
Chapter 8

TOWARD AUTOMATED DESIGN OF
INDUSTRIAL-STRENGTH ANALOG CIRCUITS
BY MEANS OF GENETIC PROGRAMMING

John R. Koza1, Lee W. Jones2, Martin A. Keane3, Matthew J. Streeter4 and
Sameer H. Al-Sakran2
1Stanford University, Stanford, California; 2Genetic Programming Inc., Mountain View,
California; 3Econometrics Inc., Chicago, Illinois; 4Carnegie Mellon University, Pittsburgh,
Pennsylvania.

Abstract: It has been previously established that genetic programming can be used as an
automated invention machine to synthesize designs for complex structures. In
particular, genetic programming has automatically synthesized structures that
infringe, improve upon, or duplicate the functionality of 21 previously
patented inventions (including six 21st-century patented analog electrical
circuits) and has also generated two patentable new inventions (controllers).
There are seven promising factors suggesting that these previous results can be
extended to deliver industrial-strength automated design of analog circuits, but
two countervailing factors. This chapter explores the question of whether the
seven promising factors can overcome the two countervailing factors by
reviewing progress on an ongoing project in which we are employing genetic
programming to synthesize an amplifier circuit. The work involves a
multiobjective fitness measure consisting of 16 different elements measured
by five different test fixtures. The chapter describes five ways of using general
domain knowledge applicable to all analog circuits, two ways for employing
problem-specific knowledge, four ways of improving on previously published
genetic programming techniques, and four ways of grappling with the multi-
objective fitness measures associated with real-world design problems.

Key words: Automated design, automated circuit synthesis, analog circuits, amplifier,
 evolvable hardware, developmental process, genetic programming

122 GENETIC PROGRAMMING THEORY AND PRACTICE II

1. INTRODUCTION

Genetic programming is an automatic method for solving problems. It is
an extension of the genetic algorithm (Holland 1975). Genetic programming
starts from a high-level statement of the requirements of a problem and
attempts to automatically create a computer program that solves the
problem. Specifically, genetic programming starts with a primordial ooze of
thousands of randomly created computer programs and uses the Darwinian
principle of natural selection (fitness-based selection); analogs of
recombination (crossover), mutation, gene duplication, gene deletion; and
certain mechanisms of developmental biology to progressively breed an
improved population over a series of generations (Koza 1992, Koza 1994;
Koza, Bennett, Andre, and Keane 1999; Koza, Keane, Streeter, Mydlowec,
Yu, and Lanza 2003; Banzhaf, Nordin, Keller, and Francone 1998; Langdon
and Poli 2002).

Genetic programming can be used as an automated invention machine to
synthesize designs for complex structures. In particular, genetic
programming has automatically synthesized complex structures that infringe,
improve upon or duplicate in a novel way the functionality of 21 previously
patented inventions (e.g., analog electrical circuits, controllers, and
mathematical algorithms), including six post-2000 patented inventions.
These 21 patented inventions are listed in Table 8.14.1 of (Koza, Streeter,
and Keane 2003). In addition, genetic programming has generated two
patentable new inventions (both controllers) for which patent applications
are currently pending (Keane, Koza, and Streeter 2002). Genetic
programming has also generated numerous additional human-competitive
results involving the automated design of quantum computing circuits
(Spector 2004) and antennae (Lohn, Hornby, and Linden 2004). Genetic
programming has generated results involving the automated design of
networks of chemical reactions and metabolic networks (Koza, Mydlowec,
Lanza, Yu, and Keane 2001) and genetic networks (Lanza, Mydlowec, and
Koza 2000).

The six 21st-century patented inventions that were re-created by genetic
programming were analog electrical circuits. Automatic synthesis of analog
circuits from high-level specifications has long been recognized as a
challenging problem. As Aaserud and Nielsen (1995) noted:

“[M]ost … analog circuits are still handcrafted by the experts or
so-called ‘zahs’ of analog design. The design process is
characterized by a combination of experience and intuition and
requires a thorough knowledge of the process characteristics and
the detailed specifications of the actual product.

Toward Automated Design of Analog Circuits by GP 123

“Analog circuit design is known to be a knowledge-intensive,
multiphase, iterative task, which usually stretches over a
significant period of time and is performed by designers with a
large portfolio of skills. It is therefore considered by many to be a
form of art rather than a science.”

And, as Balkir, Dundar, and Ogrenci (2003) stated:
“The major reason underlying this lack of analog design
automation tools has been the difficulty of the problem, in our
opinion. Design in the analog domain requires creativity because
of the large number of free parameters and the sometimes obscure
interactions between them. … Thus, analog design has remained
more of an ‘art’ than a ‘science.’ ”

There are seven promising factors suggesting that the previous results
can be extended to deliver industrial-strength automated design of analog
circuits and there are two countervailing factors that impede progress.

One promising factor is the unusually high success rate of previous work.
Multiple runs of a probabilistic algorithm are typically necessary to solve a
non-trivial problem. However, all 11 runs involving the six post-2000
patented circuits (ignoring partial runs used during debugging) yielded a
satisfactory solution. This high rate suggests that we are currently nowhere
near the limit of the capability of existing techniques.

A second promising factor (discussed in section 2) is that genetic
programming has historically demonstrated the ability to yield progressively
more substantial results in synchrony with the relentless increase in
computer power tracked by Moore’s law (thereby suggesting that evermore
complex problems can be solved as increased computer power becomes
available).

A third promising factor (discussed in section 3) is that our previous
work (and most other previous work) involving the automated synthesis of
circuits intentionally ignored many pieces of elementary general domain
knowledge about analog circuits. For example, none of our previous runs
culled egregiously flawed circuits, such as those drawing enormous amounts
of current or those that lacked a connection to the circuit’s incoming signal,
output port, or power supplies. Instead, our previous work approached each
problem with a relatively “clean hands” orientation—using as little human-
supplied domain knowledge about electrical circuits as possible. Although
this “clean hands” orientation highlighted the ability of genetic programming
to produce human-competitive results in a “clean hands” setting, this
orientation is entirely irrelevant to a practicing engineer interested in
designing real-world circuits.

