

SURVEY OF GENETIC ALGORITHMS AND GENETIC PROGRAMMING

John R. Koza
Computer Science Department

Margaret Jacks Hall
Stanford University

Stanford, California 94305
 Koza@CS.Stanford.Edu 415-941-0336
http://www-cs-faculty.stanford.edu/~koza/

ABSTRACT
This paper provides an introduction to genetic
algorithms and genetic programming and lists sources
of additional information, including books and
conferences as well as e-mail lists and software that is
available over the Internet.

1. GENETIC ALGORITHMS
John Holland's pioneering book Adaptation in Natural and
Artificial Systems (1975, 1992) showed how the evolutionary
process can be applied to solve a wide variety of problems using
a highly parallel technique that is now called the genetic
algorithm.

The genetic algorithm (GA) transforms a population (set) of
individual objects, each with an associated fitness value, into a
new generation of the population using the Darwinian principle
of reproduction and survival of the fittest and analogs of
naturally occurring genetic operations such as crossover (sexual
recombination) and mutation.

Each individual in the population represents a possible
solution to a given problem. The genetic algorithm attempts to
find a very good (or best) solution to the problem by genetically
breeding the population of individuals over a series of
generations.

Before applying the genetic algorithm to the problem, the
user designs an artificial chromosome of a certain fixed size and
then defines a mapping (encoding) between the points in the
search space of the problem and instances of the artificial
chromosome. For example, in applying the genetic algorithm to
a multidimensional optimization problem (where the goal is to
find the global optimum of an unknown multidimensional
function), the artificial chromosome may be a linear character
string (modeled directly after the linear string of information
found in DNA). A specific location (a gene) along this artificial
chromosome is associated with each of the variables of the
problem. Character(s) appearing at a particular location along
the chromosome denote the value of a particular variable (i.e.,
the gene value or allele). Each individual in the population has a
fitness value (which, for a multidimensional optimization
problem, is the value of the unknown function). The genetic
algorithm then manipulates a population of such artificial
chromosomes (usually starting from a randomly-created initial
population of strings) using the operations of reproduction,
crossover, and mutation. Individuals are probabilistically
selected to participate in these genetic operations based on their
fitness. The goal of the genetic algorithm in a multidimensional
optimization problem is to find an artificial chromosome which,
when decoded and mapped back into the search space of the

problem, corresponds to a globally optimum (or near-optimum)
point in the original search space of the problem.

In preparing to use the conventional genetic algorithm
operating on fixed-length character strings to solve a problem,
the user must

(1) determine the representation scheme,
(2) determine the fitness measure,
(3) determine the parameters and variables for controlling
the algorithm, and
(4) determine a way of designating the result and a criterion
for terminating a run.
In the conventional genetic algorithm, the individuals in the

population are usually fixed-length character strings patterned
after chromosome strings. Thus, specification of the
representation scheme in the conventional genetic algorithm
starts with a selection of the string length L and the alphabet size
K. Often the alphabet is binary, so K equals 2. The most
important part of the representation scheme is the mapping that
expresses each possible point in the search space of the problem
as a fixed-length character string (i.e., as a chromosome) and
each chromosome as a point in the search space of the problem.
Selecting a representation scheme that facilitates solution of the
problem by the genetic algorithm often requires considerable
insight into the problem and good judgment.

The evolutionary process is driven by the fitness measure.
The fitness measure assigns a fitness value to each possible
fixed-length character string in the population.

The primary parameters for controlling the genetic algorithm
are the population size, M, and the maximum number of
generations to be run, G. Populations can consist of hundreds,
thousands, tens of thousands or more individuals. There can be
dozens, hundreds, thousands, or more generations in a run of the
genetic algorithm.

Each run of the genetic algorithm requires specification of a
termination criterion for deciding when to terminate a run and a
method of result designation. One frequently used method of
result designation for a run of the genetic algorithm is to
designate the best individual obtained in any generation of the
population during the run (i.e., the best-so-far individual) as the
result of the run.

