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Abstract:  This paper describes six new architecture-altering operations 
that provide a way to dynamically determine the architecture of a multi-
part program during a run of genetic programming. The new operations 
are patterned after the naturally occurring operations of gene duplication 
and gene deletion and are motivated by Ohno's provocative book 
Evolution by Means of Gene Duplication. The new operations are branch 
duplication, argument duplication, branch creation, argument creation, 
branch deletion, and argument deletion. These operations dynamically 
change the architecture of various programs during a run of genetic 
programming. The new operations can also be interpreted as providing 
an automated way to specialize and generalize programs. The paper 
demonstrates that problems can be solved while the architecture is being 
evolved.  

1  INTRODUCTION 

In nature, sexual recombination ordinarily recombines a part of the 
chromosome of one parent with a corresponding (homologous) part of 
the second parent's chromosome. However, in certain very rare and 
unpredictable instances, this recombination does not occur in the usual 
way. A gene duplication is an illegitimate recombination event that 
results in the duplication of a lengthy subsequence of a single 
chromosome. Susumu Ohno's seminal 1970 book Evolution by Gene 
Duplication proposed the provocative thesis that the creation of new 
proteins (and hence new organized structures and behaviors) begins with 
a gene duplication and that gene duplication is "the major force of 
evolution." 

This paper describes six new architecture-altering genetic operations for 
genetic programming that are suggested by the mechanism of gene 
duplication (and the complementary mechanism of gene deletion) in 
chromosomes.  

This paper proposes that these new operations be added to the toolkit 
of genetic programming when the user desires to evolve the architecture 
of a multi-part program containing automatically defined functions.  



The six new architecture-altering operations can be viewed from five 
perspectives.  

First, the new architecture-altering operations provide a new way to 
solve the problem of determining the architecture of the overall program 
in the context of genetic programming with automatically defined 
functions. 

Second, the new architecture-altering operations provide an automatic 
implementation of the ability to specialize and generalize in the context of 
automated problem-solving. 

Third, the new architecture-altering operations automatically and 
dynamically change the representation of the problem while 
simultaneously and automatically solving the problem. 

Fourth, the new architecture-altering operations automatically and 
dynamically decompose problems into subproblems and then 
automatically solve the overall problem by assembling the solutions of 
the subproblems into a solution of the overall problem. 

Fifth, the new architecture-altering operations automatically and 
dynamically discover useful subspaces (usually of lower dimensionality 
than that of the overall problem) and then automatically assemble a 
solution of the overall problem from solutions applicable to the 
individual subspaces. 

Section 2 of this paper describes the naturally occurring processes of 
gene duplication and gene deletion. Section 3 provides basic background 
information on genetic programming, automatically defined functions, 
and the five existing methods for determining the architecture of multi-
part programs when automatically defined functions are being used. 
Section 4 describes the six new architecture-altering operations. Section 5 
demonstrates that problems can be solved while the architecture is being 
evolved by showing examples of actual runs of genetic programming 
with the new operations.  

2  GENE DUPLICATION AND DELETION IN NATURE 

Gene duplications are rare and unpredictable events in the evolution of 
genomic sequences. In gene duplication, there is a duplication of a 
lengthy portion of the linear string of nucleiotide bases of the DNA in the 
living cell. When a sequence of bases that code for a particular protein is 
duplicated in the DNA, there are two identical ways of manufacturing the 
same protein. Thus, there is no immediate change in the proteins that are 
manufactured by the living cell as a result of a gene duplication.  

Over time, however, some other genetic operation, such as mutation or 
crossover, may change one or the other of the two identical genes. Over 
short periods of time, the changes accumulating in the gene may be of no 
practical effect or value. As long as one of the two genes remains 
unchanged, the original protein manufactured from the unchanged gene 
continues to be manufactured and the structure and behavior of the 
organism involved may continue as before. The changed gene is simply 
carried along in the DNA from generation to generation.  



Natural selection exerts a powerful force in favor of maintaining a gene 
that encodes for the manufacture of a protein that is important for the 
survival and successful performance of the organism. But, after a gene 
duplication has occurred, there is no disadvantage associated with the 
loss of the second way of manufacturing the original protein. 
Consequently, natural selection usually exerts little or no pressure to 
maintain a second way of manufacturing a particular protein. The second 
gene may accumulate additional changes and diverge more and more 
from the original gene. Eventually the modified gene may lead to the 
manufacture of a distinctly new and different protein that actually does 
affect the organism's structure and behavior in some advantageous or 
disadvantageous way. When a changed gene leads to the manufacture of 
a viable and advantageous new protein, natural selection again starts to 
work to preserve that new gene.  

Ohno's Evolution by Gene Duplication (1970) corrects the mistaken notion 
that natural selection is a mechanism for promoting change. Instead, 
Ohno emphasizes the essentially conservative role of natural selection in 
the evolutionary process: 

"...the true character of natural selection ... is not so much an 
advocator or mediator of heritable changes, but rather it is an 
extremely efficient policeman which conserves the vital base 
sequence of each gene contained in the genome. As long as one vital 
function is assigned to a single gene locus within the genome, 
natural selection effectively forbids the perpetuation of mutation 
affecting the active sites of a molecule."  (Emphasis in original).  

Ohno further claims that simple point mutation and crossover are 
insufficient to explain major evolutionary changes.  

"...while allelic changes at already existing gene loci suffice for racial 
differentiation within species as well as for adaptive radiation from 
an immediate ancestor, they cannot account for large changes in 
evolution, because large changes are made possible by the 
acquisition of new gene loci with previously non-existent functions." 

Ohno continues, 

"Only by the accumulation of forbidden mutations at the active sites 
can the gene locus change its basic character and become a new gene 
locus. An escape from the ruthless pressure of natural selection is 
provided by the mechanism of gene duplication. By duplication, a 
redundant copy of a locus is created. Natural selection often ignores 
such a redundant copy, and, while being ignored, it accumulates 
formerly forbidden mutations and is reborn as a new gene locus 
with a hitherto non-existent function."   (Emphasis in original).  