A fourth promising factor (discussed in section 4) is that our previous
work (and most other previous work) intentionally ignored opportunities to
employ problem-specific knowledge about the to-be-designed circuit. For

124 GENETIC PROGRAMMING THEORY AND PRACTICE II

example, the starting point for circuit development in our previous runs
usually consisted merely of a single modifiable wire. Genetic programming
was then expected to automatically create the entire circuit from scratch.
However, a practicing engineer does not start each new assignment from
first principles. Instead, the starting point for real-world design typically
incorporates a core substructure that is known to provide a good head start.

A fifth promising factor (also discussed in section 4) is that the genetic
programming techniques used in our previous work to produce the six post-
2000 patented circuits were intentionally rigidly uniform. This uniformity
had the advantage of emphasizing the ability of genetic programming to
produce human-competitive results in a relatively “clean hands” setting. For
example, we did not use automatically defined functions (subroutines) even
on problems with manifest parallelism, regularity, symmetry, and
modularity. However, a practicing engineer does not “reinvent the wheel” on
each occasion requiring an already known solution to a sub-problem.

A sixth promising factor (discussed in section 5) is that current
techniques used for circuit synthesis can be improved by applying various
aspects of the theory of genetic algorithms and genetic programming. Many
of the current techniques go back to early work on automated circuit
synthesis and have not been critically reexamined since then.

A seventh promising factor is that considerable work has been done in
recent years to accelerate the convergence characteristics and general
efficiency of circuit simulators. For example, we used a version of the
SPICE3 simulator (Quarles, Newton, Pederson, and Sangiovanni-Vincentelli
1994) that we modified in various ways (as described in Koza, Bennett,
Andre, and Keane 1999). Today, there are numerous commercially available
simulators that are considerably faster (e.g., up to 10 times faster).

There are, however, at least two countervailing factors that impede
progress toward industrial-strength automated design of analog circuits.

The first countervailing factor (discussed in section 6) concerns the
multi-objective fitness measures that are typically associated with industrial-
strength problems. The fitness measures used in previously published
examples of the synthesis of analog circuits by means of genetic
programming (and genetic algorithms) typically consist of only a few
different elements (rarely as many as four). In contrast, the data sheets used
to specify commercial circuits typically contain a dozen or more different
performance requirements. It is difficult to quantify the tradeoff between
disparate elements of a fitness measure. Moreover, as the number of
disparate elements in a fitness measure increases, the strategy for combining
the various (“apples and oranges”) elements of the fitness measure usually
becomes vexatious. If, for example, gain, bias, and distortion (three
characteristics that are relevant to amplifier design) are naively assigned

Toward Automated Design of Analog Circuits by GP 125

equal weight in a fitness measure, an unadorned wire will immediately
achieve a very good score (because a wire introduces no distortion and no
bias to an incoming circuit). What’s worse, almost any single modification
applied to this wire will be highly deleterious—thereby creating a local
optimum from which escape is difficult. The search for an amplifier may
easily become trapped in an area of the search space containing distortion-
free and bias-free circuits that deliver no amplification at all. Thus, the
handling of the type of multi-objective fitness measures associated with
industrial-strength design problems is a major issue.

The second countervailing factor arises from the need to evaluate
candidate circuits at the “corners” of various performance envelopes. For
example, circuit behavior depends on temperature. A real-world circuit
might be required to operate correctly over a range between, say, –40° C and
+105° C, not merely at room temperature (27° C). Separate simulations (or,
if reconfigurable hardware is being used, separate test scenarios with
different ambient temperatures) are required to measure the circuit’s
performance at each corner of the temperature envelope. Each additional
simulation multiplies the required computer time by a factor of two (if only
the two extreme values are considered), three (if the nominal value and two
extremes are considered), or more (if more values are considered because of
non-linear behavior). Similarly, a real-world circuit will be expected to
operate correctly in the face of variation in the circuit’s power supply (e.g.,
when the battery or other power supply is delivering, say, 90% or 110% of
its nominal voltage). Again, separate simulations are required to measure the
circuit’s performance at each voltage corner. In addition, a real-world circuit
will be expected to operate correctly in the face of deviations between the
behavior of an actual manufactured component and the component’s
“model” performance. For example, separate measurements may be required
for a entire circuit’s “fast,” “typical,” and “slow” behavior or when a
particular component is 75% or 125% of its nominal value. Circuits may
also be expected to operate correctly in the face of variations in load, input,
or other characteristics.

Thus, the answer to the question as to whether genetic programming can
deliver industrial-strength automated design of analog electrical circuits
depends on whether the seven promising factors overcome the two
countervailing factors.

The remainder of this chapter reports on progress on an ongoing project
in which we employed genetic programming to automatically synthesize
both the topology and sizing of an amplifier circuit.

126 GENETIC PROGRAMMING THEORY AND PRACTICE II

2. ABILITY OF GENETIC PROGRAMMING TO

PROFITABLY EXPLOIT INCREASED
COMPUTER POWER

Genetic programming generally requires significant computational
resources to solve non-trivial problems. Fortunately, the computer time
necessary to achieve human-competitive results has become increasingly
available in recent years because (1) the speed of commercially available
single computers continues to double approximately every 18 months in
accordance with Moore’s law, (2) genetic programming is amenable to
efficient parallelization, and (3) Beowulf-style parallel cluster computer
systems can be assembled at relatively low cost.

As shown in Table 8-1, GP has historically demonstrated the ability to
yield progressively more substantial results, given the increased computer
power tracked by Moore’s law. Column 1 lists the five computer systems
used to produce our group’s reported work on GP in the 15-year period
between 1987 and 2002. Column 4 shows the speed-up of each system over
the system shown in the previous row of the table. Column 7 shows the
number of human-competitive results generated by each computer system.

Table 8-1. Human-competitive results produced by GP with five computer systems.

