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Abstract:  Most practical electrical 
circuits contain modular substructures 
that are repeatedly used to create the 
overall circuit. Genetic programming 
with automatically defined functions and 
the recently developed architecture-
altering operations provides a way to 
build complex structures with reused 
substructures. In this paper, we 
successfully evolved a design for a two-
band crossover (woofer and tweeter) 
filter with a crossover frequency of 2,512 



Hz.   Both the topology and the sizing 
(numerical values) for each component 
of the circuit were evolved during the 
run.  The evolved circuit contained three 
different noteworthy substructures.  One 
substructure was invoked five times 
thereby illustrating reuse. A second 
substructure was invoked with different 
numerical arguments.  This second 
substructure illustrates parameterized 
reuse because different numerical values 
were assigned to the components in the 
different instantiations of the 
substructure.  A third substructure was 
invoked as part of a hierarchy, thereby 
illustrating hierarchical reuse.   

 
1. Introduction 

Computer programs are replete with modular 
substructures that are repeatedly used within the overall program.  

For example, segments of useful 

computer code are typically encapsulated as subroutines and 
then reused.  Moreover, subroutines may be called with different instantiations of 
their formal parameters (dummy variables), thereby creating parameterized reuse.  In 
addition, subroutines may be called hierarchically, thereby creating hierarchical 
reuse.   



Practical electrical circuits are 
replete with modular substructures 
that are repeatedly used 
(sometimes with different 
numerical values) within the overall circuit.  These 
observations suggest that a mechanism for the 

automated design of a complex structure such as an 

electrical circuit should incorporate some 
kind of mechanism to exploit such 
modularities by reuse, 
parameterized reuse, and 
hierarchical reuse.    

2. Genetic Programming 
Genetic programming is an extension of the genetic algorithm described in John 
Holland's pioneering Adaptation in Natural and Artificial Systems (1975).  

The book Genetic Programming: On the Programming of Computers by Means 
of Natural Selection (Koza 1992) provides evidence that genetic programming can 
solve, or approximately solve, a variety of problems. Additional details are in 
Bennett, Koza, Andre, and Keane in this volume.  See also Koza and Rice 1992.  

The book Genetic Programming II: Automatic Discovery of Reusable Programs 
(Koza 1994a, 1994b) describes a way to evolve multi-part programs consisting of a 
main program and one or more reusable, parameterized, hierarchically-called 
subprograms.  Specifically, an automatically defined function (ADF) is a function 
(i.e., subroutine, subprogram, DEFUN, procedure, module) that is dynamically 
evolved during a run of genetic programming and which may be called by a calling 
program (or subprogram) that is concurrently being evolved.  When automatically 
defined functions are being used, a program in the population consists of a hierarchy 
of one (or more) reusable function-defining branches (i.e., automatically defined 
functions) along with a main result-producing branch.  Typically, the automatically 



defined functions possess one or more dummy arguments (formal parameters) and 
are reused with different instantiations of these dummy arguments.  During a run, 
genetic programming evolves different subprograms in the function-defining 
branches of the overall program, different main programs in the result-producing 
branch, different instantiations of the dummy arguments of the automatically defined 
functions in the function-defining branches, and different hierarchical references 
between the branches.   

Genetic programming with automatically defined functions has been shown to be 
capable of solving numerous problems.  More importantly, the evidence so far 
indicates that, for many problems, genetic programming requires less computational 
effort (i.e., fewer fitness evaluations to yield a solution with a satisfactorily high 
probability) with automatically defined functions than without them (provided the 
difficulty of the problem is above a certain relatively low break-even point).  Also, 
genetic programming usually yields solutions with smaller average overall size with 
automatically defined functions than without them (provided, again, that the problem 
is not too simple).  That is, both learning efficiency and parsimony appear to be 
properties of genetic programming with automatically defined functions.   