Once the four preparatory steps for setting up the genetic
algorithm have been completed, the genetic algorithm can be
run.

The evolutionary process described above indicates how a
globally optimum combination of alleles (gene values) within a
fixed-size chromosome can be evolved.

The three steps in executing the genetic algorithm operating
on fixed-length character strings are as follows:

 (1) Randomly create an initial population of individual fixed-
length character strings.
(2) Iteratively perform the following substeps on the
population of strings until the termination criterion has been
satisfied:
(A) Assign a fitness value to each individual in the

population using the fitness measure.
(C) Create a new population of strings by applying the

following three genetic operations. The genetic
operations are applied to individual string(s) in the
population chosen with a probability based on fitness.
(i) Reproduce an existing individual string by copying

it into the new population.
(ii) Create two new strings from two existing strings by

genetically recombining substrings using the
crossover operation (described below) at a
randomly chosen crossover point.

(iii) Create a new string from an existing string by
randomly mutating the character at one randomly
chosen position in the string.

(3) The string that is identified by the method of result
designation (e.g., the best-so-far individual) is designated as
the result of the genetic algorithm for the run. This result
may represent a solution (or an approximate solution) to the
problem.
The genetic operation of reproduction is based on the

Darwinian principle of reproduction and survival of the fittest.
In the reproduction operation, an individual is probabilistically
selected from the population based on its fitness (with
reselection allowed) and then the individual is copied, without
change, into the next generation of the population. The selection
is done in such a way that the better an individual's fitness, the
more likely it is to be selected. An important aspect of this
probabilistic selection is that every individual, however poor its
fitness, has some probability of selection.

The genetic operation of crossover (sexual recombination)
allows new individuals (i.e., new points in the search space) to
be created and tested. The operation of crossover starts with two
parents independently selected probabilistically from the
population based on their fitness (with reselection allowed). As
before, the selection is done in such a way that the better an
individual's fitness, the more likely it is to be selected. The
crossover operation produces two offspring. Each offspring
contains some genetic material from each of its parents.

Suppose that the crossover operation is to be applied to the
two parental strings 10110 and 01101 of length L = 5 over an
alphabet of size K = 2. The crossover operation begins by
randomly selecting a number between 1 and L–1 using a
uniform probability distribution. Suppose that the third
interstitial location is selected. This location becomes the
crossover point. Each parent is then split at this crossover point
into a crossover fragment and a remainder. The crossover
operation then recombines remainder 1 (i.e., – – – 1 0) with
crossover fragment 2 (i.e., 011 – –) to create offspring 2 (i.e.,
01110). The crossover operation similarly recombines
remainder 2 (i.e., – – – 01) with crossover fragment 1 (i.e., 101 –
–) to create offspring 1 (i.e., 10101).

The operation of mutation allows new individuals to be
created. It begins by selecting an individual from the population
based on its fitness (with reselection allowed). A point along the
string is selected at random and the character at that point is

randomly changed. The altered individual is then copied into
the next generation of the population. Mutation is used very
sparingly in genetic algorithm work.

The genetic algorithm works in a domain-independent way
on the fixed-length character strings in the population. The
genetic algorithm searches the space of possible character
strings in an attempt to find high-fitness strings. The fitness
landscape may be very rugged and nonlinear. To guide this
search, the genetic algorithm uses only the numerical fitness
values associated with the explicitly tested strings in the
population. Regardless of the particular problem domain, the
genetic algorithm carries out its search by performing the same
disarmingly simple operations of copying, recombining, and
occasionally randomly mutating the strings.

In practice, the genetic algorithm is surprisingly rapid in
effectively searching complex, highly nonlinear,
multidimensional search spaces. This is all the more surprising
because the genetic algorithm does not know anything about the
problem domain or the internal workings of the fitness measure
being used.
1.1 Sources of Additional Information
David Goldberg's Genetic Algorithms in Search, Optimization,
and Machine Learning (1989) is the leading textbook and best
single source of additional information about the field of genetic
algorithms.

