
Use of Automatically Defined Functions and Architecture-
Altering Operations in Automated Circuit Synthesis with Genetic

Programming

John R. Koza
Computer Science Dept.

258 Gates Building
Stanford University

Stanford, California 94305
koza@cs.stanford.edu

David Andre
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
andre@flamingo.stanford.ed

u

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
fhb3@slip.net

Martin A. Keane
Econometrics Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

ABSTRACT

This paper demonstrates the usefulness
of automatically defined functions and
architecture-altering operations in
designing analog electrical circuits using
genetic programming.

A design for a lowpass filter is
genetically evolved in which an
automatically defined function is
profitably reused in the 100% compliant
circuit. The symmetric reuse of an evolved
substructure directly enhances the
performance of the circuit. Genetic
programming rediscovered the classical
ladder topology used in Butterworth and
Chebychev filters as well as the more
complex topology used in Cauer (elliptic)
filters.

A design for a double-passband filter is
genetically evolved in which the
architecture-altering operations discover a
suitable program architecture dynamically
during the run. Two automatically defined
functions are profitably reused in the
genetically evolved 100% complaint
circuit.

1. Introduction
Human-designed electrical circuits are replete with
instances of the hierarchical reuse of previously designed
subcircuits. Indeed, design of a large electronic circuit
would be impractical if the human designer had to start
from first principles and rethink the design of each
subcircuit each occasion time it is needed.

The previous paper in this volume – "Automated
WYWIWYG Design of Both the Topology and Component
Values of Electrical Circuits Using Genetic Programming"

– demonstrated that complex structures such as electrical
circuits can be evolved by means of natural selection (Koza,
Bennett, Andre, and Keane 1996).

The regularity, symmetry, and reuse of substructures
found in human-designed electrical circuits suggests that
automatically defined functions might be useful in the
problem domain of circuit synthesis. Accordingly, this
paper explores the usefulness of automatically defined
functions and architecture-altering operations for the
problem of automated circuit synthesis.

Section 2 provides background on automatically defined
functions and the architecture-altering operations. Section 3
describes the design of a lowpass filter in which an
automatically defined function is profitably reused in the
genetically evolved electrical circuit. Section 4 describes
the design of a double-passband filter in which the
architecture-altering operations successfully evolve the
architecture of the solution and in which automatically
defined functions are profitably reused in the genetically
evolved solution.

2. Background
Genetic programming is an extension of John Holland's
genetic algorithm (1975) in which the population consists of
computer programs of varying sizes and shapes (Koza 1992,
Koza and Rice 1992).

The book Genetic Programming II: Automatic
Discovery of Reusable Programs (Koza 1994a, 1994b)
describes how to evolve multi-part programs consisting of a
main program and one or more reusable, parameterized,
hierarchically-called subprograms. This book is based on
the premise that no approach to automated programming is
likely to be successful on non-trivial problems unless it
provides some hierarchical mechanism to exploit, by reuse
and parameterization, the regularities, symmetries,
homogeneities, similarities, patterns, and modularities
inherent in problem environments.

An automatically defined function (ADF) is a function
(subroutine, subprogram, DEFUN, procedure, or module)
that is dynamically evolved during a run of genetic
programming and that may be called by a calling program
(or subprogram) that is concurrently being evolved. When
automatically defined functions are being used, a program

in the population consists of a hierarchy of one (or more)
reusable function-defining branches (i.e., automatically
defined functions) along with a main result-producing
branch. Typically, the automatically defined functions
possess one or more dummy arguments (formal parameters)
and are reused with different instantiations of these dummy
arguments. During a run, genetic programming creates
different subprograms in the function-defining branches of
the overall program, different main programs in the result-
producing branch, different instantiations of the dummy
arguments of the automatically defined functions (function-
defining branches), and different hierarchical references
between the branches.

When automatically defined functions are used, it is
necessary to determine the architecture of the yet-to-be-
evolved programs. The specification of the architecture
consists of (a) the number of function-defining branches in
the overall program, (b) the number of arguments (if any)
possessed by each function-defining branch, and (c) if there
is more than one function-defining branch, the nature of the
hierarchical references (if any) allowed between them.