Moreover, there is also evidence that genetic programming with automatically 
defined functions is scalable.  For several problems for which a progression of 
scaled-up versions was studied, the computational effort increases as a function of 
problem size at a slower rate with automatically defined functions than without 
them.  In addition, the average size of solutions similarly increases as a function of 
problem size at a slower rate with automatically defined functions than without 
them.  This observed scalability results from the profitable reuse of hierarchically-
callable, parameterized subprograms within the overall program.  

When automatically defined functions are being evolved in a run of genetic 
programming, the architecture of the overall program must be determined in some 
way. The specification of the architecture consists of (a) the number of function-
defining branches (i.e., automatically defined functions) in the overall program, (b) 
the number of arguments (if any) possessed by each function-defining branch, and 
(c) if there is more than one function-defining branch, the nature of the hierarchical 
references (if any) allowed between the function-defining branches (and between the 
function-defining branches and the result-producing branch(es).  

The user may supply the specification of this architectural information as a 
preparatory step that occurs prior to executing the run of genetic programming.  
However, it is preferable, in many situations, to automate these architectural 
decisions so that the user is not required to prespecify the architecture.  Recent work 
on genetic programming has demonstrated that it is possible to evolve the 
architecture of an overall program dynamically during a run of genetic programming 
using six recently developed architecture-altering operations, namely branch 
duplication, argument duplication, branch deletion, argument deletion, branch 
creation, and argument creation (Koza 1995).  These architecture-altering operations 
provide an automated way to enable genetic programming to dynamically determine, 
during the run, whether or not to employ function-defining branches, how many 
function-defining branches to employ, and the number of arguments possessed by 
each function-defining branch. The architecture-altering operations and 
automatically defined functions together provide an automated way to decompose a 



problem into a non-prespecified number of subproblems of non-pre-specified 
dimensionality; to solve the subproblems; and to assemble the solutions of the 
subproblems into a solution of the overall problem.   

The six architecture-altering operations are motivated by the naturally occurring 
mechanisms of gene duplication and gene deletion in chromosome strings as 
described in Susumu Ohno's book Evolution by Gene Duplication (1970).  In that 
book, Ohno advanced the thesis that the creation of new proteins (and hence new 
structures and new behaviors in living things) begins with a gene duplication.   

Recent work in the field of genetic programming is described in Kinnear 1994, 
Angeline and Kinnear 1996, Koza, Goldberg, Fogel, and Riolo 1996.  

3. The Problem of Circuit Synthesis 
The problem of circuit synthesis involves designing an electrical circuit that satisfies 
user-specified design goals.  A complete design of an electrical circuit includes both 
its topology and the sizing of all its components.  The topology of a circuit consists 
of the number of components in the circuit, the type of each component, and a list of 
all the connections between the components.  The sizing of a circuit consists of the 
component value(s) of each component.  

Evolvable hardware is one approach to automated circuit synthesis.  Early 
pioneering work in this field includes that of Higuchi, Niwa, Tanaka, Iba, de Garis, 
and Furuya (1993a, 1993b); Hemmi, Mizoguchi, and Shimohara (1994); Mizoguchi, 
Hemmi, and Shimohara (1994); and the work presented at the 1995 workshop on 
evolvable hardware in Lausanne (Sanchez and Tomassini 1996).  

The design of analog circuits and mixed analog-digital circuits has not proved to 
be amenable to automation (Rutenbar 1993).  CMOS operational amplifier (op amp) 
circuits have been designed using a modified version of the genetic algorithm 
(Kruiskamp 1996; Kruiskamp and Leenaerts 1995); however, the topology of each 
op amp was one of 24 topologies based on the conventional human-designed stages 
of an op amp.  Thompson (1996) used a genetic algorithm to evolve a frequency 
discriminator on a Xilinx 6216 reconfigurable processor.  In Gruau's innovative 
cellular encoding technique (1996), genetic programming is used to evolve the 
architecture, weights, thresholds, and biases of neurons in a neural network.   

