
Evolving Sorting Networks using Genetic Programming and
Rapidly Reconfigurable Field-Programmable Gate Arrays

John R. Koza

Computer Science Dept.
Stanford University

Stanford, California 94305-9020
koza@cs.stanford.edu

http://www-cs-
faculty.stanford.edu/~koza/

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
forrest@evolute.com

Jeffrey L. Hutchings
Convergent Design, L.L.C.

3221 E. Hollyhock Hill
Salt Lake City, UT 84121

hutch@Convergent-Design.com

Stephen L. Bade
Convergent Design, L.L.C.

3221 E. Hollyhock Hill
Salt Lake City, UT 84121

Martin A. Keane
Martin Keane Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

David Andre
Computer Science Division

University of California
Berkeley, California

dandre@cs.berkeley.edu

ABSTRACT
This paper describes ongoing work

involving the use of the Xilinx XC6216
rapidly reconfigurable field-
programmable gate array to evolve
sorting networks using genetic
programming. We successfully evolved
a network for sorting seven items that
employs two fewer steps than the
sorting network described in a l962
patent and that has the same number of
steps as the seven-sorter devised by
Floyd and Knuth subsequent to the
patent.

1. Introduction
Genetic programming is an extension of John Holland's
genetic algorithm (1975). In genetic programming, the
population consists of computer programs of varying sizes
and shapes (Koza 1992, 1994a, 1994b; Koza and Rice
1992). Recent work on genetic programming is described
in Kinnear (1994), Angeline and Kinnear (1996), Koza,
Goldberg, Fogel, and Riolo (1996), and Koza et al. (1997).

The dominant component of the computational burden
of solving a problem with the genetic algorithm or genetic
programming is the task of evaluating the fitness for each of
the thousands of individuals in the evolving population for
each of the hundreds of generations in the run. Other tasks,
such as the creation of the initial population and the
execution of the genetic operations (e.g., Darwinian
reproduction, crossover, and mutation) are relatively fast.

Rapidly reconfigurable computing devices (Sanchez and
Tomassini 1996 and Higuchi 1997) open the possiblity of
greatly accelerating the fitness evaluation task of genetic
algorithms by translating each individual of the evolving

population into hardware and then exploiting the
parallelism of the hardware for the fitness evaluation task.

Section 2 describes the minimal sorting network
problem. Section 3 describes rapidly reconfigurable field-
programmable gate arrays and the Xilinx XC6216 chip.
Section 4 outlines the preparatory steps for applying genetic
programming to the problem of evolving a sorting network.
Section 5 outlines the mapping of the fitness evaluation task
for sorting networks onto the chip.

2. Minimal Sorting Networks
A sorting network is an algorithm for sorting items
consisting of a sequence of comparison-exchange
operations that are executed in a fixed order. Figure 1
shows a sorting network for four items.

A 1

A 2

A 3

A 4
Figure 1 Minimal sorting network for 4 items.

The to-be-sorted items, A1, A2, A3, A4, start at the left
on the horizontal lines. A vertical line connecting
horizontal line i and j indicates that items i and j are to be
compared and exchanged, if necessary, so that the larger of
the two is on the bottom. In this figure, the first step causes
A1 and A2 to be exchanged if A2 < A1. This step and the
next three steps cause the largest and smallest items to be
routed down and up, respectively. The fifth step ensures
that the remaining two items end up in the correct order.
The correctly sorted output appears at the right. A five-step
network is known to be minimal for four items.

Even though sorting networks are oblivious to their
inputs in the sense that they always perform the same fixed
sequence of comparison-exchange operations, they are of
considerable practical importance because they are more
efficient for sorting small numbers of items than the well-
known non-oblivious sorting algorithms such as Quicksort.
Thus, there is considerable interest in sorting networks with
a minimum number of comparison-exchange operations.

As the number of items to be sorted increases,
construction of a minimal sorting network becomes
increasingly difficult. There has been a lively search over
the years for smaller sorting networks (Knuth 1973). In U.
S. patent 3,029,413, O'Connor and Nelson (1962) described
sorting networks for 4, 5, 6, 7, and 8 items using 5, 9, 12,
18, and 19 comparison-exchange operations, respectively.