The architecture-altering operations (Koza 1994c,
1995a) provide one way to automate this architectural
choice so that it can be made dynamically during a run of
genetic programming. The six architecture-altering
operations are motivated by the naturally occurring
mechanisms of gene duplication and gene deletion in
chromosome strings as described in Susumu Ohno's book
Evolution by Gene Duplication (1970). In that book, Ohno
advanced the thesis that the creation of new proteins (and
hence new structures and new behaviors in living things)
begins with a gene duplication.

The potential usefulness of automatically defined
functions and architecture-altering operations have been
previously demonstrated by both proof-of-principle ("toy")
problems and by non-trivial problems. For example, on the
transmembrane segment identification problem (Koza and
Andre 1996), the results produced by using genetic
programming with automatically defined functions and the
architecture-altering operations were competitive with the
human-written algorithm for that problem.

3. Evolving a Lowpass Filter Using
Automatically Defined Functions

A filter is a one-input, one-output circuit that receives a
signal as its input and passes the frequency components of
the incoming signal that lie in a certain specified range (the
passband) while stopping the frequency components of the
signal that lie in other frequency ranges (the stopband).

Consider a circuit synthesis problem in which the design
goal is to design a lowpass filter using inductors and
capacitors with a passband below 1,000 Hertz and a
stopband above 2,000 Hz. The voltages in the filter's
passband are to lie in the narrow range between 970
millivolts and 1 volt (i.e., the permissible passband ripple is
30 millivolts) and the voltages in the stopband are to lie in
the narrow range between 0 volts and 1 millivolt. The
circuit is to be driven from an alternating-current input

signal with a 2 volt amplitude with a source resistance of
1,000 Ohms and a load resistance of 1,000 Ohms.

3.1. Preparatory Steps
This paper assumes that the reader is familiar with the use
of genetic programming in electrical circuit design
described in the previous paper in this volume (Koza,
Bennett, Andre, and Keane 1996).

3.1.1 Embryonic Circuit and Program
Architecture

A one-input, one-output embryonic circuit with two writing
heads is suitable for this problem. Thus, there are two
result-producing branches in each program tree in the
population.

In this section of this paper, we pre-specified that the
common architecture of each individual in the population
would consist of four zero-argument automatically defined
functions and that there would be no hierarchical references
among the automatically defined functions. Consequently,
the architecture of every program tree in the population
throughout the entire run consists of a total of six branches
joined by a LIST function, as shown in figure 1.

RPB1RPB0ADF3ADF2ADF1ADF0

LIST

Figure 1 Program architecture.

3.1.2 Function and Terminal Sets
The function set, Fccs, for each construction-continuing
subtree is
Fccs = {C, L, SERIES, PSS, FLIP, NOP, THGND,

THVIA0, THVIA1, THVIA2, THVIA3,
THVIA4, THVIA5, THVIA6, THVIA7, ADF0,
ADF1, ADF2, ADF3}.

The C, L, SERIES, PSS, FLIP, and NOP functions are
defined in Koza, Bennett, Andre, and Keane (1996).

The eight three-argument "via" functions (called
THVIA0, ..., THVIA7) and the three-argument "ground"
function (called THGND) enable distant parts of a circuit to
be connected together. These functions are similar to the
VIA and the GND functions, except that they each create
three (instead of two) modifiable wires.

ADF0, ADF1, ADF2, and ADF3 are automatically
defined functions.

The terminal set, Tccs, for each construction-continuing
subtree is
Tccs = {END, CUT}.

The zero-argument CUT function causes the highlighted
component to be removed from the circuit. The CUT
function also causes the writing head to be lost.

The function set, Faps, for each arithmetic-performing
subtree is
Faps = {+, -}.

The terminal set, Taps, for each arithmetic-performing
subtree is
Taps = {←},
where ← represents floating-point random constants
between –1.000 and +1.000.

3.1.3 Fitness Measure
The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with its
execution. This execution applies the functions in the
program tree to the embryonic circuit thereby developing
the embryonic circuit into a fully developed circuit. A
netlist describing the circuit is then created. Each circuit is
then simulated to determine its behavior using a version of
the SPICE3 (Quarles et al. 1994) simulator that we modified
to run as a submodule within the genetic programming
system. The SPICE simulator is requested to perform an AC
small signal analysis and to report the circuit's behavior for
each of 101 frequency values chosen over five decades of
frequency (from 1 Hz to 100,000 Hz). Each decade is
divided into 20 parts (on a logarithmic scale).