4. Circuit Synthesis Using Evolution 
Genetic programming can be applied to circuits if a mapping is established 

between the kind of rooted, point-labeled trees with ordered branches used in genetic 
programming and the line-labeled cyclic graphs encountered in the world of circuits.  
Developmental biology provides the motivation for this mapping.   The starting 
point of the growth process used herein is a very simple embryonic electrical circuit.  
The embryonic circuit contains certain fixed parts appropriate to the problem at hand 
and certain wires that are capable of subsequent modification.  An electrical circuit is 
progressively developed by applying the functions in a circuit-constructing program 
tree to the modifiable wires of the embryonic circuit (and, later, to both the 
modifiable wires and other components of the successor circuits).   

These functions manipulate the embryonic circuit (and its successors) so as to 
produce valid electrical circuits at each step.  The functions are divided into four 



categories: (1) connection-modifying functions that modify the topology of the 
circuit (starting with the embryonic circuit), and (2) component-creating functions 
that insert components into the topology of the circuit, (3) arithmetic-performing 
functions that appear in arithmetic-performing subtrees as argument(s) to the 
component-creating functions and specify the numerical value of the component, 
and (4) calls to automatically defined functions.  

Each branch of the program tree is created in accordance with a constrained 
syntactic structure.  Branches are composed from construction-continuing subtree(s) 
that continue the developmental process and arithmetic-performing subtree(s) that 
determine the numerical value of the component.  Connection-modifying functions 
have one or more construction-continuing subtrees, but no arithmetic-performing 
subtrees.  Component-creating functions have one construction-continuing subtree 
and typically have one arithmetic-performing subtree.  Structure-preserving 
crossover with point typing (Koza 1994a). then preserves the constrained syntactic 
structure.  

4.1. The Embryonic Circuit 
The developmental process for converting a program tree into an electrical circuit 
begins with an embryonic circuit. 

The bottom of figure 1 shows an embryonic circuit for a one-input, two-output 
circuit.  The energy source is a 2 volt sinusoidal voltage source VSOURCE whose 
negative (–) end is connected to node 0 (ground) and whose positive (+) end is 
connected to node 1.  There is a source resistor RSOURCE between nodes 1 and 2.  
There is a modifiable wire (i.e., a wire with a writing head) Z0 between nodes 2 and 
3, a second modifiable wire Z1 between nodes 2 and 6, and third modifiable wire 
Z2 between nodes 3 and 6.   There is an isolating wire ZOUT1 between nodes 3 and 
4, a voltage probe labeled VOUT1 at node 4, and a fixed load resistor RLOAD1 
between nodes 4 and ground.  Also, there is an isolating wire ZOUT2 between 
nodes 6 and 5, a voltage probe labeled VOUT2 at node 5, and a load resistor 
RLOAD2 between nodes 5 and ground.   All three resistors are 0.00794 Kilo Ohms.   

All of the above elements of this embryonic circuit (except Z0, Z1, and Z2) are 
fixed forever; they are not subject to modification during the process of developing 
the circuit.  Note that little domain knowledge went into this embryonic circuit.  
Specifically, (1) the embryonic circuit is a circuit, (2) this embryonic circuit has one 
input and two outputs, and (3) there are modifiable connections Z0, Z1, and Z2 
providing full point-to-point connectivity between the one input (node 2) and the 
two outputs VOUT1 and VOUT2 (nodes 4 and 5).   

A circuit is developed by modifying the component to which a writing head is 
pointing in accordance with the associated function in the circuit-constructing 
program tree.  The figure shows L, C, and C functions just below the LIST and 
three writing heads pointing to Z0, Z1, and Z2.  The L, C, and C functions will 
cause Z0, Z1, and Z2 to become an inductor and two capacitors, respectively.  
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Figure 1  One-input, two-output embryonic electrical circuit.   

