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ABSTRACT

Genetic programming is known to be capable of creating designs that
satisfy prespecified high-level design requirements for analog electrical
circuits and other complex structures. However, in the real world, it is
often important that a design satisfy various non-technical requirements.
One such requirement is that a design not possess the key characteristics of
any previously known design. This paper shows that genetic programming
can be used to generate novel solutions to a design problem so that genetic
programming may be potentially used as an invention machine. This paper
turns the clock back to the period just before the time (1917) when George
Campbell of American Telephone and Telegraph invented and patented the
design for an electrical circuit that is now known as the ladder filter.
Genetic programming is used to reinvent the Campbell filter. The paper
then turns the clock back to the period just before the time (1928) when
Wilhelm Cauer invented and patented the elliptic filter. Genetic
programming is then used to reinvent a technically equivalent filter that
avoids the key characteristics of then-preexisting Campbell filter. Genetic
programming can be used as an invention machine by employing a two-
part fitness measure that incorporates both the degree to which an
individual in the population satisfies the given technical requirements and
the degree to which the individual does not possess the key characteristics
of preexisting technology.

1 Introduction

Design is a major activity of practicing engineers. The design process entails the
creation (synthesis) of a complex structure to satisfy user-defined requirements. Since
the design process typically entails tradeoffs between competing considerations, the



end product of the process is usually a satisfactory and compliant design as opposed
to a perfect design. Design is usually viewed as requiring creativity and human
intelligence. Consequently, the field of design is a source of challenging problems for
automated techniques of machine intelligence. In particular, design problems can test
whether an automated technique can produce results that are competitive with human-
produced results.

Design requirements in the real world often include important non-technical
considerations. For example, a practicing engineer will often be asked to create a
design that does not possess the key characteristics of any previously known solution
to the problem at hand. Novelty may be desirable for several reasons. Novelty enables
a company to obtain patent protection for its product, to avoid infringement
(“engineer around”) a preexisting patent (often a competitor's patent), or simply to
differentiate its product in the marketplace on the basis of its unique technology.
Regardless of the motivation, avoidance of “prior art” (the term used in the patent law
to describe a field’s preexisting technology, whether patented or not) is often
important in the real world. Avoidance of prior art is accomplished by creating a
design that does not “read on” (i.e., possess the key characteristics of) the prior art. In
order to be patentable, a designed entity must be both “useful” and “new.”

Genetic programming is an automatic technique that is capable of creating
designs. Genetic programming approaches a design problem in terms of "what needs
to be done" as opposed to "how to do it". For example, genetic programming has
demonstrated that it is capable of synthesizing the design of a wide variety of analog
electrical circuits and other complex structures (Koza, Bennett, Andre, and Keane
1999). Genetic programming often creates novel designs because it employs a
probabilistic process to evolve designs and because it is not encumbered by the
preconceptions that often channel human thinking down familiar paths. Although
genetic programming has demonstrated an ability to automatically create useful
entities (i.e., those that satisfy technical design requirements) and although it
sometimes creates novel designs, none of the previously reported efforts have
addressed the issue of actively avoiding the creation of an entity that reads on prior
art.

This paper demonstrates that genetic programming can be modified to
automatically create designs that satisfactorily solve a given problem while
simultaneously avoiding prior art. This is accomplished using an illustrative problem
involving the synthesis of the design of a lowpass filter circuit. Section 2 reviews
how genetic programming has been successfully applied to the problem of
synthesizing the topology and sizing of electrical circuits. Section 3 states the
illustrative problem. Section 4 presents the preparatory steps necessary for applying
our method of synthesizing novel designs to the illustrative problem. Section 5
presents the results.