During the l960s, Floyd and Knuth devised a 16-step
seven-sorter and proved it to be the minimal seven-sorter.
They also proved that the four other sorting networks in the
1962 O'Connor and Nelson patent were minimal.

The 16-sorter has received considerable attention. In
1962, Bose and Nelson devised a 65-step sorting network
for 16 items. In 1964, Batcher and Knuth presented a 63-
step 16-sorter. In l969, Shapiro discovered a 62-step 16-
sorter and, in the same year, Green discovered one with 60
steps.

Hillis (1990, 1992) used the genetic algorithm to evolve
16-sorters with 65 and 61 steps – the latter using co-
evolution of a population of sorting networks competing
with a population of fitness cases. In this work, the first 32
steps of Green's 60-step 16-sorter was incorporated as a
fixed beginning for all sorters.

Juille (1995) used an evolutionary algorithm to evolve a
13-sorter with 45 steps thereby improving on the 13-sorter
with 46 steps presented in Knuth (1973). Juille (1997) has
also evolved networks for sorting 14, 15, and 16 items
having the same number of steps (i.e., 51, 56, and 60,
respectively) as reported in Knuth (1973).

Verification of the validity of a network (through
analysis, instead of exhaustive enumeration) grows in
difficulty as the number of items to be sorted increases. A
sorting network can be exhaustively tested for validity by
testing all n! permutations of n distinct numbers. However,
thanks to the "zero-one principle" (Knuth 1973, page 224),
if a sorting network for n items correctly sorts n bits into
non-decreasing order (i.e., all the 0's ahead of all the 1's) for
all 2n sequences of n bits, it necessarily will correctly sort
any set of n distinct numbers into non-decreasing order.
Thus, it is sufficient to test a putative 16-sorter against only
216 = 65,536 combinations of binary inputs, instead of all
16! ~ 2 ∞ 1013 inputs. Nonetheless, in spite of this "zero-
one principle," testing a putative 16-sorter consisting of
around 60 steps on 65,536 different 16-bit input vectors is a
formidable amount of computation when it appears in the
inner loop of a genetic algorithm.

3. Field-Programmable Gate Arrays
and the Xilinx XC6216

A field-programmable gate array (FPGA) is a type of
digital chip that contains a regular two-dimensional array of
thousands of logical function units and a regular network of
interconnection lines for connecting the function units in
which both the functionality of each logical function unit
and the connectivity between the logical function units can
be programmed by the user in the field (rather than at the
chip fabrication factory) (Trimberger 1994).

FPGAs were commercially introduced in the mid 1980s
by Xilinx. They are primarily used to facilitate rapid
prototyping of new electronic products – particularly those
for which time-to-market or low product volume precludes
the fabrication of a custom application-specific integrated
circuit (ASIC). Thus, when first marketed, many new
electronic products contain an FPGA. If the product's sales
volume is sufficient, an ASIC may be used in later versions
of the product after the design has stabilized.

Ignoring the anti-fuse type of FPGA that is irreversibly
programmed by the user in the field by the one-time
application of a high voltage, we focus on the infinitely
reprogrammable type of FPGA where the functionality of
each function unit and the connectivity between the function
units is stored in memory within the device, such as static
random access memory (SRAM).

Engineers working with FPGAs typically employ a
computer-aided design (CAD) tool to design and optimize
their circuits. First, the engineer conceives the design
(which often uses subcircuits from a library). Second, the
engineer's design of the desired circuit is captured by the
CAD tool in the form of Boolean expressions, a schematic
diagram, or a general-purpose high-level description
language such as VLSI Hardware Description Language
(VHDL). Third, a technology mapping converts the
description of the circuit into logical function blocks of the
particular type that are present on the particular FPGA chip
that is to be used. Fourth, the logical function blocks are
placed into particular locations on the FPGA. Fifth, a
routing using the FPGA's limited interconnection resources
is created between the logical function units on the chip.
Sixth, hundreds of thousands of configuration bits (which,
for almost all commercially available FPGAs, are both
highly complex and confidential) are created. Seventh, the
configuration bits are downloaded into the FPGA's memory.