4.2. Component-Creating Functions 
Each circuit-constructing program tree in the population contains component-
creating functions and connection-modifying functions.  Each component-creating 
function inserts a component into the developing circuit and assigns component 

value(s) to the component.  We use the inductor-creating L 
function and the capacitor-creating C function 
in this paper.  Space here does not permit a 
detailed description of these functions (or the 
functions in the next section). For details, see Bennett, 
Koza, Andre, and Keane (1996) in this volume; Koza, 
Andre, Bennett, and Keane (1996); and Koza, 
Bennett, Andre, and Keane (1996a, 1996b, 
1996c, 1996d).   

4.3. Connection-Modifying Functions 

Each connection-modifying 
function in a circuit-constructing 
program tree modifies the topology 
of the developing circuit.   The 



SERIES function creates a series 
composition; PSS and PSL a 
creates parallel composition; FLIP 
reverses polarity; NOP performs no 
operation; T_GND is a via-to-ground; 
PAIR_CONNECT connects points; 
SAFE_CUT cuts connections; and 
END ends growth.  
 5. Preparatory Steps 
A two-band crossover (woofer and tweeter) filter is a one-input, two-output circuit 
that passes all frequencies below a certain specified frequency to its first output port 
(the woofer) and that passes all higher frequencies to a second output port (the 
tweeter).  Our goal is to design a two-band crossover filter with a crossover 
frequency of 2,512 Hz.  

Before applying genetic programming to circuit synthesis, the user must perform 
seven major preparatory steps, namely (1) identifying the embryonic circuit that is 
suitable for the problem, (2) determining the architecture of the overall circuit-
constructing program trees, (3) identifying the terminals of the to-be-evolved 
programs, (4) identifying the primitive functions contained in the to-be-evolved 
programs, (5) creating the fitness measure, (6) choosing certain control parameters 
(notably population size and the maximum number of generations to be run), and (7) 
determining the termination criterion and method of result designation. 

The one-input, two-output embryo of figure 1 is suitable for this problem.   
Since the embryonic circuit has three writing heads – one associated with each of 

the result-producing branches – there are three result-producing branches (called 
RPB0, RPB1, and RPB2) in each program tree. The number of automatically defined 
functions, if any, will be determined by the evolutionary process using the 
architecture-altering operations.  The automatically defined functions are called 
ADF0, ADF1, ... as they are created.  Each program in the initial population of 
programs (generation 0) has a uniform architecture with three result-producing 
branches and no automatically defined functions.   

The function sets are identical for all three result-producing branches of the 
program trees.  The terminal sets are identical for all three result-producing 
branches.   



For the three result-producing branches, the initial function set, Fccs--rpb-initial, 
for each construction-continuing subtree is 
Fccs--rpb-initial = {L, C, SERIES, PSS, PSL, FLIP, NOP, T_GND_0, T_GND_1, 

PAIR_CONNECT_0, PAIR_CONNECT_1}.  
For the three result-producing branches, the initial terminal set, Tccs-initial, for 

each construction-continuing subtree is 
Tccs-rpb-initial = {END, SAFE_CUT}.   

For the three result-producing branches, the function set, Faps-rpb, for each 
arithmetic-performing subtree is, 
Faps-rpb = {+, -}.   

For the three result-producing branches, the terminal set, Taps-rpb, for each 
arithmetic-performing subtree consists of 
Taps-rpb = {←},  
where ← represents floating-point random constants from –1.0 to +1.0.   

The architecture-altering operations create new function-defining branches 
(automatically defined functions).  The set of potential new functions, Fpotential, is  
Fpotential = {ADF0, ADF1, ...},  
where ADF0, ADF1, ... are automatically defined functions.   

For this problem, the set of potential new terminals, Tpotential, is limited to 
Tpotential = {ARG0},   
where ARG0 is a dummy variable (formal parameter) to an automatically defined 
function.   

For each newly created function-defining branch, the function set, Faps-adf, for 
an arithmetic-performing subtree is,  
Faps-adf =  Faps-rpb = {+, -}. 

