
Ž .Genetic Programming and Evolvable Machines, 1, 121]164 2000
Q 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Automatic Creation of Human-Competitive
Programs and Controllers by Means of
Genetic Programming
JOHN R. KOZA koza@stanford.edu, http:rrwww.smi.stanford.edurpeoplerkoza

Department of Electrical Engineering, School of Engineering, and Department of Medicine, School of
Medicine, Stanford Unï ersity, Stanford, California 94305

MARTIN A. KEANE makeane@ix.netcom.com

Econometrics Inc., 111 E. Wacker Dr., Chicago, Illinois 60601

JESSEN YU jyu@cs.stanford.edu

Genetic Programming Inc., Box 1669, Los Altos, California 94023

FORREST H BENNETT III forrest@evolute.com, http:rrwww.genetic-programming.com

Genetic Programming Inc., Box 1669, Los Altos, California 94023

WILLIAM MYDLOWEC myd@cs.stanford.edu

Genetic Programming Inc., Box 1669, Los Altos, California 94023

Receï ed September 14, 1999; Re¨ised October 6, 1999

Abstract. Genetic programming is an automatic method for creating a computer program or other
complex structure to solve a problem. This paper first reviews various instances where genetic
programming has previously produced human-competitive results. It then presents new human-competi-

Ž .tive results involving the automatic synthesis of the design of both the parameter values i.e., tuning
and the topology of controllers for two illustrative problems. Both genetically evolved controllers are
better than controllers designed and published by experts in the field of control using the criteria
established by the experts. One of these two controllers infringes on a previously issued patent. Other
evolved controllers duplicate the functionality of other previously patented controllers. The results in
this paper, in conjunction with previous results, reinforce the prediction that genetic programming is on
the threshold of routinely producing human-competitive results and that genetic programming can
potentially be used as an ‘‘invention machine’’ to produce patentable new inventions.

Keywords: control, network synthesis, genetic programming, human-competitive results

1. Introduction

Turing recognized the possibility of employing evolution and natural selection to
achieve machine intelligence as early as 1948. In his essay ‘‘Intelligent Machines,’’

w xTuring 83 identified three approaches for creating intelligent computer programs.
One approach was logic-driven while a second was knowledge-based. The third

KOZA ET AL.122

approach that Turing specifically identified in 1948 for achieving machine intelli-
gence is

. . . the genetical or evolutionary search by which a combination of genes is
looked for, the criterion being the survival value.

w xIn his 1950 paper ‘‘Computing Machinery and Intelligence,’’ Turing 84 de-
scribed how evolution and natural selection might be used to automatically create
an intelligent computer program.

We cannot expect to find a good child-machine at the first attempt. One must
experiment with teaching one such machine and see how well it learns. One can
then try another and see if it is better or worse. There is an obvious connection
between this process and evolution, by the identifications

Structure of the child machine s Hereditary material

Changes of the child machine s Mutations

Natural selection s Judgment of the experimenter

The above features of Turing’s third approach to machine intelligence are
common to the various forms of evolutionary computation developed over the past

w xfour decades, including evolution strategies 60, 61 , simulated evolution and
w x w xevolutionary programming 29 , genetic algorithms 31 , genetic classifier systems

w x w x w x32 , genetic programming 37, 38 , and evolvable hardware 30 .
Each of these approaches to evolutionary computation addresses the main goal

w xof machine intelligence, which, to paraphrase Arthur Samuel 63 , entails

How can computers be made to do what needs to be done, without being told
exactly how to do it?

w xMore particularly, as Samuel 64 also stated,

w xThe aim is . . . to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.

What do we mean when we say that an automatically created solution to a
problem is competitive with a human-produced result? We think it is fair to say
that an automatically created result is competitive with one produced by human

Žengineers, designers, mathematicians, or programmers if it satisfies any one or
. Ž . w xmore of the following eight or any other similarly stringent criteria 43 :

Ž .A The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention.

Ž .B The result is equal to or better than a result that was accepted as a new
scientific result at the time when it was published in a peer-reviewed scientific
journal.

AUTOMATIC CREATION 123

Ž .C The result is equal to or better than a result that was placed into a database or
archive of results maintained by an internationally recognized panel of scien-
tific experts.

Ž .D The result is publishable in its own right as a new scientific result}indepen-
dent of the fact that the result was mechanically created.

Ž .E The result is equal to or better than the most recent human-created solution
to a long-standing problem for which there has been a succession of increas-
ingly better human-created solutions.

Ž .F The result is equal to or better than a result that was considered an achieve-
ment in its field at the time it was first discovered.

Ž .G The result solves a problem of indisputable difficulty in its field.
Ž .H The result holds its own or wins a regulated competition involving human

Žcontestants in the form of either live human players or human-written
.computer programs .

Note that the above criteria require a result that is meritorious in light of some
standard that is external the fields of machine learning, artificial intelligence, and
evolutionary computation. Note also that all the criteria are couched in terms of
production of a result, not use of a particular methodology.

Using the above criteria, there are now numerous instances where evolutionary
computation has produced a result that is competitive with human performance.
Since nature routinely uses evolution and natural selection to create designs for
complex structures that are well-adapted to their environments, it is not surprising
that many of these examples involve the design of complex structures. Examples of
human-competitive results that have been achieved using evolutionary algorithms

Ž .include but are not limited to the automated creation of a sorting network that is
w xsuperior to the previously known human-created solution to the same problem 34 ,

the automated creation of a checker player created by evolutionary programming
w x24 that plays checkers as well as ‘‘class A’’ human checker players, and the
automated creation of a cellular automata rule that outperforms previous human-

w xwritten and machine-produced algorithms for the same problem 35 *. Evolution-
ary methods have the advantage of not being encumbered by preconceptions that
limit the search to familiar paths. There are at least two instances where evolution-
ary computation yielded an invention that was granted a patent, namely a design

w xfor a wire antenna created by a genetic algorithm 1 and a patent for the shape of
w xan aircraft wing created by a genetic algorithm with variable-length strings 49 .

Genetic programming is an automatic method for creating a computer program
or other complex structure to solve a problem. Focusing on genetic programming,
Table 1 shows 24 instances of results where genetic programming has produced
results that are competitive with the products of human creativity and inventive-
ness. These examples involve quantum computing, the annual Robo Cup competi-
tion, computational molecular biology, cellular automata, sorting networks, the
automatic synthesis of the design of analog electrical circuits, and the automatic

Ž .synthesis of the design of controllers in this paper . Each claim is accompanied by

* See also paper by Miller et al. in this issue.

KOZA ET AL.124

Table 1. Twenty-four instances where genetic programming has produced human-competitive result

Infringed
Claimed instance Basis for claim Reference patent

w x1 Creation, using genetic programming, of a B, F 65
better-than-classical quantum algorithm
for the Deutsch-Jozsa ‘‘early promise’’
problem

w x2 Creation, using genetic programming, of a B, F 66
better-than-classical quantum algorithm
for the Grover’s database search problem

w x3 Creation, using genetic programming, of a B, D 67
quantum algorithm for the depth-2
ANDrOR query problem that is better than
any previously published result

w x4 Creation of soccer-playing program that H 41
ranked in the middle of the field of 34
human-written programs in the Robo Cup
1998 competition

w x5 Creation of four different algorithms for B, E 43
the transmembrane segment identification
problem for proteins

w x6 Creation of a sorting network for seven A, D 55, 43
items using only 16 steps

w x w x7 Rediscovery of the Campbell ladder A, F 43 20
topology for lowpass and highpass filters

w x w x8 Rediscovery of ‘‘M-derived half section’’ A, F 43 86
and ‘‘constant K ’’ filter sections

Ž . w x w x9 Rediscovery of the Cauer elliptic A, F 43 21, 22, 23
topology for filters

w x w x10 Automatic decomposition of the problem A, F 43 86
of synthesizing a crossover filter

w x w x11 Rediscovery of a recognizable voltage gain A, F 43 26
stage and a Darlington emitter-follower
section of an amplifier and other circuits

w x12 Synthesis of 60 and 96 decibel amplifiers A, F 43
w x13 Synthesis of analog computational circuits A, D, G 43

for squaring, cubing, square root, cube
root, logarithm, and Gaussian functions

w x14 Synthesis of a real-time analog circuit for G 43
time-optimal control of a robot

w x15 Synthesis of an electronic thermometer A, G 43
w x16 Synthesis of a voltage reference circuit A, G 43
w x17 Creation of a cellular automata rule for the D, E 3

majority classification problem that is
better than the Gaes-Kurdyumov-Levin
Ž .GKL rule and all other known rules
written by humans

w x18 Creation of motifs that detect the D-E-A- C 43
D box family of proteins and the
manganese superoxide dismutase family

w x19 Synthesis of analog circuit equivalent to A 57, 44
Philbrick circuit

AUTOMATIC CREATION 125

Ž .Table 1. Continued

Infringed
Claimed instance Basis for claim Reference patent

w x20 Synthesis of NAND circuit A 15
w x21 Synthesis of digital-to-analog converter A 15

Ž .DAC circuit
Ž . w x22 Synthesis of analog-to-digital ADC A 15

circuit
w x23 Synthesis of topology, sizing, placement, G 42

and routing of analog electrical circuits
w x24 Synthesis of topology for a PID type of A, F This paper 19, 33

controller with an added second derivative

Ž .the particular criterion from the list above that establishes the basis for the claim
of human competitiveness.

Fifteen of the 24 instances in Table 1 involve previously patented inventions. Six
Žof these automatically created results infringe on previously issued patents indi-

cated in the table by a citation to both the original patent and the genetically
.produced result . One of the genetically evolved results improves on a previously

issued patent. Nine of the genetically evolved results duplicate the functionality of
previously patented inventions in novel ways. The fact that genetic programming
can evolve entities that infringe on previously patented inventions, improve on
previously patented inventions, or duplicate the functionality of previously patented
inventions suggests that genetic programming can potentially be used as an
‘‘invention machine’’ to create new and useful patentable inventions.

Section 2 provides background on control systems. Section 3 discusses how
Ž .genetic programming can be used to automatically synthesize create the design of

controllers. Section 4 describes two illustrative problems. Section 5 describes the
preparatory steps necessary to apply genetic programming to the two illustrative
problems. Sections 6 and 7 present the results for the two illustrative problems.
Section 8 is the conclusion.

2. Control systems

The purpose of a controller is to force, in a meritorious way, the actual response of
Ž . Ža system conventionally called the plant to match a desired response called the

. w xreference signal 10, 17, 18, 56, 28 .
Ž .Controllers control systems are ubiquitous. A thermostat is an example of a

controller. The occupant of a chilly room may set a thermostat to request that the
Ž .room temperature be raised to 70 degrees the reference signal . The controller

causes fuel to flow into the furnace so as to cause the furnace to heat the room to
70 degrees. As the temperature of the room rises, the controller continuously

Žadjusts its behavior based on the difference between the reference signal the
. Ždesired temperature and the room’s current actual temperature the plant re-

.sponse .

KOZA ET AL.126

Figure 1. Block diagram of a plant and a PID controller composed of proportional, integrative, and
derivative blocks. The plant’s output is fed back to the controller where it is compared to the reference
signal.

Illustratï e control system

Figure 1 is a block diagram of an illustrative control system containing a controller
and a plant. The output of the controller 500 is a control variable 590 which is, in

Ž .turn, the input to the plant 592. The plant has one output plant response 594. The
Ž .plant response is fed back externally as signal 596 and becomes one of the

controller’s two inputs. The controller’s second input is the reference signal 508.
The fed-back plant response 596 and the externally supplied reference signal 508

Ž .are compared by subtraction here . The system in this figure is called a ‘‘closed
loop’’ system because there is external feedback of the plant output back to the
controller. Controllers without such feedback are called ‘‘open loop’’ controllers.

ŽSuch ‘‘open loop’’ controllers are considerably simpler and generally less useful in
.real world applications than ‘‘closed loop’’ controllers.

Ž .There are many different and usually conflicting measures of merit for con-
trollers. For example, it is often considered desirable to minimize the time required
to bring about the desired response of the plant. Meanwhile, it is often considered
desirable to simultaneously avoid significantly overshooting the target value for the
plant response. Furthermore, since all real world plants, controllers, and their
sensors are imperfect, it is also desirable that a controller operate robustly in the
face of variations in the actual characteristics of the plant, in the face of distur-
bances that may be added into the controller’s output, and in the face of sensor
noise that may be added to the plant output or reference signal. In addition, it is

AUTOMATIC CREATION 127

common to constrain the control variable to a particular prespecified range
because of physical limitations. Also, the plant’s internal state variables are
sometimes constrained to a particular prespecified range. It is also desirable to be
able to suppress high frequency noise in the reference signal, the control variable,
and the actual plant response.

The underlying principles of control systems are broadly the same whether the
system is mechanical, electrical, thermodynamic, hydraulic, biological, or economic
and whether the variable of interest is temperature, velocity, voltage, water

w xpressure, interest rates, heart rate, or humidity 28 .