2 Automatic Creation of Circuit Topology and Sizing

Genetic programming (Koza 1992; Koza and Rice 1992) is an extension of the
genetic algorithm (Holland 1975) that automatically creates computer programs to
solve problems. Genetic programming is also capable of evolving multi-part
programs (Koza 1994a, 1994b) consisting of a main program and one or more
reusable, parametrized, hierarchically-callable automatically defined functions



(subroutines). Architecture-altering operations (Koza 1995) enable genetic
programming to automatically determine the number of subroutines, the number of
arguments that each possesses, and the nature of the hierarchical references, if any,
among the subroutines. Architecture-altering operations also enable genetic
programming to automatically determine whether and how to use internal memory,
iterations, and recursion in evolved programs (Koza, Bennett, Andre, and Keane
1999). Additional information on current research in genetic programming can be
found in Banzhaf, Nordin, Keller, and Francone 1998; Langdon 1998; Kinnear 1994;
Angeline and Kinnear 1996; Spector, Langdon, O'Reilly, and Angeline 1999; Koza,
Goldberg, Fogel, and Riolo 1996; Koza, Deb, Dorigo, Fogel, Garzon, Iba, and Riolo
1997; Koza, Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon, Goldberg, Iba, and
Riolo 1998; and Banzhaf, Poli, Schoenauer, and Fogarty 1998.

The design process for electrical circuits begins with a high-level description of
the circuit's desired behavior and characteristics and entails creation of the topology
and sizing of a satisfactory circuit. The topology of a circuit includes specifying the
gross number of components in the circuit, the type of each component (e.g., a
capacitor), and a netlist specifying where each lead of each component is to be
connected. Sizing involves specifying the values (typically numerical) of each of the
circuit's components. Until recently, there has previously been no general technique
for automatically creating the topology and sizing for an analog electrical circuit from
a high-level statement of the circuit's desired behavior and characteristics. In
describing the design process for analog circuits, Aaserud and Nielsen (1995)
observed,

Analog designers are few and far between. In contrast to digital design, most
of the analog circuits are still handcrafted by the experts or so-called 'zahs'
of analog design. The design process is characterized by a combination of
experience and intuition and requires a thorough knowledge of the process
characteristics and the detailed specifications of the actual product.

Analog circuit design is known to be a knowledge-intensive, multiphase,
iterative task, which usually stretches over a significant period of time and is
performed by designers with a large portfolio of skills. It is therefore
considered by many to be a form of art rather than a science.

Genetic programming is capable of automatically creating (synthesizing) the
design of both the circuit’s topology and sizing from a high-level statement of a
circuit's desired behavior and characteristics (Koza, Bennett, Andre, Keane, and
Dunlap 1997; Koza, Bennett, Andre, and Keane 1999). The evolved circuits include
lowpass, highpass, bandpass, bandstop, crossover, multiple bandpass, and asymmetric
bandpass filters, amplifiers, computational circuits, a temperature-sensing circuit, a
voltage reference circuit, frequency-measuring circuits, robot controller, and source
identification circuits. The evolved circuits include 11 previously patented circuits.

Genetic programming can be applied to circuit design by establishing a mapping
between the rooted, point-labeled trees (i.e., acyclic graphs) with ordered branches
used in genetic programming and the specialized type of cyclic graphs germane to
electrical circuits. The creative work of Kitano (1990) on using developmental
genetic algorithms to evolve neural networks, the innovative work of Gruau (1992,
1994a, 1994b) on using genetic programming to evolve neural networks (cellular
encoding), and the principles of developmental biology suggest a method for



mapping trees into electrical circuits by means of a growth process that begins with a
simple embryo. For electrical circuits, the embryo includes one or more modifiable
wires. The embryo is embedded into a test fixture consisting of certain fixed wires
that provide connectivity to the circuit's external inputs and outputs and certain fixed
(hard-wired) components (such as a source resistor and a load resistor). Until the
modifiable wires are modified by the developmental process, the initial circuit
(consisting of an embryo embedded into a text fixture) produces only trivial output.
An electrical circuit is developed by progressively applying the functions in a circuit-
constructing program tree (in the population being bred by genetic programming) to
the modifiable wires of the original embryo and, during the developmental process, to
newly created modifiable components and modifiable wires.