For each newly created function-defining branch, the terminal set, Taps-adf, for 
an arithmetic-performing subtree is 
Taps-adf = {←} ≈  Tpotential = {←} ≈  {ARG0}. 

The architecture-altering operations progressively change the function set for the 
construction-continuing subtrees of the three result-producing branches.  After ADF0 
is created,   
Fccs--rpb-0 = Fccs--rpb-initial  ≈  ADF0.  
After ADF1 is created,   
Fccs--rpb-1 = Fccs--rpb-initial  ≈  ADF0 ≈  ADF1, 

and so forth.   
Since hierarchical references are to be permitted among the progressively created 

automatically defined function, the architecture-altering operations progressively 
change the function set for the construction-continuing subtrees of the function-
defining branches.  After ADF0 is created, the function set for the construction-
continuing subtrees of ADF0 is  



Fccs--adf-0 = Fccs--rpb-initial.  
However, after ADF1 is created, the function set for the construction-continuing 
subtrees of ADF1 is  
Fccs--rpb-1 = Fccs--rpb-initial  ≈  ADF0, 

and so forth.  Thus, ADF1 can potentially refer to ADF0 and ADF2 can potentially 
refer to both ADF1 and ADF0.  

The evaluation of fitness for each individual circuit-constructing program tree in 
the population begins with its execution.  This execution applies the functions in the 
program tree to the embryonic circuit, thereby developing the embryonic circuit into 
a fully developed circuit.  A netlist describing the fully developed circuit is then 
created.  The netlist identifies each component of the circuit, the nodes to which that 
component is connected, and the value of that component.  Each circuit is then 
simulated to determine its behavior.  The 217,000-line SPICE  (Simulation Program 
with Integrated Circuit Emphasis) simulation program (Quarles et al. 1994) was 
modified to run as a submodule within the genetic programming system.  

The SPICE simulator is requested to perform an AC small signal analysis and to 
report the circuit's behavior at the two probe points, VOUT1 and VOUT2, for each 
of 101 frequency values chosen from the range between 10 Hz and 100,000 Hz. 
Each decade of frequency is divided into 25 parts (using a logarithmic scale), so 
there are 101 fitness cases for each probe point and a total of 202 fitness cases.   

Fitness is the sum, over the 101 VOUT1 frequency values, of the absolute 
weighted deviation between the actual value of voltage that is produced by the 
circuit at the first probe point VOUT1 and the target value for voltage for that first 
probe point plus the sum, over the 101 VOUT2 frequency values, of the absolute 
weighted deviation between the actual value of voltage that is produced by the 
circuit at the second probe point VOUT2 and the target value for voltage for that 
second probe point.  The smaller the value of fitness, the better.  A fitness of zero 
represents an ideal filter.  Specifically, the standardized fitness is 

F(t) =
i=0

100
∑ [W1 (d1 ( f i ), f i )d1 ( f i ) +   

                W2 (d2 ( f i ), f i )d2 ( f i ) ] 
where f(i) is the frequency (in Hertz) of fitness case i; d1(x) is the difference between 
the target and observed values at frequency x for probe point VOUT1; d2(x) is the 
difference between the target and observed values at frequency x for probe point 
VOUT2; W1(y,x) is the weighting for difference y at frequency x for probe point 
VOUT1; and W2(y,x) is the weighting for difference y at frequency x for VOUT2.  

The fitness measure does not penalize ideal values; it slightly penalizes every 
acceptable deviation; and it heavily penalizes every unacceptable deviation.   

Consider the woofer portion and VOUT1 first.   The procedure for each of the 58 
points in the woofer passband interval from 10 Hz to 1,905 Hz is as follows: If the 
voltage equals the ideal value of 1.0 volts in this interval, the deviation is 0.0.  If the 
voltage is between 970 millivolts and 1,000 millivolts, the absolute value of the 
deviation from 1,000 millivolts is weighted by a factor of 1.0.  If the voltage is less 
than 970 millivolts, the absolute value of the deviation from 1,000 millivolts is 



weighted by a factor of 10.0.  This arrangement reflects the fact that the ideal voltage 
in the passband is 1.0 volt, the fact that a 30 millivolt shortfall satisfies the design 
goals of the problem, and the fact that a voltage below 970 millivolts in the passband 
is not acceptable.   

