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ABSTRACT
A mathematical formula containing one or more free variables is "general" in the

sense that it provides a solution to an entire category of problems.  For example, the
familiar formula for solving a quadratic equation contains free variables representing
the equation's coefficients.  Previous work has demonstrated that genetic programming
can automatically synthesize the design for a controller consisting of a topological
arrangement of signal processing blocks (such as integrators, differentiators, leads,
lags, gains, adders, inverters, and multipliers), where each block is further specified
("tuned") by a numerical component value, and where the evolved controller satisfies
user-specified requirements.  The question arises as to whether it is possible to use
genetic programming to automatically create a "generalized" controller for an entire
category of such controller design problems   instead of a single instance of the
problem.  This paper shows, for an illustrative problem, how genetic programming
can be used to create the design for both the topology and tuning of controller, where
the controller contains a free variable.  

1 Introduction
Automatic controllers are ubiquitous in the real world (Astrom and Hagglund 1995;
Boyd and Barratt 1991; Dorf and Bishop 1998).  The output a controller is fed into the
to-be-controlled system (conventionally called the plant).  The purpose of a controller
is to force, in a meritorious way, the plant's response to match a desired response
(called the reference signal or setpoint).  For example, the cruise control device in an
car continuously adjusts the engine (the plant) based on the difference between the
driver-specified speed (reference signal) and the car's actual speed (plant response).  

The measure of merit for controllers typically incorporate a variety of interacting
and conflicting considerations.  Examples are the time required to force the plant
response to reach a desired value, the degree of success in avoiding significant
overshoot beyond the desired value, the time required for the plant to settle, the ability



of the controller to operate robustly in the face of minor variations in the actual
characteristics of the plant, the ability of the controller to operate robustly in the face
of disturbances that may be introduced between the controller and the plant's input, the
ability of the controller to operate robustly in the face of sensor noise that may be
added to the plant output, the controller's compliance with various frequency domain
constraints (e.g., bandwidth), and the controller's compliance with constraints on the
magnitude of the control variable or the plant's internal state variables.  

Controllers are often represented by block diagrams. A block diagram is a
graphical structure containing (1) directed lines representing the (one-directional) flow
of time-domain signals within the controller, (2) time-domain signal processing
blocks (e.g., integrator, differentiator, lead, lag, gain, adder, inverter, and multiplier),
(3) external input points from which the controller receives signals (e.g., the reference
signal and the plant output that is externally fed back from the plant to the controller),
and (4) output point(s) for the controller, conventionally called the control variable).
Some signal processing blocks have multiple inputs (e.g., an adder), but they all have
exactly one output.  Because of this restriction, block diagrams for controllers usually
contain takeoff points that enable the output of a block to be disseminated to more
than one other point in the block diagram.  Many blocks used in controllers (e.g.,
gain, lead, lag, delay) possess numerical parameters.  The determination of these
values is called tuning.  Block diagrams sometimes also contain internal feedback
(internal loops in the controller) or feedback of the controller output directly into the
controller.  

The design (synthesis) of a controller entails specification of both the topology
and parameter values (tuning) for the block diagram of the controller such that the
controller satisfies user-specified high-level design requirements. Specifically, the
design process for a controller entails making decisions concerning the total number of
signal processing blocks to be employed in the controller, the type of each block
(e.g., integrator, differentiator, lead, lag, gain, adder, inverter, and multiplier), the
interconnections between the inputs and outputs of each signal processing block and
between the controller's external input and external output points, and the values of all
required numerical parameters for the signal processing blocks.

Genetic programming has recently been used to create a block diagram for
satisfactory controller for a particular two-lag plant and a particular three-lag plant
(Koza, Keane, Yu, Bennett, and Mydlowec 2000).  Both of these genetically evolved
controllers outperformed the controllers designed by experts in the field of control
using the criteria originally specified by the experts. However, both of these
controllers were for plants having lags with a particular value of the time constant, τ.