Block diagrams of controllers

Block diagrams are a useful tool for representing the flow of information in
controllers and systems containing controllers. Block diagrams contain signal
processing function blocks, external input and output points, and directed lines.

A function block in a block diagram has one or more inputs, but only one output.
Lines in a block diagram represent time-domain signals. Lines are directional in

that they represent the flow of information. The lines pointing toward a block
represent signals coming into the block. The single line pointing away from a block
represents the block’s single output. Note that a line in a block diagram differs
from a wire in an electrical circuit in that the line is directional and that a function
block in a block diagram differs from an electrical component in a circuit in that
there is only one output from a function block.

In a block diagram, an external input is represented by an external point with a
directed line pointing away from that point. Similarly, an external output point is
represented by an external point with a line pointing toward that point.

The topology of a controller entails specification of the total number of process-
ing blocks to be employed in the controller, the type of each block, the connections
between the inputs and output of each block in the controller and the external
input and external output points of the controller. Many of the signal processing
blocks used in controllers possess numerical parameter values.

Adders are conventionally represented by circles in block diagrams. Each input
Žto an adder is labeled with a positive or negative sign so adders may be used to

.perform both addition and subtraction . In Figure 1, adder 510 performs the
function of subtracting the fed-back plant output 596 from the externally supplied
reference signal 508.

Ž .Takeoff points conventionally represented in block diagrams by a large dot
provide a way to disseminate a signal to more than one other function block in a
block diagram. Takeoff point 520 receives signal 512 and disseminates this signal to
function blocks 530, 540, and 550.

In the figure, the subtractor’s output 522 is passed into a GAIN block 530. A
Ž . Ž .GAIN block shown in this figure as a triangle multiplies amplifies its input by a

Ž .specified constant amplification factor i.e., the numerical constant 214.0 . The
amplified result 538 becomes the first of the three inputs to addition block 580.

KOZA ET AL.128

ŽThe subtractor’s output is also passed into GAIN block 540 with a gain of
. Ž1,000.0 and the amplified result 548 is passed into INTEGRATOR block 560 shown

.in the figure by a rectangle labeled 1rs, where s is the Laplace transform variable .
Ž .The result 568 of this integration with respect to time becomes the second input

to addition block 580. Similarly, the subtractor’s output is passed into GAIN block
Ž .550 with a gain of 15.5 and the amplified result 558 is passed into DIFFERENTIA-

Ž .TOR block 570 shown in the figure by a rectangle labeled s and becomes the third
input to addition block 580.

The controller of Figure 1 can be represented as a transfer function as follows.

1000.0 214.0 s q 1000.0 q 15.5s2

G s s 214.0 q q 15.5s s .Ž .c s s

Ž .In this representation, the 214.0 is the proportional P element of the controller;
Ž . Ž .the 1,000.0rs is the integrating I term; and the 15.5s is the differentiating D

term. It is common to write the transfer function as a quotient of two polynomials
Ž .in the Laplace transform variable as is done on the right .

PID controllers

Ž .Since the output i.e., control variable 590 of the controller in Figure 1 is the sum
Ž . Ž . Ž .of a proportional P term, an integrating I term, and a differentiating D term,

this type of controller is called a PID controller. The PID controller was patented
in 1939 by Albert Callender and Allan Stevenson of Imperial Chemical Limited of
Northwich, England. The PID controller was a significant improvement over
previous approaches to control. In discussing the problems of ‘‘hunting’’ and

w xinstability, Callender and Stevenson 19 state,

If the compensating effect V is applied in direct proportion to the magnitude of
the deviation Q, over-compensation will result. To eliminate the consequent
hunting and instability of the system, the compensating effect is additionally
regulated in accordance with other characteristics of the deviation in order to
bring the system back to the desired balanced condition as rapidly as possible.

ŽThese characteristics include in particular the rate of deviation which may be
.indicated mathematically by the time-derivative of the deviation and also the

summation or quantitative total change of the deviation over a given time
Ž .which may be indicated mathematically by the time-integral of the deviation .

w xCallender and Stevenson 19 state,

A specific object of the invention is to provide a system which will produce a
compensating effect governed by factors proportional to the total extent of the
deviation, the rate of the deviation, and the summation of the deviation during a
given period . . .

AUTOMATIC CREATION 129

w xClaim 1 of Callender and Stevenson 19 covers what is now called the PI
controller,

A system for the automatic control of a variable characteristic comprising means
proportionally responsive to deviations of the characteristic from a desired
value, compensating means for adjusting the value of the characteristic, and
electrical means associated with and actuated by responsive variations in said
responsive means, for operating the compensating means to correct such devia-
tions in conformity with the sum of the extent of the deviation and the
summation of the deviation.

w xClaim 3 of Callender and Stevenson 19 covers what is now called the PID
controller,

A system as set forth in claim 1 in which said operation is additionally controlled
in conformity with the rate of such deviation.

PD, PI, and PID controllers are in widespread use in industry. As Astrom and
w xHagglund 10 noted,

Several studies . . . indicate the state of the art of industrial practice of control.
The Japan Electric Measuring Instrument Manufacturing Association con-
ducted a survey of the state of process control systems in 1989 . . . According to
the survey, more than 90% of the control loops were of the PID type.

However, even though PID controllers are in widespread use in industry, the
w xneed for better controllers is widely recognized. As Astrom and Hagglund 10

observed,

w x. . . audits of paper mills in Canada show that a typical mill has more than
2,000 control loops and that 97% use PI control. Only 20% of the control loops
were found to work well.

It is generally recognized by leading practitioners in the field of control that
there are significant limitations on analytical techniques in designing controllers.

w xAs Boyd and Barratt stated in Linear Controller Design: Limits of Performance 17 ,

The challenge for controller design is to productively use the enormous comput-
ing power available. Many current methods of computer-aided controller design
simply automate procedures developed in the 1930’s through the 1950’s, for
example, plotting root loci or Bode plots, Even the ‘modern’ state-space and

Žfrequency-domain methods which require the solution of algebraic Riccati
.equations greatly underutilize available computing power.

KOZA ET AL.130

3. Genetic programming and control

Design is a major activity of practicing engineers. Engineers are often called upon
Ž .to design complex structures such as circuits or controllers that satisfy certain

prespecified high-level design goals. The creation of a design for a complex
structure typically involves intricate tradeoffs between competing considerations.
Design is ordinarily thought to require human intelligence.

Ž .The design synthesis of a controller requires specification of both parameter
Ž .values tuning and the topology such that the controller satisfies certain user-

specified high-level design requirements. Specifically, the process of creating
Ž .synthesizing the design of a controller entails making decisions concerning the
total number of processing blocks to be employed in the controller, the type of

Žeach block e.g., lead, lag, gain, integrator, differentiator, adder, inverter, subtrac-
.tor, and multiplier , the interconnections between the inputs and outputs of each

block in the controller and the external input and external output points of the
controller, and the values of all numerical parameters for the blocks.

The design process for controllers today is generally channeled along lines
Žestablished by existing analytical techniques notably those that lead to a PID-type

.controller .
Ž .It would be desirable to have an automatic system for synthesizing creating the

design of a controller that was open-ended in the sense that it did not require the
Ž .human user to prespecify the topology of the controller whether PID or other ,

but, instead, automatically produced both the overall topology and parameter
values directly from a high-level statement of the requirements of the controller.
However, there is no preexisting general-purpose analytic method for automatically
creating a controller for arbitrary linear and nonlinear plants that can simultane-

Žously optimize prespecified performance metrics such as minimizing the time
required to bring the plant output to the desired value as measured by, say, the

.integral of the time-weighted absolute error , satisfy time-domain constraints
Ž .involving, say, overshoot and disturbance rejection , satisfy frequency domain

Ž .constraints e.g., bandwidth , and satisfy additional constraints, such as constraints
on the magnitude of the control variable and the plant’s internal state variables.

Background on genetic programming

Genetic programming is often used as an automatic method for creating a
computer program to solve a problem. Genetic programming is an extension of the

w x wgenetic algorithm 31 . Genetic programming is described in detail in 38, 48, 39, 40,
x w43, 45 . Recent work on genetic programming is described in 12, 50, 62, 36, 9, 68,

x47, 46, 41, 11, 14, and 58 .
Genetic programming starts with a primordial ooze of thousands of randomly

created computer programs and uses the Darwinian principle of natural selection,
Ž .recombination crossover , mutation, gene duplication, gene deletion, and certain

AUTOMATIC CREATION 131

mechanisms of developmental biology to breed a population of programs over a
series of generations.

Genetic programming breeds computer programs to solve problems by executing
the following three steps:

Ž . Ž .1 Generate an initial population of compositions typically random of the
functions and terminals of the problem.

Ž . Ž .2 Iteratively perform the following substeps referred to herein as a generation
on the population of programs until the termination criterion has been satis-
fied:
Ž .A Execute each program in the population and assign it a fitness value using

the fitness measure.
Ž .B Create a new population of programs by applying the following operations.

Ž .The operations are applied to program s selected from the population
Ž .with a probability based on fitness with reselection allowed .

Ž .i Reproduction: Copy the selected program to the new population.
Ž .ii Crossover: Create a new offspring program for the new population by

recombining randomly chosen parts of two selected programs.
Ž .iii Mutation: Create one new offspring program for the new population

by randomly mutating a randomly chosen part of the selected pro-
gram.

Ž .iv Architecture-altering operations: Select an architecture-altering oper-
ation from the available repertoire of such operations and create one
new offspring program for the new population by applying the se-
lected architecture-altering operation to the selected program.

Ž . Ž3 Designate the individual program that is identified by result designation e.g.,
.the best-so-far individual as the result of the run of genetic programming. This
Ž .result may be a solution or an approximate solution to the problem.

The individual programs that are evolved by genetic programming are typically
multibranch programs consisting of one or more result-producing branches and

Ž .zero, one, or more automatically defined functions subroutines . The architecture
of such a multibranch program involves

Ž .1 the total number of automatically defined functions,
Ž . Ž .2 the number of arguments if any possessed by each automatically defined

function, and
Ž .3 if there is more than one automatically defined function in a program, the

Ž .nature of the hierarchical references including recursive references , if any,
allowed among the automatically defined functions.

There are two ways of determining the architecture for a program that is to be
evolved using genetic programming.

KOZA ET AL.132

Ž .1 The human user may prespecify the architecture of the overall program as part
of the preparatory steps required for launching the run of genetic program-
ming.

Ž .2 Architecture-altering operations may be used during the run to automatically
create the architecture of the program.

Architecture-altering operations enable genetic programming to automatically
determine the number of automatically defined functions, the number of argu-
ments that each possesses, and the nature of the hierarchical references, if any,
among such automatically defined functions. Although not used in this paper,
certain additional architecture-altering operations enable genetic programming to
automatically determine whether and how to use internal memory, iterations, and

w xrecursion in evolved programs 43 .

Pre¨ious work in¨ol̈ ing e¨olutionary computation and control

There has been extensive previous work on the problem of automating various
aspects of the design of controllers using evolutionary computation in general and
genetic programming in particular. Genetic programming has been previously
applied to certain simple control problems, including, but not limited to, discrete-
time problems where the evolved program receives the system’s current state as
input, performs an arithmetic or conditional calculation on the inputs, and com-
putes a value for a control variable. These discrete-time problems have included
cart centering, broom balancing, backing a tractor-trailer truck to a loading dock,

w xcontrolling the food foraging strategy of a lizard 38 , navigating a robot with a
w xnonzero turning radius to a destination point 43 , evolving an analog electrical

circuit for a robotic controller navigating a robot with a nonzero turning radius to a
w x w xdestination point 43 , using linear genomes for robotic control 2, 13 , and using
Ž .cellular encoding developmental genetic programming for the pole-balancing

w xproblem involving two poles 85 .
In most real-world control systems, the controller continuously interacts with the

Ž .plant and reference signal and the plant interacts with the controller. The
behavior of each part of the overall system depends on the behavior of the other
parts. Genetic algorithms and genetic programming have also been used for
synthesizing controllers having mutually interacting continuous-time variables and

w xcontinuous-time signal processing blocks 51, 52, 25, 27, 54, 70, 71 . Neural
w xprogramming and PADO 72 through 82 provide a graphical program structure

representation for such multiple independent processes. In 1996, Marenbach,
w xBettenhausen, and Freyer 53 used automatically defined functions to represent

internal feedback in a system used for system identification where the overall
multibranch program represented a continuous-time system with continuously
interacting processes. The essential features of their approach has been subse-

w xquently referred to as ‘‘multiple interacting programs’’ 5 through 8 .

AUTOMATIC CREATION 133

Use of genetic programming to automatically synthesize controllers

ŽThe program trees consisting of both result-producing branches and automatically
.defined functions evolved by genetic programming may be employed in several

Ždifferent ways. In each case, the search mechanism of genetic programming i.e.,
.the three steps above is the same.