Additional information on genetic algorithms can be found
in Davis (1987, 1991), Michalewicz (1992), and Buckles and
Petry (1992). The proceedings of the International Conference
on Genetic Algorithms provide an overview of research activity
in the genetic algorithms field. See Eshelman (1995), Forrest
(1993), Belew and Booker (1991), Schaffer (1989), and
Grefenstette (1985, 1987).

Also see the proceedings of the IEEE International
Conference on Evolutionary Computation {IEEE 1994, 1995).
The proceedings of the Foundations of Genetic Algorithms
workshops cover theoretical aspects of the field. See Whitley
and Vose (1995), Whitley (1992), and Rawlins (1991).

Fogel and Atmar (1992, 1993), Sebald and Fogel (1994), and
Sebald and Fogel (1995) emphasizes recent work on
evolutionary programming (EP).

The proceedings of the Parallel Problem Solving from
Nature conferences emphasize work on evolution strategies
(ES). See Schwefel and Maenner (1991), Maenner and
Manderick (1992), and Davidor, Schwefel, and Maenner (1994).

Stender (1993) describes parallelization of genetic
algorithms. Also see Koza and Andre 1995. Davidor (1992)
describes application of genetic algorithms to robotics. Schaffer
and Whitley (1992) and Albrecht, Reeves, and Steele (1993)
describe work on combinations of genetic algorithms and neural
networks. Forrest (1991) describes application of genetic
classifier systems to semantic nets.

Additional information about genetic algorithms may be
obtained from the GA-LIST electronic mailing list to which you
may subscribe, at no charge, by sending a subscription request to
GA-List-Request@AIC.NRL.NAVY.MIL. Issues of the
GA-LIST provide instructions for accessing the genetic
algorithms archive, which contains software that may be
obtained over the Internet. The archive may be accessed over
the World Wide Web at
http://www.aic.nrl.navy.mil/galist/ or through
anonymous ftp at ftp.aic.nrl.navy.mil (192.26.18.68)
in /pub/galist.

2. GENETIC PROGRAMMING
Genetic programming is an attempt to deal with one of the
central questions in computer science (posed by Arthur Samuel
in 1959), namely

How can computers learn to solve problems without
being explicitly programmed? In other words, how can
computers be made to do what needs to be done, without
being told exactly how to do it?
All computer programs – whether they are written in

FORTRAN, PASCAL, C, assembly code, or any other
programming language – can be viewed as a sequence of
applications of functions (operations) to arguments (values).
Compilers use this fact by first internally translating a given
program into a parse tree and then converting the parse tree into
the more elementary assembly code instructions that actually run
on the computer. However this important commonality
underlying all computer programs is usually obscured by the
large variety of different types of statements, operations,
instructions, syntactic constructions, and grammatical
restrictions found in most popular programming languages.

Any computer program can be graphically depicted as a
rooted point-labeled tree with ordered branches.

Genetic programming is an extension of the conventional
genetic algorithm in which each individual in the population is a
computer program.

The search space in genetic programming is the space of all
possible computer programs composed of functions and
terminals appropriate to the problem domain. The functions
may be standard arithmetic operations, standard programming
operations, standard mathematical functions, logical functions,
or domain-specific functions.

The book Genetic Programming: On the Programming of
Computers by Means of Natural Selection (Koza 1992)
demonstrated a result that many found surprising and
counterintuitive, namely that an automatic, domain-independent
method can genetically breed computer programs capable of
solving, or approximately solving, a wide variety of problems
from a wide variety of fields.

