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ABSTRACT 

The goal of automatic programming is to create, in an automated way, a computer 

program that enables a computer to solve a problem.  Ideally, an automatic programming 

system should require that the user pre-specify as little as possible about the problem.  In 

particular, it is desirable that the user not be required to specify the size and shape (i.e., the 

architecture) of the ultimate solution to the problem before applying the technique.   

This paper describes how the biological theory of gene duplication described in Susumu 

Ohno's provocative book, Evolution by Means of Gene Duplication, was brought to bear on 

a vexatious problem from the domain of automated machine learning in the computer 

science field.  The resulting biologically-motivated approach using six new architecture-

altering operations enables genetic programming to automatically discover the size and 

shape of the solution at the same time as it is evolving a solution to the problem.   



 

Genetic programming with the architecture-altering operations was used to evolve a 

computer program to classify a given protein segment as being a transmembrane domain 

or non-transmembrane area of the protein (without biochemical knowledge, such as 

hydrophobicity values).  The best genetically-evolved program achieved an out-of-sample 

error rate that was better than that reported for other previously reported human-

constructed algorithms.  This is an instance of an automated machine learning algorithm 

that is competitive with human performance on a non-trivial problem.   

1.  Background on Genetic Programming 

The goal of automatic programming is to create, in an automated way, a computer program that 

enables a computer to solve a problem.  Ideally, an automatic programming system should 

require that the user pre-specify as little as possible about the problem.  In particular, it is 

desirable that the user not be required to specify the size and shape (i.e., the architecture) of the 

ultimate solution to the problem before applying the technique.  One of the banes of automated 

machine learning from the earliest times has been the requirement that the human user 

predetermine the size and shape of the ultimate solution to his problem (Samuel 1959).  I believe 

that the size and shape of the solution should be part of the answer provided by an automated 

machine learning technique, rather than part of the question supplied by the investigator.   

John Holland's pioneering Adaptation in Natural and Artificial Systems (Holland 1975) 

described how an analog of the naturally-occurring evolutionary process can be applied to 

solving problems using what is now called the genetic algorithm (described in section B 1.2 of 

this volume).  

The book  Genetic Programming: On the Programming of Computers by Means of Natural 

Selection (Koza 1992) describes an extension of the genetic algorithm in which the genetic 

population consists of computer programs (that is, compositions of primitive functions, 

terminals, and possibly automatically defined functions). (See section B 1.5.1 of this volume).  In 

a run of genetic programming in its most basic form, the size and shape of the result-producing 



 

program as well as the sequence of work-performing steps are evolved.  A videotape description 

of genetic programming can be found in Koza and Rice (1992). Recent research activity in 

genetic programming is described in Kinnear (1994), Angeline and Kinnear (1996), and Koza, 

Goldberg, Fogel, and Riolo (1996).  

I believe that no approach to automated programming is likely to be successful on non-trivial 

problems unless it provides some hierarchical mechanism to exploit, by reuse and 

parametrization, the regularities, symmetries, homogeneities, similarities, patterns, and 

modularities inherent in problem environments.  Subroutines do this in ordinary computer 

programs.  Accordingly, Genetic Programming II: Automatic Discovery of Reusable Programs 

(Koza 1994a) describes how to evolve multi-part programs consisting of a main program and 

one or more reusable, parametrized, hierarchically-called subprograms.  An automatically 

defined function is a function (i.e., subroutine, procedure, DEFUN module) that is dynamically 

evolved during a run of genetic programming in association with a particular individual program 

in the population and which may be invoked by a calling program (e.g., a main program) that is 

simultaneously being evolved.  A videotape description of automatically defined functions can 

be found in Koza (1994b).   

When automatically defined functions are being evolved in a run of genetic programming, it 

becomes necessary to determine the architecture of the overall program to be evolved.  The 

specification of the architecture consists of (a) the number of function-defining branches 

(automatically defined functions) in the overall program, (b) the number of arguments (if any) 

possessed by each function-defining branch, and (c) if there is more than one function-defining 

branch, the nature of the hierarchical references (if any) allowed between the function-defining 

branches.  

The question of how to specify the architecture of the overall program in genetic 

programming has a parallel in the biological world: how are new structures and behaviors 

created in living things?  This corresponds to the question of how new proteins  are created in 

more complex organisms.   



 

In nature, recombination ordinarily recombines a part of the chromosome of one parent with a 

corresponding (homologous) part of the second parent's chromosome.  A gene duplication is a 

rare illegitimate recombination event that results in the duplication of a possibly lengthy 

subsequence of a chromosome.  Susumu Ohno's seminal book Evolution by Gene Duplication 

(Ohno 1970) proposed the then-provocative (now accepted) thesis that the creation of new 

proteins (and hence new structures and behaviors in living things) begins with a gene duplication 

and that gene duplication is "the major force of evolution."  Ohno claimed that simple point 

mutation and crossover are insufficient to explain major evolutionary changes. 

