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Abstract:  Analog electrical circuits that perform mathematical functions (e.g., cube root, square) are 
called computational circuits.    Computational circuits are of special practical importance when the small 
number of required mathematical functions does not warrant converting an analog signal into a digital 
signal, performing the mathematical function in the digital domain, and then converting the result back to 
the analog domain.  The design of computational circuits is difficult even for mundane mathematical 
functions and often relies on the clever exploitation of some aspect of the underlying device physics of 
the components.  Moreover, implementation of each different mathematical function typically requires an 
entirely different clever insight.  This paper demonstrates that computational circuits can be designed 
without such problem-specific insights using a single uniform approach involving genetic programming.   
Both the circuit topology and the sizing of all circuit components are created by genetic programming.    
This uniform approach to the automated synthesis of computational circuits is illustrated by evolving 
circuits that perform the cube root function (for which no circuit was found in the published literature) as 
well as for the square root, square, and cube functions.  
 

1.  Introduction 
Analog electrical circuits that perform mathematical 
functions (e.g., cube root, square) are called 
computational circuits.    Computational circuits are of 
special practical importance when the small number of 
required mathematical functions does not warrant 
converting an analog signal into a digital signal, 
performing the mathematical function in the digital 
domain, and then converting the result back to the 
analog domain.  The design of computational circuits is 
difficult even for mundane mathematical functions and 
often relies on clever exploitation of some aspect of the 
underlying physics of the components.  Each function 
usually requires a different clever insight (Gilbert 1968, 
Sheingold 1976, Babanezhad and Temes 1986).   

This paper demonstrates that computational circuits 
can be designed by means of a single uniform approach 
using genetic programming.  Both the circuit topology 
and the sizing of all circuit components are created by 
genetic programming.  This uniform approach to the 
automated synthesis of computational circuits is 

illustrated by evolving a circuit for the cube root, 
square root, square, and cube functions.   

The problem of circuit synthesis involves designing 
an electrical circuit that satisfies user-specified design 
goals.  The design of analog circuits and mixed analog-
digital circuits has not proved to be amenable to 
automation (Rutenbar 1993).  Thompson (1996) used a 
genetic algorithm to evolve a frequency discriminator 
on a Xilinx 6216 reconfigurable gate array in analog 
mode.  CMOS operational amplifier (op amp) circuits 
have been designed using a modified version of the 
genetic algorithm (Kruiskamp and Leenaerts 1995); 
however, the topology of each op amp was one of 24 
pre-selected topologies based on the conventional 
human-designed op amp stages.  Evolvable digital 
hardware (Higuchi et al. 1993; Sanchez and Tomassini 
1996) offers a potential approach to automated 
synthesis of digital circuits.  

2. Evolution of Circuits 
Genetic programming is an extension of John Holland's 
genetic algorithm (1975) in which the population 



 

consists of computer programs of varying sizes and 
shapes (Koza 1992, 1994a, 1994b; Koza and Rice 
1992).  Recent research on genetic programming is 
described in Kinnear (1994), Angeline and Kinnear 
(1996), and Koza, Goldberg, Fogel, and Riolo (1996).   

Genetic programming ordinarily evolves computer 
programs that are represented as rooted, point-labeled 
trees with ordered branches.  Genetic programming can 
be applied to circuits if a mapping is established 
between the program trees found in genetic 
programming and the line-labeled cyclic graphs 
germane to circuits.   

Developmental biology suggests a way to map 
program trees into circuits. Using these principles, 
Gruau (1996) evolved neural networks using genetic 
programming.  The starting point of the growth process 
used herein is a very simple embryonic electrical 
circuit.  The embryonic circuit contains certain fixed 
parts appropriate to the problem at hand and certain 
wires that are capable of subsequent modification.  An 
electrical circuit is progressively developed by applying 
the functions in a circuit-constructing program tree to 
the modifiable wires of the embryonic circuit (and, at 
each later step of the development, to both the 
modifiable wires and the other components of the 
developing circuit).   

The functions in the circuit-constructing program 
trees include (1) connection-modifying functions that 
modify the topology of the circuit, (2) component-
creating functions that insert components into the 
circuit, (3) arithmetic-performing functions that appear 
in arithmetic-performing subtrees as argument(s) to the 
component-creating functions and that specify the 
numerical value of the component, and (4) calls to 
automatically defined functions that appear in function-
defining branches.   

 
Figure 1  Embryonic circuit. The developmental 

process for converting a program tree into an electrical 
circuit begins with an embryonic circuit.  Figure 1 
shows a one-input, one-output embryonic circuit.  This 
embryo contains a voltage source VSOURCE 
connected to nodes 0 (ground) and 1, a fixed source 
resistor RSOURCE between nodes 1 and 2, a 
modifiable wire Z0 between nodes 2 and 3, a fixed 
isolating wire ZOUT between nodes 3 and 5, an output 
point (voltage probe) VOUT at node 5, and a fixed load 

resistor RLOAD between nodes 5 and ground.  Only 
the modifiable wire Z0 is subject to modification 
during the developmental process.   