 
Ohno concludes, 



"Thus, gene duplication emerges as the major force of evolution."   

Ohno's provocative thesis is supported by the discovery of pairs of 
proteins with similar sequences of DNA and similar sequences of amino 
acids, but distinctly different functions. Examples include trypsin and 
chymotrypsin; the protein of microtubules and actin of the skeletal 
muscle;  myoglobin and the monomeric hemoglobin of hagfish and 
lamprey;  myoglobin used for storing oxygen in muscle cells and the 
subunits of hemoglobin in red blood cells of vertebrates;  and the light 
and heavy immunoglobin chains.  

In gene deletion, there is a deletion of a portion of the linear string of 
nucleiotide bases that would otherwise be translated and manufactured 
into work-performing proteins in the living cell.  

3  BACKGROUND ON GENETIC PROGRAMMING 

Genetic programming is capable of evolving computer programs that 
solve, or approximately solve, various problems as demonstrated in the 
book Genetic Programming: On the Programming of Computers by Means of 
Natural Selection (Koza 1992). See also Koza and Rice 1992.  

Many problem environments have regularities, symmetries, 
homogeneities, similarities, patterns, and modularities that can be 
exploited in solving the problem. An automatically defined function is a 
function (i.e., subroutine, DEFUN, procedure, module) that is dynamically 
evolved during a run of genetic programming and which may be called 
by a calling program (e.g., a main program) that is simultaneously being 
evolved. Automatically defined functions can be implemented within the 
context of genetic programming as described in the book Genetic 
Programming II: Automatic Discovery of Reusable Programs (Koza 1994a, 
1994b).  

Figure 1 shows an overall program consisting of one two-argument 
automatically defined function and one result-producing branch.  

Before applying genetic programming to a problem, it is first necessary 
to perform at least five major preparatory steps. These steps involve 
determining (1) the set of terminals for each branch, (2) the set of 
functions for each branch, (3) the fitness measure, (4) the parameters for 
controlling the run, and (5) the result designation method and 
termination criterion.  

In addition, when automatically defined functions are used, it is also 
necessary to perform a sixth major preparatory step concerning the 
architecture of the yet-to-be-evolved overall programs. This sixth step 
involves determining:  

(a) the number of function-defining branches in the overall program,  
(b) the number of arguments possessed by each function-defining 

branch, and 
(c) if there is more than one function-defining branch, the nature of 

the hierarchical references (if any) allowed between the function-
defining branches.  
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Figure 1:  An overall computer program with one two-argument 
automatically defined function and one result-producing branch.  The left 
branch beneath the PROGN contains the name of the automatically defined 
function (ADF0), its argument list (ARG0 and ARG1), and its work-
performing body (everything below the VALUES of ADF0).  The right 
branch beneath the PROGN contains the work-performing body of the 
result-producing branch  (everything below the second VALUES).   

Sometimes these architectural choices flow so directly from the nature 
of the problem that they are obvious and virtually mandated. But, in 
general, there is no way of knowing a priori the optimal (or minimum) 
number of automatically defined functions that will prove to be useful for 
a given problem, or the optimal (or minimum) number of arguments for 
each automatically defined function, or the optimal (or sufficient) 
arrangement of hierarchical references among the automatically defined 
functions.  

The five existing methods (Koza 1994) for making these architectural 
choices include methods based on (1) prospective analysis of the nature of 
the problem, (2) seemingly sufficient capacity (overspecification), (3) 
affordable capacity, (4) retrospective analysis of the results of actual runs, 
and (5) evolutionary selection of the architecture.  

The technique of evolutionary selection starts with an architecturally 
diverse initial random population. As the evolutionary process proceeds, 
certain individuals with certain architectures in the population will prove 
to be more fit than others in solving the problem. The more fit 
architectures prosper, while the less fit architectures tend to wither away. 
Eventually a program with a particular architecture may emerge that 
solves the problem. In this technique, various different architectures are 
created at the initial random generation (generation 0); however, no new 
architectures are ever created during the run and no architectures are 
altered during the run. There is a competition among the existing 
architectures during the course of the run.  



4  THE NEW ARCHITECTURE-ALTERING OPERATIONS 

The six new architecture-altering genetic operations provide a new way 
of determining the architecture of a multi-part program. When these 
operations are performed, the architecture of the participating individuals 
change during the evolutionary process. Meanwhile, the Darwinian 
selection and the reproduction operation causes differential selection in 
favor of more fit individuals and individuals in the population are 
modified by the usual genetic operations of crossover and mutation. 
Branch Duplication 
The operation of branch duplication duplicates one of the branches of a 
program in the following way: 

(1) Select a program from the population to participate in this 
operation.  

(2) Pick one of the function-defining branches of the selected program 
as the branch-to-be-duplicated.  

(3) Add a uniquely-named new function-defining branch to the selected 
program, thus increasing, by one, the number of function-defining 
branches in the selected program. The new function-defining branch has 
the same argument list and the same body as the branch-to-be-duplicated.  

(4) For each occurrence of an invocation of the branch-to-be-duplicated 
anywhere in the selected program (e.g., the result-producing branch or 
any other branch that invokes the branch-to-be-duplicated), randomly 
choose either to leave that invocation unchanged or to replace that 
invocation with an invocation of the new branch.  

The step of selecting a program is performed on the basis of fitness, so 
that a program that is more fit has a greater probability of being selected 
to participate in the operation than a less fit program.  

The operation of branch duplication can now be illustrated by 
assuming that the program in Figure 1 has been selected as the program 
to participate in this operation. In step (3), a new function-defining 
branch (defining ADF1) is added to the selected program.  