Fitness is measured in terms of the sum, over these 101
fitness cases, of the absolute weighted deviation between
the actual value of the voltage in the frequency domain that
is produced by the circuit at its output probe point and the
desired voltage at that point. The smaller the fitness, the
better (with a fitness of zero being best).

The fitness measure is constructed so that it does not
penalize ideal values; it slightly penalizes acceptable
deviations; and it heavily penalizes unacceptable deviations.

Specifically, the procedure for each of the 61 points in
the three-decade interval from 1 Hz to 1,000 Hz (i.e., the
desired passband) is as follows: If the voltage at the output
probe point equals the ideal value of 1.0 volts in this
interval, the deviation is 0.0. If the voltage is between 970
millivolts and 1,000 millivolts, the absolute value of the
deviation from 1,000 millivolts is weighted by a factor of
1.0. If the voltage is less than 970 millivolts, the absolute
value of the deviation from 1,000 millivolts is weighted by
a factor of 10.0. This arrangement reflects the fact that the
ideal voltage in the passband is 1.0 volt, the fact that a 30
millivolt shortfall is acceptable, and the fact that a voltage
below 970 millivolts in the passband is not acceptable.

The procedure for each of the 35 points between 2,000
Hz and 100,000 Hz (i.e., the desired stopband) is as follows:
If the voltage is between 0 millivolts (the ideal value) and 1
millivolt, the absolute value of the deviation from 0
millivolts is weighted by a factor of 1.0. If the voltage is
more than 1 millvolt, the absolute value of the deviation
from 0 millivolts is weighted by a factor of 10.0. This
arrangement reflects the fact that the ideal voltage in the
stopband is 0 millivolts, the fact that a 1 millivolt ripple
above 0 millivolts is acceptable, and the fact that a voltage
above 1 millivolt in the stopband is not acceptable.

The deviation is deemed to be zero for each of the 5
points in the interval between 1,000 Hz and 2,000 Hz (i.e.,
the "don't care" band of frequencies).

Hits are defined as the number (from 5 to 101) of fitness
cases for which the voltage is acceptable or ideal or which
lie in the "don't care" band.

3.1.4 Control Parameters
The population size, M, is 640,000. The crossover
percentage is 89% (producing 569,600 offspring), the
reproduction percentage was 10%, and the mutation
percentage was 1%. A maximum size of 300 points was
established for each of the branches in each overall
program. The other minor parameters were the default
values in Koza 1994a (appendix D). The problem was run
on a parallel computer system with a migration rate of B =
2% as described in Koza and Andre 1996.

3.2. Results for the Lowpass Filter
3.2.1 Initial Random Generation
The best circuit from generation 0 has a fitness of 58.6 and
scores 52 hits (out of 101). Figure 3 shows that this best-of-
generation circuit from generation 0 consists of a single
inductor and a single capacitor. The topological
arrangement of these two components is that of the first
rung of a classical ladder. Figure 9 shows the frequency
domain behavior of this best-of-generation circuit from
generation 0.

3.2.2 Emergence of Reuse – A Two-Rung
Ladder

The best circuit from generation 9 (figure 4) has the two-
rung ladder topology. The ladder topology for a lowpass
filter consists of repeated instances of various series
inductors (so named because they run "in series"
horizontally across the top of the figure) and repeated
instances of various vertical shunt capacitors. The classical
Butterworth or Chebychev filters are based on the ladder
topology (Van Valkenburg 1982). Automatically defined
function ADF0 supplies a group of three inductors
(equivalent to one 154,400 µH inductor). Figure 2 shows
this twice-called two-ported substructure developed by
ADF0.

Figure 2 Twice-called two-ported automatically defined
function ADF0 from generation 9.

Figure 10 shows the behavior in the frequency domain
of the best-of-generation circuit from generation 9. Figures
10 – 14 were made with 200 points per decade for greater
detail.