System Period Petacycles

per day
Speed-up over

first system
Used for work in

book
Human-

competitive
results

Texas
Instruments

LISP
machine

1987–
1994

0.002 1 (base) Genetic
Programming I and II

0

64-node
Transtech
transputer
machine

1994–
1997

0.02 9 A few problems in
Genetic

Programming III

2

64-node
Parsytec
machine

1995–
2000

0.44 204 Most problems in
Genetic

Programming III

12

70-node
Alpha

machine

1999–
2001

3.2 1,481 8 of problems in
Genetic

Programming IV

2

1,000-node
Pentium II
machine

2000–
2002

30.0 13,900 28 of the problems in
Genetic

Programming IV

12

Toward Automated Design of Analog Circuits by GP 127

The first entry in Table 8-1 is a serial computer and the next four entries
are parallel computer systems. The presence of four increasingly powerful
parallel computer systems reflects the fact that genetic programming has
successfully taken advantage of the increased computational power available
by means of parallel processing.

Table 8-1 shows the following:
• There is an order-of-magnitude speed-up (column 3) between each

successive computer system in the table. Note that, according to
Moore’s law, exponential increases in computer power
correspond approximately to constant periods of time.

• There is a 13,900-to-1 speed-up (column 4) between the fastest and
most recent machine (the 1,000-node parallel computer system)
and the slowest and earliest machine (the serial LISP machine).

• The slower early machines generated few or no human-competitive
results, whereas the faster more recent machines have generated
numerous human-competitive results.

Four successive order-of-magnitude increases in computer power are
explicitly shown in Table 8-1. An additional order-of-magnitude increase
was achieved by making extraordinarily long runs on the largest machine in
the table (the 1,000-node Pentium® II parallel machine). The length of the
run that produced the genetically evolved controller for which a patent
application is currently pending (Keane, Koza, and Streeter 2002) was 28.8
days—almost an order-of-magnitude increase over the 3.4-day average for
runs that our group has made in recent years. If this final 9.3-to-1 increase is
counted as an additional speed-up, the overall speed-up is 130,660-to-1.

Table 8-2 is organized around the five just-explained order-of-magnitude
increases in the expenditure of computing power. Column 4 of this table
characterizes the qualitative nature of the results produced by genetic
programming. This table shows the progression of qualitatively more
substantial results produced by genetic programming in terms of five order-
of-magnitude increases in the expenditure of computational resources.

The order-of-magnitude increases in computer power shown in Table 8-2
correspond closely (albeit not perfectly) with the following progression of
qualitatively more substantial results produced by genetic programming:

• toy problems,
• human-competitive results not related to patented inventions,
• 20th-century patented inventions,
• 21st-century patented inventions, and
• patentable new inventions.

128 GENETIC PROGRAMMING THEORY AND PRACTICE II

The progression in Table 8-2 demonstrates that genetic programming is
able to take advantage of the exponentially increasing computational power
tracked by iterations of Moore’s law.

Table 8-2. Progression of qualitatively more substantial results produced by genetic
programming in relation to five order-of-magnitude increases in computational power.

System Period Speed-up

over previous
Qualitative nature of the results produced by
genetic programming

Texas
Instruments

LISP machine

1987–
1994

1 (base) • Toy problems of the 1980s and early 1990s
from the fields of artificial intelligence and
machine learning

64-node
Transtech
transputer

1994–
1997

9 •Two human-competitive results involving one-
dimensional discrete data (not patent-related)

64-node
Parsytec
machine

1995–
2000

22 • One human-competitive result involving two-
dimensional discrete data
• Numerous human-competitive results
involving continuous signals analysed in the
frequency domain
• Numerous human-competitive results
involving 20th-century patented inventions

70-node Alpha
machine

1999–
2001

7.3 • One human-competitive result involving
continuous signals analysed in the time domain
• Circuit synthesis extended from topology and
sizing to include routing and placement (layout)

1,000-node
Pentium II
machine

2000–
2002

9.4 • Numerous human-competitive results
involving continuous signals analysed in the
time domain
• Numerous general solutions to problems in the
form of parameterized topologies
• Six human-competitive results duplicating the
functionality of 21st-century patented inventions

4-week runs
of 1,000-node

Pentium II
parallel
machine

2002 9.3 • Generation of two patentable new inventions

Toward Automated Design of Analog Circuits by GP 129

3. EXPLOITING GENERAL KNOWLEDGE ABOUT

CIRCUITS

The previously reported work involving the six 21st-century patented
circuits intentionally did not take advantage of even the most elementary
domain knowledge applicable to analog circuits. As part of our ongoing
project of synthesizing commercially marketed amplifier circuits by means
of genetic programming, we have incorporated general domain knowledge
about circuits into our work in several ways.

First, in previously reported work, the initial population was created
entirely at random and new individuals were created during the run using the
usual problem-independent probabilistic genetic operations (e.g., crossover,
mutation). Many individuals in these populations inevitably represent
unrealistic or impractical electrical circuits. One particularly egregious
characteristic of some circuits is that the circuit fails to make a connection to
all input signals, all output signals, and all necessary sources of power (e.g.,
the positive power supply and the negative power supply). Circuits that do
not satisfy these threshold requirements are now being culled from the
population (by severe penalization). The removal of such egregiously flawed
circuits not only conserves computational resources, but also increases the
amount of useful genetic diversity of the population (thereby further
accelerating the evolutionary process).

Second, another egregious characteristic of some circuits in unrestricted
runs is that the circuit draws preposterously large amounts of current. In
order to cull circuits of this type from the population, each circuit is
examined for the current drawn by the circuit’s positive power supply and
negative power supply. Circuits that draw excessive current are now being
culled from the population.