The functions in the circuit-constructing program trees are divided into five
categories: (1) topology-modifying functions that alter the circuit topology, (2)
component-creating functions that insert components into the circuit, (3)
development-controlling functions that control the development process by which the
embryo and its successors is changed into a fully developed circuit, (4) arithmetic-
performing functions that appear in subtrees as argument(s) to the component-
creating functions and specify the numerical value of the component, and (5)
automatically defined functions that enable certain substructures of the circuit to be
reused (with parameterization).

An electrical circuit is created by executing the functions in a circuit-constructing
program tree. The functions are progressively applied (in a breadth-first order) in a
developmental process to the embryo and its successors until all of the functions in
the program tree are executed. That is, the functions in the circuit-constructing
program tree progressively side-effect the embryo and its successors until a fully
developed circuit eventually emerges. Each branch of the program tree is created in
accordance with a constrained syntactic structure. Each branch is composed of
topology-modifying functions, component-creating functions, development-
controlling functions, and terminals. Component-creating functions typically have
one arithmetic-performing subtree, while topology-modifying functions, and
development-controlling functions do not. Component-creating functions and
topology-modifying functions are internal points of their branches and possess one or
more arguments (construction-continuing subtrees) that continue the developmental
process.

Each non-numeric function is associated with a modifiable wire or modifiable
component in the developing circuit and modifies it in a specified manner. The
construction-continuing subtree (if any) of a function points to a successor function
or terminal in the circuit-constructing program tree. The arithmetic-performing
subtree of a component-creating functions consists of a composition of arithmetic
functions (addition and subtraction) and random constants (in the range -1.0 to +1.0).
The arithmetic-performing subtree specifies the numerical value of a component by
returning a floating-point value that is interpreted on a logarithmic scale in a range of
10 orders of magnitude (using a unit of measure appropriate for the particular type of
component).



3 Statement of the Illustrative Problem

The method will be illustrated on the problem of creating the topology and sizing for
a lowpass filter circuit. A simple filter is a one-input, one-output circuit that receives
a signal and passes the frequency components of the incoming signal that lie in a
specified range (called the passband) while suppressing the frequency components
that lie in all other frequency ranges (the stopband) (Williams and Taylor 1995). The
desired lowpass filter is to pass all frequencies below 1,000 Hertz (Hz) and suppress
all frequencies above 2,000 Hz. The circuit is driven by an incoming AC voltage
source with a 2 volt amplitude. The circuit is tested by a test fixture containing a
1,000 Ohm (Q) source (internal) resistor RSOURCE and a 1,000 Q load resistor
RLOAD. There should be a sharp drop-off from 1 Volt to 0 Volts in the transitional
("don't care") region between 1,000 Hz and 2,000 Hz.

A passband voltage of exactly 1 volt and a stopband voltage of exactly 0 volts is
regarded as ideal. A voltage in the passband of between 970 millivolts and 1 volt (i.e.,
a passband ripple of 30 millivolts or less) and a voltage in the stopband of between 0
volts and 1 millivolts (i.e., a stopband ripple of 1 millivolts or less) are regarded as
acceptable. A voltage lower than 970 millivolts in the passband or above 1 millivolts
in the stopband is regarded as unacceptable.

The above design goals can be satisifed by many different circuits. Figure 1
shows a 100%-compliant circuit that was evolved using genetic programming
(described in chapter 25 of Koza, Bennett, Andre, and Keane 1999). This evolved
circuit consists of seven inductors (L5, L10, L22, L28, L31, L25, and L13) arranged
horizontally across the top of the figure "in series" with the incoming signal
VSOURCE and the source resistor RSOURCE. It also contains seven capacitors
(C12,C24, C30, C3, C33, C27, and C15) that are each shunted to ground.
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Figure 1 Seven-rung ladder lowpass filter.
This circuit has the recognizable features of the circuit for which George
Campbell of American Telephone and Telegraph received U. S. patent 1,227,113
(Campbell 1917). Claim 2 of the patent covered,