A mathematical formula containing one or more free variables is "general" in the
sense that it provides a solution to an entire category of problems.  For example, the
familiar formula for solving a quadratic equation contains free variables representing
the coefficients of the equation. The question arises as to whether it is possible to
evolve a controller for an entire category of plants  instead of one particular plant.
In other words, is it possible to design a "generalized" controller containing one or
more free variables.  The fact that genetic programming permits the evolution of
mathematical expressions containing free variables suggests that this might be
possible. This paper shows, for an illustrative problem, that such a "generalized"
controller can indeed be automatically created by means of genetic programming, that
the genetically evolved controller has reasonable and interpretable characteristics, and



that the genetically evolved controller performs better than the textbook human-
designed controller for the illustrative problem.

Section 2 shows how genetic programming can automatically synthesize the
design of a controller. Section 3 itemizes the preparatory steps for applying genetic
programming to an illustrative problem with a free variable. Section 4 presents
results.

2 Genetic Programming and Control
Genetic programming is commonly used in several different ways.  As one example,
genetic programming is often used as an automatic method for creating a program tree
to solve a problem (Koza 1992).  The individual programs that are evolved by genetic
programming are typically multi-branch programs consisting of result-producing
branches, automatically defined functions (subroutines), and other types of branches
(e.g., iterations, loops, recursions). In this approach, the program tree is simply
executed. The result of the execution may be a set of returned values, a set of side
effects on some other entity (e.g., an external entity such as a robot or an internal
entity such as computer memory), or a combination of returned values and side effects.
In this approach, the functions in the program are sequentially executed, in time, in
accordance with a specified order of evaluation such that the result of executing one
function is available at the time when the next function is to be executed. Early work
on the problem of automatically creating controllers used this conventional approach
to genetic programming.  This work includes, but is not limited to, Andersson,
Svensson, Nordin, and Nordin, and Mats 1999; Banzhaf, Nordin, Keller, and Olmer
1997; Whitley, Gruau, and Preatt 1995; and Koza 1992.

As a second example, genetic programming is often also used to automatically
create program trees which can be used in conjunction with a developmental process to
design complex structures, such as neural networks (Gruau 1992) and analog electrical
circuits (Koza, Bennett, Andre, and Keane 1996; Koza, Bennett, Andre, and Keane
1999; Koza, Bennett, Andre, Keane, and Brave 1999). In this approach, the program
tree is interpreted as a set of instructions for constructing the desired structure. The
construction process is implemented by applying the functions of a program tree to an
embryonic structure so as to develop the embryo into a fully developed structure. As
in the first approach, the functions in the program are executed separately, in time, in
accordance with a specified order of evaluation.

In a closed-loop continuous-time feedback system consisting of a plant and its
controller, the output of the controller is input to the plant and the output of the plant
is, in turn, input to the controller.  Because of these continuous-time interactions, the
sequential order of evaluation inherent in the two above approaches to genetic
programming not a suitable.  In the past, both genetic algorithms and genetic
programming have been used for synthesizing controllers having mutually interacting
continuous-time variables and continuous-time signal processing blocks (Man, Tang,
Kwong, and Halang; 1997, 1999; Crawford, Cheng, and Menon 1999; Dewell and
Menon 1999; Menon, Yousefpor; Lam, and Steinberg 1995; Sweriduk, Menon, and
Steinberg 1998, 1999).  In addition, the PADO system and neural programming
(Teller 1996a, 1996b; Teller and Veloso 1995a, 1995b, 1995c, 1995d, 1995e, 1996)
provide a graphical program structure representation for such multiple independent
processes.  Also, Marenbach, Bettenhausen, and Freyer (1996) used automatically
defined functions to represent internal feedback in a system (used for a system



identification problem) where the overall multi-branch program represented a
continuous-time system with continuously interacting processes.  The essential
features of their approach has been subsequently referred to as "multiple interacting
programs" (Angeline 1997, 1998a, 1998b; Angeline and Fogel 1997).

In this paper, a program tree will constitute a description of the block diagram of a
controller.  The block diagram consists of time-domain signal processing functions
linked by directed lines representing the flow of information.  There is no order of
evaluation of the functions and terminals of the program tree. Instead, the signal
processing blocks of the controller and the plant interact with one another other as part
of a closed system in the manner specified by the topology of the block diagram.  