Figure 2 shows the program resulting after applying the operation of 
branch duplication to the program in Figure 1. Specifically, the function-
defining branch 410 of Figure 1 defining ADF0 (also shown as 510 of 
Figure 2) is duplicated.  

There are two occurrences of invocations of the branch-to-be-
duplicated, ADF0, in the result-producing branch of the selected program, 
namely ADF0 at 481 of Figure 1 and 487 of Figure 1. For each of these two 
occurrences, a random choice is made to either leave the occurrence of 
ADF0 unchanged or to replace it with the newly created ADF1. For the 
first invocation of ADF0 at 481 of Figure 1, the choice is randomly made to 
replace ADF0 481 with the ADF1 581 in Figure 2. The arguments for the 
invocation of ADF1 581 are D1 582 and D2 583 in Figure 2 (i.e., they are 
identical to the arguments D1 482 and D2 483 for the invocation of ADF0 
at 481 as part of the original program in Figure 1). For the second 
invocation of ADF0 at 487 of Figure 1, the choice is randomly made to 
leave ADF0 unchanged.  



The argument map describes the architecture of a multi-part program 
in terms of the number of its function-defining branches and the number 
of arguments that they each possess. The argument map of the set of 
automatically defined functions belonging to an overall program is the 
list containing the number of arguments possessed by each automatically 
defined function in the program. The argument map for the overall 
program in Figure 1 is {2} because there is one two-argument function-
defining branch. The program in Figure 2 has an argument map of {2, 2}.  

Because the duplicated new function-defining branch is identical to the 
previously existing function-defining branch (except for the name ADF1 
at 541 in Figure 2) and because ADF1 is invoked with the same arguments 
as ADF0 had been invoked, the effect of this operation is to leave 
unchanged the value returned by the overall program.  
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Figure 2:  Program with two two-argument function-defining branches 
(defining ADF0 and ADF1) of and one result-producing branch. ADF1 
results from application of the branch duplication operation to ADF0 of 
the program in Figure 1.   

The operation of branch duplication can be interpreted as a "case 
splitting."  After the branch duplication, the result-producing branch 
invokes ADF0 at 587 and ADF1 at 581. ADF0 and ADF1 can be viewed as 
separate procedures for handling the two separate newly-created 
subproblems (cases). Immediately after the branch duplication operation, 
the two subproblems (cases) are handled in precisely the same way.  

Subsequent genetic operations may alter one or both of these two 
presently-identical function-defining branches and these subsequent 
changes to lead to a divergence in structure and behavior. This 
divergence may be interpreted as a specialization or refinement. That is, 
once ADF0 and ADF1 diverge, ADF0 can be viewed as a specialization for 
handling for subproblem (case) associated with its invocation by the 
result-producing branch. Similarly, ADF1 can be viewed as a 
specialization for handling its subproblem (case).  



The operation of branch duplication as defined above (and all the other 
operations described herein) always produce a syntactically valid 
program.  

Analogs of the naturally occurring operation of gene duplication have 
been used in connection with the genetic algorithm operating on 
character strings and other evolutionary algorithms for some time. 
Holland (1975, page 116) suggested that intrachromosomal gene 
duplication might provide a mean of adaptively modifying the effective 
mutation rate by making two or more copies of a substring of adjacent 
alleles. Lindgren (1991) analyzed the prisoner's dilemma game using an 
evolutionary algorithm that employed an operation analogous to gene 
duplication applied to chromosome strings.  
Argument Duplication 
The operation of argument duplication  duplicates one of the arguments in 
one of the automatically defined functions of a program in the following 
way: 

(1) Select a program from the population to participate in this 
operation.  

(2) Pick one of the function-defining branches of the selected program.  
(3) Choose one of the arguments of the picked function-defining branch 

of the selected program as the argument-to-be-duplicated.  
(4) Add a uniquely-named new argument to the argument list of the 

picked function-defining branch of the selected program, thus increasing, 
by one, the number of arguments in its argument list.  

(5) For each occurrence of the argument-to-be-duplicated anywhere in 
the body of picked function-defining branch of the selected program, 
randomly choose either to leave that occurrence unchanged or to replace 
that occurrence with the new argument.  

(6) For each occurrence of an invocation of the picked function-defining 
branch anywhere in the selected program, identify the argument subtree 
in that invocation corresponding to the argument-to-be-duplicated and 
duplicate that argument subtree in that invocation, thereby increasing, by 
one, the number of arguments in the invocation.  

Because the function-defining branch containing the duplicated 
argument is invoked with an identical copy of the previously existing 
argument, the effect of this operation is to leave unchanged the value 
returned by the overall program.  

Figures 1 and 3 together illustrate the operation of argument 
duplication.  

Suppose that ARG1 labeled 414 in Figure 1 (also shown as 614 in Figure 
3) is chosen as the argument-to-be-duplicated from this picked branch.  

In Figure 3, the argument list of ADF0 has been changed by adding a 
uniquely-named new argument, ARG2 at 615. There are two occurrences 
of the argument-to-be-duplicated in the body of the picked function-
defining branch of the selected program, namely at 423 and 424 in Figure 
1. For each of these two occurrences, a random choice is made to either 
leave the occurrence of ARG1 unchanged or to replace it with the newly 
created argument, ARG2. Figure 3 shows that the choice was in favor of a 



replacement for the first occurrence of ARG1. Consequently, ARG2 now 
appears at 621 of Figure 3. As it happens, ARG1 remains unchanged at 623 
of Figure 3.  
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Figure 3:  Program with one three-argument function-defining branches 
and one result-producing branch. ADF0 here results from application of 
the argument duplication operation to ADF0 of the program in Figure 1.   