In the approach where genetic programming is being used to automatically
create a computer program to solve a problem, the program tree is simply
executed. The result of the execution is a set of returned values, a set of side

Žeffects on some other entity e.g., an external entity such as a robot or an internal
.entity such as computer memory , or a combination of returned values and side

effects. In this approach, the functions in the program are individually executed, in
time, in accordance with a specified ‘‘order of evaluation’’ such that the result of
the execution of one function is available at the time when the next function is

Žgoing to be executed. In particular, the functions in a subroutine automatically
.defined function in an ordinary computer program are executed at the distinct

time when the subroutine is invoked; the subroutine then produces a result that is
available at the time when the next function is executed.

The second approach is a developmental approach. In this approach, the
program tree is interpreted as a set of instructions for constructing a complex

w xstructure, such an electrical circuit 43 . This is accomplished by applying the
functions of a program tree to an embryonic structure so as to develop the embryo
into a fully developed structure. As in the first approach, the functions in the
program are executed separately, in time, in accordance with the specified ‘‘order
of evaluation.’’ Fifteen of the entries in Table 1 are electrical circuits that were
evolved by means of developmental genetic programming.

In this paper, program trees are used in a third way. As will be explained in
detail below, the program tree represents the block diagram of a controller. The
block diagram consists of signal processing functions linked by directed lines
representing the flow of information. There is no ‘‘order of evaluation’’ of the
functions and terminals of a program tree representing a controller. Instead, the
signal processing blocks of the controller and the to-be-controlled plant interact
with one another as part of a closed system in the manner specified by the topology
of the block diagram for the overall system.

As will be seen below, genetic programming can be successfully used to automat-
ically synthesize both the topology and parameter values for a controller using this
third approach. The automatically created controllers can potentially accommodate
one or more externally supplied reference signals; external feedback of one or
more plant outputs to the controller; comparisons between one or more reference
signals and their corresponding plant outputs; one or more control variables; zero,
one, or more internal state variables of the plant; direct feedback of the controller’s
output back into the controller; and internal feedback of zero, one, or more signals
from one part of the controller to another part of the controller. The automatically

Žcreated controllers can be composed of signal processing blocks such as but not
.limited to gain blocks, lead blocks, lag blocks, inverter blocks, differential input

KOZA ET AL.134

integrators, differentiators, delays, and adders and subtractors and multipliers of
time-domain signals. These controllers can also potentially contain conditional

Ž .operators switches that operate on time-domain signals.

Repertoire of functions

ŽThe repertoire of functions includes the following time-domain functions called
.signal processing blocks when they appear in a block diagram .

The one-argument INVERTER function negates the time-domain signal repre-
sented by its argument.

The one-argument DIFFERENTIATOR function differentiates the time-domain
signal represented by its argument. That is, this function applies the transfer
function s, where s is the Laplace transform variable.

The one-argument INTEGRATOR function integrates the time-domain signal
represented by its one argument. That is, this function applies the transfer function
1rs.

The two-argument DIFFERENTIAL_INPUT_INTEGRATOR function integrates
the time-domain signal representing the difference between its two arguments.

The two-argument LEAD function applies the transfer function 1 q t s, where t
is a real-valued numerical parameter. The first argument is the time-domain input
signal. The second argument, t , is a numerical parameter representing the time

Ž .constant usually expressed in seconds of the LEAD. The numerical parameter
Ž .value for this function and other functions described below may be represented

Ž .using one of three different approaches described below .
Ž .The two-argument LAG function applies the transfer function 1r 1 q t s , where

t is a numerical parameter. The first argument is the time-domain input signal.
The second argument, t , is the time constant.

The three-argument LAG2 function applies the transfer function

v 2
0

,2 2s q 2zv s q v0 0

where z is the damping ratio, and v is the corner frequency.0
The two-argument ADD_SIGNAL, SUB_SIGNAL, and MULT_SIGNAL functions

perform addition, subtraction, and multiplication, respectively, on the time-domain
signals represented by their two arguments.

The three-argument ADD_3_SIGNAL adds the time-domain signals represented
by its three arguments.

The one-argument ABS_SIGNAL function performs the absolute value function
on the time-domain signal represented by its argument.

The three-argument LIMITER function limits a signal by constraining it between
an upper and lower bound. This function returns the value of its first argument
Ž .the incoming signal when its first argument lies between its second and third

Ž .arguments the two bounds . If the first argument is greater than its third argument

AUTOMATIC CREATION 135

Ž .the upper bound , the function returns its third argument. If its first argument is
Ž .less than its second argument the lower bound , the function returns its second

argument.
The four-argument DIV_SIGNAL function divides the time-domain signals rep-

resented by their two arguments and constrains the resulting output by passing the
quotient through a built-in LIMITER function with a specified upper and lower
bound. The LIMITER function that is built into the DIV_SIGNAL function protects

Ž .against the effect of dividing by zero or by a near-zero value by returning a
specified bound.

The two-argument GAIN function multiplies the time-domain signal represented
by its first argument by a constant numerical value represented by its second
argument. This numerical value is constant in the sense that it is not a time-domain

Ž .signal like the first argument to the GAIN function and in the sense that this
numerical value does not vary when the controller is operating. Note that the GAIN

Ž .function differs from the MULT_SIGNAL function described above in that the
second argument of a GAIN function is a constant numerical value whose value
does not vary when the controller is operating.

The two-argument ADD_NUMERIC, SUB_NUMERIC, and MULT_NUMERIC func-
tions perform addition, subtraction, and multiplication, respectively, on the con-
stant numerical values represented by their two inputs.

The three-argument IF_POSITIVE function is a switching function that oper-
ates on three time-domain signals and produces a particular time-domain signal
depending on whether its first argument is positive. If, at a given time, the value of
the time-domain function in the first argument of the IF_POSITIVE function is
positive, the value of the IF_POSITIVE function is the value of the time-domain
function in the second argument of the IF_POSITIVE function. If, at a given time,
the value of the time-domain function in the first argument of the IF_POSITIVE
function is negative or exactly zero, the value of the IF_POSITIVE function is the
value of the time-domain function in the third argument of the IF_POSITIVE
function.

The one-argument DELAY function has one numerical parameter, its time delay,
and applies the transfer function eysT where T is the time delay.

Ž .Automatically defined functions e.g., ADF0, ADF1 possessing one or more
arguments may also be included in the function set of a particular problem
Ž .described below .

Repertoire of terminals

Ž .The repertoire of terminals includes but is not limited to the following terminals.
The REFERENCE_SIGNAL is the time-domain signal representing the desired

plant response. If there are multiple reference signals, they are named REFER-
ENCE_SIGNAL_0, REFERENCE_SIGNAL_1, and so forth.

The PLANT_OUTPUT is the plant output. Inclusion of the terminal PLANT_OUT-
PUT in the terminal set of the problem provides a means to have external feedback
of the plant’s output into the to-be-evolved controller. If the plant has multiple

KOZA ET AL.136

outputs, the plant outputs are named PLANT_OUTPUT_0, PLANT_OUTPUT_1,
and so forth.

The CONTROLLER_OUTPUT is the time-domain signal representing the output of
Ž .the controller i.e., the control variable . Inclusion of the terminal CONTROLLER_

OUTPUT in the terminal set of the problem provides a means to have direct
feedback of the controller’s output back into the to-be-evolved controller. If the
controller has multiple control variables, the control variables are named CON-
TROLLER_OUTPUT_0, CONTROLLER_OUTPUT_1, and so forth.

Ž .If the plant has internal state s that are available to the controller, then the
Ž .terminals STATE_0, STATE_1, etc. are the plant’s internal state s .

The CONSTANT_0 terminal is the constant time-domain signal whose value is
always 0. Similar terminals may be defined, if desired, for other particular constant
valued time-domain signals.

Additional terminals may also be included in the terminal set to represent
constant numerical values.

Zero-argument automatically defined functions may also be included in the
Ž .terminal set of a particular problem as described below .

Representing the plant

Use of genetic programming to evolve a satisfactory controller requires determin-
Ž .ing the behavior of the overall system composed of both the controller and plant .

This behavior is typically determined by a single run of a simulator that simulates
the controller and plant together. In practice, many plants can be modeled with the

Ž .same repertoire of functions and terminals described above as a controller. The
technique described in this paper assumes that the behavior of the plant is
available. If a model of the plant is not available, genetic programming can be used
in conjunction with the representational scheme in this paper to create a model for

Ž .the plant i.e., perform the task of system identification .

Automatically defined functions

Ž .An automatically defined function ADF is a function whose body is dynamically
evolved during the run and which may be invoked by the main result-producing

Ž . Ž .branch es or by other automatically defined function s . When automatically
defined functions are being used, an individual program tree consists of one or

Ž .more reusable automatically defined functions function-defining branches along
Ž .with the main result-producing branch es . Automatically defined functions may

Ž .possess zero, one, or more dummy arguments formal parameters and may be
reused with different instantiations of their dummy arguments.

Automatically defined functions provide a convenient mechanism for represent-
ing takeoff points. Once an automatically defined function is defined, it may be
referenced repeatedly by other parts of the overall program tree representing the

AUTOMATIC CREATION 137

controller. Thus, an automatically defined function may be used to disseminate the
output of a particular processing block within a controller to two or more other
points in the block diagram of the controller.

In addition, automatically defined functions provide a convenient mechanism for
enabling internal feedback within a controller. In control problems, the function
set for each automatically defined function and each result-producing branch

Ž .includes each existing automatically defined function including itself . Specifically,
each automatically defined function is a composition of the above functions and

Ž .terminals, all existing automatically defined functions, and possibly dummy vari-
Ž .ables formal parameters that parameterize the automatically defined functions.

Note that in the style of ordinary computer programming, a reference to ADF0
from inside the function definition for ADF0 would be considered to be a recursive
reference. However, in the context of control structures, an automatically defined
function that references itself represents a cycle in the block diagram of the

Ž .controller i.e., internal feedback inside the controller .
Ž .In this paper, programs trees in the initial random generation generation 0

consist only of result-producing branches. Automatically defined functions are
introduced sparingly on subsequent generations of the run by means of the
architecture-altering operations. Alternatively, automatically defined functions may
be present in the individuals in generation 0.

The to-be-evolved controller can accommodate one or more externally supplied
reference signals, external feedback of one or more plant outputs to the controller,
computations of error between the reference signals and the corresponding exter-
nal plant outputs, one or more internal state variables of the plant, and one or
more control variables passed between the controller and the plant. These auto-
matically created controllers can also accommodate internal feedback of one or
more signals from one part of the controller to another part of the controller. The
amount of internal feedback is automatically determined during the run.

Numerical parameter ¨alues

Ž .Many signal processing block functions such as the GAIN, BIAS, LEAD, LAG
Ž .possess a numerical parameter value and others such as LAG2 and LIMITER

possess more than one numerical parameter values.
ŽThe following three approaches each employing a constrained syntactic struc-

.ture can be used to establish the numerical parameter values for signal processing
blocks:

Ž . Ž1 an arithmetic-performing subtree consisting of one and usually more than
. Ž .one arithmetic functions and one and usually more than one constant

numerical terminals,
Ž .2 a single perturbable numerical value,
Ž . Ž3 an arithmetic-performing subtree consisting of one and usually more than

. Ž .one arithmetic functions and one and usually more than one perturbable
numerical values.

KOZA ET AL.138

The first approach has been extensively employed in connection with the
w xautomatic synthesis of analog electrical circuits 43 .

In second approach, the numerical parameter value of a signal processing block
Žfunction is established by a single perturbable numerical value coded by 30 bits in

.our system . These perturbable numerical values are changed during the run
Ž .unlike the constant numerical terminals of the first approach . In the initial
random generation, each perturbable numerical value is set, individually and

Ž .separately, to a random value in a chosen range e.g., between q5.0 and y5.0 . In
later generations, the perturbable numerical value may be perturbed by a relatively
small amount determined probabilistically by a Gaussian probability distribution.
The existing to-be-perturbed value is considered to be the mean of the Gaussian
distribution. A relatively small preset parameter establishes the standard deviation
of the Gaussian distribution. The standard deviation of the Gaussian perturbation

Žmay be, for example, 1.0 i.e., corresponding to one order of magnitude if the
number between q5.0 and y5.0 is later interpreted, as described below, on a

. Žlogarithmic scale . This second approach has the advantage over the first ap-
.proach of changing numerical parameter values by a relatively small amount and

therefore searching the space of possible parameter values most thoroughly in the
Žimmediate neighbor of the value of the existing value which is, because of

.Darwinian selection, is necessarily part of a relatively fit individual . These pertur-
bations are implemented by a genetic operation for mutating the perturbable
numerical values. It is also possible to perform a special crossover operation in
which a copy of a perturbable numerical value is inserted in lieu of a chosen other

Ž .perturbable numerical value. Our experience albeit limited is that this second
approach, patterned after the Gaussian mutation operation used in evolution

w x w xstrategies 60, 61 and evolutionary programming 29 , appears to work better than
the first approach.

The third approach is more general than the second approach and employs
arithmetic-performing subtrees in conjunction with perturbable numerical values.
This approach differs from the second approach in that a full subtree is used,
instead of only a single perturbable numerical value. This approach may be
advantageous when there are external global variables or when automatically

Ž .defined functions, such as ADF0, and dummy variables formal parameters , such as
ARG0, are involved in establishing numerical parameter values for signal processing
blocks.