3.2.3 A Thrice-Called Substructure Further
Enhances Performance

The best circuit from generation 16 (figure 5) has a fitness
of 4.1 and scores 90 hits. This circuit has a three-rung
ladder topology. When electrical engineers design

Butterworth or Chebychev filters, additional rungs on the
ladder (in conjunction with properly chosen numerical
values for the components) generally improve the level of
performance of the filter (at the expense of additional power
consumption, space, and cost). Figure 11 shows the
behavior in the frequency domain of the best circuit from
generation 16. ADF0 is used three times in creating this
best circuit of generation 16. Figure 15 shows this thrice-
called automatically defined function.

Figure 15 Thrice-called two-ported automatically
defined function ADF0 from generation 16.

Figure 3 The best circuit from generation 0 is a one-
rung ladder.

Figure 4 The best circuit from generation 9 is a two-
rung ladder.

Figure 5 The best circuit of generation 16 is a three-
rung ladder.

Figure 6 The best circuit of generation 20 is a four-rung
ladder.

Figure 7 The 100% compliant best circuit of generation 31 has the Cauer (elliptic) topology.

Figure 8 The 100% compliant best-of-run circuit from generation 35.

Figure 9 Frequency domain behavior of best circuit of
generation 0.

Figure 10 Frequency domain behavior of best circuit
and generation 9.

9.
Figure 11 Frequency domain behavior of best circuit
from generation 16.

Figure 12 Frequency domain behavior of best circuit
from generation 20.

Figure 13 Frequency domain behavior of best circuit
from generation 31.

Figure 14 Frequency domain behavior of best-of-run
circuit from generation 35.

3.2.4 A Quadruply-Called Substructure Further
Enhances Performance

The best circuit from generation 20 (figure 6) has a fitness
of 2.8 and scores 96 hits. It is a four-rung ladder.

ADF0 (figure 16) is used four times.

Figure 16 Quadruply-called two-ported automatically
defined function ADF0 from generation 20.

Figure 12 shows the behavior in the frequency domain
of the best circuit from generation 20. The enhanced
performance of this circuit is the consequence of the
additional repeated calls to ADF0. Note that in figures 10 –
12, there is ripple in the passband, but none in the stopband
(i.e., these circuits exhibit a Chebychev-like response).

3.2.5 Emergence of the Elliptic Topology
Further Enhances Performance

The best circuit in generation 31 (figure 7) has a fitness of
0.0850 and scores 101 hits (i.e., is 100% compliant). This
individual has 41 points in its RPB0 and 7 points in its
RPB1; it has 52, 297, 22, and 2 points in ADF0, ADF1,
ADF2, and ADF3, respectively. Figure 13 shows its
behavior in the frequency domain.

Automatically defined function ADF0 is interesting
because it constructs a three-ported substructure. This ADF0
(figure 17) is used five times in the best circuit from
generation 31.

Figure 17 Quintuply-called three-ported automatically
defined function ADF0 from generation 31.

This genetically evolved 100% compliant circuit is
especially interesting because it has the topology of an
elliptic (Cauer) filter.

After all of the pairs and triplets of inductors are
consolidated, it can be seen that the circuit has the
equivalent of six inductors horizontally across the top of the
circuit and five vertical shunts. Each shunt consists of an
inductor and a capacitor (e.g., L34 and C18 appear in the
first shunt). This is the topology of the elliptic invented by
Cauer.

1
2

3 4ADF0

DEFUN

NOP

V1

L

SERIES

THVIA3C

ENDV5 FLIP

FLIP

PSS

PSS PSS

END END

END

LIST

NOP

V4V3

SERIES

L PSS

V2 L

END

END END

END END END C

END END

PSS FLIP ADF0FLIP

ADF0ADF0FLIP

ADF0

END END END END END

END END END

5
6

7

8
9

10
11

12 13 14
15

16

17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50
51

52 53 54 55
Figure 18 Best-of-run individual from generation 35.

The Cauer filter was a significant advance (both
theoretically and commercially) over the Butterworth and
Chebychev filters. For example, for one illustrative set of
specifications, a fifth-order elliptic filter could equal the
performance of 17th order Butterworth filter or an eighth
order Chebychev filter. The eighth order Chebychev filter
has one more component than the fifth order elliptic filter.
As Van Valkenburg (1982, page 379) explains:

"Cauer first used his new theory in solving a
filter problem for the German telephone industry.
His new design achieved specifications with one
less inductor than had ever been done before. The
world first learned of the Cauer method not
through scholarly publication but through a patent
disclosure, which eventually reached the Bell
Laboratories. Legend has it that the entire
Mathematics Department of Bell Laboratories
spent the next two weeks at the New York Public
library studying elliptic functions. Cauer had
studied mathematics under Hilbert at Goettingen,
and so elliptic functions and their applications were
familiar to him."