An engineer may spend several days in designing a
circuit and perhaps an hour in entering the design into the
CAD tool (the first two steps above). The CAD tool may
require hours (or, at best, many minutes) to compile a single
design (the next four steps above). The downloading of the
configuration bits for a single design into memory may take
a half a second. For almost all FPGAs, all the configuration
bits must be reloaded if even one bit changes.

Note that all of the above times compare very favorably
with the weeks or months that may be required to produce
an ASIC for a single design (i.e., a time advantage of
around two orders of magnitude).

Once an FPGA is configured, its thousands of logical
function units operate in parallel at the chip's clock rate.

Since the major component of the computational burden
of executing a genetic algorithm is the fitness evaluation
task, the massive parallellism of FPGAs raises the possiblity
that an FPGA could be used to accelerate the fitness
evaluation task. However, this alluring possiblity is
precluded as a practical possiblity for almost all
commercially available FPGAs for several reasons. First,
the technology mapping, placement, and routing tasks
required to map each individual of each generation of the
evolving population onto the chip is complex and consumes

so much time (typically hours or, at best, minutes) as to
preclude practical use of an FPGA in the inner loop of an
genetic algorithm. Second, the serial downloading of the
configuration bits alone consumes so much time (typically
about half a second) as to preclude practical use of an
FPGA in the inner loop of a genetic algorithm. Third, the
encoding scheme for the configuration bits are confidential.

As will be seen below, the new Xilinx XC6200 series of
FPGAs minimizes or eliminates the above obstacles to the
rapid reconfigurability required for a practical run of a
genetic algorithm. If a problem can be successfully mapped
onto this type of FPGA, reconfigurability can be accelerated
by about 6 orders of magnitude – enough to make it
practical for the inner loop of a genetic algorithm.

The Xilinx XC6216 chip contains a 64 ∞ 64 two-
dimensional array of identical cells. Each cell is capable of
performing any two-argument Boolean function (as well as
many useful three-argument Boolean functions) and
contains a flip-flop for storing one bit of information
(Xilinx 1997). The functionality of each of these 4,096
cells is controlled by 24 configuration bits whose meaning
is both straightforward and public.

Each cell can directly receive inputs from its four
neighbors (as well as certain more distant cells). The
interconnection between cells is controlled by additional
configuration bits (also straightforward and public). Finally,
additional configuration bits are used to establish
interconnections between cells and 256 input-output units
located on the periphery of the chip.

Unlike other FPGAs, the 6200 can be randomly
accessed, and the memory containing the configuration bits
is directly memory-mapped onto the address space of the
host processor. Thus, it is possible to change single bits.

Most important, the Xilinx XC6216 FPGA is designed
so that no combination of configuration bits for function
cells can cause internal contention (i.e., conflicting '1' and
'0' signals simultaneously driving a destination) and
potential damage of the chip. Specifically, it is not possible
for two or more signal sources to ever simultaneously drive
a routing line or input node of a function cell. This is
accomplished by obtaining the driving signal for each
routing line and each input node from a multiplexer. Thus,
only a single driving signal can be selected regardless of the
choice of configuration bits. In contrast, in most other
FPGAs, the driving signal is selected by multiple
independently programmable interface points (pips). (Care
must still be taken with the configuration bits that control
the chip's I/O cells because an outside signal connected to
one of the chip's input pins can potentially contend with a
signal generated on the chip).

A PC board containing the XC6216 chip with a PCI
interface and SRAM and supporting tools is available from
Virtual Computer Corporation (www.vcc.com).

Thompson (1996) used a genetic algorithm to evolve a
frequency discriminator on a Xilinx XC6216 reconfigurable
digital gate array operating in analog mode.

4. Preparatory Steps
Before applying genetic programming to a problem, the
user must perform six major preparatory steps, namely (1)
identifying the terminals, (2) identifying the primitive
functions, (3) creating the fitness measure, (4) choosing
control parameters, (5) setting the termination criterion and
method of result designation, and (6) determining the
architecture of the program trees in the population.

For the problem of evolving a sorting network for 16
items, the terminal set, T, is
T = {D1, ..., D16, NOOP}.
Here NOOP is the zero-argument "No Operation" function.