An electric wave filter consisting of a connecting line of negligible
attenuation composed of a plurality of sections, each section including a
capacity element and an inductance element, one of said elements of each
section being in series with the line and the other in shunt across the line,
said capacity and inductance elements having precomputed values dependent
upon the upper limiting frequency and the lower limiting frequency of a
range of frequencies it is desired to transmit without attenuation, the values
of said capacity and inductance elements being so proportioned that the
structure transmits with practically negligible attenuation sinusoidal currents



of all frequencies lying between said two limiting frequencies, while
attenuating and approximately extinguishing currents of neighboring
frequencies lying outside of said limiting frequencies.

An examination of the evolved circuit of figure 1 shows that it indeed consists of
“a plurality of sections.” (specifically, seven). In the figure, “Each section include[es]
a capacity element and an inductance element.” Specifically, the first of the seven
sections consists of inductor L5 and capacitor C12; the second section consists of
inductor L10 and capacitor C24; and so forth. Moreover, “one of said elements of
each section [is] in series with the line and the other in shunt across the line.”
Inductor L5 of the first section is indeed “in series with the line” and capacitor C12 is
indeed “in shunt across the line.” This is also true for the circuit’s remaining six
sections. Moreover, figure 1 here matches figure 7 of Campbell’s 1917 patent. In
addition, this circuit’s 100% compliant frequency domain behavior confirms the fact
that the values of the inductors and capacitors are such as to transmit “with practically
negligible attenuation sinusoidal currents” of the passband frequencies “while
attenuating and approximately extinguishing currents” of the stopband frequencies.
Thus, the evolved circuit reads on claim 2 of Campbell’s 1917 patent. If this patent
had not long since expired, the evolved circuit would infringe on the patent.

4 Preparatory Steps

Before applying genetic programming to a problem of circuit design, seven major
preparatory steps are required: (1) identify the initial circuit (test fixture and embryo)
of the developmental process, (2) determine the architecture of the circuit-
constructing program trees, (3) identify the primitive functions, (4) identify the
terminals, (5) create the fitness measure, (6) choose control parameters, and (7)
determine the termination criterion and method of result designation.

4.1 Initial Circuit

An electrical circuit is created in a developmental process by executing a circuit-
constructing program tree that contains various component-creating, topology-
modifying, and development-controlling functions. An initial circuit consisting of an
embryo and a test fixture is the starting point of a developmental process that
transforms a program tree in the population into a fully developed electrical circuit.
The embryo contains at least one modifiable wire. The test fixture is a fixed (hard-
wired) substructure composed of nonmodifiable wires and nonmodifiable electrical
components. The test fixture provides access to the circuit's external input(s) and
permits probing of the circuit's output. An embryo is embedded into the test fixture.
All development occurs in the embryo.

Figure 2 shows a one-input, one-output initial circuit consisting of an embryo
embedded in a test fixture. The embryo consists of two modifiable wires Z0 and Z1.
The test fixture consists of an incoming signal (input to the overall circuit) in the
form of voltage source VSOURCE (2 Volt peak alternating-current) between nodes
0 and 1, a source resistor RSOURCE (whose value is 1,000 Q) between nodes 1 and
2, a nonmodifiable wire ZOUT between nodes 3 and 5, a voltage probe point VOUT
(the output of the overall circuit) at node 5, a load resistor RLOAD (whose value is
1,000 Q) between nodes 5 and 0, and a nonmodifiable wire ZGND between nodes 4
and 0.