Third, the components that are inserted into a developing circuit need not
be as primitive as a single transistor, resistor, or capacitor. Instead,
component-creating functions can be defined to insert frequently occurring
combinations of components that are known to be useful in practical
circuitry. Examples include current mirrors, voltage gain stages, Darlington
emitter-follower sections, and cascodes. Graeb, Zizala, Eckmueller, and
Antreich (2001) identified (for a purpose entirely unrelated to evolutionary
computation) a promising set of frequently occurring combinations of
transistors that are known to be useful in a broad range of analog circuits.
For the present work, we have implemented circuit-constructing functions
that insert a current mirror, two types of voltage references, a loaded current
mirror, and a level shifter from among these two-transistor groups. For
certain problems, the set of primitives can be expanded to include higher-
level entities, such as filters, amplifiers, and phase-locked loops.

130 GENETIC PROGRAMMING THEORY AND PRACTICE II

Fourth, minimization of a circuit’s total area is of great practical
importance because the cost of manufacturing a chip depends directly on its
size (because a given wafer contains more copies of a smaller chip and
because a particular flaw on a wafer has a less deleterious effect on the
wafer’s yield percentage when the flawed chip is smaller). Resistors are
often implemented on a silicon chip by laying down a serpentine chain of
small patches of resistive material. Capacitors are often created by laying
down two areas of conductive material. Thus, in many situations, a circuit’s
overall size is heavily influenced by the number of its resistors and
capacitors. Our previous work on circuit synthesis typically permitted the
creation of resistor and capacitor values over a very wide range (e.g., 10
orders of magnitude). Practical work requires choices of component values
that lie in a particular range of only about three orders of magnitude.

Fifth, there are additional general principles of circuit design that might
also be brought to bear on problems of circuit synthesis. For example,
(Sripramong and Toumazou 2002) have combined current-flow analysis
(and other improvements) into runs of genetic programming for the purpose
of automatically synthesizing CMOS amplifiers.

4. EXPLOITING PROBLEM-SPECIFIC
KNOWLEDGE

The previously reported work involving the six 21st-century patented
circuits intentionally did not take advantage of opportunities to use
knowledge about the specific to-be-designed circuit. We have implemented
such elementary knowledge in three areas as part of our ongoing project of
synthesizing commercially marketed amplifier circuits by means of GP.

First, there are basic substructures that are known by practicing analog
engineers to be useful for particular types of circuits. Just as an engineer
would begin a design using these known substructures, every individual in a
run can be hard-wired with a substructure of known utility, thereby relieving
genetic programming of the need to “reinvent the wheel.”

As an example, the LM124 amplifier is a well-known commercial
amplifier that delivers 100 dB of gain. This circuit (described in detail by the
National Semiconductor data sheet available on the web at
http://www.national.com/pf/LM/LM124.html) has 13
transistors, two resistors, one capacitor, and four current sources. The
LM124 has two inputs (an inverting input and non-inverting input) and one
output. The circuit connects to a single +5 volt power source and ground. A
differential pair that receives the inverting input and non-inverting input
(shown in Figure 8-1) is a useful first stage in designing an amplifier with

Toward Automated Design of Analog Circuits by GP 131

the characteristics of the LM124. In the figure, there are three construction-
continuing subtrees (CCS1, CCS2, and CCS3) corresponding to the three
output ports of the differential pair. After hard-wiring the differential pair,
the evolutionary process is left with the task of automatically designing a
satisfactory three-input sub-circuit that eventually connects to the overall
circuit’s single output port.

CCS 2CCS 1

3 CCS

Inverting InputNonInverting Input

Q3 Q4

Q2Q1

Figure 8-1. Substructure consisting of hard-wired differential pair.

The forced insertion of a substructure of known utility can be

implemented in two different ways. In one approach, the desired
substructure can be hard-wired into the embryo, thereby starting the
developmental process off with the desired substructure (Koza, Bennett,
Andre, and Keane 1999, section 52.2). In the second approach, when the
initial population (generation 0) is created, an S-sub-expression that
develops into the desired hard-wired structure can be hard-wired into the top
of every program tree. In later generations, the functions and terminals in
this fixed S-expression may either be immunized from modification by the
genetic operations or, if desired, they may be permitted to change.

Second, previous work involving the six post-2000 patented circuits was
intentionally uniform in terms of genetic programming technique in order to
emphasize the ability of genetic programming to produce human-
competitive results in a relatively “clean hands” setting. Thus, for example,
even when a problem had manifest parallelism, regularity, symmetry, and
modularity, we intentionally did not permit the use of automatically defined
functions (subroutines). The benefits of using automatically defined
functions in problems having parallelism, regularity, symmetry, and
modularity are considerable (Koza 1990, Koza and Rice 1991, Koza 1992,
Koza 1994). A practicing engineer would recognize that reuse is pervasive in
at least two of the six post-2000 patented circuits (namely the mixed analog-
digital integrated circuit for variable capacitance and the low-voltage high-
current transistor circuit for testing a voltage source) and would instinctively
take advantage of opportunities to reuse substructures.

132 GENETIC PROGRAMMING THEORY AND PRACTICE II

5. IMPROVING TECHNIQUES OF GENETIC

PROGRAMMING

Many of the current techniques for circuit synthesis by means of genetic
programming originate with early work starting in 1995 (Koza, Bennett,
Andre and Keane 1996). Many of these initially successful techniques have
not been subjected to critical reexamination since then. We believe that these
techniques can be improved in four ways by applying various principles of
the theory of genetic algorithms and genetic programming.