In applying genetic programming to a problem, there are five
major preparatory steps. These five steps involve determining

(1) the set of terminals,
(2) the set of primitive functions,
(3) the fitness measure,
(4) the parameters for controlling the run, and
(5) the method for designating a result and the criterion for
terminating a run.
The first major step in preparing to use genetic programming

is to identify the set of terminals. The terminals can be viewed
as the inputs to the as-yet-undiscovered computer program. The
set of terminals (along with the set of functions) are the
ingredients from which genetic programming attempts to
construct a computer program to solve, or approximately solve,
the problem.

The second major step in preparing to use genetic
programming is to identify the set of functions that are to be
used to generate the mathematical expression that attempts to fit
the given finite sample of data.

Each computer program (i.e., mathematical expression, LISP
S-expression, parse tree) is a composition of functions from the
function set F and terminals from the terminal set T.

Each of the functions in the function set should be able to
accept, as its arguments, any value and data type that may
possibly be returned by any function in the function set and any
value and data type that may possibly be assumed by any
terminal in the terminal set. That is, the function set and
terminal set selected should have the closure property.

These first two major steps correspond to the step of
specifying the representation scheme for the conventional
genetic algorithm. The remaining three major steps for genetic
programming correspond to the last three major preparatory
steps for the conventional genetic algorithm.

In genetic programming, populations of hundreds,
thousands, or millions of computer programs are genetically
bred. This breeding is done using the Darwinian principle of
survival and reproduction of the fittest along with a genetic
crossover operation appropriate for mating computer programs.
A computer program that solves (or approximately solves) a
given problem often emerges from this combination of
Darwinian natural selection and genetic operations.

Genetic programming starts with an initial population
(generation 0) of randomly generated computer programs
composed of functions and terminals appropriate to the problem
domain. The creation of this initial random population is, in
effect, a blind random search of the search space of the problem
represented as computer programs.

Each individual computer program in the population is
measured in terms of how well it performs in the particular
problem environment. This measure is called the fitness
measure. The nature of the fitness measure varies with the
problem.

For many problems, fitness is naturally measured by the
error produced by the computer program. The closer this error
is to zero, the better the computer program. In a problem of
optimal control, the fitness of a computer program may be the
amount of time (or fuel, or money, etc.) it takes to bring the
system to a desired target state. The smaller the amount of time
(or fuel, or money, etc.), the better. If one is trying to recognize
patterns or classify examples, the fitness of a particular program
may be measured by some combination of the number of
instances handled correctly (i.e., true positive and true
negatives) and the number of instances handled incorrectly (i.e.,
false positives and false negatives). Correlation is often used as
a fitness measure. On the other hand, if one is trying to find a
good randomizer, the fitness of a given computer program might
be measured by means of entropy, satisfaction of the gap test,
satisfaction of the run test, or some combination of these factors.
For electronic circuit design problems, the fitness measure may
involve a convolution. For some problems, it may be
appropriate to use a multiobjective fitness measure incorporating
a combination of factors such as correctness, parsimony
(smallness of the evolved program), or efficiency (of execution).

Typically, each computer program in the population is run
over a number of different fitness cases so that its fitness is
measured as a sum or an average over a variety of representative
different situations. These fitness cases sometimes represent a
sampling of different values of an independent variable or a
sampling of different initial conditions of a system. For
example, the fitness of an individual computer program in the
population may be measured in terms of the sum of the absolute
value of the differences between the output produced by the
program and the correct answer to the problem (i.e., the
Minkowski distance) or the square root of the sum of the

 squares (i.e., Euclidean distance). These sums are taken over a
sampling of different inputs (fitness cases) to the program. The
fitness cases may be chosen at random or may be chosen in
some structured way (e.g., at regular intervals or over a regular
grid). It is also common for fitness cases to represent initial
conditions of a system (as in a control problem). In economic
forecasting problems, the fitness cases may be the daily closing
price of some financial instrument.

The computer programs in generation 0 of a run of genetic
programming will almost always have exceedingly poor fitness.
Nonetheless, some individuals in the population will turn out to
be somewhat more fit than others. These differences in
performance are then exploited.

