preexisting 
connections formed by the VIA and PAIR_CONNECT functions within a 
local area of the developing circuit. However, it is precisely these local 
structures that may have contributed to the individual’s comparatively high 
fitness and to the individual’s being selected to participate in the genetic 
operation in the first place. To the extent that crossover almost always 
dramatically alters the characteristics of the swapped genetic material, it 
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acquires the characteristics of the mutation operation. This, in turn, means 
that the problem-solving effectiveness of the crossover operation is reduced 
to the lesser level delivered by the mutation operation.  

The issues caused by the excessive disruption of local substructures by 
the VIA and PAIR_CONNECT functions were addressed in later work 
(Koza, Keane, Streeter, Mydlowec, Yu, and Lanza 2003, section 10.1.1) by 
introducing a two-argument NODE function to connect two or more points in 
the developing circuit. However, recent experience with various problems 
has indicated that, in practice, the NODE function is overly restrictive in that 
it limits connections to a particular subtree. We have addressed this now-
recognized deficiency in two ways. We have replaced the NODE function 
with a NODE_INCREASED_SCOPE function that permits connectivity 
within larger subtrees (one level higher in the program trees, in our current 
implementation). In addition, we have restored the original VIA function to 
the function set in order to again allow arbitrarily distant connections. We 
view these recent changes as an improvement, but not a complete solution.  

Second, in our previous work on the automatic synthesis of circuits, a 
two-leaded component (e.g., resistor, capacitor) remained modifiable after 
insertion into the developing circuit whereas this was not the case for a 
component with three leads (e.g., a transistor) or one with more than three 
leads. We removed this asymmetric treatment of component-creating 
functions so that all inserted component are non-modifiable after insertion.  

Third, to increase the variety of junctions, the three-argument Y division 
function was added to the repertoire of topology-modifying functions. This 
function had previously been used in some earlier work (Koza, Bennett, 
Andre, and Keane 1999, section 41.2.4).  

Fourth, when the topology-modifying series division function is 
performed on a resistor, the resulting new resistor is assigned the same 
component value as the original resistor, thereby doubling the total 
resistance after the topology-modifying function is executed. When a 
parallel division function is performed on a resistor, the new resistor is also 
assigned the same component value as the original resistor, thereby halving 
the total resistance after the topology-modifying function is executed. The 
same thing happens for capacitors, except that a series division halves the 
total capacitance and a parallel division doubles the total capacitance. An 
argument can be made that the topology-modifying functions that are part of 
the overall circuit-constructing program tree (i.e., part of the developmental 
process) should concentrate exclusively on their overtly stated purpose of 
modifying topology so that the two components resulting from the series or 
parallel division are each assigned values so that the new topological 
composition has the same overall behavior as the original single component. 
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Thus, for example, the two resistors produced by a series division would 
each have half the resistance of the original single resistor.  

6. GRAPPLING WITH A MULTI-OBJECTIVE 
FITNESS MEASURE 

The fitness measures used in previously published examples of the 
automated synthesis of analog circuits by means of genetic programming 
and genetic algorithms have usually consisted of only a few elements (rarely 
as many as four). For example, only three elements (gain, bias, and 
distortion) were incorporated into the fitness measure employed to 
synthesize the amplifier in chapter 45 of Koza, Bennett, Andre, and Keane 
1999 and only four elements (gain, bias, distortion, and the area of the 
bounding rectangle after placement and routing) were considered in chapter 
5 of Koza, Keane, Streeter, Mydlowec, Yu, and Lanza 2003. In contrast, the 
data sheets for commercial circuits typically specify a circuit’s performance 
for well over a dozen characteristics. As the number of disparate elements in 
a fitness measure increases, it becomes increasingly difficult to combine the 
elements in a way that enables the fitness measure to navigate a complex 
search space.  

Moreover, circuit behavior is typically ascertained by mounting it into a 
test fixture. The test fixture feeds external input(s) into the circuit and has 
probe points for evaluating the circuit’s output(s). The test fixture often has a 
small number of hard-wired non-modifiable components (e.g., a source 
resistor and a load resistor). In previous work involving genetic methods, a 
single test fixture was typically sufficient to measure all the characteristics 
under consideration. In contrast, the characteristics found in a typical 
commercial data sheet are so varied that multiple test fixtures (each 
consuming additional computational resources) are required.  