First, our earliest work on the automatic synthesis of circuits (Koza,
Bennett, Andre and Keane 1996) employed the VIA function to connect
distant points in a developing circuit. However, a connection could be made
only when the circuit-constructing program tree contained two (or more)
appropriately coordinated VIA functions. The PAIR_CONNECT function
(Koza, Bennett, Andre, and Keane 1999) eliminated this shortcoming.
Nonetheless, both the VIA and PAIR_CONNECT functions were brittle in
the sense that they were easily disrupted when crossover was performed on
the circuit-constructing program trees. The premise behind the crossover
operation in genetic programming (and the genetic algorithm) is that an
individual with relatively high fitness is likely to contain some local
substructures which, when recombined, will (at least some of the time)
create offspring with even higher fitness. In genetic programming, the
conventional crossover operation recombines a subtree from one parent’s
program tree with a subtree from the second parent. Over many generations,
functions and terminals that are close together in a program tree tend to be
preferentially preserved by crossover. In particular, smaller subtrees are
preserved to a greater degree than larger ones. Moreover, when representing
circuits by program trees containing the circuit-constructing (developmental)
functions that we generally use, a subtree tends to represent a local area in
the fully developed circuit. However, the VIA and PAIR_CONNECT
functions are highly context-dependent. They have the disadvantage that
when a subtree of one circuit-constructing program tree is swapped with a
subtree of another circuit-constructing program tree, the connectivity of a
point within both the crossover fragment and a point within the remainder is,
almost always, dramatically altered in a highly disruptive way. That is,
crossover usually significantly disrupts the nature of the preexisting
connections formed by the VIA and PAIR_CONNECT functions within a
local area of the developing circuit. However, it is precisely these local
structures that may have contributed to the individual’s comparatively high
fitness and to the individual’s being selected to participate in the genetic
operation in the first place. To the extent that crossover almost always
dramatically alters the characteristics of the swapped genetic material, it

Toward Automated Design of Analog Circuits by GP 133

acquires the characteristics of the mutation operation. This, in turn, means
that the problem-solving effectiveness of the crossover operation is reduced
to the lesser level delivered by the mutation operation.

The issues caused by the excessive disruption of local substructures by
the VIA and PAIR_CONNECT functions were addressed in later work
(Koza, Keane, Streeter, Mydlowec, Yu, and Lanza 2003, section 10.1.1) by
introducing a two-argument NODE function to connect two or more points in
the developing circuit. However, recent experience with various problems
has indicated that, in practice, the NODE function is overly restrictive in that
it limits connections to a particular subtree. We have addressed this now-
recognized deficiency in two ways. We have replaced the NODE function
with a NODE_INCREASED_SCOPE function that permits connectivity
within larger subtrees (one level higher in the program trees, in our current
implementation). In addition, we have restored the original VIA function to
the function set in order to again allow arbitrarily distant connections. We
view these recent changes as an improvement, but not a complete solution.

Second, in our previous work on the automatic synthesis of circuits, a
two-leaded component (e.g., resistor, capacitor) remained modifiable after
insertion into the developing circuit whereas this was not the case for a
component with three leads (e.g., a transistor) or one with more than three
leads. We removed this asymmetric treatment of component-creating
functions so that all inserted component are non-modifiable after insertion.

Third, to increase the variety of junctions, the three-argument Y division
function was added to the repertoire of topology-modifying functions. This
function had previously been used in some earlier work (Koza, Bennett,
Andre, and Keane 1999, section 41.2.4).

Fourth, when the topology-modifying series division function is
performed on a resistor, the resulting new resistor is assigned the same
component value as the original resistor, thereby doubling the total
resistance after the topology-modifying function is executed. When a
parallel division function is performed on a resistor, the new resistor is also
assigned the same component value as the original resistor, thereby halving
the total resistance after the topology-modifying function is executed. The
same thing happens for capacitors, except that a series division halves the
total capacitance and a parallel division doubles the total capacitance. An
argument can be made that the topology-modifying functions that are part of
the overall circuit-constructing program tree (i.e., part of the developmental
process) should concentrate exclusively on their overtly stated purpose of
modifying topology so that the two components resulting from the series or
parallel division are each assigned values so that the new topological
composition has the same overall behavior as the original single component.

134 GENETIC PROGRAMMING THEORY AND PRACTICE II

Thus, for example, the two resistors produced by a series division would
each have half the resistance of the original single resistor.

6. GRAPPLING WITH A MULTI-OBJECTIVE
FITNESS MEASURE

The fitness measures used in previously published examples of the
automated synthesis of analog circuits by means of genetic programming
and genetic algorithms have usually consisted of only a few elements (rarely
as many as four). For example, only three elements (gain, bias, and
distortion) were incorporated into the fitness measure employed to
synthesize the amplifier in chapter 45 of Koza, Bennett, Andre, and Keane
1999 and only four elements (gain, bias, distortion, and the area of the
bounding rectangle after placement and routing) were considered in chapter
5 of Koza, Keane, Streeter, Mydlowec, Yu, and Lanza 2003. In contrast, the
data sheets for commercial circuits typically specify a circuit’s performance
for well over a dozen characteristics. As the number of disparate elements in
a fitness measure increases, it becomes increasingly difficult to combine the
elements in a way that enables the fitness measure to navigate a complex
search space.

Moreover, circuit behavior is typically ascertained by mounting it into a
test fixture. The test fixture feeds external input(s) into the circuit and has
probe points for evaluating the circuit’s output(s). The test fixture often has a
small number of hard-wired non-modifiable components (e.g., a source
resistor and a load resistor). In previous work involving genetic methods, a
single test fixture was typically sufficient to measure all the characteristics
under consideration. In contrast, the characteristics found in a typical
commercial data sheet are so varied that multiple test fixtures (each
consuming additional computational resources) are required.

In our ongoing project in which we are using genetic programming to try
to synthesize commercially marketed amplifier circuits (such as the LM124
amplifier), we use a multiobjective fitness measure consisting of 16 elements
measured by five different test fixtures. In this chapter reporting on our work
in progress on this project, we focus on synthesizing a 40 dB amplifier.

The 16 elements of the fitness measure are (1) 10dB initial gain, (2)
supply current, (3) offset voltage, (4) direction cosine, (5) gain ratio, (6)
output swing, (7) output swing direction cosine, (8) variable load resistance
signal output, (9) open loop gain for the non-inverting configuration, (10)
900 KHz unity gain bandwidth for the non-inverting configuration, (11)
phase margin for the non-inverting configuration, (12) open loop gain for the
inverting configuration, (13) 900 KHz unity gain bandwidth for the inverting

Toward Automated Design of Analog Circuits by GP 135

configuration, (14) phase margin for the inverting configuration, (15)
inversion enforcement across test fixtures for the inverting and non-inverting
configurations, and (16) bias current.