The Darwinian principle of reproduction and survival of the
fittest and the genetic operation of crossover are used to create a
new offspring population of individual computer programs from
the current population of programs.

The reproduction operation involves selecting a computer
program from the current population of programs based on fit-
ness (i.e., the better the fitness, the more likely the individual is
to be selected) and allowing it to survive by copying it into the
new population.

The crossover operation is used to create new offspring
computer programs from two parental programs selected based
on fitness. The parental programs in genetic programming are
typically of different sizes and shapes. The offspring programs
are composed of subexpressions (subtrees, subprograms,
subroutines, building blocks) from their parents. These
offspring programs are typically of different sizes and shapes
than their parents.

The mutation operation may also be used in genetic
programming.

After the genetic operations are performed on the current
population, the population of offspring (i.e., the new generation)
replaces the old population (i.e., the old generation). Each
individual in the new population of programs is then measured
for fitness, and the process is repeated over many generations.

At each stage of this highly parallel, locally controlled,
decentralized process, the state of the process will consist only
of the current population of individuals.

The force driving this process consists only of the observed
fitness of the individuals in the current population in grappling
with the problem environment.

As will be seen, this algorithm will produce populations of
programs which, over many generations, tend to exhibit
increasing average fitness in dealing with their environment. In
addition, these populations of computer programs can rapidly
and effectively adapt to changes in the environment.

The best individual appearing in any generation of a run (i.e.,
the best-so-far individual) is typically designated as the result
produced by the run of genetic programming.

The hierarchical character of the computer programs that are
produced is an important feature of genetic programming. The
results of genetic programming are inherently hierarchical. In
many cases the results produced by genetic programming are
default hierarchies, prioritized hierarchies of tasks, or
hierarchies in which one behavior subsumes or suppresses
another.

The dynamic variability of the computer programs that are
developed along the way to a solution is also an important
feature of genetic programming. It is often difficult and

unnatural to try to specify or restrict the size and shape of the
eventual solution in advance. Moreover, advance specification
or restriction of the size and shape of the solution to a problem
narrows the window by which the system views the world and
might well preclude finding the solution to the problem at all.

Another important feature of genetic programming is the
absence or relatively minor role of preprocessing of inputs and
postprocessing of outputs. The inputs, intermediate results, and
outputs are typically expressed directly in terms of the natural
terminology of the problem domain. The programs produced by
genetic programming consist of functions that are natural for the
problem domain. The postprocessing of the output of a
program, if any, is done by a wrapper (output interface).

Finally, another important feature of genetic programming is
that the structures undergoing adaptation in genetic
programming are active. They are not passive encodings (i.e.,
chromosomes) of the solution to the problem. Instead, given a
computer on which to run, the structures in genetic
programming are active structures that are capable of being
executed in their current form.

The genetic crossover (sexual recombination) operation
operates on two parental computer programs selected with a
probability based on fitness and produces two new offspring
programs consisting of parts of each parent.

For example, consider the following computer program
(presented here as a LISP S-expression):
(+ (* 0.234 Z) (- X 0.789)),
which we would ordinarily write as

0.234 Z + X – 0.789.
This program takes two inputs (X and Z) and produces a floating
point output.

Also, consider a second program:
(* (* Z Y) (+ Y (* 0.314 Z))).

Suppose that the crossover points are the * in the first parent
and the + in the second parent. These two crossover fragments
correspond to the underlined sub-programs (sub-lists) in the two
parental computer programs.

The two offspring resulting from crossover are as follows:
(+ (+ Y (* 0.314 Z)) (- X 0.789))
(* (* Z Y) (* 0.234 Z)).