In our ongoing project in which we are using genetic programming to try 
to synthesize commercially marketed amplifier circuits (such as the LM124 
amplifier), we use a multiobjective fitness measure consisting of 16 elements 
measured by five different test fixtures. In this chapter reporting on our work 
in progress on this project, we focus on synthesizing a 40 dB amplifier.  

The 16 elements of the fitness measure are (1) 10dB initial gain, (2) 
supply current, (3) offset voltage, (4) direction cosine, (5) gain ratio, (6) 
output swing, (7) output swing direction cosine, (8) variable load resistance 
signal output, (9) open loop gain for the non-inverting configuration, (10) 
900 KHz unity gain bandwidth for the non-inverting configuration, (11) 
phase margin for the non-inverting configuration, (12) open loop gain for the 
inverting configuration, (13) 900 KHz unity gain bandwidth for the inverting 
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configuration, (14) phase margin for the inverting configuration, (15) 
inversion enforcement across test fixtures for the inverting and non-inverting 
configurations, and (16) bias current.  

When a human engineer designs an amplifier, all of the candidate circuits 
under consideration will usually perform amplification to some degree. 
However, when genetic and evolutionary methods are used to automatically 
synthesize complex structures, many of the candidate structures do not even 
remotely resemble the desired structure (i.e., do not perform amplification in 
any way). Thus, although most of the above elements of the fitness measure 
come from commercial data sheets for amplifiers, we included the direction 
cosine in the fitness measure in order to establish that the candidate circuit is 
doing something that resembles amplification of the difference between the 
circuit’s two inputs. The direction cosine provides a measure of the 
alignment of two time-domain signals, independent of signal magnitude. We 
are interested in the difference, d, between the circuit’s two inputs and the 
desired amplified output (called g). Specifically, the direction cosine is the 
inner product ∫d(t)*g(t) dt divided by the product of the norms of d and g.  

Figure 8-2 shows the first test fixture. This test fixture (with one probe 
point) is used to evaluate three elements of the fitness measure applicable to 
the non-inverting configuration, namely the open loop gain (in decibels), the 
900 KHz unity gain bandwidth, and the phase margin. This figure (and 
Figure 8-3) contains the hard-wired differential pair of Figure 8-1; however, 
this space ordinarily contains the candidate circuit that is being evaluated.  
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Figure 8-2. Test fixture for non-inverting configuration 
 

A second test fixture (not shown) differs from Figure 8-2 only in that the 
inverting and non-inverting inputs are switched. This test fixture is used to 
evaluate, for the inverting configuration, the desired open loop gain, the 900 
KHz unity gain bandwidth, and the phase margin. The first two test fixtures 
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are used for inversion enforcement to ensure that specified values are 
achieved while the amplitude and phase of the output signals are inverted.  

A third test fixture (not shown) measures the bias current. This test 
fixture differs from Figure 8-2 only in that there is no signal source, there is 
no capacitor, and there is a 1 mega-Ohm resistor between ground and the 
inverting input.  

A fourth test fixture (not shown) measures the offset voltage (bias). This 
test fixture differs from Figure 8-2 only in that there is no signal source, 
there is no capacitor, and a wire replaces the 1 mega-Ohm feedback resistor.  
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Figure 8-3. Test fixture with four probe points. 
 

The fifth test (Figure 8-3) fixture is more complex than the others. The 
fifth test has four probe points and is used to evaluate seven elements of the 
fitness measure. The four probe points are VOUT (output of the evolved 
circuit), VGAINRATIO, VDIRECTIONCOSINE, and VOFFSET. This test 
fixture is used to evaluate the initial 10dB amplification, the output voltage 
under different loads (two corners of the load envelope), direction cosine, 
the gain ratio, the offset voltage, the output swing, and the output swing 
direction cosine. This particular test fixture is noteworthy in that it illustrates 
the use of hard-wired non-modifiable electrical components to enable the 
test fixture to perform part of the fitness calculations (the remainder of the 
calculations being performed in software). Specifically, the ideal norm, 
VNORM-IDEAL, is computed by passing the incoming signals V1 and V2 
through subtractor block MINUS1 (to obtain the differential input of V1 and 
V2) and feeding the difference into gain block GAIN1 (which amplifies the 
signal according to the DC power value connected to it). Then, the signal 
GAIN1 is squared by feeding it to both inputs of multiplier block MULT2. 
The output of MULT2 is fed into integrator block INTEG2. The output of 
INTEG2 is then fed into square root block SQRT2 to produce VNORM-
IDEAL. Similarly, the norm for the evolved circuit, VNORM-EVOLVED, is 
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obtained using multiplier block MULT1, integrator block INTEG1, and 
square root block SQRT1. VREFERENCE is ascertained by multiplying 
GAIN1 by VOUT (at MULT3) and integrating at INTEG3. The direction 
cosine, VDIRECTIONCOSINE, is obtained by dividing VREFERENCE 
by the product of the two norms (VNORM-EVOLVED and VNORM-
IDEAL). Finally, VGAINRATIO is obtained by dividing VNORM-
EVOLVED by VNORM-IDEAL (at division block DIVV2).  