There are two occurrences of an invocation of ADF0 in the result-
producing branch at 481 and 487 of Figure 1. In the first invocation of 
ADF0 at 481, the variable D2 483 corresponds to the argument-to-be-
duplicated because it is the second argument of ADF0 481 and because it 
is the second argument (ARG1 414) that is the argument-to-be-duplicated. 
In the second invocation of ADF0 at 487, the entire argument subtree 
consisting of (NOR D4 D0) at 489, 490, and 491 corresponds to the 
argument-to-be-duplicated.  
ADF0 681 and 687 now each take three arguments, instead of only two. 

For the first invocation of ADF0 at 681, D2 683 has been duplicated so that 
D2 now appears at both 683 and 684. For the second invocation of ADF0 
at 687, the entire argument subtree (NOR D4 D0) has been duplicated so 
that it appears at both 689, 690, and 691 as well as 695. 696. and 697. The 
original program in Figure 1 has an argument map of {2} and the 
resulting program in Figure 3 has an argument map of {3}.  

Just as the operation of branch duplication was interpreted as a "case 
splitting," the operation of argument duplication can be similarly 
interpreted. After the argument duplication, the result-producing branch 
invokes ADF0 with a new third argument. The particular instantiations of 
the second and third arguments in each invocation of ADF0 provide 
potentially different ways of handling the two separate subproblems 
(cases). Once the second and third arguments diverge, this divergence 
may be interpreted as a specialization or refinement.  



Branch Deletion 
The operation of branch deletion deletes one of the automatically defined 
functions of a program in the following way:  

(1) Select a program from the population to participate in this 
operation.  

(2) Pick one of the function-defining branches of the selected program 
as the branch-to-be-deleted.  

(3) Delete the branch-to-be-deleted from the selected program, thus 
decreasing, by one, the number of branches in the selected program. 

(4) For each occurrence of an invocation of the branch-to-be-deleted 
anywhere in the selected program, replace the invocation of the branch-
to-be-deleted with an invocation of a surviving branch (described below).  

When a function-defining branch is deleted, the question arises as to 
how to modify invocations of the branch-to-be-deleted by the other 
branches of the overall program.  

One alternative (called branch deletion by consolidation) involves 
identifying a suitable second function-defining branch of the overall 
program as the surviving branch and replacing (consolidating) the 
branch-to-be-deleted with the surviving branch in each invocation of the 
branch-to-be-deleted. Branch deletion by consolidation can be interpreted 
as a way to achieve generalization in a problem-solving procedure.  

A second alternative (called branch deletion with random regeneration) is 
to randomly generate new subtrees composed of the available functions 
and terminals in lieu of an invocation of the branch-to-be-deleted.  

A third alternative (called branch deletion by macro expansion) involves 
inserting the entire body of the branch-to-be-deleted for each instance of 
an invocation of that branch.  

The first alternative (branch deletion by consolidation) begins by 
finding a suitable choice for the surviving branch within the overall 
program. When branch deletion by consolidation is performed, the 
number of arguments possessed by the proposed surviving branch may 
equal to, less than, or greater than the number of arguments possessed by 
the branch-to-be-deleted.  

The simplest of these three possibilities for branch deletion by 
consolidation is the possibility where the number of arguments possessed 
by the proposed surviving branch is equal to the number of arguments 
possessed by the branch-to-be-deleted. This situation prevails in Figure 2. 
Suppose that the first function-defining branch (defining ADF0) of the 
program in Figure 2 is picked as the branch-to-be-deleted and that the 
second function-defining branch (defining ADF1) is to be the surviving 
branch. In that event, the first function-defining branch is deleted; the 
invocation of ADF0 at 587 in Figure 2 is to be replaced by an invocation of 
ADF1; and the two argument subtrees below the invocation of ADF0 at 
587 are retained as the argument subtrees for the invocation at 587 of 
ADF1. That is, the branch-to-be-deleted is merged into ADF1. The original 
program in Figure 2 has an argument map of {2, 2} and the resulting 
program has an argument map of {2}.  



For this simplest of the three possibilities, the branch deletion may be 
viewed as a generalization of a procedure. Before the branch deletion, the 
two function-defining branches constitute different subproblems (cases). 
The two branches do different things and they are invoked in different 
situations by the result-producing branch. After the branch deletion by 
consolidation, both subproblems (cases) are handled in the same way.  

Consider the other two possibilities.  
If the number of arguments required by the proposed surviving branch 

were less the number of arguments possessed by the branch-to-be-
deleted, any superfluous argument subtrees below the invocation of the 
branch-to-be-deleted may simply be deleted. The branch deletion may 
also be viewed as a generalization of a procedure with an accompanying 
generalization of its arguments.  

If the number of arguments required by a proposed surviving branch 
were greater than the number of arguments possessed by the branch-to-
be-deleted, the required additional argument subtrees may be randomly 
generated. The random regeneration is accomplished using the same 
method of generation originally used to create the invoking branch (i.e., 
the branch containing the invocation of the branch-to-be-deleted) at the 
time of creation of the initial random population in generation 0 (with the 
branch-to-be-deleted being unavailable during this random regeneration). 
Random generation may not considered to be desirable because it 
introduces a significant mutational aspect to the operation. In that event, 
the operation may simply be aborted for this third possibility.  

When the second alternative (branch deletion with random 
regeneration) is being used, all of the argument subtrees required by the 
invocation of the surviving branch are randomly generated.  

The third alternative (branch deletion by macro expansion) has the 
advantage of preserving the semantics of the overall program; however, it 
has the disadvantage of usually creating very large programs. Each of the 
argument subtrees in each invocation of the branch-to-be-deleted is 
substituted into a copy of the body of the branch-to-be-deleted and the 
now-expanded body then replaces the invocation of the branch-to-be-
deleted. If the objective of a deletion is change the semantics of the overall 
program (i.e., to achieve generalization), this alternative is undesirable.  
Argument Deletion 
The operation of argument deletion  deletes one of the arguments to one of 
the automatically defined functions of a program in the following way:   

(1) Select a program from the population to participate in this 
operation.  