Thus, crossover creates new computer programs using parts
of existing parental programs. Because entire sub-trees are
swapped, the crossover operation always produces syntactically
and semantically valid programs as offspring regardless of the
choice of the two crossover points. Because programs are
selected to participate in the crossover operation with a
probability based on fitness, crossover allocates future trials to
regions of the search space whose programs contains parts from
promising programs.

The videotape Genetic Programming: The Movie (Koza and
Rice 1992) provides a visualization of the genetic programming
process and of solutions to various problems.
2.2 Automatically Defined Functions
I believe that no approach to automated programming is likely to
be successful on non-trivial problems unless it provides some
hierarchical mechanism to exploit, by reuse and
parameterization, the regularities, symmetries, homogeneities,
similarities, patterns, and modularities inherent in problem
environments. Subroutines do this in ordinary computer
programs.

 Accordingly, Genetic Programming II: Automatic Discovery
of Reusable Programs (Koza 1994) describes how to evolve
multi-part programs consisting of a main program and one or
more reusable, parameterized, hierarchically-called subprograms
(called automatically defined functions or ADFs). A
visualization of the solution to numerous example problems
using automatically defined functions can be found in the
videotape Genetic Programming II Videotape: The Next
Generation (Koza 1994).

Automatically defined functions can be implemented within
the context of genetic programming by establishing a
constrained syntactic structure for the individual programs in the
population. Each multi-part program in the population contains
one (or more) function-defining branches and one (or more)
main result-producing branches. The result-producing branch
usually has the ability to call one or more of the automatically
defined functions. A function-defining branch may have the
ability to refer hierarchically to other already-defined
automatically defined functions.

Genetic programming evolves a population of programs,
each consisting of an automatically defined function in the
function-defining branch and a result-producing branch. The
structures of both the function-defining branches and the result-
producing branch are determined by the combined effect, over
many generations, of the selective pressure exerted by the fitness
measure and by the effects of the operations of Darwinian
fitness-based reproduction and crossover. The function defined
by the function-defining branch is available for use by the result-
producing branch. Whether or not the defined function will be
actually called is not predetermined, but instead, determined by
the evolutionary process.

Since each individual program in the population of this
example consists of function-defining branch(es) and result-
producing branch(es), the initial random generation must be
created so that every individual program in the population has
this particular constrained syntactic structure. Since a
constrained syntactic structure is involved, crossover must be
performed so as to preserve this syntactic structure in all
offspring.

Genetic programming with automatically defined functions
has been shown to be capable of solving numerous problems
(Koza 1994a). More importantly, the evidence so far indicates
that, for many problems, genetic programming requires less
computational effort (i.e., fewer fitness evaluations to yield a
solution with, say, a 99% probability) with automatically
defined functions than without them (provided the difficulty of
the problem is above a certain relatively low break-even point).

Also, genetic programming usually yields solutions with
smaller average overall size with automatically defined
functions than without them (provided, again, that the problem
is not too simple). That is, both learning efficiency and
parsimony appear to be properties of genetic programming with
automatically defined functions.

Moreover, there is evidence that genetic programming with
automatically defined functions is scalable. For several
problems for which a progression of scaled-up versions was
studied, the computational effort increases as a function of
problem size at a slower rate with automatically defined
functions than without them. Also, the average size of solutions
similarly increases as a function of problem size at a slower rate
with automatically defined functions than without them. This
observed scalability results from the profitable reuse of

hierarchically-callable, parameterized subprograms within the
overall program.

When single-part programs are involved, genetic
programming automatically determines the size and shape of the
solution (i.e., the size and shape of the program tree) as well as
the sequence of work-performing primitive functions that can
solve the problem. However, when multi-part programs and
automatically defined functions are being used, the question
arises as to how to determine the architecture of the programs
that are being evolved. The architecture of a multi-part program
consists of the number of function-defining branches
(automatically defined functions) and the number of arguments
(if any) possessed by each function-defining branch.
2.3 Evolutionary Selection of Architecture
One technique for creating the architecture of the overall
program for solving a problem during the course of a run of
genetic programming is to evolutionarily select the architecture
dynamically during a run of genetic programming. This
technique is described in chapters 21 – 25 of Genetic
Programming II : Automatic Discovery of Reusable Programs
(Koza 1994a). The technique of evolutionary selection starts
with an architecturally diverse initial random population. As the
evolutionary process proceeds, individuals with certain
architectures may prove to be more fit than others at solving the
problem. The more fit architectures will tend to prosper, while
the less fit architectures will tend to wither away.