Regardless of which of the above approaches is used to represent the numerical
parameter values, it is advantageous to interpret the value returned by the
arithmetic-performing subtree or perturbable numerical value on a logarithmic

Žscale e.g., converting numbers ranging between y5.0 and q5.0 into numbers
. w xranging over 10 orders of magnitude as described in detail in 43 .

Constrained syntactic structure of the program trees

The program trees in the initial generation 0 as well as any trees created in later
generations of the run by the mutation, crossover, and architecture-altering opera-

AUTOMATIC CREATION 139

Žtions are created in compliance with a constrained syntactic structure strong
.typing that limits the particular functions and terminals that may appear at

particular points in each particular branch of the overall program tree. An
Ž .individual tree consists of main result-producing branch es and zero, one, or more

Ž .automatically defined functions function-defining branches and each of these
branches is composed of a composition of various functions and terminals.

The functions and terminals in the trees are divided into three categories:

Ž .1 signal processing block functions,
Ž .2 automatically defined functions that appear in the function-defining branches

and that enable both internal feedback within a controller and the dissemina-
tion of the output from a particular signal processing block within a controller
to two or more other points in the block diagram of the controller, and

Ž .3 terminals and functions that may appear in arithmetic-performing subtrees for
the purpose of establishing the numerical parameter value for certain signal
processing block functions.

Program tree representations of controllers

The PID controller of Figure 1 may be represented by a composition of functions
Ž .and terminals in the style of symbolic expressions S-expressions of the LISP

programming language. The block diagram for the PID controller of Figure 1 can
be represented as the following S-expression:

1 (PROGN
2 (DEFUN ADF0 ()
3 (VALUES
4 (- REFERENCE_SIGNAL PLANT_OUTPUT)))
5 (VALUES
6 (+
7 (GAIN 214.0 ADF0)
8 (DERIVATIVE (GAIN 1000.0 ADF0))
9 (INTEGRATOR (GAIN 15.5 ADF0))))
10)

Notice that the automatically defined function ADF0 provides the mechanism for
Ž .disseminating a particular signal the difference taken on line 4 to three places

Ž .lines 7, 8, and 9 and corresponds to the takeoff point 520 in Figure 1.
A controller may also be represented as a point-labeled tree with ordered

Ž .branches i.e., a program tree that corresponds directly with the above S-expres-
sion representation. The terminals of such program trees correspond to inputs to
the controller, constant numerical terminals, perturbable constant values, or exter-

Ž .nally supplied global variables. The functions in such program trees correspond to
the signal processing blocks in a block diagram representing the controller. The
value returned by an entire result-producing branch of the program tree corre-

KOZA ET AL.140

Figure 2. Program tree representation of the PID controller of Figure 1. The automatically defined
Ž .function ADF0 left subtracts the plant output from the reference signal and makes the difference

Ž . Ž .available to three points 734, 744, and 754 in the result-producing branch right .

Ž .sponds to an output of the controller i.e., control variable that is to be passed
from the controller to the plant. If the controller has more than one control
variable, the program tree has one result-producing branch for each control
variable. Figure 2 presents the block diagram for the PID controller of Figure 1 as
a program tree. All block diagrams for controllers may be represented in this
manner.

A controller may also be represented as a SPICE netlist. The SPICE simulator
can be used for simulating controllers and plants. SPICE is a large family of
programs written over several decades at the University of California at Berkeley
for the simulation of analog, digital, and mixed analogrdigital electrical circuits.

w xSPICE3 59 is currently the most recent version of Berkeley SPICE and consists of
about 217,000 lines of C source code residing in 878 separate files. The required
input to the SPICE simulator consists of a netlist along with certain commands and
other commands required by the SPICE simulator. The netlist describes the
topology and parameter values of a controller and plant and can be derived directly
from the program tree for the controller and the block diagram for the plant. The
SPICE simulator was originally designed for simulating electrical circuits. Circuit
diagrams differ from block diagrams in several important ways. In particular, the
leads of a circuit’s electrical components are joined so there is no directionality in

Ž .circuits as there is in block diagrams . In addition, SPICE does not ordinarily
handle most of the signal processing functions typically contained in a controller

Ž .and plant e.g., derivative, integral, lead, and lag . Nonetheless, behavior of the
Ž .signal processing functions such as derivative, integral, lead, lag can be realized

by using the facility of SPICE to create subcircuit definitions involving appropriate
combinations of electrical components and the facility of SPICE to implement
user-defined continuous-time mathematical calculations.

AUTOMATIC CREATION 141

4. Two illustrative problems

We use two example problems for illustrating the use of genetic programming for
automatically synthesizing controllers.

Two-lag plant

The first illustrative problem calls for the design of a robust controller for a two-lag
Ž w x.plant. The problem described by Dorf and Bishop in 28, page 707 is to create

both the topology and parameter values for a controller for a two-lag plant such
that plant output reaches the level of the reference signal so as to minimize the

Ž .integral of the time-weighted absolute error ITAE , such that the overshoot in
response to a step input is less than 2%, and such that the controller is robust in
the face of significant variation in the plant’s internal gain, K, and the plant’s time
constant, t . The transfer function of the plant is

K
G s s .Ž . 21 q t sŽ .

The plants internal gain, K, is varied from 1 to 2 and the plant’s time constant, t , is
varied from 0.5 to 1.0.

To make the problem more realistic, we added two additional constraints to the
problem. Both of these added constraints are, in fact, satisfied by the Dorf and
Bishop controller. These two constraints are of the type that are often implicit in
work in the field of control. The first constraint is that the input to the plant is
limited to the range between y40 and q40 volts. Limiting the control variable
passing into the plant reflects the limitations of real world actuators: a motor has a
maximum armature current; a furnace a maximum rate of heat production, etc.
The second constraint is that the closed loop frequency response of the system
must lie below a 40 dB per decade lowpass curve whose corner is at 100 Hz. This
bandwidth limitation reflects the desirability of limiting the effect of high fre-
quency noise in the reference input. Note that the 2% overshoot requirement in
the above statement of the problem is more stringent than the 4% overshoot
requirement used by Dorf and Bishop.

Figure 3 shows an illustrative two-lag plant consisting of a series composition of
Ž .a LIMITER block with a range y40.0 volts to q40.0 volts and two LAG blocks

Ž .each with a lag of 1.0 . In the figure, the input to the plant 600 is control variable
Ž .610 the output of some controller . This signal is first passed into LIMITER

function block 620 whose upper limit is established by the numerical parameter
Ž .q40.0 at 622 of the figure and whose lower limit is established by the numerical

Ž .parameter y40.0 at 624 . The output of LIMITER function block 620 is signal 626.
This signal then passes into first LAG block 630 whose time constant is established

Ž .by the numerical parameter 1.0 at 632 . The output of this first LAG block 630 is
signal 636. This signal then passes into second LAG block 640 whose time constant

KOZA ET AL.142

Figure 3. Block diagram of an illustrative two-lag plant consisting of a limiter block that constrains the
Ž . Žplant’s input the control variable between y40 and q40 volts and two consecutive lag blocks each

.with a time constant of 1.0 .

Ž .is established by the numerical parameter 1.0 at 642 . The output of this second
LAG block 640 is plant output 680.

A textbook PID compensator preceded by a lowpass prefilter delivers credible
w xperformance on this problem. Dorf and Bishop 28 say that they ‘‘obtain the

optimum ITAE transfer function.’’ By this, they mean they obtained the optimum
given that they had already decided to employ a PID compensator.

As will be seen below, the result produced by genetic programming differs from
a conventional PID controller in that the genetically evolved controller employs a
second derivative processing block. As will be seen, the genetically evolved con-

w xtroller is 2.42 times better than the Dorf and Bishop 28 controller as measured by
Žthe criterion used by Dorf and Bishop namely, the integral of the time-weighted

.absolute error . In addition, the genetically evolved controller has only 56% of the
rise time in response to the reference input, has only 32% of the settling time, and
is 8.97 times better in terms of suppressing the effects of a step disturbance at the
plant input.

Three-lag plant

The technique for automatically synthesizing a controller will be further illustrated
by a problem calling for the design of a similarly robust controller for a three-lag

Ž w x.plant described by Astrom and Hagglund in 10, page 225 . The three-lag plant is
identical to the plant of Figure 3 except that there is one additional lag block with

AUTOMATIC CREATION 143

a time constant of t . The transfer function of the plant is

K
G s s .Ž . 31 q t sŽ .

The plant’s internal gain, K, is varied from 1 to 2 and the plant’s time constant,
t , is varied from 0.5 to 1.0. Since Astrom and Hagglund do not explicitly mention a

Žlimit on the controller output, we added an additional constraint i.e., the control
.variable is limited to the range between y10 and q10 volts that is both

reasonable and, in fact, satisfied by the Astrom and Hagglund controller.
w xA PID compensator designed by Astrom and Hagglund 10 delivers credible

performance on this problem.
As will be seen below, the controller produced by genetic programming is better

than 7.2 times as effective as the textbook controller as measured by the integral of
the time-weighted absolute error, has only 50% of the rise time in response to the
reference input, has only 35% of the settling time, and is 92.7 dB better in terms of
suppressing the effects of a step disturbance at the plant input.

5. Preparatory steps

Six major preparatory steps are required before applying genetic programming to a
Ž .problem involving the synthesis of a controller: 1 determine the architecture of

Ž . Ž . Ž .the program trees, 2 identify the terminals, 3 identify the functions, 4 define
Ž . Ž .the fitness measure, 5 choose control parameters for the run, and 6 choose the

termination criterion and method of result designation.

Program architecture

Since both problems involve one-output controllers, each program tree in the
population has one result-producing branch. Each program tree in the initial

Ž .random population generation 0 has no automatically defined functions. How-
ever, in subsequent generations, the architecture-altering operations may insert
Ž .and delete automatically defined functions to particular individual program trees
in the population. We decided to permit each program tree to acquire a maximum
of five automatically defined functions.

Terminal set

For the two-lag plant problem, arithmetic-performing subtrees involving constant
numerical terminals are used for establishing the values of the numerical parame-

Ž .ter s for the signal processing blocks in the overall program tree. A constrained
syntactic structure enforces a different function and terminal set for the arith-

KOZA ET AL.144

Ž .metic-performing subtrees as opposed to all other parts of the program tree . For
the two-lag plant problem, the terminal set, T , for the arithmetic-performingaps
subtrees is

� 4T s R ,aps

where R denotes constant numerical terminals in the range from y1.0 to q1.0.
For the three-lag plant problem, a constrained syntactic structure permits only a

single perturbable numerical value to appear as the argument for establishing each
numerical parameter value for each signal processing block. These two approaches
are used in this paper for purposes of illustration, not because either problem is
more suited to a particular approach than the other.

For both problems, the terminal set, T, for every part of the result-producing
branch and any automatically defined functions except the arithmetic-performing
subtrees is

T s {CONSTANT_0, REFERENCE_SIGNAL, CONTROLLER_OUTPUT,

PLANT_OUTPUT}.

Function set

For the two-lag plant problem, the function set, F , for the arithmetic-performingaps
subtrees is

F s {ADD_NUMERIC, SUB_NUMERIC}.aps

For both problems, the function set, F, for every part of the result-producing
branch and any automatically defined functions except the arithmetic-performing
subtrees is

F s {GAIN, INVERTER, LEAD, LAG, LAG2,

DIFFERENTIAL_INPUT_INTEGRATOR, DIFFERENTIATOR,

ADD_SIGNAL, SUB_SIGNAL, ADD_3_SIGNAL,

ADF0, ADF1, ADF2, ADF3, ADF4}.

Here ADF0,ADF1, . . . denote the automatically defined functions added during the
run by the architecture-altering operations.

Fitness measure

Genetic programming is a probabilistic search algorithm that searches the space of
compositions of the available functions and terminals. The search is guided by a
fitness measure. The fitness measure is a mathematical implementation of the

AUTOMATIC CREATION 145

high-level requirements of the problem and is couched in terms of ‘‘what needs to
be done’’}not ‘‘how to do it.’’

The fitness measure may incorporate any measurable, observable, or calculable
behavior or characteristic or combination of behaviors or characteristics. Construc-
tion of the fitness measure requires translating the high-level requirements of the
problem into a mathematically precise computation.

The fitness measure for most problems of controller design is multi-objective in
Ž .the sense that there are several different usually conflicting requirements for the

controller.
ŽThe fitness of each individual is determined by executing the program tree i.e.,

the result-producing branch and any automatically defined functions that may be
.present to produce an interconnected sequence of signal processing blocks}that

is, a block diagram for the controller. The netlist for the resulting controlled system
Ž .i.e., the controller and the to-be-controlled plant is wrapped inside an appropriate
set of SPICE commands. The controller is then simulated using our modified

w xversion of the SPICE simulator 59 . The SPICE simulator returns tabular and
other information from which the fitness of the individual can be computed.