Our focus here is on the engineering techniques for conducting an 
automated search in the absence of detailed information about the complex 
interrelationships among the various elements of the fitness measure.  

First of all, even a little information can go a long way toward 
constructing a serviceable fitness measure that efficiently navigates a 
complex search space. For example, one thing that is almost always known 
is the identity of the preeminent element of the fitness measure (gain, in the 
case of an amplifier). The subspace of circuits that can actually amplify an 
incoming signal is an infinitesimal fraction of the space of possible circuits.  

By heavily rewarding circuits that deliver even as little as 10 dB of gain 
(which can be obtained from even a single poorly deployed transistor), the 
search can be directed away from degenerate circuits (e.g., single wires) that 
deliver no gain at all, but which achieve alluringly good sub-optimal scores 
for secondary elements of the fitness measure (e.g., bias and distortion).  

Second, after identifying the preeminent element of the fitness measure, 
we can weight the remaining elements equally in the sense that they will 
each make a certain common detrimental numerical contribution to fitness in 
a worst case that is likely to be occur. For this problem, an arbitrary common 
value of 30,000 was chosen.  

 
Table 8-3. Elements of the fitness measure organized into four groups. 

 
Preeminent element Amplifier-like behavior Single required 

value 
Signal matching 

• 10dB initial gain • Phase margin 
(inverting) 
• Phase margin (non-
inverting) 
• Unity gain bandwidth 
(inverting) 
• Unity gain bandwidth 
(non-inverting) 
• Phase and amplitude 
inversion 

• Desired Decibel 
gain (inverting) 
• Desired decibel 
gain (non-inverting) 
• Output swing 
• Offset voltage 
• Bias current 
• Variable load 
performance 
• Supply current 

• Direction cosine 
• Gain ratio 
• Output swing 
direction cosine 
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Third, the 16 elements of the fitness measure can be organized into four 
groups, as shown in Table 8-3. Column 1 of the table pertains to the just-
discussed preeminent element of the fitness measure (gain). Column 2 
contains elements of the fitness measure that ensure amplifier-like behavior. 
The unity gain bandwidth gives the upper limit to the useful passband of the 
amplifier. The phase margin is a mark of the amplifier’s stability. Checking 
the phase and amplitude inversion ensures that we are dealing with a 
differential amplifier. When satisfied simultaneously, these elements of the 
fitness measure indicate the evolved circuit is a stable differential amplifier 
operating in a passband of interest. These characteristics would be a starting 
assumption of a practicing engineer when evaluating circuits for the 
remaining criteria. Usually, pace-setting best-of-generation individuals 
achieve satisfactory scores for these elements of the fitness measure during 
early generations of a run. Column 3 contains elements of the fitness 
measure that entail satisfactorily matching a single value. Column 4 contains 
elements of the fitness measure that entail satisfactorily matching a signal 
(curve) in the time-domain. The sum of the absolute errors is ideally 0; 
however, a satisfactory amplifier can have some residual error.  

Fourth, because we do not have detailed information about the 
interrelationships among the various elements of the fitness measure, it is 
desirable to minimize the number of occasions where we need to quantify 
the tradeoff between disparate elements of the fitness measure. This can be 
accomplished by identifying all elements of the fitness measure for which 
there is no practical advantage to improvement once some minimal level of 
performance has been achieved. As soon as a satisfactory level is achieved 
for these elements, the detrimental contribution to fitness from that particular 
element is set to zero and no subsequent reward is given for additional 
improvement. In other words, these elements of the fitness measure are 
treated as constraints in that they make a non-zero detrimental numerical 
contribution to fitness only if the candidate circuit is considered to be in the 
infeasible region, but make no detrimental contribution once the constraint is 
satisfied. The elements in columns 2 and 3 of Table 8-3 can all be treated as 
constraints in this way, in the hope and expectation that their contribution to 
fitness will quickly become zero. If, and to the extent that, these 
contributions quickly become zero, we avoid having to quantify the tradeoff 
between these elements of the fitness measure. 