Each branch of the program tree is created in 
accordance with a constrained syntactic structure.  
Branches are composed from construction-continuing 
subtrees that continue the developmental process and 
arithmetic-performing subtrees that determine the 
numerical value of components.  Each circuit-
constructing program tree in the population contains 
component-creating functions and connection-
modifying functions.  Each connection-modifying 
function in a program tree points to an associated 
highlighted component and modifies the topology of 
the developing circuit.  Connection-modifying 
functions have one or more construction-continuing 
subtrees, but no arithmetic-performing subtrees.  
Component-creating functions have one construction-
continuing subtree and typically have one arithmetic-
performing subtree.  This constrained syntactic 
structure is preserved by using structure-preserving 
crossover with point typing (Koza 1994a).   

Component-creating functions insert a component 
into the developing circuit and assign component 
value(s) to the component.  Each component-creating 
function has a writing head that points to an associated 
highlighted component in the developing circuit and 
modifies the highlighted component in a specified way. 
The construction-continuing subtree of each 
component-creating function points to a successor 
function or terminal in the circuit-constructing program 
tree.   

The arithmetic-performing subtree of a component-
creating function consists of a composition of 
arithmetic functions and random constants that specify, 
after interpretation, the numerical value of a 
component.  

Space does not permit a detailed description of each 
function herein.   

Various electrical circuits have been designed using 
genetic programming, including lowpass filters (Koza, 
Bennett, Andre, and Keane 1996a, 1996b), crossover 
(woofer and tweeter) filters (Koza, Bennett, Andre, and 
Keane 1996c), asymmetric bandpass filters (Koza, 
Bennett, Andre, and Keane 1996d), and a 60 dB 
operational amplifier (Bennett, Koza, Andre, and 
Keane 1996), and the use of automatically defined 
functions and architecture-altering operations for 
creating useful electrical subcircuits (Koza, Andre, 
Bennett, and Keane 1996).  

3. Preparatory Steps 
Before applying genetic programming to a problem of 
circuit synthesis, the user must perform seven major 
preparatory steps, namely (1) identifying the embryonic 
circuit that is suitable for the problem, (2) determining 



 

the architecture of the overall circuit-constructing 
program trees, (3) identifying the terminals of the to-
be-evolved programs, (4) identifying the primitive 
functions contained in the to-be-evolved programs, (5) 
creating the fitness measure, (6) choosing certain 
control parameters, and (7) determining the termination 
criterion and method of result designation.  

 The one-input, one-output embryo of figure 1 (with 
one modifiable wire Z0) is suitable for the synthesis of 
computational circuits.    

Since the embryonic circuit has one modifiable 
wire, there is one result-producing branch in each 
circuit-constructing program tree.   

The function set, Fccs, for the construction-
continuing subtrees is 

Fccs = {R, SERIES, PSS, PSL, FLIP, NOP, 
NEW_T_GND_0, NEW_T_GND_1, NEW_T_POS_0,  
NEW_T_POS_1, NEW_T_NEG_0, NEW_T_NEG_1, 
PAIR_CONNECT_0, PAIR_CONNECT_1, Q_D_NPN, 
Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11, Q_3_PNP0, ..., 
Q_3_PNP11, Q_POS_COLL_NPN, Q_GND_EMIT_NPN, 
Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP, 
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP} 

The terminal set, Tccs, for the construction-continuing 
subtree is 

Tccs = {END, SAFE_CUT}.   
The function set, Faps, for each arithmetic-performing 

subtree is 
Faps = {+, -}.  
The terminal set, Taps, for each arithmetic-performing 

subtree is 
Taps = {←}. 

← represents random constants from –1.0 to +1.0.   
SPICE's default npn and pnp transistor model 

parameters were used.   
The evaluation of fitness for each individual circuit-

constructing program tree in the population begins with 
its execution.  This execution applies the functions in 
the program tree to the very simple embryonic circuit, 
thereby developing the embryonic circuit into a fully 
developed circuit.  A netlist describing the circuit is 
then created.  The netlist identifies each component of 
the circuit, the nodes to which that component is 
connected, and the value of that component.  The 
circuit is then simulated to determine its behavior.  The 
217,000-line SPICE simulator was modified to run as a 
submodule within the genetic programming system.  
SPICE is a large family of programs written over 
several decades at the University of California at 
Berkeley for the simulation of analog, digital, and 
mixed analog/digital electrical circuits (Quarles et al. 
1994).  The input to a SPICE simulation consists of a 
netlist describing the circuit to be analyzed and certain 
commands that instruct SPICE as to the type of analysis 
to be performed and output to be produced.   