The fitness measures below for the two illustrative problems are suggestive of
the many different considerations that may be incorporated into a fitness measure
that is used to guide the evolutionary process in synthesizing a controller. The
fitness measures below illustrate five different types of considerations, including

Ž . Ž1 an optimization requirement e.g., minimizing the integral of the time-weighted
.absolute error ,

Ž . Ž2 time-domain constraints e.g., the overshoot penalty, disturbance rejection, and
.the penalty based on the response to an extreme spiked reference signal ,

Ž . Ž .3 a frequency-domain constraint e.g., an AC sweep over the frequencies ,
Ž . Ž4 robustness requirements e.g., significant variations in the values of the plant’s

.internal gain and the plant’s time constant , and
Ž .5 consistency of treatment in the face of variations in the step size of the

reference signal.

Intermixing of different types of considerations is often difficult and sometimes
impossible when conventional analytical techniques are used to design controllers.

Fitness measure for the two-lag plant problem. For the-two-lag plant problem, the
fitness of a controller is measured using 10 elements, including

Ž .1 eight time-domain-based elements based on a modified integral of time-
weighted absolute error measuring the achievement of the desired value of the
plant response, the controller’s robustness, and the controllers avoidance of
overshoot,

Ž .2 one time-domain-based element measuring the controller’s stability when faced
with an extreme spiked reference signal, and

Ž .3 one frequency-domain-based element measuring the reasonableness of the
controller’s frequency response.

KOZA ET AL.146

ŽThe fitness of an individual controller is the sum i.e., a simple linear combina-
.tion of the detrimental contributions of these 10 elements of the fitness measure.

The smaller the sum, the better.
Ž .The first eight elements of the fitness measure together evaluate i how quickly

Ž .the controller causes the plant to reach the reference signal, ii the robustness of
the controller in face of significant variations in the plant’s internal gain and the

Ž .plant’s time constant, and iii the success of the controller in avoiding overshoot.
These eight elements of the fitness measure represent the eight choices of a
particular one of two different values of the plant’s internal gain, K, in conjunction
with a particular one of two different values of the plant’s time constant t , in
conjunction with a particular one of two different values for the height of the
reference signal. The two values of K are 1.0 and 2.0. The two values of t are 0.5
and 1.0. The first reference signal is a step function that rises from 0 to 1 volts at
t s 100 milliseconds. The second reference signal rises from 0 to 1 microvolts at
t s 100 milliseconds. The two values of K and t are used in order to obtain a
robust controller. The two step functions are used to deal with the nonlinearity
caused by the limiter. For each of these eight fitness cases, a transient analysis is
performed in the time domain using the SPICE simulator. The contribution to
fitness for each of these eight elements of the fitness measure is based on the
integral of time-weighted absolute error

9.6
t e t A e t B dt .Ž . Ž .Ž .H

ts0

Ž . Ž .Here e t is the difference error at time t between the plant output and the
reference signal. An integration between t s 0 to t s 9.6 seconds is sufficient to
capture all interesting behavior of any reasonable controller for this problem. The

Ž .multiplication of each value of e t by B makes both reference signals equally
Ž .influential. Specifically, B multiplies the difference e t associated with the 1-volt

Ž .step function by 1 and multiplies the difference e t associated with the 1-microvolt
step function by 106. The integral also contains an additional weighting function,
A, that heavily penalizes noncompliant amounts of overshoot. Specifically, the

Ž .function A depends on e t and weights all variations up to 2% above the
reference signal by a factor of 1.0, while A weights overshoots above 2% by a
factor 10.0. A discrete approximation to the integral employing 120 80-millisecond
time steps is sufficient to yield a solution to this problem.

The ninth element of the fitness measure evaluates the stability of the controller
when faced with an extreme spiked reference signal. The spiked reference signal
rises to 10y9 volts at time t s 0 and persists for 10-nanoseconds. The reference
signal is then 0 for all other times. A transient analysis is performed using the
SPICE simulator for 121 fitness cases representing times t s 0 to t s 120 mi-

y8 Žcroseconds. If the plant output never exceeds a fixed limit of 10 volts i.e., a
.order of magnitude greater than the pulse’s magnitude for any of these 121 fitness

cases, then this element of the fitness measure is zero. However, if the absolute
value of plant output goes above 10y8 volts for any time t, then the contribution to

Ž . Ž .fitness is 500 0.000120 y t , where t is first time in seconds at which the absolute

AUTOMATIC CREATION 147

value of plant output goes above 10y8 volts. This penalty is a ramp starting at the
Ž . Ž .point 0, 0.06 and ending at the point 1.2, 0 , so that 0.06 seconds is the maximum

penalty and 0 is the minimum penalty.
The tenth element of the fitness measure for the two-lag plant problem is

designed to constrain the frequency of the control variable so as to avoid extreme
high frequencies in the demands placed upon the plant. This term reflects an
unspoken constraint that is typically observed in real-world systems in order to
prevent damage to delicate components of plants. If the closed loop frequency
response is acceptable, this element of the fitness measure will be zero. This
element of the fitness measure is based on 121 fitness cases representing 121
frequencies. Specifically, SPICE is instructed to perform an AC sweep of the

Žreference signal over 20 sampled frequencies equally spaced on a logarithmic
.scale in each of six decades of frequency between 0.01 Hz and 10,000 Hz. A gain

of 0 dB is ideal for the 80 fitness cases in the first four decades of frequency
between 0.01 Hz and 100 Hz; however, a gain of up to q3 dB is acceptable. The
contribution to fitness for each of these 80 fitness cases is zero if the gain is ideal
or acceptable, but 18r121 per fitness case otherwise. The maximum acceptable
gain for the 41 fitness cases in the two decades between 100 Hz and 10,000 Hz is

Ž . Ž .given by the straight line connecting 100 Hz, y3 dB and 10,000 Hz, y83 dB
with a logarithmic horizontal axis and a linear vertical axis. The contribution to
fitness for each of these fitness cases is zero if the gain is on or below this straight
line, but otherwise 18r121 per fitness case.

The SPICE simulator cannot simulate some of the controllers that are randomly
created for the initial random generation and some of the controllers that are
created by the mutation, crossover, and architecture-altering operations in later
generations of the run. A controller that cannot be simulated by SPICE is assigned

Ž 8.a high penalty value of fitness 10 . Such controllers become worst-of-generation
individuals for their generation.

If an individual controller in the population takes more than a specified amount
Ž .of time e.g., 20 seconds of computer time , the simulation is terminated and the

individual is assigned a fitness of 108.

Fitness measure for the three-lag plant problem. For the three-lag plant problem,
the fitness of a controller is measured using 10 elements. The first nine elements
are the same as for the two-lag plant problem.

The tenth element of the fitness measure for the three-lag plant problem is
based on disturbance rejection. This tenth element is computed based on a
time-domain analysis for 9.6 seconds. In this analysis, the reference signal is held at
a value of 0. A disturbance signal consisting of a unit step is added to the controller

Ž .variable plant input at time t s 0 and the resulting disturbed signal is provided as
input to the plant. The detrimental contribution to fitness is the absolute value of
the largest single difference between the plant output and the reference signal
Ž .which is invariant at 0 throughout .

The number of hits for the three-lag plant problem is defined as the number of
Ž . Ž .elements 0 to 6 for which the individual controller has a smaller better

w xcontribution to fitness than the controller of Astrom and Hagglund 10 .

KOZA ET AL.148

Different fitness measures are used for the two problems in this paper for the
purpose of demonstrating the ease of combining optimization requirements, time-
domain constraints, frequency-domain constraints, and robustness requirements

Žinto a fitness measure and not because the three-lag problem specifically requires
.a different fitness measure than the two-lag problem .

Note that many alternative approaches could have been used in constructing the
fitness measures for the two illustrative problems. Different optimization metrics
might have been used including, for example, the integral of the squared error, the

Ž . Ž .settling time defined below , and the rise time defined below . There are
numerous alternative time-domain constraints that may be included in a fitness

Žmeasure including, for example, measuring stability in ways other than the
.response to a spiked reference signal . Similarly, there are numerous other fre-

quency-domain constraints that may be included as elements of a fitness measure.
Robustness may be included in a fitness measure with respect to any aspect of the
plant that might potentially vary. In addition, the fitness measure may be con-
structed to include elements measuring the robustness of the behavior of the plant

Žin the face of sensor noise added to the plant output, the reference signal, or the
.plant’s internal states, if any are being made available to the controller . Also, the

fitness measure may be constructed to impose constraints on the plant’s internal
Ž .states or the control variable the controller’s output by, for example, penalizing

extreme values of the plant’s internal states or the control variable. The fitness
measure may also be constructed to include elements measuring the robustness of
the plant’s behavior with respect to changes of some external variable that affects

Žthe plant’s operation such as temperature, the plant’s production rate, line speed,
flow rate, or the like, or other free variable characterizing the operation of the

.plant .

Control parameters for the run

For both problems, the population size, M, was 66,000. A maximum size of 150
Ž .points for functions and terminals was established for each result-producing

branch and a maximum size of 100 points was established for each automatically
defined function.

For the three-lag plant, the percentages of the genetic operations for each
generation on and after generation 5 are 47% one-offspring crossover on internal
points of the program tree other than numerical constant terminals, 9% one-off-
spring crossover on points of the program tree other than numerical constant
terminals, 9% one-offspring crossover on numerical constant terminals, 1% muta-
tion on points of the program tree other than numerical constant terminals, 20%
mutation on numerical constant terminals, 9% reproduction, 1% subroutine cre-
ation, 1% subroutine duplication, and 1% subroutine deletion. Since all the
programs in generation 0 have a minimalist architecture consisting of just one
result-producing branch, we accelerate the appearance of automatically defined
functions by using an increased percentage for the architecture-altering operations

Ž .that add subroutines i.e., subroutine creation and subroutine duplication prior to

AUTOMATIC CREATION 149

generation 5. Specifically, the percentages for the genetic operations for each
generation up to generation 5 are 45% one-offspring crossover on internal points
of the program tree other than numerical constant terminals, 9% one-offspring
crossover on points of the program tree other than numerical constant terminals,
5% one-offspring crossover on numerical constant terminals, 1% mutation on
points of the program tree other than numerical constant terminals, 20% mutation
on numerical constant terminals, 9% reproduction, 5% subroutine creation, 5%
subroutine duplication, and 1% subroutine deletion.

The percentages of operations for the two-lag plant problem are similar, except
that no distinction is made between numerical constant terminals and other
terminals.

The other parameters for controlling the runs are the default values that we
w xapply to a broad range of problems 43 .

Termination

The run was manually monitored and manually terminated when the fitness of
many successive best-of-generation individuals appeared to have reached a plateau.
The single best-so-far individual is harvested and designated as the result of the
run.

Parallel implementation

w xBoth problem were run on a home-built Beowulf-style 69, 43, 16 parallel cluster
Žcomputer system consisting of 66 processors each containing a 533-MHz DEC

.Alpha microprocessor and 64 megabytes of RAM arranged in a two-dimensional
6 = 11 toroidal mesh. The system has a DEC Alpha type computer as host. The
processors are connected with a 100 megabit-per-second Ethernet. The processors
and the host use the Linux operating system. The distributed genetic algorithm was

Žused with a population size of Q s 1,000 at each of the D s 66 demes semi-iso-
.lated subpopulations . Generations are asynchronous on the nodes. On each

Žgeneration, four boatloads of emigrants, each consisting of B s 2% the migration
. Ž .rate of the node’s subpopulation selected probabilistically on the basis of fitness

were dispatched to each of the four adjacent processors.

6. Results for the two-lag plant

A run of genetic programming starts with the creation of an initial population of
Ž .individual trees each consisting of one result-producing branch composed of the

functions and terminals identified above and in accordance with the constrained
syntactic structure described above.

The initial random population of a run of genetic programming is a blind
random parallel search of the search space of the problem. As such, it provides a
baseline for comparing the results of subsequent generations.

KOZA ET AL.150

Ž .The best individual from generation 0 of our one and only run of this problem
Žhas a fitness of 8.26. The S-expression for this individual is shown below except

that a 29-point arithmetic-performing subtree establishing the amplification factor
for the GAIN function has been replaced by the equivalent numerical value of

.62.8637 :

(GAIN
(DIFFERENTIATOR
(DIFFERENTIAL_INPUT_INTEGRATOR
(LAG REFERENCE_SIGNAL 0.708707)
PLANT_OUTPUT
)
)
62.8637)

The differentiation offsets the integration in the above best-of-generation indi-
vidual, so that the action of the controller is based on the difference between the

Ž .REFERENCE_SIGNAL and the PLANT_OUTPUT amplified by some factor . Thus,
this best-of-generation individual, like many of the other individuals from early

Ž .generations of the run, resembles the proportionate P portion of a PID con-
troller. A P-type controller is a poor controller for this problem; however, it is a
rudimentary starting point for the evolution of a better controller.