"...while allelic changes at already existing gene loci suffice for racial differentiation 

within species as well as for adaptive radiation from an immediate ancestor, they 

cannot account for large changes in evolution, because large changes are made 

possible by the acquisition of new gene loci with previously non-existent functions." 

The naturally occurring mechanism of gene duplication (and the complementary mechanism 

of gene deletion) motivated the addition of six new architecture-altering operations to genetic 

programming (Koza 1994d, 1995).  These operations of branch duplication, branch creation, 

branch deletion, argument duplication, argument creation, and argument deletion enable genetic 

programming evolve the architecture of a multi-part program containing automatically defined 

functions (ADFs) during a run of genetic programming.  The operations enable the analog of 

what Ohno described as "the acquisition of new gene loci with previously non-existent 

functions."   

2. Classifying Protein Segments as Transmembrane Domains 

This paper considers the problem of deciding whether a given protein segment is a 

transmembrane domain or non-transmembrane area of the protein.   

Proteins are responsible for such a wide variety of biological structures and functions that it 

can be said that the structure and functions of living organisms are primarily determined by 

proteins (Stryer 1995).  Proteins are polypeptide molecules composed of sequences of amino 



 

acids.  There are 20 amino acids (also called residues) in the alphabet of proteins (denoted by the 

letters A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y).  Automated methods of 

machine learning may prove to be useful in discovering biologically meaningful information 

hidden in the rapidly growing databases of DNA sequences and protein sequences.   

Membranes play many important roles in living things.  A transmembrane protein (Yeagle 

1993) is embedded in a membrane in such a way that part of the protein is located on one side of 

the membrane, part is within the membrane, and part is on the opposite side of the membrane.  

Transmembrane proteins often cross back and forth through the membrane several times and 

have short loops immersed in the different milieu on each side of the membrane.  Understanding 

the behavior of transmembrane proteins requires identification of the portion(s) of the protein 

that are actually embedded within the membrane, such portion(s) being called the 

transmembrane domain(s) of the protein.  The lengths of the transmembrane domains of a 

protein are usually different from one another and the lengths of the non-transmembrane area are 

also usually different from one another.   

Algorithms written by biologists for the problem of classifying transmembrane domains in 

protein sequences are based on biochemical knowledge about hydrophobicity and other 

properties of membrane-spanning areas of the protein sequence (Kyte-Doolittle 1982, von Heijne 

1992, Engelman, Steitz, and Goldman 1986).   

This problem provides an opportunity to illustrate automatic discovery of reusable feature 

detectors, the evolution of the architecture of a multi-part computer program using the 

architecture-altering operations, the use of state (memory), and the use of iteration-performing 

steps (in conjunction with information stored in memory) in genetically evolved computer 

programs.  In this section, genetic programming will be given a set of differently-sized protein 

segments and asked to give the correct classification for each segment.   

Genetic programming has previously demonstrated the ability to evolve a classifying program 

for this task without using any biochemical knowledge (Koza 1994c) when the user specified the 

architecture of the program to be evolved.  The genetically evolved program achieved a better 



 

error rate than the three human-written algorithms that were compared as well as the algorithm 

developed by Weiss, Cohen, and Indurkhya (1993) using human knowledge along with an 

element of machine learning.   

We now solve this problem again using the architecture-altering operations.  The goal is to 

find a classifying program consisting of an initially unspecified number of automatically defined 

functions, each function possessing an initially unspecified number of arguments, consisting of 

an initially unspecified sequence of work-performing operations, an initially unspecified 

sequence of work-performing operations in an iterative calculation, and an initially unspecified 

final result-producing calculation that yields a classification of the protein segment.   

The function set for each branch of each program to be evolved consists of four arithmetic 

operations: (1) a three-argument conditional branching operator, (2) a one-argument setting 

function, SETM0, that sets the settable memory variable, M0, to a particular value, and (3) a two-

argument numerical-valued disjunctive function.   

The terminal set consists of the settable variable, M0, floating-point random constants, the 

length of the protein segment being examined, and 20 zero-argument amino-acid detecting 

functions that enable the program to examine the protein segment.   

Fitness is the correlation between the classification produced by an evolved program and the 

correct classification.  An in-sample (training) set of protein segments is used during the 

evolutionary process; an out-of-sample (testing) set is used to measure and report the 

performance of the best program produced by a run.   