The function set, F, is
F = {COMPARE–EXCHANGE, PROGN2, PROGN3,

PROGN4}.
Note that none of these functions have return values.
Each individual in the population consists of a

constrained syntactic structure composed of primitive
functions from the function set, F, and terminals from the
terminal set, T such that the root of each program tree is a
PROGN2, PROGN3, or PROGN4; each argument to
PROGN2, PROGN3, and PROGN4 must be a NOOP or a
function from F; and both arguments to every COMPARE–
EXCHANGE function must be from T (but not NOOP)

The PROGN2, PROGN3, and PROGN4 functions
respectively evaluate each of their two, three, or four
arguments sequentially.

The two-argument COMPARE–EXCHANGE function
side-effects the current state of the vector of to-be-sorted
bits. The result of executing a (COMPARE–EXCHANGE i
j) is that the bit currently in position i of the vector is
compared with the bit currently in position j of the vector.
If the first bit is greater than the second bit, the two bits are
exchanged. That is, the effect of executing a(COMPARE–
EXCHANGE i j) is that the two bits are sorted into non-
decreasing order. Table 1 shows the two results Ri and Rj
produced by executing a (COMPARE–EXCHANGE i j).
Note that column Ri is the Boolean AND function and
column Rj is the Boolean OR function.
Table 1 The COMPARE–EXCHANGE function.

Two Arguments Two Results
Ai Aj Ri Rj
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1
The fitness of each individual program in the population

is based on the correctness of its sorting of 216 = 65,536
fitness cases consisting of all possible vectors of 16 bits. If,
after an individual program is executed on a particular
fitness case, all the 1's appear after all the 0's), the program
is deemed to have correctly sorted that particular fitness
case.

Because our goal is to evolve small (and preferably
minimal) sorting networks, we ignore exchanges where i = j

and exchanges that are identical to the previous exchange.
Moreover, during the depth-first execution of a program
tree, only the first Cmax = 65 COMPARE–EXCHANGE
functions (i.e., five more steps than in Green's 60-step 16-
sorter) in a program are actually executed (thereby
relegating the remainder of the program to be unused code).

Hits are defined as the number of fitness cases for which
the sort is performed correctly.

The fitness measure for this problem is multi-objective
in that it involves both the correctness and size of the
sorting network. Standardized fitness is defined in a lexical
fashion to be the number of fitness cases (0 to 16 ∞ 216) for
which the sort is performed incorrectly plus 0.01 times the
number (1 to Cmax) of COMPARE–EXCHANGE functions
that are actually executed. For example, the fitness of a 16-
sorter with 60 COMPARE–EXCHANGE functions (such as
Green's) is 0.60 while the fitness of an imperfect network
with 60 COMPARE–EXCHANGE functions that correctly
handles all but 12 fitness cases (out of 16 ∞ 216) is 12.60.
Note that we used tournament selection.

The population size was 1,000. The percentage of
genetic operations on each generation was 89% one-
offspring crossovers, 10% reproductions, and 1% mutations.
The maximum size, Hrpb, for the result-producing branch
was 300 points. The other parameters for controlling the
runs were the default values specified in Koza 1994a
(appendix D). The architecture of the overall program
consisted of one result-producing branch.

5. Mapping the Fitness Evaluation
Task onto the Xilinx XC6216 Chip

The problem of evolving sorting networks was run on a host
PC Pentium type computer containing a Virtual Computer
Corporation "HOT Works" PCI board containing a Xilinx
XC6216 field-programmable gate array. This combination
permits the field-programmable gate array to be
advantageously used for the computationally burdensome
fitness evaluation task while permitting the general-purpose
host computer to perform all the other tasks.

In this arrangement, the host PC begins the run by
creating the initial random population (with the XC6216
waiting). Then, for generation 0 (and each succeeding
generation), the PC creates the necessary configuration bits
to enable the XC6216 to measure the fitness of the first
individual program in the population (with the XC6216
waiting). Thereafter, the XC6216 measures the fitness of
one individual. Note that the PC can simultaneously
prepare the configuration bits for the next individual in the
population and then polling to see if the XC6216 is
finished). After the fitness of all individuals in the current
generation of the population is measured, the genetic
operations (reproduction, crossover, and mutation) are
performed (with the XC6216 waiting). This arrangement is
beneficial because the computational burden of creating the
initial random population and of performing the genetic
operations is small in comparison with the fitness evaluation
task.