Ž .Generation 1 and each subsequent generation of a run of genetic programming
is created from the population at the preceding generation by performing repro-
duction, crossover, mutation, and architecture-altering operations on individuals
Ž .or pairs of individuals in the case of crossover selected probabilistically from the
population on the basis of fitness.

Both the average fitness of all individuals in the population as a whole and the
fitness of the best individual in the population tend to improve over successive
generations.

Sixty percent of the programs of generation 0 for this run produce controllers
that cannot be simulated by SPICE. The unsimulatable programs are the worst-of-
generation programs for each generation and receive the high penalty value of

Ž 8.fitness 10 . However, the percentage of unsimulatable programs drops to 14% by
generation 1 and 8% by generation 10. The vast majority of the offspring created
by genetic programming are simulatable after just a few generations.

ŽControllers resembling PI, PD, and PID controllers typically deviating from the
.canonical form only by a LEAD or LAG block with a small time constant are

common throughout the intermediate generations of the run. That is, runs of
genetic programming routinely rediscover the utility of the PI and PID controller

w xtopology invented by Callender and Stevenson 19 .
The best-of-run individual emerges in generation 32 and has a near-zero fitness

of 0.1639. Table 2 shows the contribution of each of the 10 elements of the fitness
measure for the best-of-run individual of generation 32 for the two-lag plant
problem.

Most of the computer time was consumed by the fitness evaluation of candidate
Žindividuals in the population. The fitness evaluation involving 10 separate SPICE

AUTOMATIC CREATION 151

Table 2. Fitness of best-of-run individual of generation 32 for the two-lag plant problem

Ž .Step size volts Internal gain, K Time constant, t Fitness

0 1 1 1.0 0.0220
1 1 1 0.5 0.0205
2 1 2 1.0 0.0201
3 1 2 0.5 0.0206

y64 10 1 1.0 0.0196
y65 10 1 0.5 0.0204
y66 10 2 1.0 0.0210
y67 10 2 0.5 0.0206

8 Spiked reference signal 0.0000
9 AC sweep 0.0000
TOTAL FITNESS 0.1639

. 9 Ž .simulations averaged 2.57 = 10 computer cycles 4.8 seconds per individual. The
best-of-run individual from generation 32 was produced after evaluating 2.178 = 106

Ž .individuals 66,000 times 33 . This required 44.5 hours on our 66-node parallel
15 Žcomputer system}that is, the expenditure of 5.6 = 10 computer cycles 5 peta-

.cycles of computing effort .
Figure 4 shows this individual controller in the form of a block diagram. In this

Ž . Ž . Ž .figure, R s is the reference signal; Y s is the plant output; and U s is the
Ž .controller’s output control variable .

Figure 5 compares the time-domain response of the best-of-run genetically
Ž .evolved controller triangles in the figure from generation 32 for a 1 volt unit step

Ž .with K s 1 and t s 1 with the time-domain response circles of the Dorf and
Bishop controller. The faster rising curve in the figure shows the performance of
the genetically evolved controller.

The rise time is the time required for the plant output to first reach a specified
Ž .percentage 90% here of the reference signal. As can be seen in the figure, the

rise time for the best-of-run controller from generation 32 is 296 milliseconds. This
is 56% of the 465-millisecond rise time for the Dorf and Bishop controller.

The settling time is the first time for which the plant response reaches and stays
Ž .within a specified percentage 2% here of the reference signal. The settling time

Figure 4. Best-of-run genetically evolved controller from generation 32 for the two-lag plant
problem.

KOZA ET AL.152

Ž .Figure 5. Comparison of the time-domain response for the genetically evolved controller triangles
Ž .and the Bishop and Dorf controller circles to 1-volt step input with K s 1 and t s 1 for the two-lag

plant.

for the best-of-run controller from generation 32 is 304 milliseconds. The Dorf and
Bishop controller first reaches the 98% level at 477 milliseconds; however, it rings
and subsequently falls below the 98% level. It does not settle until 944 millisec-
onds. That is, the genetically evolved controller settles in 32% of the settling time
for the Dorf and Bishop controller.

The overshoot is the percentage by which the plant response exceeds the
reference signal. The best-of-run controller from generation 32 reaches a maxi-

Ž .mum value of 1.0106 at 369 milliseconds i.e., has a 1.06% overshoot . The Dorf
and Bishop controller reaches a maximum value of 1.020054 at 577 milliseconds
Ž .i.e., has an overshoot of slightly above 2% .

The curves for all the other values of K and t similarly favor the genetically
evolved controller.

Figure 6 compares the effect of disturbance on the best-of-run genetically
Ž . Ž .evolved controller triangles from generation 32 and the controller circles

presented in Dorf and Bishop. The upper curve in the figure is the time-domain
response to a 1-volt disturbance signal with K s 1 and t s 1 for the Dorf and
Bishop controller. The peak value of response to the 1-volt disturbance signal is

Ž .5,775 microvolts. The lower curve whose peak is 644 microvolts applies to the
best-of-run controller from generation 32.

The system bandwidth is the frequency of the reference signal above which the
Ž .plant’s output is attenuated by at least a specified degree 3 dB here in compari-
Žson to the plant’s output at a specified lower frequency e.g., DC or very low

.frequencies .
ŽTable 3 compares the average performance over the eight combinations of

.values for K, t , and the step size of the reference signal of the best-of-run

AUTOMATIC CREATION 153

Ž .Figure 6. Comparison of the time-domain response of the genetically evolved controller triangles and
Ž .the Bishop and Dorf controller circles to a 1-volt disturbance signal with K s 1 and t s 1 for the

two-lag plant.

controller from generation 32 and the Dorf and Bishop controller. As can be seen
in the table, the best-of-run controller from generation 32 is 2.42 times better than
the textbook controller as measured by the integral of the time-weighted absolute
error, has only 64% of the rise time in response to the reference input, has only
32% of the settling time, and is 8.97 times better in terms of suppressing the effects
of disturbance at the plant input. Both controllers have approximately the same

Ž .bandwidth i.e., around 1 Hz , with the genetically evolved controller being inferior.
The above results can be compared to the results for the Dorf and Bishop

controller by structuring the entire system as a prefilter and compensator. Figure 7
presents a model for the entire system that is helpful in making such comparisons

Ž .with previous work. In this figure, the reference signal R s is fed through prefilter
Ž . Ž . Ž .G s . The plant output Y s is passed through H s and then subtracted from thep

Ž .prefiltered reference signal and the difference error is fed into the compensator
Ž . Ž . Ž . Ž . ŽG s . The plant G s has one input and one output Y s . G s has one input thec c

. Ž . Ž .difference and one output U s . Disturbance D s may be added to the output
Ž . Ž . ŽU s of G s . The resulting sum is subjected to a limiter in the range betweenc

.y40 and q40 volts for this problem .

Table 3. Comparison for the two-lag plant

Genetically
evolved Dorf and

w xUnits controller Bishop 28

Disturbance sensitivity mVoltsrVolt 644 5,775
2ITAE millivolt sec 19 46

Ž .Bandwidth 3 dB Hz 1.5 1
Rise time milliseconds 296 465
Settling time milliseconds 304 944

KOZA ET AL.154

Figure 7. Overall model used for comparing genetically evolved results with results of Dorf and Bishop.

Ž .The transfer function for the prefilter, G s , of the Dorf and Bishopp - dor f
controller is

42.67
G s sŽ .p - dor f 242.67 q 11.38s q s

Ž .and the transfer function for their PID compensator, G s , isc - dor f

12 42.67 q 11.38s q s2Ž .
G s s .Ž .c - dor f s

After applying standard block diagram manipulations, the transfer function for
the best-of-run controller from generation 32 for the two-lag plant can be ex-
pressed as a transfer function for a prefilter and a transfer function for a

Ž .compensator. The transfer function for the prefilter, G s , for the best-of-runp32
individual from generation 32 for the two-lag plant is

1 1 q .1262 s 1 q .2029sŽ . Ž .
G s s .Ž .p32 1q .03851s 1q .05146s 1q .08375 1q .1561s 1q .1680sŽ . Ž . Ž . Ž . Ž .

Ž .The transfer function for the compensator, G s , for the best-of-run individualc32
from generation 32 for the two-lag plant is

7487 1 q .03851s 1 q .05146s 1 q .08375sŽ . Ž . Ž .
G s sŽ .c32 s

7487.05 q 1300.63s q 71.2511s2 q 1.2426s3

s .
s

3 Ž .The s term in conjunction with the s in the denominator indicates a second
Žderivative. Although derivatives may not be useful in control systems where they

.may amplify high frequency effects such as noise , their use here is appropriate
since there are no such effects in this problem. Thus, the compensator consists of a
second derivative in addition to proportional, integrative, and derivative functions.

AUTOMATIC CREATION 155

Harry Jones of The Brown Instrument Company of Philadelphia patented this
w xsame kind of controller topology in 1942 33 . As Jones states,

A . . . specific object of the invention is to provide electrical control apparatus
. . . wherein the rate of application of the controlling medium may be effected
in accordance with or in response to the first, second, and high derivatives of the
magnitude of the condition with respect to time, as desired.

w xClaim 38 of the Jones 1942 patent 33 states,

In a control system, an electrical network, means to adjust said network in
response to changes in a variable condition to be controlled, control means
responsive to network adjustments to control said condition, reset means includ-
ing a reactance in said network adapted following an adjustment of said network
by said first means to initiate an additional network adjustment in the same
sense, and rate control means included in said network adapted to control the
effect of the first mentioned adjustment in accordance with the second or higher
derivative of the magnitude of the condition with respect to time.

Because the best-of-run individual from generation 32 has proportional, integra-
Ž .tive, derivative, and second derivative blocks, it infringes on the now-expired 1942

w xJones patent 33 .
The legal criteria for obtaining a U.S. patent are that the proposed invention be

‘‘new’’ and ‘‘useful’’ and

. . . the differences, between the subject matter sought to be patented and the
w xprior art are such that the subject matter as a whole would not have been

obvious at the time the invention was made to a person having ordinary skill in
Ž .the art to which said subject matter pertains. 35 United States Code 103a .

The criteria for obtaining patents in Great Britain and elsewhere are broadly
similar. Since filing for a patent entails the expenditure of a considerable amount
of time and money, patents are generally sought only if an individual or business
believes the inventions are potentially useful in the real world. Patents are only
issued if an arms-length examiner is convinced that the proposed invention is
novel, useful, and satisfies the statutory test for unobviousness.

Note that the user of genetic programming did not preordain, prior to the run
Ž .as part of the preparatory steps for genetic programming , that a second derivative
should be used in the controller. The evolutionary process discovered that a second
derivative was helpful in producing a better value of fitness in the automatically
created controller. That is, necessity was the mother of invention. Similarly, the
user did not preordain any particular topological arrangement of proportional,
integrative, derivative, second derivative, or other functions within the automati-
cally created controller. Instead, genetic programming automatically created a
robust controller for a two-lag plant without the benefit of user-supplied informa-
tion concerning the total number of processing blocks to be employed in the

KOZA ET AL.156

Figure 8. Best-of-run genetically evolved controller from generation 31 for the three-lag plant.

controller, the type of each processing block, the topological interconnections
between the blocks, the values of parameters for the blocks, or the existence of

Ž .internal feedback none in this instance within the controller.

7. Results for the three-lag plant

Ž .The best individual from generation 0 of our one and only run of this problem
has a fitness of 14.35.

The best-of-run individual emerges in generation 31 and has a near-zero fitness
of 1.14.

Ž .Figure 8 shows this individual controller in the form of a block diagram. R s is
Ž . Ž .the reference signal, Y s is the plant output, and U s is the controller’s output

Ž .control variable .
Table 4 compares the average performance for five metrics of the genetically

evolved best-of-run controller from generation 31 for the three-lag plant and the
w xPID controller presented in Astrom and Hagglund 10 over the eight combinations

of values for K, t , and the step size of the reference signal. The system bandwidth
is the frequency of the reference signal above which the plant’s output is attenu-

Ž .ated by at least a specified degree 3 dB here in comparison to the plant’s output

Table 4. Comparison of average characteristics for the three-lag plant

Genetically evolved
Units controller PID controller

Disturbance sensitivity mvoltsrvolt 4.3 180,750
2ITAE millivolt seconds 0.142 2.2

Ž .Bandwidth 3 dB Hertz 0.72 0.21
Rise time milliseconds 0.77 2.8
Settling time milliseconds 1.23 5.5

AUTOMATIC CREATION 157

Ž .at a specified lower frequency e.g., DC or very low frequencies . As can be seen,
the genetically evolved best-of-run controller from generation 31 has superior

Žaverage values for ITAE, disturbance sensitivity, rise time, and settling time and
.an acceptable, although inferior, value for bandwidth .

w xAstrom and Hagglund 10 did not consider seven of the eight combinations of
values for K, t , and the step size used in computing the averages, whereas we used
all eight combinations of values in our run. Accordingly, Table 5 compares the
performance of the best-of-run controller from generation 31 for the three-lag
plant and the Astrom and Hagglund PID controller for the specific value of plant
internal gain, K, of 1.0 used by Astrom and Hagglund, the specific value of the
plant time constant t , of 1.0 used by Astrom and Hagglund, and the specific step

Ž .size of the reference signal 1.0 volts used by Astrom and Hagglund.
As can be seen in Table 5, the best-of-run genetically evolved controller from

generation 31 is 7.2 times better than the textbook controller as measured by the
integral of the time-weighted absolute error, has only 50% of the rise time in
response to the reference input, has only 35% of the settling time, and is 92.7 dB
better in terms of suppressing the effects of disturbance at the plant input. The
genetically evolved controller has 2.9 times the bandwidth of the PID controller.