4.2  Program Architecture

Since there is one result-producing branch in the program tree for each modifiable
wire in the embryo, the architecture of each circuit-constructing program tree has two
result-producing branches.
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Figure 2 One-input, one-output initial circuit with two modifiable wires. Function Set
The function set, T¢cg, for each construction-continuing subtree is

Foes = {C, L, SERI ES, PARALLELO, FLI P, TVI A0, ..., TVI A7, NOOP}

All functions in this section are described in detail in Koza, Bennett, Andre, and
Keane 1999. Briefly, the C and L functions are component-creating functions that
insert an inductor or capacitor (respectively) into a developing circuit and that assign
a numerical value to the inserted component. The SERI ES and PARALLELO
functions modify the topology of the developing circuit by performing a series or
parallel (respectively) division. The FLI P function reverse the polarity of a
component. The eight VI A functions provides direct connectivity between two points
within the developing circuit via one of eight numbered layers on the imaginary
printed circuit board or piece of silicon on which the circuit resides. The NOOP (No
operation) function is a development-controlling function.

4.4  Terminal Set
The terminal set, T¢cg, for each construction-continuing subtree is
Tecs = {END, CUT}.

Briefly, the development-controlling END function makes the modifiable wire or
modifiable component with which it is associated non-modifiable (thereby ending a
particular developmental path). The CUT function causes the highlighted component
to be removed from the circuit.

The terminal set, Taps, for each arithmetic-performing subtree consists of

Taps = {R},
where R represents floating-point random constants from —1.0 to +1.0.
The function set, Faps, for each arithmetic-performing subtree is,

Faps = {+,- }.



4.5  Fitness Measure

The evaluation of each individual circuit-constructing program tree in the population
begins with its execution. The execution progressively applies the functions in the
program tree to the embryo of the circuit, thereby creating a fully developed circuit.
A netlist is created that identifies each component of the developed circuit, the nodes
to which each component is connected, and the value of each component. The netlist
becomes the input to our modified version of the 217,000-line SPICE (Simulation
Program with Integrated Circuit Emphasis) simulation program (Quarles, Newton,
Pederson, and Sangiovanni-Vincentelli 1994). SPICE then determines the behavior of
the circuit. SPICE is instructed to perform an AC small signal analysis and report the
output voltage VOUT in the frequency domain over five decades of frequencies
(between 1 Hz and 100,000 Hz). Each decade isdivided into 20 parts (using a
logarithmic scale), so that there are a total of 101 fitness cases (sampled frequencies).

The fitness of a circuit is defined in terms of two factors. The first factor measures
the circuit’s behavior in the frequency domain while the second factor measures the
circuit’s similarity to the to-be-avoided ladder filter.

The first factor is the sum, over the 101 fitness cases, of the absolute weighted
deviation between the actual value of the voltage that is produced by the given circuit
at the probe point VOUT and the target value for voltage (0 or 1 volts) for that
frequency. Specifically, this factor is

100
F(t)= EO(W(d(f,-),f,-)d(J}))

where f; is the frequency of fitness case i; d(x) is the absolute value of the difference

between the target and observed values at frequency x; and W(y,x) is the weighting
for difference y at frequency x.

The factor of the fitness measure pertaining to the circuit’s frequency response
does not penalize ideal voltage values, slightly penalizes acceptable voltage
deviations, and heavily penalizes unacceptable voltage deviations. Specifically, if the
output voltage equals the ideal value of 1.0 volt for each of the 61 points in the
intended passband between 1 Hz and 1,000 Hz, the deviation is 0.0. If the voltage is
between 970 millivolts and 1 volt, the absolute value of the deviation from 1 volt is
weighted by a factor of 1.0. If the voltage is less than 970 millivolts, the absolute
value of the deviation from 1 volt is weighted by a factor of 10.0. The deviations for
each of the 35 points from 2,000 Hz to 100,000 Hz in the intended stopband are
similarly weighed (by 1.0 or 10.0) based on the acceptable deviation of 1 millivolt
from the ideal voltage of 0 volts. The deviations are deemed to be zero for each of the
five "don't care" points between 1,000 and 2,000 Hz. The number of “hits” is defined
as the number of fitness cases for which the voltage is acceptable, ideal, or that lie in
the "don't care" band.