The population size was 128,000.  The problem (written in ANSI C) was run on a medium-

grained parallel Parsytec computer system consisting of 64 Power PC 601 processors arranged in 

a toroidal mesh with a host PC Pentium type computer (running Windows).  The Power PC 

processors communicated by means of one INMOS transputer that was associated with each 

Power PC processor.  The so-called distributed genetic algorithm or island model for 

parallelization was used (Goldberg l989).  That is, subpopulations (called demes after Wright 

(1943) were situated at the processing nodes of the parallel system.  Population size was Q =  



 

2,000 at each of the D = 64 demes for a total population size of 128,000.  The initial random 

subpopulations were created locally at each processing node.  Generations were run 

asynchronously on each node.  After a generation of genetic operations was performed locally on 

a given node, four boatloads, each consisting of B = 5% (the migration rate) of the subpopulation 

(selected on the basis of fitness) were dispatched to each of the four toroidally adjacent nodes.  

Details of this parallel implementation of genetic programming (and a comparative discussion of 

migration rates) can be found in Koza and Andre (1995) and Andre and Koza (1996).    

On the first run (23 hours) with genetic programming and the architecture-altering operations, 

a solution was obtained for this problem that exceeded the performance of the three human-

written algorithms as well as the algorithm developed by Weiss, Cohen, and Indurkhya (1993).   

The best program of generation 28 scores an in-sample correlation of 0.9596, an out-of-

sample correlation of 0.9681, an in-sample error rate of 3%, and an out-of-sample error rate of 

1.6%.  There were 246 fitness cases (half negative and half positive) in the in-sample set of 

fitness cases and there were 250 fitness cases (again, half negative and half positive) in the out-

of-sample set of fitness cases (as described in detail in chapter 18 of Koza 1994).   

Figure 1 shows the high-level architecture of the best-of-run program from generation 28.  

This program has one automatically defined function, ADF0, that tests for the amino acid 

residues phenylalanine (F) and leucine (L), one 36-point iteration-performing branch, IPB, and 

one 169-point result-producing branch, RPB.   

After genetic programming evolves a solution to a problem, it is often difficult to analyze the 

program produced by the evolutionary process.  However, a number of fortuitous circumstances 

permitted this particular evolved program to be simplified, by hand, to the following procedure: 

(1) Create a sum, S, by adding 4 for each E in the protein segment and 2 for each C, D, G, H, 

K, N, P, Q, R, S , T, W, or Y (i.e., the 13 residues that are neither E nor A, M, V, I, F or L) in the 

protein segment.   

(2) If  



 

 



 S – 3.1544

0.9357    < LEN,  

where LEN is the length of the protein segment, then classify the protein segment as a 

transmembrane domain; otherwise, classify it as a non-transmembrane area of the protein.  

This genetically evolved procedure is simple and works because of the high hydrophobicity of 

the six amino acid residues A, M, V, I, F and L.   

Table 1 shows the out-of-sample error rate for the four previous algorithms for classifying 

transmembrane domains as well as for three approaches using genetic programming, namely the 

set-creating version (sections 18.5 through 18.9 of Koza, 1994a), the arithmetic-performing 

version (sections 18.10 and 18.11 of Koza, 1994a), and the version using the architecture-

altering operations as reported herein.   

Table 1  Comparison of seven methods.   

Method Error rate 

von Heijne (1992) 2.8% 

Engelman, Steitz, and Goldman (1986) 2.7% 

Kyte-Doolittle (1982) 2.5% 

Weiss, Cohen, and Indurkhya (1993) 2.5% 

GP + Set-creating ADFs in Koza (1994a) 1.6% 

GP + Arithmetic-performing ADFs in Koza (1994a) 1.6% 

GP + ADFs + Architecture-altering operations (this paper) 1.6% 

3. Conclusion 

We have shown that it is possible to evolve the architecture of a multi-part program, while 

concurrently solving the problem, for the problem of classifying protein segments as 

transmembrane domains or non-transmembrane areas of the protein.   



 

The architecture-altering operations executed during the run of genetic programming 

determined the existence and eventual number of the automatically defined functions, the 

number of arguments possessed by each automatically defined function, the size, shape, and 

sequence of work-performing steps within the automatically defined functions, the size, shape, 

and sequence of work-performing steps in the iteration-performing branch, and the size, shape, 

and sequence of work-performing steps in the result-producing branch.   

The solution to the problem of classifying transmembrane domains in protein segments is 

slightly better to the performance of algorithms written by knowledgeable human investigators.  

This is an instance of an automated machine learning algorithm slightly exceeding human 

performance on a non-trivial problem.   
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Figure 1  High-level architecture of best-of-run program from generation 28 with one 

zero-argument automatically defined function, ADF0, that tests for certain amino acid 

residues in the protein segment, one 36-point iteration-performing branch, IPB0, and one 

169-point result-producing branch, RPB.   

 