The clock rate at which a field-programmable gate array
can be run on a problem is considerably slower than that of
a contemporary serial microprocessor (e.g., Pentium or
PowerPC) that might run a software version of the same
problem. Thus, in order to advantageously use the Xilinx
XC6216 field-programmable gate array for the
computationally burdensome fitness evaluation task, it is
necessary to find a mapping of the fitness evaluation task
onto the XC6216 that exploits at least some of the massive
parallelism of the 4,096 function cells of the XC6216.

Figure 2 shows our placement on 32 horizontal rows and
64 vertical columns of the XC6216 chip of eight major
computational elements (labeled A through H). The figure
does not show that a second such 32 ∞ 64 area operates in
parallel on the chip. The figure also does not show the ring
of input-output blocks (OIBs) that surround the 64 ∞ 64
area of function cells or the physical input-output pins that
connect the chip to the outside.

H G F E
D

CBA

Figure 2 Arrangement of major elements A through H
on a 32 ∞ 64 portion of the Xilinix XC6216 chip.

For a k-sorter (k ≤ 16), a 16-bit counter B (near the
upper left corner of the chip) counts down from 2k - 2 to 0
under control of control logic A (upper left corner). The
vector of k bits resident in counter B on a given time step
represents one fitness case of the sorting network problem.
The vector of bits from counter B is fed into the first
(leftmost) 16 ∞ 1 vertical column of cells of the large 16 ∞
40 area C. Each 16 ∞ 1 vertical column of cells in C (and
each cell in similar area E) corresponds to one COMPARE–
EXCHANGE operation of an individual candidate sorting
network. The vector of 16 bits produced by the 40th
(rightmost) sorting step of area C then proceeds to U-turn
area D and is channeled into the first (rightmost) column of
the large 16 ∞ 40 area E. The final output from area E is
checked by answer logic F for whether the individual
candidate sorting network has correctly rearranged the
original incoming vector of bits so that all the 0s are above
all the 1s. The 16-bit accumulator G is incremented by one
if the bits are correctly sorted. Note that the 16 bits of
accumulator G are sufficient for tallying the number of

correctly sorted fitness cases because the host computer
starts counter B at 2k - 2, thereby skipping the uninteresting
fitness case of consisting of all 1s (which cannot be
incorrectly sorted by any network). The final value of raw
fitness is reported in 16-bit register H after all the 2k - 2
fitness cases have been processed.

The logical function units and interconnection resources
of areas A, B, D, F, G, and H are permanently configured to
handle the sorting network problem for k ≤ 16.

The two large areas, C and E, together represent the
individual candidate sorting network. The configuration of
the logical function units and interconnection resources of
the 1,280 cells in areas C and E become personalized to the
current individual candidate sorting network.

For area C, each cell in a 16 ∞ 1 vertical column is
configured in one of three main ways. First, the logical
function unit of exactly one of the 16 cells is configured as
a two-argument Boolean AND function (corresponding to
result Ri of table 1). Second, the logical function unit of
exactly one other cell is configured as a two-argument
Boolean OR function (corresponding to result Rj of table
1). Bits i and j become sorted into the correct order by
virtue of the fact that the single AND cell in each 16 ∞ 1
vertical column always appears above the single OR cell.
Third, the logical function units of 14 of the 16 cells are
configured as "pass through" cells that horizontally pass
their input from one vertical column to the next.

For area E, each cell in a 16 ∞ 1 vertical column is
configured in one of three similar main ways.

There are four subtypes each of AND and OR cells and
four types of "pass through" cells. Half of these subtypes
are required because all the cells in area E differ in chirality
(handedness) from those in area C in that they receive their
input from their right and deliver output to their left.

If the sorting network has fewer than 80 COMPARE–
EXCHANGE operations, the last few vertical columns of area
E contain 16 "pass through" cells. Note that the genetic
operations are constrained so as to not produce networks
with more than 80 steps.