There are four recognizable phases in typical runs of this problem: (1) 
initial topology search, (2) formation of a core topology, (3) component 
solution, and (4) refinement.  

Phase 1 occurs in generations 0 and 1 and establishes initial topologies 
that deliver at least 10 dB of gain (column 1 of Table 8-3) and that exhibit 
amplifier-like behavior (the elements shown in column 2 of Table 8-3).  
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Figure 8-4 shows, for selected generations, the fitness of the best-of-
generation individual for one run. The height of each bar represents the 
individual’s fitness and the divisions within each bar show the contribution 
of eight selected elements of the fitness measure that illustrate the progress 
of the run. The eight selected elements are the differential gain direction 
cosine, gain ratio, offset voltage, supply current, output swing, output swing 
direction cosine, variable load resistance, and bias current. In Figure 8-5, the 
logarithm of these same eight fitness element are stacked on top of each 
other. The composition of each stack shows the progressive reduction (i.e., 
improvement) in the values of the eight elements.  
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Figure 8-4. Progressive change among eight selected elements of the fitness measure. 
 

Phase 2 of the run searches for a core topology. In generation 17, a core 
topology emerges that links the differential pair (Q1–Q4), a transistor (Q5), 
a resistor (R1), the positive power supply (V+), and the output. This 
topology persists for the remainder of the run. During this phase, the 
magnitude of each of the remaining elements of the fitness measure in 
Figure 8-5 is substantially reduced. Although none of the elements are 
driven to 0, this phase establishes a baseline value for the next phase.  

In phase 3, the required values of the elements shown in the third column 
of Table 8-3 are driven to 0. As progress is made in reducing the various 
elements of the fitness measure, the core topology that first appeared in 
generation 17 is augmented by additional electrical components.  

During phase 3, there are 3 sub-phases in which the run concentrates on 
one, two, or three elements of the six elements of the fitness measure shown 
in the second column of Table 8-3. For example, in the second sub-phase of 
phase 3 (between generations 18 and 29), a current mirror is added to the 
circuit to help drive the penalties associated with the gain ratio and output 
swing to 0. In the second sub-phase of phase 3 (between generation 30 and 
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73), the run concentrates on offset voltage, bias current, and variable load 
performance (i.e., the corners of the load envelope). The variable load 
performance becomes satisfied with the addition of current source I1.  

In the third sub-phase of phase 3 (generations 74 to 113), the offset 
voltage and bias currents become satisfied. In generation 104 the bias current 
is pulled below the target value with the introduction of current source I4.  
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Figure 8-5. Logarithmic scale showing progressive change among eight selected elements of 

the fitness measure. 
 

Generation 113 sees the offset voltage satisfied by substitution of a 
previously placed transistor with a current mirror consisting of Q6 and Q7, 
completing what would be the core of the solution circuit.  

In phase 4, the remaining residual error of the fitness measure elements 
in the third column of Table 8-3 are pushed toward their ideal values. The 
best-of-run individual from generation 120 (Figure 8-6) satisfies all 
constraints and all other minimum specifications, except that the supply 
current is 30 milliamperes. Although the supply current is not in compliance, 
its detrimental contribution to fitness is less than the sum of all of the errors.  

A second run (using an arguably more realistic worst-case scaling for 
supply current), followed a similar four-phase chronology. The best-of-run 
individual satisfied all constraints and specifications except that the bias 
current was 112 nano-amperes (instead of less than 80 nano-amperes).  

7. CONCLUSIONS 

The chapter discussed progress toward the synthesis of industrial-
strength automated design of analog circuits by means of genetic 
programming by describing five ways for using general domain knowledge 
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about circuits, three ways for employing problem-specific knowledge, four 
ways of improving on previously published genetic programming 
techniques, and four ways of grappling with the multi-objective fitness 
measure needed to synthesize an amplifier circuit.  
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Figure 8-6.  Best-of-run circuit from generation 120. 
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