Figure 1 is a block diagram for an illustrative system containing a controller and a
plant.  The directed lines in a block diagram represent continuous-time signals while
the blocks represent signal processing functions that operate in the time domain.  The
output of the controller 500 is a control variable 590 which is, in turn, the input to
the plant 592.  The plant has one output (plant response) 594.  The plant response is
fed back (externally as signal 596) and becomes one of the controller's two inputs.
The controller's second input is the reference signal 508.  The fed-back plant response
596 and the externally supplied reference signal 508 are compared (by subtraction
here). Notice that the takeoff point 520 of figure 1 provides a way to disseminate the a
particular result (the result of the subtraction 510) to three places in the block
diagram.  The system in this figure is called a “closed loop” system because there is
external feedback of the plant output back to the controller.  

Figure 1  Block diagram of a plant and a PID controller.



Since this controller's output (control variable 590) is the sum of a proportional
(P) term (gain block 530, with an amplification factor of 214.0), an integrating (I)
term (integrator 560 preceded by the gain block 540, with an amplification factor of
1,000.0), and a differentiating (D) term (derivative block 570 preceded by the gain
block 550, with an amplification factor of 15.5), this controller is called a PID
controller.

Figure 2 presents the block diagram for the PID controller of figure 1 as a program
tree.  The internal points of this tree represent the signal processing blocks contained
in the block diagram of figure 1 (i.e., derivative, integrator, gain, subtraction,
addition) and other functions.  The external points represent numerical constants and
time-domain signals, such as the reference signal and plant output (and other
terminals).  Notice that automatically defined function ADF0 (left branch) produces a
time-domain signal that equals the result of subtracting the plant output from the
reference signal.  The three references to ADF0 in the result-producing (right) branch
disseminate the result of this subtraction and correspond to the takeoff point 520 of

figure 1.  
In the style of ordinary computer programming, a reference to an automatically

defined function (subroutine) such as ADF0 from inside the function definition for
ADF0 would be considered to be a recursive reference.  However, in the context of
control systems, an automatically defined function that references itself represents a
loop in the controller's block diagram (i.e., internal feedback inside the controller).  

3 Illustrative Problem
The problem is to create both the topology and parameter values for a robust
"generalized" controller for a three-lag plant, where the controller contains a free
variable representing the plant's time constant, τ.  This free variable, τ , is allowed to
range over two orders of magnitude.  The transfer function of the three-lag plant is
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Figure 2  Program tree representation of the PID controller of figure 1.  The automatically
defined function ADF0 (left) subtracts the plant output from the reference signal and

makes this difference available at three points in the result-producing branch (right).



The controller is to be designed so that plant output reaches the level of the
reference signal so as to minimize the integral of the time-weighted error (ITAE), such
that the overshoot in response to a step input of the reference signal (setpoint) is less
than 2%, and such that the controller is robust in the face of variation in the plant's
internal gain, K (tested by values of 1.0 and 2.0).  The input to the plant is limited to
the range between -40 and +40 volts.  

The techniques in Astrom and Hagglund 1995 yield a credible controller for this
problem.  
3.1  Program Architecture
Since the to-be-synthesized controller has one output (control variable), each program
tree in the population has one result-producing branch. Each program tree in the initial
random population (generation 0) has no automatically defined functions. However,
after generation 0, the architecture-altering operations may insert (and delete)
automatically defined functions. Automatically defined functions may be used for
takeoff points, internal feedback within the controller, and reuse of portions of the
block diagram.  The permitted maximum of five automatically defined functions is
more than sufficient for this problem.  
3.2  Terminal Set
An arithmetic-performing subtree containing perturbable numerical terminals,
arithmetic operations, and a free variable representing the plant's time constant, τ , is
used to establish the numerical parameter value for each signal processing block
possessing a parameter.