The factor of the fitness measure pertaining to similarity to the to-be-avoided
ladder filter is measured in terms of the largest number of nodes and edges (circuit
components) of a subgraph of the given circuit that is isomorphic to a subgraph of a
template. The template is a Campbell ladder that is far larger than is needed to solve
the problem at hand. As shown in figure 3, the template contains 16 shunt capacitors,
17 series inductors, the circuit’s voltage source, and a source resistor.

The score is determined by a graph isomorphism algorithm (Ullman 1976, Lingas
1981) with the cost function here being based on the number of shared nodes and



edges (instead of just the number of nodes). Since the graph isomorphism algorithm
works with graph adjacency matrices and since circuits often contain parallel
compositions of two different components, each pair of parallel components that is
encountered is treated as if it were a type of component different from either a single
capacitor or single inductor.
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Figure 3 Campbell template.

For reference, the factor of the fitness measure pertaining to the frequency
response of the 100%-compliant seven-rung ladder filter of figure 1 is 0.00784 (i.e.,
near zero) and its isomorphism factor is 25 (very high). The details of the calculation
of the isomorphism score are found in Koza, Bennett, Andre, and Keane 1999.

A lower value of each of the above two factors of the fitness measure is better.
For circuits not scoring the maximum number (101) of hits, the fitness of a circuit is
the product of the two factors. For circuits scoring 101 hits (100%-compliant
individuals), fitness is the number of shared nodes and edges divided by 10,000. This
arrangement has the feature of almost always assigning a better (lower) fitness to any
individual scoring 101 hits than to any individual scoring fewer than 101 hits.

A smaller the overall value of fitness is better. A fitness of zero is unattainable
because every circuit has at least one node or edge in common with the template
(even if only a single component).

Many of the random initial circuits and many that are created by crossover and
mutation in subsequent generations are so pathological that the SPICE simulator

cannot simulate them. These circuits receive a high penalty value of fitness (108) and
become the worst-of-generation programs for each generation. In the run described
below, 91% of the circuits in generation 0 cannot be simulated (compared to about
5% in later generations).

4.6 Control Parameters

The population size, M, is 1,950,000. The maximum size of each branch of each
circuit-constructing program tree is 300 points (functions and terminals). Other
control parameters are those used previously for the lowpass filter problem (Koza,
Bennett, Andre, and Keane 1999, appendix D).

4.7  Termination Criterion and Results Designation

Since the goal is to generate a variety of 100%-compliant circuits for examination as
to their novelty, the run was not automatically terminated upon evolution of the first



100%-compliant individual. Instead, numerous 100%-compliant circuits were
harvested; and the run was manually monitored and manually terminated.

4.8 Implementation on Parallel Computer

This problem was run on a home-built Beowulf-style (Sterling, Salmon, Becker, and
Savarese 1999) parallel cluster computer system consisting of 65 processing nodes
(each containing a 533-MHz DEC Alpha microprocessor and 64 megabytes of RAM)
arranged in a two-dimensional 5 x 13 toroidal mesh. The system has a DEC Alpha
type computer as host. The processing nodes are connected with a 100 megabit-per-
second Ethernet. The processing nodes and the host use the Linux operating system.
The distributed genetic algorithm was used with a population size of O = 30,000 at
each of the D = 65 demes (semi-isolated subpopulations) for a total of population, M,
of 1,950,000. Generations are asynchronous on the nodes. On each generation, four
boatloads of emigrants, each consisting of B = 2% (the migration rate) of the node's
subpopulation (selected probabilistically on the basis of fitness using the same
selection procedure as used for the genetic operations) were dispatched to each of the
four adjacent processing nodes (Koza, Bennett, Andre, and Keane 1999).