For all eight combinations of values for K, t , and the step size of the reference
signal, the genetically evolved best-of-run controller from generation 31 has
superior values for ITAE, disturbance sensitivity, rise time, and settling time.

Figure 9 compares the time-domain response of the best-of-run genetically
Ž .evolved controller squares from generation 31 for a 1 volt unit step with K s 1

Ž .and t s 1 with the time-domain response of the controller circles presented in
w xAstrom and Hagglund 10 . The faster rising curve in the figure shows the

performance of the genetically evolved controller.
The rise time is the time required for the plant output to first reach a specified

Ž .percentage 90% here of the reference signal. As can be seen in the figure, the
rise time for the best-of-run genetically evolved controller from generation 31 is
1.25 seconds. This is 50% of the 2.49-second rise time for the Astrom and

w xHagglund 10 controller.
The settling time is the first time for which the plant response reaches and stays

Ž .within a specified percentage 2% here of the reference signal. The settling time
for the best-of-run genetically evolved controller from generation 31 is 1.87

Table 5. Comparison of characteristics for K s 1.0, t s 1.0, and step size of 1.0 for the
three-lag plant

Genetically evolved
Units controller PID controller

Disturbance sensitivity mvoltsrvolt 4.3 186,000
2ITAE volt seconds 0.360 2.6

Ž .Bandwidth 3 dB Hertz 0.72 0.248
Rise time seconds 1.25 2.49
Settling time seconds 1.87 6.46

KOZA ET AL.158

Figure 9. Comparison of the time-domain response of the best-of-run genetically evolved controller
Ž . Ž .squares from generation 31 and the Astrom and Hagglund controller circles for a 1 volt unit step
with K s 1 and t s 1 for the three-lag plant problem.

seconds. That is, the best-of-run genetically evolved controller from generation 31
w xsettles in 35% of the 6.46-second settling time for the Astrom and Hagglund 10

controller.
The overshoot is the percentage by which the plant response exceeds the

reference signal. The best-of-run genetically evolved controller from generation 31
Ž .reaches a maximum value of 1.023 at 1.48 seconds i.e., has a 2.3% overshoot . The

w xAstrom and Hagglund 10 controller reaches a maximum value of 1.074 at 3.47
Ž .seconds i.e., a 7.4% overshoot .

After applying standard block diagram manipulations, the transfer function for
the best-of-run controller from generation 31 for the three-lag plant can be
expressed as a transfer function for a prefilter and a transfer function for a

Ž .compensator. The transfer function for the prefilter, G s , for the best-of-runp31
individual from generation 31 for the three-lag plant is

1 q 0.2083s 1 q 0.0002677sŽ . Ž .
G s s .Ž .p31 1 q 0.000345sŽ .

Ž .The transfer function for the compensator, G s , for the best-of-run individualc31
from generation 31 for the three-lag plant is

G s s 300,000.Ž .c31

AUTOMATIC CREATION 159

Ž .The feedback transfer function, H s , for the best-of-run individual from31

generation 31 for the three-lag plant is

H s s 1 q 0.42666s q 0.046703s2 .Ž .31

8. Conclusion

This paper has demonstrated that genetic programming can be used to automati-
Ž .cally create both the parameter values tuning and the topology for controllers for

illustrative problems involving a two-lag plant and a three-lag plant.
For both problems, genetic programming made the decisions concerning the

total number of signal processing blocks to be employed in the controller, the type
of each signal processing block, the topological interconnections between the signal
processing blocks and external input and output points of the controller, the values
of all parameters for the signal processing blocks, and the existence, if any, of
internal feedback between the signal processing blocks within the controller.
Genetic programming simultaneously optimized a prespecified performance metric
Ži.e., minimizing the time required to bring the plant outputs to the desired values

.as measured by the integral of the time-weighted absolute error , satisfied time-do-
Žmain constraints involving, variously, overshoot, disturbance rejection, and stabil-

. Ž .ity , incorporated frequency-domain constraints e.g., bandwidth , and satisfied
robustness requirements.

The two genetically evolved controllers are better than controllers designed and
published by experts in the field of control using their own criteria.

The run of the two-lag plant problem rediscovered a previously patented
controller topology involving a second derivative. Intermediate results from the
runs of both illustrative problems approximately duplicated the functionality of

Ž .previously patented controller topologies e.g., PI and PID controllers .
The preparatory steps for both problems were straightforward and uncompli-

cated translations of the statement of the problem into the requirements for the
input to a run of genetic programming. Both genetically evolved controllers were
evolved on the first and only run of the problem. These two facts suggest that there
is considerable future potential for applying genetic programming to problems of
automatically synthesizing the design of more demanding controllers.

ŽMore broadly, the results in this paper and the other human-competitive results
.in Table 1 suggest that genetic programming is on the threshold of routinely

producing human-competitive results. We expect that the rapidly decreasing cost of
computing power will enable genetic programming to deliver additional human-
competitive results on increasingly difficult problems and, in particular, that
genetic programming will be routinely used as an ‘‘invention machine’’ for produc-
ing patentable new inventions.

KOZA ET AL.160

References

1. E. E. Altshuler and D. S. Linden, Process for the Design of Antennas using Genetic Algorithm,
United States Patent 5,719,794, 1998. Applied for on July 19, 1995. Issued on February 17, 1998.

2. B. Andersson, P. Svensson, P. Nordin, and M. Nordahl, ‘‘Reactive and memory-based genetic
programming for robot control,’’ in Genetic Programming: Second European Workshop. EuroGP’99.
Proceedings, Lecture Notes in Computer Science, R. Poli, P. Nordin, W. B. Langdon, and T. C.

Ž .Fogarty eds. , Springer-Verlag, Berlin, Germany, 1991, vol. 1598, pp. 161-172.
3. D. Andre, F. H. Bennett, III, and J. R. Koza, ‘‘Discovery by genetic programming of a cellular

automata rule that is better than any known rule for the majority classification problem,’’ in Genetic
Programming 1996: Proceedings of the First Annual Conference, Stanford University, July 28]31,

Ž .1996, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo eds. , MIT Press, Cambridge, MA,
1996, pp. 3-11.

4. D. Andre and A. Teller, ‘‘Evolving team Darwin United,’’ in RoboCup-98: Robot Soccer World Cup
Ž .II, Lecture Notes in Computer Science, M. Asada, and H. Kitano eds. , Springer-Verlag, Berlin,

1999, vol. 1604, pp. 346-352.
5. P. J. Angeline, ‘‘An alternative to indexed memory for evolving programs with explicit state

representations,’’ in Genetic Programming 1997: Proceedings of the Second Annual Conference,
July 13]16, 1997, Stanford University, J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H.

Ž .Iba, and R. L. Riolo eds. , Morgan Kaufmann, San Francisco, CA, 1997, pp. 423-430.
6. P. J. Angeline, ‘‘Multiple interacting programs: A representation for evolving complex behaviors,’’

Ž .Cybernetics and Systems vol. 29 8 pp. 779-806, 1998.
Ž .7. P. J. Angeline, ‘‘Evolving predictors for chaotic time series,’’ in Proceedings of SPIE Volume 3390 :

Application and Science of Computational Intelligence, S. Rogers, D. Fogel, J. Bezdek, and B.
Ž .Bosacchi eds. , SPIE}The International Society for Optical Engineering, Bellingham, WA, 1998,

pp. 170-180.
8. P. J. Angeline and D. B. Fogel, ‘‘An evolutionary program for the identification of dynamical

Ž .systems,’’ in Proceedings of SPIE Volume 3077 : Application and Science of Artificial Neural
Ž .Networks III, S. Rogers ed. , SPIE}The International Society for Optical Engineering, Belling-

ham, WA, 1997, pp. 409-417.
Ž .9. P. J. Angeline and K. E. Kinnear, Jr. eds. . Advances in Genetic Programming 2, The MIT Press:

Cambridge, MA, 1996.
10. K. J. Astrom and T. Hagglund, PID Controllers: Theory, Design, and Tuning, second edition,

Instrument Society of America: Research Triangle Park, NC, 1995.
Ž .11. W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith eds. ,

GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, July 13]17,
1999, Orlando, Florida, Morgan Kaufmann, San Francisco, CA, 1999.

12. W. Wolfgang, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Programming}An Introduc-
tion, Morgan Kaufmann, San Francisco, CA and dpunkt, Heidelberg, 1998.

13. W. Banzhaf, P. Nordin, R. Keller, and M. Olmer, ‘‘Generating adaptive behavior for a real robot
using function regression with genetic programming,’’ in Genetic Programming 1997: Proceedings of
the Second Annual Conference, July 13]16, 1997, Stanford University, J. R. Koza, K. Deb, M.

Ž .Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo eds. , Morgan Kaufmann, San Francisco,
CA, 1997, pp. 35-43.

14. W. Banzhaf, R. Poli, M. Schoenauer, and T. C. Fogarty, Genetic Programming: First European
Workshop, EuroGP’98, Paris, France, April 1998 Proceedings, April 1998, Paris, France, Lecture
Notes in Computer Science, Springer-Verlag, Berlin, Germany, 1998, vol. 1391.

15. F. H Bennett, III, J. R. Koza, M. A. Keane, J. Yu, W. Mydlowec, and O. Stiffelman, ‘‘Evolution by
means of genetic programming of analog circuits that perform digital functions,’’ in GECCO-99:
Proceedings of the Genetic and Evolutionary Computation Conference, July 13]17, 1999, Orlando,
Florida, W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith
Ž .eds. , Morgan Kaufmann, San Francisco, CA, 1999, pp. 1477-1483.

16. F. H Bennett, III, J. R. Koza, J. Shipman, and O. Stiffelman, ‘‘Building a parallel computer system
for $18,000 that performs a half peta-flop per day,’’ in GECCO-99: Proceedings of the Genetic and

AUTOMATIC CREATION 161

Evolutionary Computation Conference, July 13]17, 1999, Orlando, Florida, W. Banzhaf, J. Daida,
Ž .A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith eds. , Morgan Kaufmann, San

Francisco, CA, 1999, pp. 1484-1490.
17. S. P. Boyd, and C. H. Barratt, Linear Controller Design: Limits of Performance, Prentice Hall:

Englewood Cliffs, NJ, 1991.
18. A. E. Bryson and Y-C. Ho, Applied Optimal Control, Hemisphere Publishing: New York, 1975.
19. A. Callender, and A. B. Stevenson, Automatic Control of Variable Physical Characteristics, United

States Patent 2,175,985. Filed February 17, 1936 in United States. Filed February 13, 1935 in Great
Britain. Issued October 10, 1939 in United States, 1939.

20. G. A. Campbell, Electric Wave Filter. U.S. Patent 1,227,113. Filed July 15, 1915. Issued May 22,
1917, 1917.

21. W. Cauer, Artificial Network. U.S. Patent 1,958,742. Filed June 8, 1928 in Germany. Filed
December 1, 1930 in United States. Issued May 15, 1934, 1934.

22. W. Cauer, Electric Wave Filter. U.S. Patent 1,989,545. Filed June 8, 1928. Filed December 6, 1930
in United States. Issued January 29, 1935, 1935.

23. W. Cauer, Unsymmetrical Electric Wave Filter. Filed November 10, 1932 in Germany. Filed
November 23, 1933 in United States. Issued July 21, 1936, 1936.

24. K. Chellapilla, and D. B. Fogel, ‘‘Evolution, neural networks, games, and intelligence,’’ Proceedings
Ž .of the IEEE vol. 87 9 pp. 1471-1496, 1999.

25. L. S. Crawford, V. H. L. Cheng, and P. K. Menon, ‘‘Synthesis of flight vehicle guidance and control
laws using genetic search methods,’’ in Proceedings of 1999 Conference on Guidance, Navigation,
and Control, American Institute of Aeronautics and Astronautics, Reston, VA, Paper AIAA-99-4153,
1999.

26. S. Darlington, Semiconductor Signal Translating Device, U.S. Patent 2,663,806. Filed May 9, 1952.
Issued December 22, 1953, 1953.

27. L. D. Dewell, and P. K. Menon, ‘‘Low-thrust orbit transfer optimization using genetic search,’’ in
Proceedings of 1999 Conference on Guidance, Navigation, and Control, American Institute of
Aeronautics and Astronautics, Reston, VA, Paper AIAA-99-4151, 1999.