The terminal set, Taps, for such arithmetic-performing subtrees is
Taps = {ℜ, τ},
where ℜ denotes perturbable numerical values in the range from -3.0 and +3.0. In the
initial random generation of a run, each perturbable numerical value is set,
individually and separately, to a random value in this range. In later generations, this
perturbable numerical value is perturbed by a Gaussian probability distribution (with
standard deviation of 1.0).  A constrained syntactic structure maintains a function and
terminal set for the arithmetic-performing subtrees and a different function and
terminal set (below) for all other parts of the program tree.

The remaining terminals are time-domain signals.  The terminal set, T , for the
result-producing branch and any automatically defined functions (except the arithmetic-
performing subtrees described above) is
T = {REFERENCE_SIGNAL, CONTROLLER_OUTPUT, PLANT_OUTPUT,

CONSTANT_0}.
Space does not permit a detailed description of the various terminals used herein

(although the meaning of the above terminals should be clear from their names). See
Koza, Keane, Yu, Bennett, and Mydlowec 2000 for details.
3.3  Function Set
The function set, Faps, for the arithmetic-performing subtrees is
Faps = {ADD_NUMERIC, SUB_NUMERIC, MUL_NUMERIC, DIV_NUMERIC}.
The two-argument DIV_NUMERIC function divides the first argument by the second
argument, except that the quotient is never allowed to exceed 105.

The function set, F, for the result-producing branch and any automatically defined
functions (except the arithmetic-performing subtrees described above) consists of
continuous-time signal processing functions and automatically defined functions.



F = {GAIN, INVERTER, LEAD, LAG, LAG2,
DIFFERENTIAL_INPUT_INTEGRATOR, DIFFERENTIATOR,
ADD_SIGNAL, SUB_SIGNAL, ADD_3_SIGNAL, ADF0, ADF1, ADF2,
ADF3, ADF4}.

The definition of the above signal processing functions is suggested by their
names.  See Koza, Keane, Yu, Bennett, and Mydlowec 2000 for details.  ADF0, …,
ADF4 denote automatically defined functions added during the run by the architecture-
altering operations.  
3.4  Fitness Measure
Genetic programming conducts a probabilistic search algorithm through the space of
compositions of the available functions and terminals. The search is guided by a
fitness measure. The fitness measure is a mathematical implementation of the high-
level requirements of the problem and is couched in terms of “what needs to be done”
 not “how to do it.”  Construction of the fitness measure requires translating the
high-level requirements of the problem into a mathematically precise computation.
The fitness measure may incorporate any measurable, observable, or calculable
behavior or characteristic or combination of behaviors or characteristics. The fitness
measure for most problems of controller design is multi-objective in the sense that
there are several different (generally conflicting and interacting) requirements.

The fitness of each individual is determined by using the program tree (i.e., the
result-producing branch and any automatically defined functions that may have been
created during the run by the architecture-altering operations) to generate an
interconnected sequence of signal processing blocks  that is, a block diagram for the
controller.  We use our modified version of the SPICE simulator (Quarles, Newton,
Pederson, and Sangiovanni-Vincentelli 1994) from the University of California at
Berkeley to simulate the continuous-time behavior of each controller.  The various
signal processing functions in the controller are each represented by means of electrical
subcircuits (or mathematical expressions that can be handled by SPICE).  A SPICE
netlist (itemizing the subcircuits and the topological connections between them) is
generated from the block diagram.  The netlist is wrapped inside an appropriate set of
SPICE commands and the overall behavior of the controller is then simulated.  See
Koza, Keane, Yu, Bennett, and Mydlowec 2000 and Koza, Bennett, Andre, and Keane
1999 for details.  

The fitness of each controller in the population is measured by means of 42
separate invocations of the SPICE simulator.  This 42-part fitness measure consists of

(1) 40 time-domain-based elements based on a modified integral of time-weighted
absolute error (ITAE) measuring how quickly the controller causes the plant to
reach the reference signal, the robustness of the controller in face of significant
variations in the plant's internal gain, K , the success of the controller in avoiding
overshoot, and the effect of the externally supplied value of the time constant of τ,
(2) one frequency-domain-based element measuring bandwidth, and
(3) one frequency-domain-based element measuring the effect of sensor noise.
The fitness of an individual controller is the sum (i.e., linear combination) of the

detrimental contributions of these 42 elements of the fitness measure. The smaller the
sum, the better.