5 Results

A run starts with the random creation of an initial population (generation 0) of circuit-
constructing program trees composed of the problem’s functions and terminals. The
best-of-generation circuit from generation 0 (figure 4a) scores 52 hits (out of 101).
The fitness of this best-of-generation circuit from generation 0 is 296.5 because the
factor pertaining to this circuit’s frequency response is 59.30 and because this
circuit’s isomorphism factor is 5. The isomorphism factor is 5 because the largest
number of nodes and edges of a subgraph of this circuit that is isomorphic to a
subgraph of the 17-inductor, 16-capacitor template (figure 3) consists of five nodes
and edges.

Figure 4a shows the behavior in the frequency domain of the best circuit of
generation 0. As can be seen, the behavior of this circuit bears little resemblance to
the desired lowpass filter. The horizontal axis represents the frequency of the
incoming signal and ranges over five decades of frequencies between 1 Hz and
100,000 Hz on a logarithmic scale. The vertical axis represents the peak voltage of
the output and ranges linearly between 0 to 1 Volts. The circuit delivers a full volt
only for frequencies up to about 50 Hz. The circuit suppresses the incoming signal
only for a handful of frequencies near 100,000 Hz. There is a very leisurely transition
region in between. Circuits with improved fitness are evolved as the run proceeds
from generation to generation.

The best-of-generation circuit from generation 16 (figure 5) has three inductors
and four capacitors and scores 95 hits. Capacitors C1, C2, C3, and C4 are shunt
capacitors and constitute the rungs of a ladder, while inductors L1, L4, and L3
(horizontally across the top of the figure) are the ladder’s series inductors.

This circuit constitutes the rediscovery by genetic programming of the well-
known ladder topology of the Campbell filter. When this circuit is compared with the
template, it is assigned a high (undesirable) isomorphism factor. The overall fitness of
this circuit is 32.32 because the factor pertaining to this circuit’s frequency response
is 2.694 and its isomorphism factor is 12.



Figure 4b shows the behavior in the frequency domain of the best circuit of
generation 16. As can be seen, the behavior of this circuit bears some resemblance to
the desired lowpass filter. Its transition region is more sharply defined than that of the
best circuit of generation 0 (figure 4a).
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Figure 4a Frequency domain behavior of best circuit from generation 0.
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Figure 4b Frequency domain behavior of best circuit from generation 16.
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Figure 4c Frequency domain behavior of 100%-compliant circuit with elliptic topology.
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Figure 5 Best circuit of generation 16.



As the run progresses, some circuits score well primarily because of the factor
pertaining to the circuit's frequency response while others score well primarily
because of the isomorphism factor. For example, the fitness of one pace-setting
circuit from generation 18 is 30.585. The factor of the fitness measure pertaining to
this circuit's frequency response is 6.117 (not very good) but its isomorphism factor is
5 (reflecting great dissimilarity between this circuit and the 17-inductor, 16-capacitor
template of figure 3). On the other hand, the fitness of another pace-setting circuit
from generation 18 (in fact, the best-of-generation individual) is 11.556. The factor of
the fitness measure pertaining to frequency response is 0.7704 (very good behavior in
the frequency domain) but its isomorphism factor is 15 (reflecting great similarity
between this circuit and the template).

As the run proceeds from generation to generation, circuits begin to appear that
score well because of both the isomorphism factor and the factor pertaining to the
circuit's frequency response. Eight different 100%-compliant circuits (i.e., circuits
scoring 101 hits) were harvested from this run. Figure 4c shows the behavior in the
frequency domain of the first 100%-compliant circuit evolved in this run; the
behavior of the other seven circuits is similar. As can be seen in the figure, the circuit
delivers nearly a full volt for frequencies up to 1,000 Hz; there is a very sharp drop-
off between 1,000 Hz and 2,000 Hz; and the circuit effectively suppresses the output
above 2,000 Hz. None of the 100%-compliant circuits harvested from this run have
the ladder topology patented by Campbell in 1917. In other words, genetic
programming evolved multiple novel solutions in this run to the given problem and
each evolved solution avoided the prior art. Table 1 shows the factor pertaining to the
circuit's frequency response, the isomorphism factor, and the overall fitness.