Within each cell of areas C and E, the one-bit output of
the cell's logical function unit is stored into a flip-flop. The
contents of the 16 flip-flops in one vertical column become
the inputs to the next vertical column on the next time step.

The overall arrangement operates as an 87-stage
pipeline (the 80 stages of areas C and E, the three stages of
answer logic F, and four stages of padding at both ends of C
and E).

Figure 3 shows the bottom six cells of an illustrative
vertical column from area C whose purpose is to implement
a (COMPARE–EXCHANGE 2 5) operation. As can be
seen, cell 2 (second from top of the figure) is configured as
a two-argument Boolean AND function (*) and cell 5 is
configured as a two-argument OR function (+). All the
remaining 14 cells of the vertical column (of which only
four are shown in this abbreviated figure) are "pass
through" cells. These "pass through" cells horizontally
convey the bit in the previous vertical column to the next

vertical column. In addition, each "pass through" cell (3
and 4) that lies between the AND and OR cells (1 and 5) is
configured so that it conveys one signal vertically upwards
and one signal vertically downwards as "fly over" signals.
These "fly overs" of the two intervening "pass through"
cells (3 and 4) enable cell 2's input to be shared with cell 5
and cell 5's input to be shared with cell 2. Specifically, the
input coming into cell 2 horizontally from the previous
vertical column (i.e., from the left in the figure) is
bifurcated so that it feeds both the two-argument AND in
cell 2 and the two-argument OR in cell 5 (and similarly for
the input coming into cell 5).

Notice that when a 1 is received from the previous
vertical column on horizontal row 2 and a 0 is received on
horizontal row 5 (i.e., the two bits are out of order), the
AND of cell 2 and the OR of cell 5 cause a 0 to be emitted
as output on horizontal row 2 and a 1 to be emitted as
output on horizontal row 5 (i.e., the two bits have become
sorted into the correct order).

The remaining "pass through" cells (i.e., cells 1 and 6 in
the figure and cells 7 through 16 in the full 1 ¥ 16 vertical
column) are of a subtype that does not have the "fly over"
capability of the two "intervening" cells (3 and 4). The
design of this subtype prevents possible contention with the
unpredictable signals available from the input-output blocks
(IOBs) that surround the main 64 ¥ 64 area of the chip. All
AND and OR cells are similarly designed since they
necessarily sometimes occur at the top or bottom of a
vertical column.

Figure 3 Implementation of (COMPARE–EXCHANGE 2
5).

Note that the intervening "pass through" cells (cells 3
and 4 in the figure) invert their "fly over" signals. Thus, if
there is an odd number of "pass through" cells intervening
vertically between the AND cells and OR cells, the signals
being conveyed upwards and downwards in a vertical
column will arrive at their destinations in inverted form.

Accordingly, special subtypes of the AND cells and OR
cells reinvert (and thereby correct) such arriving signals.

When the XC6216 begins operation for a particular
individual sorting network, all the 16 ∞ 80 flip-flops in C
and E (as well as the flip-flops in three-stage answer logic F,
the four insulative stages, and the "done bit" flip-flop) are
initialized to zero. Thus, the first 87 output vectors received
by the answer logic F each consist of 16 0's. Since the
answer logic F treats a vector of 16 0's as incorrect,
accumulator G is not incremented for these first 87 vectors.

A "past zero" flip-flop is set when counter B counts
down to 0. As B continues counting, it rolls over to 216 – 1,
and continues counting down. When counter B reaches 216
– 87 (with the "past zero" flip-flop being set), control logic
A stops further incrementation of accumulator G. The raw
fitness from G appears in reporting register H and the "done
bit" flip-flop is set to 1. The host computer polls this "done
bit" to determine that the XC6216 has completed its fitness
evaluation task for the current individual.

The flip-flop toggle rate of the chip (220 MHz) provides
an upper bound on the speed at which a field-programmable
gate array can be run. In practice, the speed at which an
FPGA can be run is determined by the longest routing
delay. The FPGA can be run at 20 MHz for the current
unoptimized version of the design.