Thus, this run of genetic programming illustrates the
rediscovery of the ladder topology used in Butterworth and
Chebychev filters as well as the more complex topology
used in elliptic (Cauer) filters.

3.2.6 An Even Better Circuit
The best circuit in generation 35 (figure 8) has a fitness of
0.00752 (i.e., about an order of magnitude better than that
of the best-of-generation individual from generation 31) and
is also 100% compliant (i.e., scores 101 hits).

Only ADF0 is referenced by the result-producing
branches.

Figure 14 shows the "brick wall" behavior in the
frequency domain of this best-of-run best circuit from
generation 35.

Notice this circuit's two-fold symmetry involving the
repetition of a total of four modular substructures. The
symmetry of the best-of-run circuit from generation 35 is a
consequence of its quadruply-called three-ported
automatically defined function, ADF0 (figure 19). Two
inductors (L52 and L34) and one capacitor (C51) form a
triangle. There is an additional induction element
(specifically, a series composition of three inductors, L43,
L42, and L23) branching away from the triangle at the node
where inductors L52 and L34 meet.

Figure 19 Quadruply-called three-ported automatically
defined function ADF0 of best-of-run circuit from
generation 35.

Figure 18 presents the best-of-run individual from
generation 35 as a rooted, point-labeled tree with ordered
branches. Note that ADF0 is invoked at points 34, 43, 44,
and 51 of the figure. Since ADF0 is the only function-
defining branch that is actually referenced by either result-
producing branch, the three unreferenced function-defining
branches (ADF1, ADF2, and ADF3) are represented by the
filled circles labeled 3, 4, and 5. The complete arithmetic-
performing subtrees are not shown, but, instead, are
abbreviated as V1 through V5.

4. Evolving a Double-Bandpass Filter
Using Architecture-Altering
Operations

In the previous section, the user pre-specified the number of
automatically defined functions as one of the preparatory
steps for the run of genetic programming. In this section,
the architecture-altering operations will be used to evolve
the program architecture dynamically during the run.

The goal is to design a double-bandpass filter using
inductors and capacitors as primitive components.
Specifically, the goal is to design a double-bandpass filter
whose first passband starts at 1,000 Hz and ends at 2,000
Hz, whose second passband starts at 1,000,000 Hz and ends
at 2,000,000 Hz, and whose passband and stopband ripple
are that of an elliptic filter (as detailed below).

The regularity inherent in a filter with two passbands
suggests that automatically defined functions may
potentially be useful for this design problem.

4.1. Preparatory Steps
4.1.1 Embryonic Circuit and Program

Architecture
A one-input, one-output embryonic circuit with one writing
head is suitable for this problem. Since the embroyonic
circuit has one writing head, each program in the initial
population of programs has one result-producing branch.
Since we did not use the operation of branch creation on
this problem, each program tree in the initial random
population at generation 0 also has one one-argument
automatically defined function. Thus, each program tree at
generation 0 starts with a uniform architecture consisting of
a LIST function joining ADF0 and the result-producing
branch, RPB. The number of automatically defined
functions in the eventual solution will be determined
dynamically, during the run, using the architecture-altering
operations of branch duplication and branch deletion. Thus,
starting with generation 1 of each run, the population
becomes architecturally diverse.

4.1.2 Function and Terminal Sets
For any branch, the function set, Fccs, for each
construction-continuing subtree is
Fccs = {ADF0, C, L, SERIES, PSS, FLIP, NOP, THGND,

THVIA0, THVIA1, THVIA2, THVIA3, THVIA4,
THVIA5, THVIA6, THVIA7}.

Here ADF0 is the first automatically defined function.
The terminal set, Tccs-rpb, for each construction-

continuing subtree in the result-producing branch is
Tccs-rpb = {END, CUT}.

The terminal set, Tccs-adf, for each construction-
continuing subtree in any function-defining branch is
Tccs-adf = {ARG0, END, CUT}.