Table 1 Fitness of eight 100%-compliant circuits.

Generation Frequency response factor | Isomorphism factor | Overall fitness
1 13 0.051039 7 0.357273
2 14 0.117093 7 0.819651
3 14 0.103064 7 0.721448
4 15 0.161101 7 1.127707
5 15 0.044382 13 0.044382
6 15 0.133877 7 0.937139
7 16 0.059993 5 0.299965
8 13 0.062345 11 0.685795

Seven of the eight 100%-compliant circuits have highly irregular and asymmetric
topologies. Figure 6 shows the chronologically first individual scoring 101 hits that
appeared in the run. This circuit has an overall fitness of 0.685795. The factor of the
fitness measure pertaining to the circuit's frequency response is 0.062345 while the
isomorphism factor is 11. The result-producing branches of its circuit-constructing
program tree contain 181 and 115 points, respectively. The circuit consists of four
parallel compositions of an inductor and a capacitor (appearing horizontally across
the top of the figure) and three shunt capacitors (appearing vertically in the figure).
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Figure 6 Evolved 100%-compliant circuit with elliptic topology.

Once genetic programming has successfully created one or more novel solutions
to the given problem, a design engineer may examine them. Some may have
unexpected virtues. The topology of the evolved filter of figure 6 is one form of the
elliptic filter that Cauer invented and patented (Cauer 1934, 1935, 1936). The elliptic
topology was invented and patented by Cauer in response to a long-standing need in
the telephone industry for filters that were less expensive to manufacture. At the time
of its invention by Cauer, the elliptic filter was a significant advance (both
theoretically and commercially) over the prior art of their time, namely the then-
known Campbell filter (and the closely related Butterworth and Chebychev filters).
Specifically, for one commercially important set of specifications for the telephone
industry, a fifth-order elliptic filter matches the behavior of a 17th-order Butterworth
filter or an eighth-order Chebychev filter. The fifth-order elliptic filter has one less
component than the eighth-order Chebychev filter. This reduction was very important
in the days when filters in telephones were manufactured by individually soldering in
expensive discrete components. As Van Valkenburg (1982, page 379) relates in
connection with the history of the elliptic filter:

Cauer first used his new theory in solving a filter problem for the German
telephone industry. His new design achieved specifications with one less
inductor than had ever been done before. The world first learned of the
Cauer method not through scholarly publication but through a patent
disclosure, which eventually reached the Bell Laboratories. Legend has it
that the entire Mathematics Department of Bell Laboratories spent the next
two weeks at the New York Public library studying elliptic functions. Cauer
had studied mathematics under Hilbert at Goettingen, and so elliptic
functions and their applications were familiar to him.

The elliptic topology invented and patented by Cauer was reinvented by genetic
programming in this run as a consequence of the fact that the fitness measure
rewarded candidate solutions that were dissimilar to the previously known Campbell
filter topology. Cauer received a patent for the elliptic filter because his design
satisfied the legal criteria for obtaining a U. S. patent, including the fact that it was
"new” and “useful" and

... the differences between the subject matter sought to be patented and the
prior art are such that the subject matter as a whole would [not] have been



obvious at the time the invention was made to a person having ordinary skill
in the art to which said subject matter pertains. (35 United States Code
103a).

6 Conclusion

We have established the principle that genetic programming can automatically create
designs that satisfactorily solve a problem while simultaneously avoiding prior art.
The reinvention by genetic programming of the patented Campbell and Cauer
topologies for filters is an instance where genetic programming has produced a result
that is competitive with a result created by a creative and inventive human. These
evolved results satisfy Arthur Samuel's criterion (1983) for artificial intelligence and
machine learning, namely

The aim [is] ... to get machines to exhibit behavior, which if done by

humans, would be assumed to involve the use of intelligence.
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