The first 40 elements of the 42-part fitness measure together represent
• five different externally supplied values for the plant's time constant τ,
• in conjunction with two choices of values for the plant's internal gain, K,



• in conjunction with two choices of values for the height of the reference signal,
and
• in conjunction with two choices of values of the variation in time constant τ,
around its externally supplied value.
The five values of the externally supplied values for the plant's time constant τ,

span a range of two orders of magnitude.  They are 0.1, 0.3, 1.0, 3.0, and 10.0. The
five externally supplied values of the plant's time constant τ, force generalization in
the sense that the to-be-evolved controller becomes a function of the externally
supplied value of the plant's time constant τ (the free variable).  

The two values of the plant's internal gain, K, are1.0 and 2.0. These two values of
the plant's internal gain, K, are used in order to ascertain robustness in the face of
variation in K.

The reference signal is step function that rises from 0 to a specified height at t =
100 milliseconds. The two values for the height are 1 volt and 1 microvolts. The two
values for the height of the step function are used to deal with the non-linearity caused
by the limiter.

For each of these first 40 elements of the 42-part fitness measure, a transient
analysis is performed in the time domain using the SPICE simulator. The
contribution to fitness for each of these 40 elements of the fitness measure is based on
the integral of time-weighted absolute error
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Here e(t) is the difference (error) at time t  between the plant output and the
reference signal. The integral is approximated from t = 0 to t = 10τ, where τ is the
externally supplied value of the time constant, τ. We multiply each value of e(t) in
the body of the integral by the reciprocal of the amplitude of the reference signals (so
that both reference signals are equally influential).  Specifically, B multiplies the
difference e(t) associated with the 1-volt step function by 1 and multiplies the
difference e(t) associated with the 1-microvolt step function by 106.  In addition, we
multiply each value of e(t) in the body of the integral by an additional weight, A , that
varies depending on e(t) and that heavily penalizes non-compliant amounts of
overshoot. The function A weights all variations below the reference signal and all
variations up to 2% above the reference signal by a factor of 1.0, but A  penalizes
overshoots above 2% by a factor 10.0. Finally, we divide each value of the integral by
τ2 so as to equalize the influence of each of the five externally supplied values of τ.

The 41st element of the 42-part fitness measure is designed to constrain the
frequency of the control variable so as to avoid extreme high frequencies in the
demands placed upon the plant. This term reflects an unspoken constraint that is
typically observed in real-world systems in order to prevent damage to delicate
components of plants. This element of the fitness measure is based on 121 fitness
cases representing 121 frequencies. Specifically, SPICE is instructed to perform an
AC sweep of the reference signal over 20 sampled frequencies (equally spaced on a
logarithmic scale) in each of six decades of frequency between 0.01 Hz and 10,000 Hz.
A gain of less than 6 dB is acceptable for frequencies between 0.01 Hz and 60 Hz and a
gain of less than -80 dB is acceptable for frequencies between 60 Hz and 10,000 Hz.
For each of the 121 frequencies, the contribution to fitness is 0 if the gain is
acceptable, but 1,000/121 otherwise.



The 42nd element of the fitness measure is based on 121 fitness cases representing
121 frequencies. Specifically, SPICE is instructed to perform an AC sweep of the
signal resulting by adding the plant response to a noise source ranging over 20
sampled frequencies (equally spaced on a logarithmic scale) in each of six decades of
frequency between 0.01 Hz and 10,000 Hz. A gain of less than 6 dB is acceptable for
frequencies between 0.01 Hz and 60 Hz and a gain of less than -80 dB is acceptable for
frequencies between 60 Hz and 10,000 Hz. For each of the 121 frequencies, the
contribution to fitness is 0 if the gain is acceptable but 1,000/121 otherwise.