Since architecture-altering operations can create
automatically defined functions, the set of potential new
functions, Fpotential, is
Fpotential = {ADF1, ADF2, ADF3, ADF4}.

The function set, Faps, for an arithmetic-performing
subtree in any branch and the terminal set, Taps, for an
arithmetic-performing subtree in any branch are the same as
in the previous section of this paper.

4.1.3 Fitness Measure
The SPICE simulator is requested to perform an AC small
signal analysis and to report the circuit's behavior for each
of 176 frequency values chosen over seven decades of
frequency (from 10 Hz to 100,000,000 Hertz). Each decade
is divided into 25 parts (using a logarithmic scale).

Fitness is measured in terms of the sum, over these 176
fitness cases, of the absolute weighted deviation between
the actual value of the voltage that is produced by the circuit
at the output probe point and the target value for voltage.

The frequency range is divided into two passbands,
three stopbands, and four "don't care" regions.

The procedure for each of the 8 points in each of the two
passbands (a total of 16 points) is as follows: If the voltage

is between 960 millivolts and 1,000 millivolts (the ideal
value), the absolute value of the deviation from 1,000
millivolts is weighted by a factor of 1.0. If the voltage is
less than 960 millivolts, the absolute value of the deviation
from 1,000 millivolts is weighted by a factor of 10.0.

The procedure for each of the 120 points in the three
stopbands is as follows: If the voltage is between 0
millivolts (the ideal value) and 40 millivolts, the absolute
value of the deviation from 0 millivolts is weighted by a
factor of 1.0. If the voltage is more than 40 millivolts, the
absolute value of the deviation from 0 millivolts is weighted
by a factor of 10.0.

There are 10 "don't care" points just before each
passband and 10 "don't care" points just after each
passband. The deviation is deemed to be zero for each of
the 40 points in these four "don't care" bands.

Hits are defined as the number (between 40 and 176) of
fitness cases for which the voltage is acceptable or ideal or
that lie in one of the "don't care" bands.

4.1.4 Parameters
The control parameters were the same as in the previous
section, except for the following:

(1) The architecture-altering operations are intended to
be used sparingly on each generation. The percentage of
operations on each generation after generation 5 was 87.5%
one-offspring crossovers; 10% reproductions; 1%
mutations; 1% branch duplications; 0% argument
duplications; 0.5% branch deletions; 0% argument
deletions; 0% branch creations; and 0% argument creations.
Since we do not want to waste large amounts of computer
time in early generations where only a few programs have
any automatically functions, the percentage of operations on
each generation before generation 6 was 82.0% one-
offspring crossovers; 11% reproductions; 1% mutations;
5.0% branch duplications; 0% argument duplications; 1%
branch deletions; 0% argument deletions; 0.0% branch
creations; and 0% argument creations.

(2) The maximum number of automatically defined
functions is five.

(3) The number of arguments for each automatically
defined function is one.

(4) In randomly choosing functions during the creation
of the initial random population, the C, L, SERIES, PSS,
FLIP, NOP, THGND, and ADF0 functions were each
assigned a relative weight of 8, while each of the eight
THVIA functions were assigned a relative weight of 1.

4.2. Results for Double-Bandpass Filter Using
Architecture-Altering Operations

This run illustrates the progressive addition of function-
defining branches and references to them.

The best circuit from generation 0 has a fitness of 720.3
and scores 54 hits; however, the result-producing branch of
the program tree does not reference its 45-point
automatically defined function ADF0.

In generation 2, the first best-of-generation individual
with a referenced automatically defined function appears
(with a fitness of 697.3 and 58 hits).

The first best-of-generation individual with two
automatically defined functions appears in generation 22
(with a fitness of 184.7 and 110 hits); however, there are no
references to either automatically defined function.

In generation 29, the first best-of-generation individual
with two referenced automatically defined functions
appears (with a fitness of 105.4 and 128 hits).

The first circuit scoring a full 176 hits is produced in
generation 82 (with a fitness of 0.731).

A 100% complaint best-of-run individual emerged at
generation 89 with four automatically defined functions.
This individual has a fitness of 0.549 and scores 176 hits.
The result-producing branch has 296 points and the
function-defining branches have 82, 71, 64, and 82 points,
respectively. ADF0 is called four times; ADF1 is called
once; ADF2 is ignored; and ADF3 is called twice.