(2) Pick one of the function-defining branches of the selected program.  
(3) Choose one of the arguments of the picked function-defining branch 

of the selected program as the argument-to-be-deleted.  
(4) Delete the argument-to-be-deleted from the argument list of the 

picked function-defining branch of the selected program, thus decreasing, 
by one, the number of arguments in the argument list.  

(5) For each occurrence of an invocation of the picked function-defining 
branch anywhere in the selected program, delete the argument subtree in 



that invocation corresponding to the argument-to-be-deleted, thereby 
decreasing, by one, the number of arguments in the invocation.  

(6) For each occurrence of the argument-to-be-deleted  anywhere in the 
body of picked function-defining branch of the selected program, replace 
the argument-to-be-deleted with a surviving argument (described below)   

The operation of argument deletion may be viewed as a generalization 
in the sense that some information that was formerly considered in 
executing a procedure is now no longer considered.  

When an argument is deleted, the question arises as to how to modify 
references to the argument-to-be-deleted within the picked branch.  

One alternative (called argument deletion by consolidation) involves 
identifying another argument of the picked branch as the surviving 
argument and replacing (consolidating) the argument-to-be-deleted with 
the surviving argument in the picked branch.  

A second alternative (called argument deletion with random regeneration) 
is to generate a new subtree in lieu of an invocation of the argument-to-
be-deleted using the same method of generation originally used to create 
the picked branch at the time of creation of the initial random population 
(with the argument-to-be-deleted being unavailable during this random 
regeneration). The subtree may consist of either a single available 
argument or an entire generated argument subtree composed of the 
available functions and terminals.  

A third alternative (called argument deletion by macro expansion) may also 
be used.  

Suppose, in employing the first alternative (argument deletion by 
consolidation), that ARG2 labeled 615 in Figure 3 is chosen as the 
argument-to-be-deleted and that ARG1 is chosen (from among the 
remaining two arguments). The one occurrence of ARG2 at 621 in Figure 3 
is replaced by ARG1. The two invocations of ADF0 by the result-producing 
branch (at 681 and 687) are modified by deleting the third argument 
subtree in each invocation. Specifically, the argument subtree D0 684 is 
deleted from the invocation of ADF0 at 681 and the argument subtree 
(NOR D4 D0) at 695, 696, and 697 is deleted from the invocation of ADF0 
at 687. The result is the program shown in Figure 1. The original program 
in Figure 3 has an argument map of {3} and the resulting program in 
Figure 1 has an argument map of {2}.  

Both the argument duplication and the branch duplication operations 
create larger programs. The argument deletion operation and the branch 
deletion operation can create smaller programs and provide a mechanism 
for balancing the continual growth that would otherwise occur (provided 
the alternative of argument deletion by macro expansion is not used). 
Branch Creation 
The operation of branch creation creates a new automatically defined 
function (ADF) within an overall program in the following:  

(1) Select a program from the population to participate in this 
operation.  



(2) Pick a point in the body of one of the function-defining branches or 
result-producing branches of the selected program. This picked point will 
become the top-most point of the body of the branch-to-be-created.  

(3) Starting at the picked point, begin traversing the subtree below the 
picked point in a depth-first manner.  

(4) As each point below the picked point in the selected program is 
encountered during the traversal, make an determination as to whether to 
designate that point as being the top-most point of an argument subtree 
for the branch-to-be-created. If such a designation is made, no traversal is 
made of the subtree below that designated point. The depth-first traversal 
continues and this step (4) is repeatedly applied to each point 
encountered during the traversal so that when the traversal of the subtree 
below the picked point is completed, zero points, one point, or more than 
one point are so designated during the traversal.  

(5) Add a uniquely-named new function-defining branch to the selected 
program. The argument list of the new branch consists of as many 
consecutively-numbered dummy variables (formal parameters) as the 
number of points that were designated during the depth-first traversal. 
The body of the new branch consists of a modified copy of the subtree 
starting at the picked point. The modifications to the copy are made in the 
following way:  For each point in the copy corresponding to a point 
designated during the traversal of the original subtree, replace the 
designated point in the copy (and the subtree in the copy below that 
designated point in the copy) by a unique dummy variable. The result is a 
body for the new function-defining branch that contains as many 
uniquely named dummy variables as there are dummy variables in the 
argument list of the new function-defining branch. 

(6) Replace the picked point in the selected program by the name of the 
new function-defining branch. If no points below the picked point were 
designated during the traversal, the operation of branch creation is now 
complete.  

(7) If one or more points below the picked point were designated 
during the traversal, the subtree below the just-inserted name of the new 
function-defining branch will be given as many argument subtrees as 
there are dummy arguments in the new function-defining branch in the 
following way:  For each point in the subtree below the picked point 
designated during the traversal, attach the designated point and the 
subtree below it as an argument to the function whose name was just 
inserted in the new function-defining branch.  

This operation is, in a sense, a generalization of the operation of branch 
duplication. 

Several different methods may be used to determine how to designate a 
point below the picked point during the depth-first traversal described 
above.  

The operation of branch creation is similar to, but different than, the 
compression (module acquisition) operation  described by Angeline and 
Pollack (1994). First, Angeline and Pollack place each new function 
(called a module) created by the compression operation into a Genetic 



Library so that the new function is not specifically associated with the 
selected program that gave rise to it. In contrast, in the branch creation 
operation, the new function may be invoked only by the selected program 
in which it was originally created and of which it is a part. A second 
difference is that the body of the new branch created by the branch 
creation operation continues to be subject to the effects of other 
operations in successive generations and is susceptible to continued 
change. A third difference is that the branch creation operation may be 
applied to any branch (and, in particular, to function-defining branches).  
Argument Creation  
The operation of argument creation creates a new argument within a 
function-defining branch of an overall program in a more general way 
than the previously described operation of argument duplication. This 
operation is, in some sense, a generalization of the operation of argument 
duplication. 