A controller that cannot be simulated by SPICE is assigned a fitness of 108.  
3.5  Control Parameters
The population size, M, was 500,000.  A (generous) maximum size of 150 points
(for functions and terminals) was established for each result-producing branch and a
(generous) maximum size of 100 points was established for each automatically defined
function.  The percentages for the genetic operations were the same as in Koza, Keane,
Yu, Bennett, and Mydlowec 2000.  The other parameters are the same default values
that we have used previously on a broad range of problems (Koza, Bennett, Andre,
Keane 1999).  
3.6  Termination
The run was manually monitored and manually terminated when the fitness of the
best-of-generation individuals appeared to have reached a plateau. The single best-so-far
individual is harvested and designated as the result of the run.  
3.7  Parallel Implementation
This problem was run on a home-built Beowulf-style (Sterling, Salmon, Becker, and
Savarese 1999; Bennett, Koza, Shipman, and Stiffelman 1999) parallel cluster
computer system consisting of 1,000 350 MHz Pentium II processors (each with 64
megabytes of RAM). The system has a 350 MHz Pentium II computer as host. The
processing nodes are connected with a 100 megabit-per-second Ethernet. The
processing nodes and the host use the Linux operating system. The distributed genetic
algorithm with unsynchronized generations and semi-isolated subpopulations was used
with a subpopulation size of Q = 500 at each of D = 1,000 demes. Two processors are
housed in each of the 500 physical boxes of the system. As each processor
(asynchronously) completes a generation, four groups of emigrants from each
subpopulation (selected probabilistically based on fitness) are dispatched to each of
four toroidally adjacent processors. The migration rate is 2% (but 10% if the toroidally
adjacent node is in the same physical box).  

4 Results
The best-of-generation circuit from generation 0 has a fitness of 3,448.8. The best-of-
run controller (figure 3) appears in generation 42. It has an overall fitness of 38.72.
Notice that the free variable, τ, appears in five blocks of this controller.



Figure 3  Block diagram of best-of-run genetically evolved controller from
generation 42.

After simplification, it can be seen that the best-of-run controller from generation
42 has recognizable characteristics that are interpretable in the context of previously
patented inventions or previously known control engineering techniques.  The
genetically evolved controller has the topology of a "PID-D2 controller" (i.e.,
proportional integrative, derivative, and second derivative), followed by a first-order lag
block..  The PID controller was patented in 1939 by Albert Callender and Allan
Stevenson of Imperial Chemical Limited of Northwich, England (Callender and
Stevenson 1939) and the use of the second derivative was patented in 1942 by Harry
Jones of the Brown Instrument Company of Philadelphia (Jones 1942).  Also, the
genetically evolved controller employs the technique called "setpoint weighting" in
which the reference signal is weighted before the plant output is subtracted from it.  

The control signal, U(s), for this controller is given by the transfer function
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Here the four PID-D2 coefficients in the numerator are Kp = 17.0 for the proportional
(P) term, Ki = 6/τ for the integrative (I) term (with the 1/s in the numerator), Kd  =
16τ for the derivative (D) term (with the s), and Kd2  = 5τ2 for the second derivative
(D2) term (with the s2).  The coefficient for the setpoint weighting of the proportional
term is b = 0.706. That is, the plant output, Y(s), is subtracted from b multiplied by
the reference signal, R(s).  Similarly, the coefficient for the setpoint weighting of the
derivative term is c = 0.375.  The coefficient for the setpoint weighting of the second
derivative term is e = 0.0.  The time-constant of the first-order lag (shown here in the
denominator of the transfer function) is n = 0.5τ.  

Figure 4 compares the time-domain response of the best-of-run genetically evolved
controller (triangles) from generation 42 and the Astrom and Hagglund controller
(squares) with K = 1 and τ = 1. This (and other comparisons below) are substantially
similar for other values of K and τ.   Figure 5 compares the time-domain response of



the best-of-run controller (triangles) from generation 42 and the Astrom and Hagglund

controller (squares) to a 1-volt disturbance signal with K = 1 and τ = 1.  
Table 1 compares the characteristics of the best-of-run genetically evolved

controller (triangles) from generation 42 with those of the Astrom and Hagglund 1995
controller for K = 1.0, τ = 1.0, and step size of 1.0.
Table 1  Comparison of characteristics for K = 1.0, τ = 1.0, and step size of 1.0.