When a human engineer designs an amplifier, all of the candidate circuits
under consideration will usually perform amplification to some degree.
However, when genetic and evolutionary methods are used to automatically
synthesize complex structures, many of the candidate structures do not even
remotely resemble the desired structure (i.e., do not perform amplification in
any way). Thus, although most of the above elements of the fitness measure
come from commercial data sheets for amplifiers, we included the direction
cosine in the fitness measure in order to establish that the candidate circuit is
doing something that resembles amplification of the difference between the
circuit’s two inputs. The direction cosine provides a measure of the
alignment of two time-domain signals, independent of signal magnitude. We
are interested in the difference, d, between the circuit’s two inputs and the
desired amplified output (called g). Specifically, the direction cosine is the
inner product ∫d(t)*g(t) dt divided by the product of the norms of d and g.

Figure 8-2 shows the first test fixture. This test fixture (with one probe
point) is used to evaluate three elements of the fitness measure applicable to
the non-inverting configuration, namely the open loop gain (in decibels), the
900 KHz unity gain bandwidth, and the phase margin. This figure (and
Figure 8-3) contains the hard-wired differential pair of Figure 8-1; however,
this space ordinarily contains the candidate circuit that is being evaluated.

VOUT

Inverting

CCS 2CCS 1

CCS 3

NonInverting

V

Embryo

Output

+15v

-15v

100F

C1

10uV

V1
1Hz

-+

Q2Q1

Q4Q3

R1

1Meg

Figure 8-2. Test fixture for non-inverting configuration

A second test fixture (not shown) differs from Figure 8-2 only in that the
inverting and non-inverting inputs are switched. This test fixture is used to
evaluate, for the inverting configuration, the desired open loop gain, the 900
KHz unity gain bandwidth, and the phase margin. The first two test fixtures

136 GENETIC PROGRAMMING THEORY AND PRACTICE II

are used for inversion enforcement to ensure that specified values are
achieved while the amplitude and phase of the output signals are inverted.

A third test fixture (not shown) measures the bias current. This test
fixture differs from Figure 8-2 only in that there is no signal source, there is
no capacitor, and there is a 1 mega-Ohm resistor between ground and the
inverting input.

A fourth test fixture (not shown) measures the offset voltage (bias). This
test fixture differs from Figure 8-2 only in that there is no signal source,
there is no capacitor, and a wire replaces the 1 mega-Ohm feedback resistor.

VNORM-IDEAL

VNORM-EVOLVED

VREFERENCEMULT3

MULT2

MULT4

GAIN1 INTEG3

INTEG2
SQRT2

VOUT

INTEG1

MULT1

MINUS1

VGAINRATIO

A

B

DIVV

DIVV2

VDIRECTIONCOSINE
DIVV1

B

A
DIVV

SQRT1

Inverting

NonInverting

VOFFSET

CCS 2CCS 1

CCS 3

V

V

V

V

V

V

V

Embryo

Output

+15v

-15v

Q3

1E3

1F

C2

SQRT

10k

R23Hz
V2

10uV

-+

SQRT

R1

100k

Q1 Q2

Q4

100F

C1

10uV

V1
5Hz

-+

Figure 8-3. Test fixture with four probe points.

The fifth test (Figure 8-3) fixture is more complex than the others. The
fifth test has four probe points and is used to evaluate seven elements of the
fitness measure. The four probe points are VOUT (output of the evolved
circuit), VGAINRATIO, VDIRECTIONCOSINE, and VOFFSET. This test
fixture is used to evaluate the initial 10dB amplification, the output voltage
under different loads (two corners of the load envelope), direction cosine,
the gain ratio, the offset voltage, the output swing, and the output swing
direction cosine. This particular test fixture is noteworthy in that it illustrates
the use of hard-wired non-modifiable electrical components to enable the
test fixture to perform part of the fitness calculations (the remainder of the
calculations being performed in software). Specifically, the ideal norm,
VNORM-IDEAL, is computed by passing the incoming signals V1 and V2
through subtractor block MINUS1 (to obtain the differential input of V1 and
V2) and feeding the difference into gain block GAIN1 (which amplifies the
signal according to the DC power value connected to it). Then, the signal
GAIN1 is squared by feeding it to both inputs of multiplier block MULT2.
The output of MULT2 is fed into integrator block INTEG2. The output of
INTEG2 is then fed into square root block SQRT2 to produce VNORM-
IDEAL. Similarly, the norm for the evolved circuit, VNORM-EVOLVED, is

Toward Automated Design of Analog Circuits by GP 137

obtained using multiplier block MULT1, integrator block INTEG1, and
square root block SQRT1. VREFERENCE is ascertained by multiplying
GAIN1 by VOUT (at MULT3) and integrating at INTEG3. The direction
cosine, VDIRECTIONCOSINE, is obtained by dividing VREFERENCE
by the product of the two norms (VNORM-EVOLVED and VNORM-
IDEAL). Finally, VGAINRATIO is obtained by dividing VNORM-
EVOLVED by VNORM-IDEAL (at division block DIVV2).

Our focus here is on the engineering techniques for conducting an
automated search in the absence of detailed information about the complex
interrelationships among the various elements of the fitness measure.

First of all, even a little information can go a long way toward
constructing a serviceable fitness measure that efficiently navigates a
complex search space. For example, one thing that is almost always known
is the identity of the preeminent element of the fitness measure (gain, in the
case of an amplifier). The subspace of circuits that can actually amplify an
incoming signal is an infinitesimal fraction of the space of possible circuits.

By heavily rewarding circuits that deliver even as little as 10 dB of gain
(which can be obtained from even a single poorly deployed transistor), the
search can be directed away from degenerate circuits (e.g., single wires) that
deliver no gain at all, but which achieve alluringly good sub-optimal scores
for secondary elements of the fitness measure (e.g., bias and distortion).

Second, after identifying the preeminent element of the fitness measure,
we can weight the remaining elements equally in the sense that they will
each make a certain common detrimental numerical contribution to fitness in
a worst case that is likely to be occur. For this problem, an arbitrary common
value of 30,000 was chosen.