The steps in the operation of argument creation are as follows: 
(1) Select a program from the population to participate in this 

operation. 
(2) Pick a point in the body of one of the function-defining branches of 

the selected program. 
(3) Add a uniquely-named new argument to the argument list of the 

picked function-defining branch for the purpose of defining the 
argument-to-be-created. 

(4) Replace the picked point (and the entire subtree below it) in the 
picked function-defining branch by the name of the new argument. 

(5) For each occurrence of an invocation of the picked function-defining 
branch anywhere in the selected program (e.g., the result-producing 
branch or other branch that invokes the picked function-defining branch), 
add an additional argument subtree to that invocation. In each instance, 
the added argument subtree consists of a modified copy of the picked 
point (and the entire subtree below it) in the picked function-defining 
branch. The modification is made in the following way:  For each dummy 
argument in a particular added argument subtree, replace the dummy 
argument with the entire argument subtree of that invocation 
corresponding to that dummy argument. 
Creation of the Initial Random Population 
When the architecture-altering operations are used, the initial population 
of programs may be created in any one of three ways. One possibility 
(called the "minimalist approach") is that each multi-part program in the 
population at generation 0 has a uniform architecture with exactly one 
automatically defined function possessing minimal number of arguments 
appropriate to the problem. A second possibility is that each program in 
the population has a uniform architecture with no automatically defined 
functions (i.e., only a result-producing branch). The operation of branch 
creation is used to create multi-part programs in such runs. A third 
possibility is that the population at generation 0 is architecturally diverse 
(as described in Koza 1994).  



Structure-Preserving Crossover 
When the new architecture-altering genetic operations are used, the 
population quickly becomes architecturally diverse (even if it was not 
initially created with architectural diversity). Structure-preserving 
crossover with point typing (as described in Koza 1994) permits robust 
recombination while simultaneously guaranteeing that any pair of 
architecturally different parents will produce syntactically and 
semantically valid offspring.  

5  EXAMPLES OF ACTUAL RUNS 

The architecture-altering operations described herein will now be 
illustrated by showing two actual runs of the problem of symbolic 
regression of the even-3-parity function. The Boolean even-k-parity 
function takes k Boolean arguments, D0, D1, D2, and so forth (up to a 
total of k arguments). The even-k-parity function returns T (true) if an 
even number of its Boolean arguments are T, but otherwise returns NIL 
(false). The problem is to discover a computer program that mimics the 
behavior of the Boolean even-k-parity problem for every one of the 2k 
combinations of its k Boolean inputs.  
Example 1 
The run starts with the random creation of a population of 1,000 
individual programs using “single minimal ADF” approach (i.e., each 
program in generation 0 consists of one result-producing branch and a 
single one-argument function-defining branch and has an argument map 
of {1}).  

In one particular run, the best program from among the 1,000 randomly 
created programs in generation 0 has the function-defining branch 
(defining ADF0) shown below.  
(OR (AND (NAND ARG0 ARG0) (OR ARG0 ARG0)) (NOR (NOR 

ARG0 ARG0) (AND ARG0 ARG0))) 
The behavior of this function-defining branch is the Boolean constant 

function zero (called “Always False”).  
The result-producing branch of this best-of-generation program from 

generation 0  ignores ADF0 and is shown below.  
(NOR (AND D0(NOR D2 D1)) (AND (AND D2 D1)))  

 This program was correct for six of the eight possible combinations 
(fitness cases) and thus the program scores a raw fitness of 6 (out of a 
possible 8). 

The raw fitness of the best-of-generation program for generation 5 
improves to 7. The program achieving this new and higher level of fitness 
has a total of four branches (i.e., one result-producing branch and three 
function-defining branches). The change in the number of branches from 
1 at generation 0 to 4 at generation 5 is the consequence of the 
architecture-altering operations. In addition to its one result-producing 
branch, this best-of-generation program for generation 5 has branches 
defining ADF0 (taking two arguments), ADF1 (taking two arguments), 



and ADF2 (taking three arguments), so that its argument map is {2, 2, 3}. 
The result producing branch of this program is shown below.  
(NOR (ADF2 D0 D2 D1) (AND (ADF1 D2 D1)D0)) 

The first function-defining branch (defining ADF0) of the best-of-
generation program for generation 5 takes two dummy arguments, ARG0 
and ARG1, and is shown below. The existence of two dummy arguments 
in this function-defining branch is a consequence of an argument 
duplication operation. As it happens, the behavior of this ADF0 is not 
important because ADF0 is not referenced by the result-producing branch. 
(OR (AND (NAND ARG0 ARG0) (OR ARG1 ARG0)) (NOR (NOR 

ARG1 ARG0)  
(AND ARG0 ARG1))) 

The second function-defining branch (defining ADF1) of the best-of-
generation program for generation 5 also takes two dummy arguments, 
ARG0 and ARG1, and is shown below. The existence of this second 
function-defining branch is a consequence of a branch duplication 
operation. The behavior of ADF1 is equivalent to the even-2-parity 
function. 
(OR (AND ARG0 ARG1)(NOR ARG0 ARG1)) 

The function-defining branch for ADF2 of this best-of-generation 
program for generation 5 takes three dummy arguments, ARG0, ARG1, 
and ARG2, and is shown below. This third function-defining branch exists 
as a consequence of yet another branch duplication operation. The 
behavior of ADF2 consists of returning 1 only when ARG0 and ARG2 are 0 
and ARG1 is 1.  
(AND ARG1 (NOR ARG0 ARG2)) 

On generation 10, the best program in the population of 1,000 perfectly 
mimics the behavior of the even-3-parity function. This 100%-correct 
solution to the problem has a total of six branches (i.e., five function-
defining branches and one result-producing branch). The argument map 
of this program is {2, 2, 3, 2, 2}. This multiplicity of branches is a 
consequence of the repeated application of the branch duplication 
operation and the branch creation operation. The function-defining 
branches of this program each have more than one dummy argument. All 
of these additional arguments exist as a consequence of the repeated 
application of the argument duplication operation.  