The architecturally diverse populations used with the
technique of evolutionary selection require a modification of
both the method of creating the initial random population and
the two-offspring subtree-swapping crossover operation
previously used in genetic programming. Specifically, the
architecturally diverse population is created at generation 0 so as
to contain randomly-created representatives of a broad range of
different architectures. Structure-preserving crossover with
point typing is a one-offspring crossover operation that permits
robust recombination while guaranteeing that any pair of
architecturally different parents will produce syntactically and
semantically valid offspring.
2.4 Architecture-Altering Operations

A second technique for creating the architecture of the
overall program for solving a problem during the course of a run
of genetic programming is to evolve the architecture using
architecture-altering (Koza 1995).
2.8 Sources of Additional Information
In addition to the author's books (Koza 1992, 1994) and
accompanying videotapes (Koza and Rice 1992, Koza 1994), the
first Advances in Genetic Programming book (Kinnear 1994)
and the upcoming second book in this series (Angeline and
Kinnear 1996) contain about two dozen articles each on various
applications and aspects of genetic programming.

In addition to the conferences mentioned in the earlier
section on genetic algorithms, the conferences of artificial life
{Brooks and Maes 1994) and simulation of adaptive behavior
(Cliff et al. 1994) and have articles on genetic programming.

Additional information about genetic programming may be
obtained from the GP-LIST electronic mailing list to which you
may subscribe, at no charge, by sending a subscription request to
genetic-programming-request@cs.stanford.edu.

Information about obtaining software in C, C++, LISP, and
other programming languages for genetic programming,
information about upcoming conferences, and links to various

 researchers in the genetic programming field may be accessed
over the World Wide Web at http://www-cs-
faculty.stanford.edu/~koza/. There will be a first

conference on genetic programming at Stanford on July 28-31,
1996.

3. REFERENCES
Albrecht, R. F., C. R. Reeves, and N. C. Steele. 1993. Artificial Neural Nets and Genetic Algorithms. Springer-Verlag.
Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advances in Genetic Programming. Cambridge, MA: The MIT

Press.
Belew, R. and L. Booker (editors) 1991. Proceedings of the Fourth International Conference on Genetic Algorithms. San

Mateo, CA: Morgan Kaufmann.
Brooks, Rodney and Maes, Pattie (editors). 1994. Artificial Life IV: Proceedings of the Fourth International Workshop on the

Synthesis and Simulation of Living Systems. Cambridge, MA: The MIT Press.
Buckles, B. P. and F. E. Petry. 1992. Genetic Algorithms. Los Alamitos, CA: The IEEE Computer Society Press.
Cliff, Dave, Husbands, Philip, Meyer, Jean-Arcady, and Wilson, Stewart W. (editors). 1994. From Animals to Animats 3

Proceedings of the Third International Conference on Simulation of Adaptive Behavior. Cambridge, MA: The MIT Press.
Davidor, Yuval. 1991. Genetic Algorithms and Robotics. Singapore: World Scientific.
Davidor, Yuval, Schwefel, Hans-Paul, and Maenner, Reinhard (editors). 1994. Parallel Problem Solving from Nature - PPSN III.