Table 8-3. Elements of the fitness measure organized into four groups.

Preeminent element Amplifier-like behavior Single required

value
Signal matching

• 10dB initial gain • Phase margin
(inverting)
• Phase margin (non-
inverting)
• Unity gain bandwidth
(inverting)
• Unity gain bandwidth
(non-inverting)
• Phase and amplitude
inversion

• Desired Decibel
gain (inverting)
• Desired decibel
gain (non-inverting)
• Output swing
• Offset voltage
• Bias current
• Variable load
performance
• Supply current

• Direction cosine
• Gain ratio
• Output swing
direction cosine

138 GENETIC PROGRAMMING THEORY AND PRACTICE II

Third, the 16 elements of the fitness measure can be organized into four
groups, as shown in Table 8-3. Column 1 of the table pertains to the just-
discussed preeminent element of the fitness measure (gain). Column 2
contains elements of the fitness measure that ensure amplifier-like behavior.
The unity gain bandwidth gives the upper limit to the useful passband of the
amplifier. The phase margin is a mark of the amplifier’s stability. Checking
the phase and amplitude inversion ensures that we are dealing with a
differential amplifier. When satisfied simultaneously, these elements of the
fitness measure indicate the evolved circuit is a stable differential amplifier
operating in a passband of interest. These characteristics would be a starting
assumption of a practicing engineer when evaluating circuits for the
remaining criteria. Usually, pace-setting best-of-generation individuals
achieve satisfactory scores for these elements of the fitness measure during
early generations of a run. Column 3 contains elements of the fitness
measure that entail satisfactorily matching a single value. Column 4 contains
elements of the fitness measure that entail satisfactorily matching a signal
(curve) in the time-domain. The sum of the absolute errors is ideally 0;
however, a satisfactory amplifier can have some residual error.

Fourth, because we do not have detailed information about the
interrelationships among the various elements of the fitness measure, it is
desirable to minimize the number of occasions where we need to quantify
the tradeoff between disparate elements of the fitness measure. This can be
accomplished by identifying all elements of the fitness measure for which
there is no practical advantage to improvement once some minimal level of
performance has been achieved. As soon as a satisfactory level is achieved
for these elements, the detrimental contribution to fitness from that particular
element is set to zero and no subsequent reward is given for additional
improvement. In other words, these elements of the fitness measure are
treated as constraints in that they make a non-zero detrimental numerical
contribution to fitness only if the candidate circuit is considered to be in the
infeasible region, but make no detrimental contribution once the constraint is
satisfied. The elements in columns 2 and 3 of Table 8-3 can all be treated as
constraints in this way, in the hope and expectation that their contribution to
fitness will quickly become zero. If, and to the extent that, these
contributions quickly become zero, we avoid having to quantify the tradeoff
between these elements of the fitness measure.

There are four recognizable phases in typical runs of this problem: (1)
initial topology search, (2) formation of a core topology, (3) component
solution, and (4) refinement.

Phase 1 occurs in generations 0 and 1 and establishes initial topologies
that deliver at least 10 dB of gain (column 1 of Table 8-3) and that exhibit
amplifier-like behavior (the elements shown in column 2 of Table 8-3).

Toward Automated Design of Analog Circuits by GP 139

Figure 8-4 shows, for selected generations, the fitness of the best-of-
generation individual for one run. The height of each bar represents the
individual’s fitness and the divisions within each bar show the contribution
of eight selected elements of the fitness measure that illustrate the progress
of the run. The eight selected elements are the differential gain direction
cosine, gain ratio, offset voltage, supply current, output swing, output swing
direction cosine, variable load resistance, and bias current. In Figure 8-5, the
logarithm of these same eight fitness element are stacked on top of each
other. The composition of each stack shows the progressive reduction (i.e.,
improvement) in the values of the eight elements.

0

100000

200000

0 1 4 8 10 16 17 19 22 27 29 35 44 52 60 63 74 82 92 104 113 120
Generation

Fit
ne
ss

Bias Current
Variable Load Resistance
Output Swing
Output Swing Direction Cosine
Supply Current
Offset Voltage
Gain Ratio
Direction Cosine

Figure 8-4. Progressive change among eight selected elements of the fitness measure.

Phase 2 of the run searches for a core topology. In generation 17, a core
topology emerges that links the differential pair (Q1–Q4), a transistor (Q5),
a resistor (R1), the positive power supply (V+), and the output. This
topology persists for the remainder of the run. During this phase, the
magnitude of each of the remaining elements of the fitness measure in
Figure 8-5 is substantially reduced. Although none of the elements are
driven to 0, this phase establishes a baseline value for the next phase.

In phase 3, the required values of the elements shown in the third column
of Table 8-3 are driven to 0. As progress is made in reducing the various
elements of the fitness measure, the core topology that first appeared in
generation 17 is augmented by additional electrical components.

During phase 3, there are 3 sub-phases in which the run concentrates on
one, two, or three elements of the six elements of the fitness measure shown
in the second column of Table 8-3. For example, in the second sub-phase of
phase 3 (between generations 18 and 29), a current mirror is added to the
circuit to help drive the penalties associated with the gain ratio and output
swing to 0. In the second sub-phase of phase 3 (between generation 30 and

140 GENETIC PROGRAMMING THEORY AND PRACTICE II

73), the run concentrates on offset voltage, bias current, and variable load
performance (i.e., the corners of the load envelope). The variable load
performance becomes satisfied with the addition of current source I1.

In the third sub-phase of phase 3 (generations 74 to 113), the offset
voltage and bias currents become satisfied. In generation 104 the bias current
is pulled below the target value with the introduction of current source I4.

0 1 4 8 10 16 17 19 22 27 29 35 44 52 60 63 74 82 92 104 113 120
Generation

Su
m
 [
lo
g(
Fi
tn
es
s
El
em
en
t)
]

Bias Current
Variable Load Resistance
Output Swing
Output Swing Direction Cosine
Supply Current
Offset Voltage
Gain Ratio
Direction Cosine

Figure 8-5. Logarithmic scale showing progressive change among eight selected elements of

the fitness measure.