Figure 23 shows the best-of-run circuit from generation
89. Note that L79, C78, and L66 are superfluous. Boxes
are used to indicate the parts of the overall circuit that are
developed by the automatically defined functions. The
letters, A, B, C, and D indicate the interface points at which
the substructure specified by each automatically defined
function connects to the remainder of the circuit.

Figure 20 shows the three-ported substructure developed
from ADF0 at each of the four places in the result-
producing branch where ADF0 is invoked. The figure
shows ADF0's three ports (A, B, and C) indicating the
interface points at which this substructure developed from
ADF0 connects to the remainder of the circuit.

Figure 20 Three-ported quadruply-called ADF0 from
generation 89.

Figure 21 shows the three-ported substructure developed
from ADF1. ADF1 is invoked once.

Figure 21 Three-ported ADF1 from generation 89.

Figure 22 shows the four-ported substructure developed
from ADF3 at each of the two places in the result-producing
branch where ADF3 is invoked. The figure shows ADF3's
four ports (A, B, C, and D) indicating the interface points
at which this substructure developed from ADF3 connects
to the remainder of the circuit.

 The insertion process for automatically defined
functions (even those with no arguments) is context-
sensitive. For example, in figure 23, the substructures
developed by the two invocations of ADF3 are different.
Specifically, one invocation employs ports A, B, and C (of
figure 22) while the other employs ports A, B, and D. This
difference was caused by parts of the overall program tree
outside ADF3.

Figure 22 Four-ported twice-called ADF3 from
generation 89.

Figure 24 shows the behavior in the frequency domain
of the best-of-run circuit from generation 89. All 136
fitness cases that are not part of the "don't care" bands
satisfy the design goals of this problem. Notice that the two
small non-monotonic spikes lie in the "don't care" bands.

5. Conclusions
This paper demonstrates the usefulness of automatically
defined functions and the architecture-altering operations in
runs of genetic programming in which electrical circuits are
being designed.

Acknowledgments
Simon Handley made helpful comments on drafts of this
paper.

Bibliography
Andre, David and Koza, John R. 1996. Parallel genetic

programming: A scalable implementation using the
transputer architecture. In Angeline, Peter J. and Kinnear,
Kenneth E. Jr. (editors). Advances in Genetic
Programming 2. Cambridge, MA: MIT Press.

Holland, John H. 1975. Adaptation in Natural and
Artificial System. Ann Arbor, MI: University of Michigan
Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT
Press.

Koza, John R. 1994b. Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: MIT Press.

Koza, John R. 1994c. Architecture-Altering Operations for
Evolving the Architecture of a Multi-Part Program in
Genetic Programming. Stanford University Computer
Science Department technical report STAN-CS-TR-94-
1528. October 21, 1994.

Koza, John R. 1995. Evolving the architecture of a multi-
part program in genetic programming using architecture-

altering operations. In McDonnell, John R., Reynolds,
Robert G., and Fogel, David B. (editors). 1995.
Evolutionary Programming IV: Proceedings of the
Fourth Annual Conference on Evolutionary
Programming. Cambridge, MA: MIT Press. Pages 695–
717.

Koza, John R. and Andre, David. 1996. Classifying
protein segments as transmembrane domains using
architecture-altering operations in genetic programming.
In Angeline, Peter J. and Kinnear, Kenneth E. Jr.
(editors). 1996. Advances in Genetic Programming 2.
Cambridge, MA: MIT Press. In Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1996. Automated WYWIWYG
design of both the topology and component values of
analog electrical circuits using genetic programming. In

Koza, John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). Genetic Programming 1996:
Proceedings of the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA: MIT Press.
In this volume.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

Ohno, Susumu. 1970. Evolution by Gene Duplication. New
York: Springer-Verlag.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and
Sangiovanni-Vincentelli, A. 1994. SPICE 3 Version 3F5
User's Manual. Department of Electrical Engineering
and Computer Science, University of California,
Berkeley, California. March 1994.

Van Valkenburg, M. E. 1982. Analog Filter Design. Fort
Worth, TX: Harcourt Brace Jovanovich.

Figure 23 Best-of-run circuit from generation 89.

Figure 24 Frequency domain behavior of the best-of-run circuit from generation 89.