For the 38 fitness cases representing frequencies of 3,311 and higher for the 
woofer stopband, the procedure is as follows: If the voltage is between 0 millivolts 
and 1 millivolt, the absolute value of the deviation from 0 millivolts is weighted by a 
factor of 1.0.  If the voltage is more than 1 millivolt, the absolute value of the 
deviation from 0 millivolts is weighted by a factor of 10.0.  This arrangement 
reflects the fact that the ideal voltage in the stopband is 0.0 volts, the fact that a 1 
millivolt ripple above 0 millivolts is acceptable, and the fact that a voltage above 1 
millivolt in the stopband is not acceptable.   

For the two fitness cases at 2,089 Hz and 2,291 Hz, the absolute value of the 
deviation from 1,000 millivolts is weighted by a factor of 1.0.  For the fitness case at 
2,512 Hz, the absolute value of the deviation from 500 millivolts is weighted by a 
factor of 1.0. For the two fitness cases at 2,754 Hz and 3,020 Hz, the absolute value 
of the deviation from 0 millivolts is weighted by a factor of 1.0.   

The fitness measure for the tweeter portion is a mirror image (reflected around 
2,512 Hz) of the arrangement for the woofer portion.  

 Many of the circuits that are randomly created in the initial random population 
and many that are created by the crossover and mutation operations are so bizarre 
that they cannot be simulated by SPICE.  Such circuits are assigned a high penalty 
value of fitness (108).   

The population size, M, was 640,000.  The architecture-altering operations are 
used sparingly on each generation.  The percentage of operations on each generation 
after generation 5 was 86.5% one-offspring crossovers; 10% reproductions; 1% 
mutations; 1% branch duplications; 0% argument duplications; 0.5% branch 
deletions; 0.0% argument deletions; 1% branch creations; and 0% argument 
creations.  Since we do not want to waste large amounts of computer time in early 
generations where only a few programs have any automatically functions at all, the 
percentage of operations on each generation before generation 6 was 78.0% one-
offspring crossovers; 10% reproductions; 1% mutations; 5.0% branch duplications; 
0% argument duplications; 1% branch deletions; 0.0% argument deletions; 5.0% 
branch creations; and 0% argument creations.   A maximum size of 200 points was 
established for each of the branches in each overall program.  The other minor 
parameters were the default values in Koza 1994a (appendix D).   

This problem was run on a medium-grained parallel Parsytec computer system 
consisting of 64 80 MHz Power PC 601 processors arranged in a toroidal mesh with 
a host PC Pentium type computer.  The distributed genetic algorithm was used with 
a population size of Q =  10,000 at each of the D = 64 demes.  On each generation, 
four boatloads of emigrants, each consisting of B = 2% (the migration rate) of the 
node's subpopulation (selected on the basis of fitness) were dispatched to each of the 
four toroidally adjacent processing nodes.  See Andre and Koza 1996 for details.  



6. Results 
There are no automatically defined functions in any of the 640,000 individuals of the 
initial random generation.  The best individual program tree of generation 0 has a 
fitness of 410.3 and scores 98 hits (out of 202).  Its first result-producing branch has 
15 points; its second result-producing branch has 103 points; and its third result-
producing branch has 12 points.  Figure 2 shows the behavior of this best-of-
generation circuit from generation 0 in the frequency domain.  As can be seen, the 
intended lowpass (woofer) output VOUT1 has the desired value of 1 volt for low 
frequencies, but then drops off in a leisurely way and reverses and rises to around 
1/2 volt for higher frequencies.  The intended highpass (tweeter) output VOUT2 has 
the desired value of 0 volts for low frequencies but then slowly rises to only about 
1/2 volt.   