The result-producing branch of this best-of-generation program for 
generation 10 is shown below: 
(NOR (ADF4 D0(ADF1 D2 D1)) (AND (ADF1 D2 D1) D0)) 

The function-defining branch for ADF0 of this best-of-generation 
program for generation 10 takes two dummy arguments, ARG0 and ARG1, 
and is shown below. The behavior of ADF0 is equivalent to the odd-2-
parity function.  
(OR (AND (NAND ARG0 ARG0) (OR ARG1 ARG0)) (NOR (NOR 

ARG1 ARG0) 
(AND ARG0 ARG1))) 

The function-defining branch for ADF1 of the best-of-generation 
program for generation 10 takes two dummy arguments, ARG0 and ARG1, 
and is shown below. ADF1 is equivalent to the even-2-parity function. 
(OR (AND ARG0 ARG1) (NOR ARG0  ARG1)) 



The function-defining branch for ADF2 takes three dummy arguments, 
ARG0, ARG1, and ARG2, and is shown below. ADF2 returns 1 only when 
ARG0 and ARG2 are 0 and ARG1 is 1. However, ADF2 is ignored by the 
result-producing branch.  
(AND ARG1 (NOR ARG0 ARG2)) 

The function-defining branch for ADF3 is the one-argument identity 
function. This relatively useless branch is ignored by the result-producing 
branch.  

The function-defining branch for ADF4 of the best-of-generation 
program for generation 10 takes two dummy arguments, ARG0 and ARG1, 
and is shown below. ADF4 is equivalent to the even-2-parity function.  
(OR (AND ARG0 ARG1) (NOR ARG0  ARG1)) 

Since both ADF1 and ADF4 are both even-2-parity functions, the result-
producing branch can be simplified to the expression below. This 
expression can be verified as being equivalent to the even-3-parity 
function. 
(NOR (EVEN-2-PARITY D0(EVEN-2-PARITY D2 D1)) 

(AND (EVEN-2-PARITY D2 D1) D0)) 
An examination of the genealogical audit trail shows the interplay 

between the Darwinian reproduction operation, the one-offspring 
crossover operation using point typing, and the new architecture-altering 
operations. 

Figure 4 shows all of the ancestors of the just-described 100%-correct 
solution from generation 10 of this run of the problem of symbolic 
regression of the even-3-parity problem. The generation numbers (from 0 
to 10) are shown on the left edge of Figure 4. This figure also shows the 
sequence of reproduction operations, crossover operations, and 
architecture-altering operations that gave rise to every program that was 
an ancestor to the 100%-correct program in generation 10. The 100%-
correct solution from generation 10 is represented by the box labeled M10 
at the bottom of the figure. The argument map of this solution, namely {2, 
2, 3, 2, 2}, is shown in this box.  

The two lines flowing into the box M10 indicate that the solution in 
generation 10 was produced by a crossover operation acting on two 
programs from the previous generation (generation 9). Figure 4 uses the 
convention of placing the mother M9 (the receiving parent) on the right 
and father P9 (the contributing parent) on the left. Recall that, in a one-
offspring crossover operation using point typing, the bulk of the structure 
of a multi-part program comes from the mother since the father 
contributes only one subtree into only one of the many branches of the 
mother. Thus, the 11 boxes on the right side of this Figure (consecutively 
numbered from M0 to M10) represent the maternal genetic lineage (from 
generations 0 through generation 10) of the 100%-correct solution M10 
that emerged in generation 10. The 100%-correct solution M10 in 
generation 10 has the same argument map, {2, 2, 3, 2, 2}, as the mother M9 
because the crossover operation does not change the architecture (or 
argument map) of the offspring (relative to the mother). 
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Figure 4:  Complete genealogical audit trail showing all of the ancestors 
in generations 0 through 9 for the ultimate solution M10 from generation 
10 for the run in example 1. The maternal line is shown at the right and 
the paternal line at the left.   

The maternal lineage will now be reviewed in detail so as to illustrate 
the overall process of evolving the architecture of a solution to a problem 
while simultaneously evolving the solution to the problem. 

The mother M9 from generation 9 (shown on the right side of Figure 4) 
has an argument map of {2, 2, 3, 2, 2}, has a raw fitness of 7, was itself the 
result of a crossover of two parents from generation 8. The grandfather of 
the 100%-correct solution M10 in generation 10 (and the farther of M9) 
was P8. The grandmother of the 100%-correct solution M10 in generation 
10 (and the mother of M9) was M8.  



The grandmother M8 from generation 8 of the 100%-correct solution 
M10 in generation 10 (and the mother of M9) has an argument map of {2, 
2, 3, 2, 2}, has a raw fitness of 7, and was the result of a branch duplication 
from a single ancestor M7 from generation 7.  

Because of the branch duplication operation, the program M7 from 
generation 7 of the maternal lineage at the far right of Figure 4 has one 
fewer branches than its offspring M8. Program M7 has an argument map 
of {2, 2, 3, 2}. Program M7 was the result of an argument duplication from 
a single ancestor from generation 6.  

Because of the argument duplication operation, the fourth function-
defining branch of the program M6 from generation 6 of the maternal 
lineage at the far right of Figure 4 has one less argument than its offspring 
M7. Program M6 from generation 6 has an argument map of {2, 2, 3, 1} 
whereas program M7 from generation 7 has an argument map of {2, 2, 3, 
2}. Program M6 was the result of an branch creation from a single 
ancestor M5 from generation 5. 

Because of the branch creation operation, the program M5 from 
generation 5 shown on the right side of Figure 4 has one fewer function-
defining branch as program M6. Program M5 has an argument map of {2, 
2, 3}. In turn, program M5 was the result of an branch creation from a 
single ancestor M4 from generation 4.  