28. R. C. Dorf, and R. H. Bishop, Modern Control Systems, eighth edition, Addison-Wesley: Menlo
Park, CA, 1998.

29. L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through Simulated Evolution, John
Wiley: New York, 1966.

30. T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and T. Furuya, ‘‘Evolving hardware with
genetic learning: A first step towards building a Darwin machine,’’ in From Animals to Animats 2:
Proceedings of the Second International Conference on Simulation of Adaptive Behavior, J.-A.

Ž .Meyer, H. L. Roitblat, and S. W. Wilson eds. , The MIT Press, Cambridge, MA, 1993, pp. 417-424.
31. J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press: Ann

Arbor, MI, 1975.
32. J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. A. Thagard, Induction: Processes of Inference,

Learning, and Discovery, The MIT Press: Cambridge, MA, 1986.
33. H. S. Jones, Control Apparatus. United States Patent 2,282,726. Filed October 25, 1939. Issued May

12, 1942, 1942.
34. H. Juille, ‘‘Evolution of non-deterministic incremental algorithms as a new approach for search in

state spaces,’’ in Proceedings of the Sixth International Conference on Genetic Algorithms, L. J.
Ž .Eshelman ed. , Morgan Kaufmann, San Francisco, CA, 1995, pp. 351-358.

35. H. Juille, and J. B. Pollack, ‘‘Coevolving the ‘‘ideal’’ trainer: Application to the discovery of cellular
automata rules,’’ in Genetic Programming 1998: Proceedings of the Third Annual Conference, July
22]25, 1998, University of Wisconsin, Madison, Wisconsin, J. R. Koza, W. Banzhaf, K. Chellapilla,

Ž .K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo eds. ,
Morgan Kaufmann, San Francisco, CA, 1998, pp. 519-527.

Ž .36. K. E. Kinnear, Jr. ed. , Advances in Genetic Programming, The MIT Press: Cambridge, MA, 1994.
37. J. R. Koza, ‘‘Hierarchical genetic algorithms operating on populations of computer programs,’’ in

Proceedings of the 11th International Joint Conference on Artificial Intelligence, Morgan Kauf-
mann: San Mateo, CA, vol. 1, 1989, pp. 768-774.

KOZA ET AL.162

38. J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press: Cambridge, MA, 1992.

39. J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press:
Cambridge, MA, 1994.

40. J. R. Koza, Genetic Programming II Videotape: The Next Generation, MIT Press: Cambridge, MA,
1994.

41. J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.
Ž .Goldberg, H. Iba, and R. Riolo eds. , Genetic Programming 1998: Proceedings of the Third Annual

Conference, Morgan Kaufmann, San Francisco, CA, 1998.
42. J. R. Koza and F. H Bennett, III, Automatic Synthesis, Placement, and Routing of Electrical

Circuits by Means of Genetic Programming,’’ in Advances in Genetic Programming 3, L. Spector,
Ž .W. B. Langdon, U.-M. O’Reilly, and P. Angeline eds. , The MIT Press, Cambridge, MA, 1999,

chap. 6, pp. 105-134.
43. J. R. Koza, F. H Bennett, III, D. Andre, and M. A. Keane, Genetic Programming III: Darwinian

Invention and Problem Solving, Morgan Kaufmann: San Francisco, CA, 1999.
44. J. R. Koza, F. H Bennett, III, M. A. Keane, J. Yu, W. Mydlowec, and O. Stiffelman, ‘‘Searching for

the impossible using genetic programming,’’ in GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, July 13]17, 1999, Orlando, Florida, W. Banzhaf, J. Daida,

Ž .A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith eds. , Morgan Kaufmann, San
Francisco, CA, 1999, pp. 1083-1091.

45. J. R. Koza, F. H Bennett, III, D. Andre, M. A. Keane, and S. Brave, Genetic Programming III
Videotape: Human-Competitive Machine Intelligence, Morgan Kaufmann: San Francisco, CA,
1999, forthcoming.

Ž .46. J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo eds. , Genetic
Programming 1997: Proceedings of the Second Annual Conference, Morgan Kaufmann, San
Francisco, CA, 1997.

Ž .47. J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo eds. , Genetic Programming 1996:
Proceedings of the First Annual Conference, The MIT Press, Cambridge, MA, 1996.

48. J. R. Koza and J. P. Rice, Genetic Programming: The Movie, MIT Press: Cambridge, MA, 1992.
49. I. M. Kroo, J. H. McMasters, and R. J. Pavek, Large Airplane with Nonplanar Wing. U.S. Design

Patent number USD0363696. Applied for on June 23, 1993. Issued October 31, 1995, 1995.
50. W. B. Langdon, Genetic Programming and Data Structures: Genetic Programming q Data Struc-

tures s Automatic Programming!, Kluwer Academic Publishers: Amsterdam, 1998.
51. K. F. Man, K. S. Tang, S. Kwong, and W. A. Halang, Genetic Algorithms for Control and Signal

Processing, Springer-Verlag: London, 1997.
52. K. F. Man, K. S. Tang, S. Kwong, and W. A. Halang, Genetic Algorithms: Concepts and Designs,

Springer-Verlag: London, 1999.
53. P. Marenbach, K. D. Bettenhausen, and S. Freyer, ‘‘Signal path oriented approach for generation of

dynamic process models,’’ in Genetic Programming 1996: Proceedings of the First Annual Confer-
ence, July 28]31, 1996, Stanford University, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.

Ž .Riolo eds. , MIT Press, Cambridge, MA, 1996, pp. 327-332.
54. P. K. Menon, M. Yousefpor, T. Lam, and M. L. Steinberg, ‘‘Nonlinear flight control system

synthesis using genetic programming. Proceedings of 1995 Conference on Guidance, Navigation,
and Control,’’ in American Institute of Aeronautics and Astronautics, Reston, VA, 1995, pp.
461-470.

55. D. G. O’Connor and R. J. Nelson, Sorting System with N-Line Sorting Switch. United States Patent
number 3,029,413. Issued April 10, 1962, 1962.

56. K. Ogata, Modern Control Engineering, third edition. Prentice Hall: Upper Saddle River, NJ, 1997.
57. G. A. Philbrick, Delayed Recovery Electric Filter Network. Filed May 18, 1951. U.S. Patent

2,730,679. Issued January 10, 1956, 1956.
58. R. Poli, P. Nordin, W. B. Langdon, and T. C. Fogarty, Genetic Programming: Second European

Workshop, EuroGP99, Goteborg, Sweden, May 1999, Proceedings, Lecture Notes in Computer
Science, Springer-Verlag, Berlin, Germany, 1999, vol. 1598.

AUTOMATIC CREATION 163

59. T. Quarles, A. R. Newton, D. O. Pederson, and A. Sangiovanni-Vincentelli, SPICE 3 Version 3F5
User’s Manual, Department of Electrical Engineering and Computer Science, University of Califor-
nia, Berkeley, CA, March 1994.

60. I. Rechenberg, Cybernetic solution path of an experimental problem, Royal Aircraft Establishment,
Ministry of Aviation, Library Translation 1112, Farnborough, 1965.

61. I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biolgis-
chen Evolution, Verlag Frommann-Holzboog: Stuttgart-Bad Cannstatt, 1973.

62. C. Ryan, Automatic Re-engineering of Software Using Genetic Programming, Kluwer Academic
Publishers: Amsterdam, 1999.

63. A. L. Samuel, ‘‘Some studies in machine learning using the game of checkers,’’ IBM Journal of
Ž .Research and Development vol. 3 3 pp. 210-229, 1959.

64. A. L. Samuel, ‘‘AI: Where it has been and where it is going,’’ in Proceedings of the Eighth
International Joint Conference on Artificial Intelligence, Morgan Kaufmann, Los Altos, CA, 1983,
pp. 1152-1157.

65. L. Spector, H. Barnum, and H. J. Bernstein, ‘‘Genetic programming for quantum computers,’’ in
Genetic Programming 1998: Proceedings of the Third Annual Conference, J. R. Koza, W. Banzhaf,
K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo
Ž .eds. , Morgan Kaufmann, San Francisco, CA, 1998, pp. 365-373.

66. L. Spector, H. Barnum, and H. J. Bernstein, ‘‘Quantum computing applications of genetic program-
ming,’’ in Advances in Genetic Programming 3, L. Spector, W. B. Langdon, U.-M. O’Reilly, and P.

Ž .Angeline eds. , The MIT Press, Cambridge, MA, 1999, pp. 135-160.
67. L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, ‘‘Finding a better-than-classical quantum

ANDrOR algorithm using genetic programming,’’ in IEEE. Proceedings of 1999 Congress on
Evolutionary Computation, IEEE Press, Piscataway, NJ, 1999, pp. 2239-2246.

Ž .68. L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. Angeline eds. , Advances in Genetic Program-
ming 3, The MIT Press: Cambridge, MA, 1999.

69. T. L. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese, How to Build a Beowulf: A Guide to
Implementation and Application of PC Clusters, MIT Press: Cambridge, MA, 1999.

70, G. D. Sweriduk, P. K. Menon, and M. L. Steinberg, ‘‘Robust command augmentation system design
using genetic search methods,’’ in Proceedings of 1998 Conference on Guidance, Navigation, and
Control, American Institute of Aeronautics and Astronautics, Reston, VA, 1998, pp. 286-294.

71. G. D. Sweriduk, P. K. Menon, and M. L. Steinberg, ‘‘Design of a pilot-activated recovery system
using genetic search methods,’’ in Proceedings of 1998 Conference on Guidance, Navigation, and
Control, American Institute of Aeronautics and Astronautics, Reston, VA, 1999.

72. A. Teller, Evolving Programmers: SMART Mutation, Computer Science Department, Carnegie
Mellon University, Technical Report CMU-CS-96, 1996.

73. A. Teller, ‘‘Evolving programmers: The co-evolution of intelligent recombination operators,’’
Ž .Advances in Genetic Programming 2, P. J. Angeline and K. E. Kinnear, Jr. eds. , The MIT Press:

Cambridge, MA, 1996.
74. A. Teller, ‘‘Algorithm Evolution with Internal Reinforcement for Signal Understanding,’’ Computer

Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, PhD Thesis, 1998.
75. A. Teller, ‘‘The internal reinforcement of evolving algorithms,’’ Advances in Genetic Programming

Ž .3, L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. Angeline eds. , The MIT Press: Cambridge,
MA, 1999.

76. A. Teller and M. Veloso, Learning Tree Structured Algorithms for Orchestration into an Object
Recognition System, Computer Science Department, Carnegie Mellon University, Technical Report
CMU-CS-95-101, 1995.

77. A. Teller and M. Veloso, ‘‘Program evolution for data mining,’’ in Special Issue on Genetic
Ž .Algorithms and Knowledge Bases, S. Louis ed. , The International Journal of Expert Systems, JAI

Ž .Press 3 pp. 216-236, 1995.
78. A. Teller and M. Veloso, ‘‘A controlled experiment: evolution for learning difficult problems,’’ in

Proceedings of Seventh Portuguese Conference on Artificial Intelligence, Springer-Verlag, 1995, pp.
165-176.

KOZA ET AL.164

79. A. Teller and M. Veloso, ‘‘Algorithm Evolution for Face Recognition: What Makes a Picture
Difficult?,’’ in Proceedings of the IEEE International Conference on Evolutionary Computation,
IEEE Press, 1995.

80. A. Teller and M. Veloso, ‘‘Language Representation Progression in PADO,’’ in Proceedings of
AAAI Fall Symposium on Artificial Intelligence, AAAI Press, Menlo Park, CA, 1995.

81. A. Teller and M. Veloso, ‘‘PADO: A new learning architecture for object recognition,’’ Symbolic
Ž .Visual Learning, K. Ikeuchi, and M. Veloso eds. , Oxford University Press, 1996, pp. 81-116.

82. A. Teller and M. Veloso, ‘‘Neural programming and an internal reinforcement policy,’’ Simulated
Evolution and Learning, Lecture Notes in Artificial Intelligence, X. Yao, J.-H. Kim, and T.

Ž .Furuhashi eds. , Springer-Verlag: Heidelberg, Germany, 1997, vol. 1285, pp. 279-286.
83. A. M. Turing, ‘‘Intelligent machines. Pages 21-23,’’ in Mechanical Intelligence: Collected Works of

Ž .A. M. Turing, D. C. Ince ed. , North-Holland: Amsterdam, 1948, pp. 107-128.
Ž .84. A. M. Turing, ‘‘Computing machinery and intelligence,’’ Mind vol. 59 236 pp. 433-460. Reprinted in
Ž .Mechanical Intelligence: Collected Works of A. M. Turing, D. C. Ince ed. , Amsterdam, North-Hol-

land, 1992, pp. 133-160.
85. D. Whitley, F. Gruau, and L. Preatt, ‘‘Cellular encoding applied to neurocontrol,’’ in Proceedings of

Ž .the Sixth International Conference on Genetic Algorithms, L. J. Eshelman ed. , Morgan Kauf-
mann, San Francisco, CA, 1995, pp. 460-467.

86. O. J. Zobel, Wave Filter. U.S. Patent 1,538,964. Filed January 15, 1921. Issued May 26, 1925, 1925.