Automatically defined functions are created starting in generation 1; however, 
the first pace-setting best-of-generation individual with an automatically defined 
function does not appear until generation 8.  The circuit for the best-of-generation 
individual from generation 8 has a fitness of 108.1 and scores 91 hits).  Its three 
result-producing branches have 187, 7, and 183 points, respectively.  Its one 
automatically defined function, ADF0, has 17 points.  Figure 3 shows the behavior 
of the best-of-generation circuit from generation 8 in the frequency domain.  
Although the general shape of the two curves now resembles that of a crossover 
filter, the rise and fall of the two curves is far too leisurely.    

The best-of-generation circuit from generation 158 has a fitness of 0.107 and 
scores 200 hits (out of 202).   This fitness compares favorably with the fitness of 
0.7807 and 192 hits achieved in a previously reported run of this problem without 
the architecture-altering operations (Koza, Bennett, Andre, and Keane,  1996b). 
Figure 4 shows the behavior of this circuit in the frequency domain.   

 
Figure 2  Frequency domain behavior of best circuit of generation 0.   



 
Figure 3  Frequency domain behavior of best circuit of generation 8.   

 
Figure 4 Frequency domain behavior of best circuit of generation 158.   

Figure 5 shows the best-of-generation circuit from generation 158.  Its three 
result-producing branches have 69, 158, and 127 points, respectively.  This circuit 
has five automatically defined functions with 6, 24, 101, 185, and 196 points, 
respectively.  Boxes indicate the use of ADF2 , ADF3, and ADF4.   

There is an intricate structure of reuse and hierarchical reuse of structures in this 
evolved circuit.  Result-producing branch RPB0 calls ADF3 once; RPB1 calls ADF3 
once; and RPB2 calls ADF4 twice.  ADF0 and ADF1 are not called at all.  ADF2 is 
hierarchically called once by both ADF3 and ADF4.  Note that ADF2 is called a total 
of five times – one time by RPB2 directly, two times by ADF3 (which is called once 
by RPB0 and RPB1), and two times by ADF4 (called twice by RFP2).   

ADF2 has two ports and supplies one unparameterized 259 µH inductor L147.  
Its dummy variable, ARG0, plays no role.  ADF0 and ADF1 are not used.   



 
Figure 5  Best circuit of generation 158.   

Figure 6 shows ADF3 of the best-of-generation circuit from generation 158.   
ADF3 has two ports.    It supplies one unparameterized 5,130 uF capacitor C112.  
ADF3 is interesting in two ways.  First, it has one parameterized capacitor C39 
whose value is determined by ADF3's dummy variable, ARG0.  Second, it has one 
hierarchical reference to ADF2 (which, in turn, supplies one unparameterized 259 
µH inductor).   Thus, the combined effect of ADF3 is to supply two capacitors (one 
of which is parameterized) and one inductor.  

 
Figure 6  Automatically defined function ADF3.   

Figure 7 shows ADF4 of the best-of-generation circuit from generation 158.  
ADF4 has three ports.  It supplies one unparameterized 3,900 uF capacitor C137 and 
one unparameterized 5,010 uF capacitor C149.  ADF4 has one hierarchical reference 
to ADF2 (which, in turn, supplies one unparameterized 259 µH inductor).  Thus, the 
combined effect of ADF4 is to supply two capacitors and one inductor.   

 
Figure 7  Three-ported automatically defined function ADF4.   

An electrical engineer knows that one conventional way to realize a crossover 
filter is to connect a lowpass filter between the input and the first output port and to 



connect a highpass filter between the input and the second output port.   In this neat 
decomposition, the only point of contact between the woofer part of the circuit 
feeding VOUT1 and the tweeter part feeding VOUT2 is the node that provides the 
incoming signal from VSOURCE and RSOURCE.  There is no fitness incentive in 
a run of genetic programming to evolve a circuit that employs a neat decomposition 
of the problem into two disjoint parts.  Figure 8 shows the best-of-generation circuit 
from generation 158 after all components have been substituted in lieu of the 
automatically defined functions.  As can be seen, the evolved circuit is holistic in the 
sense that there are numerous interconnections between the parts feeding VOUT1 
and VOUT2.   