Berlin: Springer-Verlag.
Davis, Lawrence (editor) 1987 Genetic Algorithms and Simulated Annealing. London: Pittman.
Davis, Lawrence 1991. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.
Eshelman, Larry J. (editor). 1995. Proceedings of the Sixth International Conference on Genetic Algorithms. San Francisco, CA:

Morgan Kaufmann Publishers.
Fogel, David B. and W. Atmar (editors). 1992. Proceedings of the First Annual Conference on Evolutionary Programming. San

Diego, CA: Evolutionary Programming Society .
Fogel, David B. 1993. and W. Atmar, Eds., Proceedings of the Second Annual Conference on Evolutionary Programming. San

Diego, CA: Evolutionary Programming Society.
Forrest, Stephanie. 1991. Parallelism and Programming in Classifier Systems. London: Pittman.
Forrest, Stephanie. 1993. Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo, CA: Morgan

Kaufmann Publishers Inc.
Goldberg, David E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison-Wesley.
Grefenstette, John J. (editor). 1985. Proceedings of an International Conference on Genetic Algorithms and Their Applications.

Hillsdale, NJ: Lawrence Erlbaum Associates.
Grefenstette, John J. (editor). 1987. Genetic Algorithms and Their Applications: Proceedings of the Second International

Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum Associates.
Holland, John H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press. Second

Edition available as Cambridge, MA: The MIT Press 1992.
IEEE. 1994. Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE Press.
IEEE. 1995. Proceedings of the Second IEEE Conference on Evolutionary Computation. IEEE Press.
Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming. Cambridge, MA: MIT Press.
Koza, John R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge,

MA: The MIT Press.
Koza, John R. 1994a. Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge, MA: The MIT Press.
Koza, John R. 1994b. Genetic Programming II Videotape: The Next Generation. Cambridge, MA: MIT Press.
Koza, John R. 1995. Gene duplication to enable genetic programming to concurrently evolve both the architecture and work-

performing steps of a computer program. Proceedings of the 14th International Joint Conference on Artificial Intelligence.
San Francisco, CA: Morgan Kaufmann.

Koza, John R. and Andre, David. 1995. Parallel Genetic Programming on a Network of Transputers. Stanford University
Computer Science Department technical report STAN-CS-TR-95-1542. January 30, 1995.

Koza, John R., and Rice, James P. 1992.Genetic Programming: The Movie. Cambridge, MA: MIT Press.
Maenner, R. , and B. Manderick (editors). 1992. Proceedings of the Second International Conference on Parallel Problem

Solving from Nature. North Holland.
Michalewicz, Z. 1992. Genetic Algorithms + Data Structures = Evolution Programs. Berlin: Springer-Verlag.
Rawlins, G. (editor) 1991. Foundations of Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers Inc.
Samuel, Arthur L. 1959. Some studies in machine learning using the game of checkers. IBM Journal of Research and

Development. 3(3): 210–229.
Schaffer, J. D. and D. Whitley (editors). 1992. Proceedings of the Workshop on Combinations of Genetic Algorithms and Neural

Networks 1992. Los Alamitos, CA: The IEEE Computer Society Press.
Schwefel, Hans-Paul, and Maenner, Reinhard (editors). 1991. Parallel Problem Solving from Nature. Berlin: Springer-Verlag.

 Sebald, A. V. and Fogel, L. J. (editors). 1994. Proceedings of the Third Annual Conference on Evolutionary Programming.
River Edge, NJ: World Scientific.

Sebald, A. V. and Fogel, L. J. (editors). 1995. Proceedings of the Fourth Annual Conference on Evolutionary Programming.
Cambridge, MA: The MIT Press.

Stender, J., Ed. Parallel Genetic Algorithms. IOS Publishing.
Whitley, Darrell (editor) 1992. Foundations of Genetic Algorithms and Classifier Systems 2, Vail, Colorado 1992. San Mateo,

CA: Morgan Kaufmann Publishers Inc.
Whitley, Darrell and Vose, Michael (editors). 1995. Proceedings of Third Workshop on the Foundations of Genetic Algorithms.

San Mateo, CA: Morgan Kaufmann Publishers Inc.