Units Genetically
evolved

controller

Astrom and
Hagglund
controller

ITAE for unit-step reference volt sec2 0.77 2.84
Rise time seconds 1.43 2.51
Settling time seconds 4.66 8.50
Disturbance sensitivity volts/volts 0.07 0.19
IATE for unit-step disturbance volt sec2 0.42 1.35

Figure 4 Comparison of the time-domain response of the best-of-run controller
(triangles) from generation 42 and the Astrom and Hagglund controller (squares)

with K = 1 and τ = 1.

Figure 5 Comparison of the time-domain response of the genetically evolved
controller (triangles) from generation 42 and the Astrom and Hagglund
controller (squares) to a 1-volt disturbance signal with K = 1 and τ = 1.



Noise Attenuation Corner
Frequency

Hz 0.72 0.34

Noise Attenuation Roll Off dB/Decade 40 40
Maximum Sensitivity volts/volts 2.09 2.11

The controller created by genetic programming is better than 3.69 times as
effective as the Astrom and Hagglund 1995 controller as measured by the integral of
the time-weighted absolute error, has only 57% of the rise time in response to the
reference input, and has only 55% of the settling time.
4.1  Interpretation of the Results
Suppose G(s) is the transfer function of a plant and we wanted to change all the time
constants of this plant by the same amount, say τ .  To do this, we would produce a
plant with transfer function, Gτ(s) = G(τs).  In this new transfer function Gτ(s), each
coefficient of s would be multiplied by τ; each coefficient of s2 would be multiplied
by τ2; and each coefficient of 1/s would be multiplied by 1/τ.  

A human designer might approach this problem as follows:  Call the plant with τ
= 1 the reference plant.  Design a controller for this reference plant satisfying the
design requirements and call the new controller, H, the reference controller.  Call the
controlled plant, J, the  reference controlled plant.  Let H(s) be the transfer function of
controller H(s), and let J(s) be the transfer function of the controlled plant.  Now, to
handle the time scaling, let Hτ(s) = H(τs) be the controller design for the time-scaled
plant. This will produce an entire controlled plant, Jτ(s), scaled by the same factor τ;
Jτ  (s) = J(τ*s).  Effectively all the behavior of the time-scaled controlled plant is that
of the reference controlled plant with the time scale changed.  

In fact, we did exactly this in order to produce a PID controller with set point
weighting for comparison purposes above (using the design rules using Ms = 2 on
page 225 of Astrom and Hagglund 1995).  

Referring now to genetically evolved controller shown above, notice that we could
have written the following four coefficients in the control signal, U(s), as follows:

Ki/s= 6/τs
Kd s = 16τs2

Kd2 s2 = 5τ2s2

ns = 0.5τs
This is, in fact, the very same change in time scale that a human designed would

have used.
Notice that we did not provide genetic programming with any of the above

knowledge and insight about how a human designer might have proceeded on this
problem. We did not bias genetic programming toward multiplying s  by τ ; toward
multiplying s2 by τ2; and toward multiplying 1/s by 1/τ.  We simply provided the free
variable, τ, as a terminal that genetic programming could use as it saw fit.  
4.2  Computer Time
Most of the computer time was consumed by the fitness evaluation of candidate
individuals in the population.  The fitness evaluation (involving 40 time-consuming
time-domain SPICE simulations and two relatively fast frequency-domain SPICE
simulations) averaged about 3.92 seconds per individual (using a 350 MHz Pentium II
processor).  The best-of-run individual from generation 42 was produced after
evaluating 2.15 ×  107 individuals (500,000 times 43).  This required 23.43 hours
(84,360 seconds) on our 1,000-node parallel computer system   that is, the
expenditure of 2.95 × 1016 computer cycles (about 30 peta-cycles of computer time).  



5 Conclusion
This paper demonstrated, for an illustrative problem involving a three-lag plant, that
genetic programming can be used to create the design for both the topology and
parameter values (tuning) of signal processing functions for a controller, where the
controller contains a free variable.  The genetically evolved controller outperformed the
textbook human-designed controller.
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