 
Figure 8  Best circuit of generation 158 after substitution.  7. Another 

Example of Reuse of Evolved Substructures Using 
Automatically Defined Functions 

The usefulness of automatically defined functions has been demonstrated in other 
examples of the evolutionary design of electrical circuits.  For example, in Koza, 
Andre, Bennett, and Keane 1996, both the topology and sizing of a fifth order 
elliptic (Cauer) lowpass filter was evolved.   

In one run, the best circuit from generation 0 consisted of one inductor and one 
capacitor in the topology of one rung of the classical ladder.  For a lowpass filter, 
this classical topology (used in Butterworth or Chebychev filters) consists of 
repeated instances of series inductors and vertical shunt capacitors (Van Valkenburg 
1982).   

When electrical engineers design Butterworth or Chebychev filters, additional 
rungs on the ladder (in conjunction with properly chosen numerical values for the 
components) generally improve the level of performance of the filter (at the expense 
of additional power consumption, space, and cost).  As the run continued from 
generation to generation, the best circuit from generation 9 had the classical two-
rung ladder topology.  The two rungs were produced by a twice-called automatically 



defined function that supplied the equivalent of a 154,400 µH inductor as a two-
ported substructure.   The improved behavior of this circuit was a consequence of 
the two rungs of the ladder.   

The best circuit from generation 16 consists a three-rung ladder topology and 
was better than its predecessors.  A thrice-called automatically defined function 
providing a suitable inductance created the three rungs.  The best circuit from 
generation 20 consisted of a four-rung ladder.  An automatically defined function 
providing a suitable inductance created the four rungs of the ladder and was 
responsible for the improved performance.    

The best circuit in generation 31 satisfied all the design requirements of the 
problem.  An automatically defined function constructed a three-ported substructure 
that was used five times.  This genetically evolved 100% compliant circuit is 
especially interesting because it had the topology of an elliptic (Cauer) filter.  The 
circuit had the equivalent of six inductors horizontally across the top of the circuit 
and five vertical shunts.  Each shunt consisted of an inductor and a capacitor.  At the 
time of its invention, the Cauer filter was a significant advance (both theoretically 
and commercially) over the Butterworth and Chebychev filters (Van Valkenburg 
1982).  For example, for one illustrative set of specifications, a fifth-order elliptic 
filter can equal the performance of an eighth order Chebychev filter.  The benefit is 
that the fifth order elliptic filter has one few component than the eighth order 
Chebychev filter.   

The best circuit in generation 35 has a fitness that is about an order of magnitude 
better than that of the best-of-generation individual from generation 31.  This 100% 
compliant circuit exhibits two-fold symmetry involving the repetition of four 
modular substructures. The symmetry of this circuit is a consequence of its 
quadruply-called three-ported automatically defined function.  Two inductors and 
one capacitor form a triangle with the substructure produced by the automatically 
defined function. There is an additional induction element branching away from the 
triangle at one node.   

8. Conclusion 
Genetic programming with automatically defined functions and architecture-altering 
operations successfully evolved a design for a two-band crossover (woofer and 

tweeter) filter with a crossover frequency of 2,512 Hz.  Both the 
topology and the sizing (numerical values) for 
each component of the circuit were evolved 
during the run.  The evolved circuit contained 
three different noteworthy substructures.  One 
substructure was invoked five times thereby 
illustrating reuse. A second substructure was 



invoked with different numerical arguments.  
This second substructure illustrates 
parameterized reuse because different 
numerical values were assigned to the 
components in the different instantiations of 
the substructure.  A third substructure was 
invoked as part of a hierarchy, thereby 
illustrating hierarchical reuse.   
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