Generation 113 sees the offset voltage satisfied by substitution of a
previously placed transistor with a current mirror consisting of Q6 and Q7,
completing what would be the core of the solution circuit.

In phase 4, the remaining residual error of the fitness measure elements
in the third column of Table 8-3 are pushed toward their ideal values. The
best-of-run individual from generation 120 (Figure 8-6) satisfies all
constraints and all other minimum specifications, except that the supply
current is 30 milliamperes. Although the supply current is not in compliance,
its detrimental contribution to fitness is less than the sum of all of the errors.

A second run (using an arguably more realistic worst-case scaling for
supply current), followed a similar four-phase chronology. The best-of-run
individual satisfied all constraints and specifications except that the bias
current was 112 nano-amperes (instead of less than 80 nano-amperes).

7. CONCLUSIONS

The chapter discussed progress toward the synthesis of industrial-
strength automated design of analog circuits by means of genetic
programming by describing five ways for using general domain knowledge

Toward Automated Design of Analog Circuits by GP 141

about circuits, three ways for employing problem-specific knowledge, four
ways of improving on previously published genetic programming
techniques, and four ways of grappling with the multi-objective fitness
measure needed to synthesize an amplifier circuit.

V+

V-

Output

NonInverting Inverting

R1

521

3.27Meg

R3

Q9

R2 1.77Meg

Q16

1G

1G

1k

1G

1G

Q22

1G

Q8

Q7

I4 951uA

-+
Q2

49.7uA

I2

- +
Q10

D2
Q6

D1

I3

60.9uA

- +

13.7pA
I5

-+

I1

1.37mA

- +

Q5

Q21

Q12

Q13

Q3

Q14

Q17 Q15

Q18

Q20

Q19

D3

Q4Q1

Figure 8-6. Best-of-run circuit from generation 120.

Acknowledgements

We are indebted to Trent McConaghy (formerly of Analog Design
Automation Inc. of Ottawa, now a part of Synopsys) for suggesting this
amplifier problem and useful discussions about it.

References

Aaserud, O. and Nielsen, I. Ring. (1995). Trends in current analog design: A panel debate.
Analog Integrated Circuits and Signal-Processing. 7(1)5–9.

Balkir, Sina, Dundar, Gunhan, and Ogrenci, A. Selcuk. (2003). Analog VLSI Design
Automation. Boca Raton, FL: CRC Press.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D. (1998). Genetic
Programming– An Introduction. San Francisco, CA: Morgan Kaufmann.

Graeb, Helmut E., Zizala, S., Eckmueller, J., and Antreich, K. 2001. The sizing rules method
for analog circuit design. Proceedings of the IEEE/ACM International Conference on
Computer Aided Design. Piscataway, NJ: IEEE Press. Pages 343-349.

142 GENETIC PROGRAMMING THEORY AND PRACTICE II

Holland, John H. (1975). Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor, MI:
University of Michigan Press. Second edition. Cambridge, MA: The MIT Press 1992.

Keane, Martin A., Koza, John R., and Streeter, Matthew J. (2002). Improved General-
Purpose Controllers. U.S. patent application filed July 12, 2002.

Koza, John R. (1990). Genetic Programming: A Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems. Stanford University Computer
Science Dept. technical report STAN-CS-90-1314. June 1990.

Koza, John R. (1992). Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Cambridge, MA: MIT Press.

Koza, John R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. (1996).
Automated design of both the topology and sizing of analog electrical circuits using
genetic programming. In Gero, John S. and Sudweeks, Fay (editors). Artificial Intelligence
in Design '96. Dordrecht: Kluwer Academic Publishers. Pages 151–170.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. (1999). Genetic
Programming III: Darwinian Invention and Problem Solving. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William, Yu, Jessen, and
Lanza, Guido.(2003). Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers.

Koza, John R., Mydlowec, William, Lanza, Guido, Yu, Jessen, and Keane, Martin A. (2001).
Reverse engineering of metabolic pathways from observed data using genetic
programming. In Altman, Russ B. Dunker, A. Keith, Hunter, Lawrence, Lauderdale,
Kevin, and Klein, Teri (editors). Pacific Symposium on Biocomputing 2001. Singapore:
World Scientific. Pages 434–445.

Koza, John R., and Rice, James P. (1991). Genetic generation of both the weights and
architecture for a neural network. In Proc. of International Joint Conference on Neural
Networks, Seattle, July 1991. Los Alamitos, CA: IEEE Press. Volume II. Pages 397–404.

Koza, John R., Streeter, Matthew J., and Keane, Martin A. (2003). Automated synthesis by
means of genetic programming of complex structures incorporating reuse, parameterized
reuse, hierarchies, and development. In Genetic Programming: Theory and Practice
Riolo, R. and Worzel W. (eds.). Boston, MA: Kluwer Academic Publishers. Pp. 221–237.

Langdon, William B. and Poli, Riccardo. (2002). Foundations of Genetic Programming.
Springer-Verlag.

Lanza, Guido, Mydlowec, William, and Koza, John R. (2000). Automatic creation of a
genetic network for the lac operon from observed data by means of genetic programming.
Poster paper accepted for First International Conference on Systems Biology in Tokyo on
November 14–16, 2000.

Lohn, Jason, Hornby, Gregory, and Linden, Derek. (2003). Evolutionary antenna design for a
NASA spacecraft. Chapter 18 of this volume.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and Sangiovanni-Vincentelli, A. 1994.
SPICE 3 Version 3F5 User’s Manual. Department of Electrical Engineering and
Computer Science, University of California. Berkeley, CA. March 1994.

Spector, Lee. 2004. Automatic Quantum Computer Programming: A Genetic Programming
Approach. Boston: Kluwer Academic Publishers.

Sripramong, Thanwa and Toumazou, Christofer. (2002). The invention of CMOS amplifiers
using genetic programming and current-flow analysis. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems. 21(11). November 2002. Pages 1237–1252.