The above approach exploits the massive parallelism of
the XC6216 chip in five ways. First, the Boolean AND
functions and OR functions of each COMPARE–EXCHANGE
operation are performed in parallel (in the vertical columns
of areas C and E). Second, numerous operations are
performed in parallel in counter B, accumulator G, control
logic A, and especially in answer logic F. The FPGA
relieves the host computer of performing these operations in
software in serial. Third, most importantly, the 87-step
pipeline (80 steps for areas C and E and 7 steps for areas F
and G) enables 87 fitness cases to be processed in parallel
in the pipeline. Fourth, there are two separate 32 ∞ 64 areas
operating in parallel on the chip. Fifth, the XC6216
evaluates the 2k fitness cases independently of the activity
of the host PC Pentium type computer (which
simultaneously can prepare the next individual for the
XC6216).

6. Results
A 16-step 7-sorter was evolved that has two fewer steps
than the sorting network described in O'Connor and
Nelsons' patent (1962) and that has the same number of
steps as the 7-sorter that was devised by Floyd and Knuth
subsequent to the patent and described in Knuth 1973.

Acknowledgments
Phillip Freidin of Silicon Spice provided invaluable
information concerning FPGAs and helpful comments on
this paper. Stefan Ludwig of DEC and Steve Casselman
and John Schewel of Virtual Computer Corporation
provided helpful assistance concerning operation of the

XC6216. Simon Handley made helpful comments on this
paper.

References
Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors).

1996. Advances in Genetic Programming 2. Cambridge,
MA: The MIT Press.

Higuchi, Tetsuya (editor). 1997. Proceedings of
International Conference on Evolvable Systems: From
Biology to Hardware (ICES-96). Lecture Notes in
Computer Science. Volume --- Berlin: Springer-Verlag.

Hillis, W. Daniel. 1990. Co-evolving parasites improve
simulated evolution as an optimization procedure. In
Forrest, Stephanie (editor). Emergent Computation: Self-
Organizing, Collective, and Cooperative Computing
Networks. Cambridge, MA: The MIT Press.

Hillis, W. Daniel. 1992. Co-evolving parasites improve
simulated evolution as an optimization procedure. In
Langton, Christopher, Taylor, Charles, Farmer, J. Doyne,
and Rasmussen, Steen (editors). Artificial Life II, SFI
Studies in the Sciences of Complexity. Volume X.
Redwood City, CA: Addison-Wesley. Pages 313-324.

Holland, John H. 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan Press.

Juille, Hugues. 1995. Evolution of non-deterministic
incremental algorithms as a new approach for search in
state spaces. In Eshelman, L. J. (editor). Proceedings of
the Sixth International Conference on Genetic Algorithms.
San Francisco, CA: Morgan Kaufmann. 351 – 358.

Juille, Hugues. 1997. Personal communication.
Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic

Programming. Cambridge, MA: MIT Press.
Knuth, Donald E. 1973. The Art of Computer

Programming. Volume 3. Reading, MA: Addison-
Wesley.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT
Press.

Koza, John R. 1994b. Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: MIT Press.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel,
David B., Garzon, Max, Iba, Hitoshi, and Riolo, Rick L.
(editors). 1997. Genetic Programming 1997: Proceedings
of the Second Annual Conference, July 13–16, 1997,
Stanford University. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). 1996. Genetic Programming
1996: Proceedings of the First Annual Conference, July
28-31, 1996, Stanford University. Cambridge, MA: MIT
Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

O'Connor, Daniel G. and Nelson, Raymond J. 1962. Sorting
System with N-Line Sorting Switch. United States Patent
number 3,029,413. Issued April 10, 1962.

Sanchez, Eduardo and Tomassini, Marco (editors). 1996.
Towards Evolvable Hardware. Lecture Notes in
Computer Science, Volume 1062. Berlin: Springer-
Verlag. 76 – 98.

Thompson, Adrian. 1996. Silicon evolution. In Koza, John
R., Goldberg, David E., Fogel, David B., and Riolo, Rick
L. (editors). 1996. Genetic Programming 1996:
Proceedings of the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA: MIT Press.

Trimberger, Stephen M. (Editor) 1994. Field
Programmable Gate Array Technology. Boston, MA:
Kluwer.

Xilinx. 1997. XC6000 Field Programmable Gate Arrays:
Advance Product Information. January 9, 1997. Vers. 1.8.