The fitness measure is customized to each particular 
desired computational circuit. For example, for the 
cube root circuit, the target voltage is the cube root of 

the input voltage.  The SPICE simulator is requested to 
perform a DC sweep analysis at 21 equidistant voltages 
between –250 mV and +250 mV for the cube root, 
square, and cube functions (and 0 mV to +500 mV for 
the square root function).  Fitness is the sum, over these 
21 fitness cases, of the absolute weighted deviation 
between the actual value of the voltage that is produced 
by the circuit at the probe point VOUT at  node 5 and 
the target value for voltage. The smaller the value of 
fitness, the better.   

The fitness measure does not penalize output 
voltages that perfectly match the target voltages; it 
slightly penalizes every acceptable deviation from the 
target voltage; and it heavily penalizes every 
unacceptable deviation.  If the output voltage is within 
1% of the target voltage value for a particular fitness 
case, the absolute value of the deviation is weighted by 
1 for that fitness case.  If the output voltage is not 
within 1% of the target voltage value, the deviation is 
weighted by 10 for that fitness case.  This arrangement 
reflects the fact that a deviation of 1% from the ideal 
voltage is acceptable, but greater deviations are not.  

The population size, M, was 640,000. The 
percentage of genetic operations on each generation 
was 89% one-offspring crossovers, 10% reproductions, 
and 1% mutations.  The architecture-altering operations 
were not used on this problem.  Since only one result-
producing branch was used in the embryo for this 
problem, the maximum size, Hrpb, for the result-
producing branch was 600 points.  The other 
parameters for controlling the runs of genetic 
programming were the default values specified in Koza 
1994a (appendix D).  

This problem was run on a medium-grained parallel 
Parsytec computer system consisting of 64 80 MHz 
Power PC 601 processors arranged in a toroidal mesh 
with a host PC Pentium type computer.  The distributed 
genetic algorithm was used.  On each generation, four 
boatloads of emigrants, each consisting of B = 2% (the 
migration rate) of each node's subpopulation (selected 
on the basis of fitness) were dispatched to each of the 
four toroidally adjacent processing nodes.  See Andre 
and Koza 1996 for details.   

4. Results 
4.1. Cube Root Circuit 
The goal here is to evolve an analog electrical circuit 
whose output is the cube root of its input.   

The worst individual program trees from generation 
0 create circuits that are so pathological that SPICE is 
incapable of simulating them.   

The best circuit from generation 0 (figure 5) 
achieves a fitness of 77.7 and has two transistors, no 
diodes, and one resistor (in addition to the source and 
load resistors in the embryo).   Figure 2 compares the 
output produced by the best circuit from generation 0 



 

with the target (i.e., the cube root of the input voltage).   
As can be seen, the output resembles the target only in 
that it has a positive slope.   

Fitness improves as the evolutionary process 
proceeds from generation to generation.  The best 
circuit from generation 17 (figure 6) achieves a fitness 
of 26.7 and has 13 transistors, three diodes, no 
capacitors, and two resistors (in addition to the source 
and load resistors in the embryo).  Figure 3 compares 
the output produced by the best circuit from generation 
17 with the target (i.e., the cube root of the input 
voltage).    

The best circuit from generation 60 (figure 7) 
achieves a fitness of 1.68 and has 36 transistors, two 
diodes, no capacitors, and 12 resistors.  Figure 4 shows 
that the output of this circuit is virtually the same as the 
target (i.e., the cube root of the input).    

4.2. Square Root, Squaring, and 
Cubing Circuits 

The design of several other computational circuits have 
been evolved using genetic programming.  The best-of-
run circuit (figure 8) for the problem of designing a 
square root circuit has 39 transistors, seven diodes, and 
18 resistors.  The best-of-run circuit (figure 9) for the 
problem of designing a squaring circuit has 33 
transistors, five diodes, and one resistor. The best-of-
run circuit (figure 10) for the problem of designing a 
cubing circuit has 30 transistors, five diodes, and 21 
resistors.  

5. Conclusion 
We evolved circuits that perform the cube root, square 
root, square, and cube functions.  

 
Figure 2  Comparison for generation 0.  

 
Figure 3  Comparison for generation 17.   

 
Figure 4  Comparison for generation 60.   

 
Figure 5  Best circuit from generation 0.   

 
Figure 6  Best circuit from generation 17.   



 

 
Figure 7  Best circuit from generation 60.   
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Figure 8  Evolved square root circuit.   



 

 
Figure 9   Evolved squaring circuit.   

 
 

 
Figure 10  Evolved cubing circuit. 
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