Program M4 from generation 4 shown on the right side of Figure 4 has 
one less function-defining branch than its offspring program M5. 
Program M4 has an argument map of {2, 2}. Program M4 was the result of 
a reproduction operation from a single ancestor M3 from generation 3.  

Program M4 from generation 3 shown on the right side of Figure 4 has 
an argument map of {2, 2} and was the result of a crossover involving 
father P2 and mother M2 from generation 2. 
Program M2 from generation 2 (shown on the right side of Figure 4) has 
an argument map of {2, 2} and was the result of a branch creation from a 
single ancestor M1 from generation 1.  

Program M1 from generation 1 has an argument map of {2} and was the 
result of an argument duplication of a single ancestor M0 from generation 
0.  

Program M0 from generation 0 at the upper right corner of Figure 4 has 
an argument map of {1} and has a raw fitness of 6. It has an argument 
map of {1} because the “single minimal ADF” approach is being used.  

As can be seen, the problem of symbolic regression of the even-3-parity 
problem has been solved using the new architecture-altering operations 
within a run of genetic programming.  
Example 2 
A second run will illustrate the evolution of a hierarchical reference by 
one function-defining branch of another and illustrate the operation of 
branch deletion. In this run, a 100%-correct solution emerges in 
generation 15 to the problem of symbolic regression of the even-3-parity 
problem.  

Figure 5 shows all of the maternal ancestors of the 100%-correct 
solution from generation 15 of this second run. Because 15 generations 



are involved, Figure 5 (unlike Figure 4) does not show all of the ancestors. 
Figure 5 also shows the raw fitness of each program to the immediate left 
of the argument map of that program.  
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Figure 5:  Partial genealogical audit trail showing all the maternal 
ancestors from generations 0 through 14 (and selected other ancestors) for 
the ultimate solution M15 from generation 15 for the run of example 2.  

The best-of-generation program 3200 from generation 0 of this run 
has a raw fitness of only 5. There are many programs in the 
population with this level of fitness. This program 3200 is an early 



ancestor of the 100%-correct solution that eventually emerges in 
generation 15. The result-producing branch of this program is shown 
below:   
(OR (NOR D2 (ADF0 (AND D1 D0))) (AND D2 (ADF0 (NAND D0 

D0)))) 
ADF0 of this program is shown below: 

(AND (NAND (OR ARG0 (OR ARG0 ARG0)) (AND (AND ARG0 
ARG0) (OR ARG0 ARG0))) (AND (NAND (OR ARG0 
ARG0) (NOR ARG0 ARG0)) (OR (AND ARG0 ARG0) 
(NOR ARG0 ARG0)))) 

ADF0 of this best-of-generation program from generation 0 is the 
one-argument negation (NOT) function. The one-argument NOT 
function was not one of the four primitive functions of the original 
problem (i.e., the two-argument AND, OR, NAND, and NOR 
functions).  

A branch duplication operates on program 3200 to produce program 
3201 in generation 1 with an argument map of {1, 1}.  

Two crossovers occurring in generations 2 and 3 raise the raw fitness of 
the maternal ancestor 3203 in generation 3 from 5 to 6.  

Program 3203 has two one-argument function-defining branches. Its 
ADF0 is “Always False” and is shown below: 
(AND (NAND (OR ARG0 (OR ARG0 ARG0)) (AND (AND ARG0 

ARG0) (OR ARG0 ARG0))) (AND (NAND (OR ARG0 
ARG0) (NOR ARG0 ARG0)) (OR (AND ARG0 ARG0) 
(OR ARG0 ARG0)))) 

ADF1 of this program 3203 is the exactly the same as ADF0 of ancestor 
3200 at generation 0 (i.e., the NOT function). The branch duplication that 
created program 3201 in generation 1 duplicated ADF0 of ancestor 3200 of 
generation 0. Then the intervening crossovers modified ADF0 so as to 
convert it into the useless “Always False” function.  

Then, a branch deletion removes the now-always-false ADF0 of 
program 3203 to produce program 3204 in generation 4. The surviving 
function-defining branch of program 3204 is exactly the same as ADF0 of 
ancestor 3200 at generation 0 (i.e., its it the NOT function). Program 3204 
retains a fitness level of 6.  

The result-producing branch of program 3204 from generation 4 is 
shown below: 
(OR (NOR D2 (ADF0 (AND D1 D0))) (AND D2 (OR D1 D0))) 

Next, a branch creation operation takes creates a new branch, ADF1, of 
program 3205 of generation 5 from the underlined portion of the result-
producing branch of program 3204 above. The new branch, ADF1, is 
shown below: 
(ADF0 (AND ARG1 ARG0)) 

The result-producing branch of program 3204 of generation 4 is also 
modified and the modified version is part of program 3205 of generation 
5 as shown below: 
(OR (NOR D2 (ADF1 D1 D0)) (AND D2 (OR D1 D0))) 

Two crossovers, one reproduction, one branch creation, and one branch 
duplication then occur on the maternal lineage.  



The ADF0 of program 3210 is the NOT function. ADF1 of program 3210 
from generation 10 uses the hierarchical reference created above to 
emulate the behavior of the NAND function, as shown below: 
(ADF0(AND ARG1 ARG0)) 

Mother 3210 mates with father 3230 to produce offspring 3211 in 
generation 11. 
ADF0 of father 3230 performs the even-2-parity function and is shown 

below: 
(AND (NAND (OR ARG1 ARG0) (AND (NAND ARG1 ARG0) (OR 

ARG1 ARG1))) (AND (NAND ARG0 (NOR ARG1 
ARG0)) (OR (AND ARG1 ARG1) (NOR ARG0 
ARG0)))) 

In the crossover, this entire branch from father 3230 was inserted into 
ADF1 of mother 3210 replacing (AND ARG1 ARG0) and producing a new 
ADF1 that performs the odd-2-parity function (since ADF0 performs the 
NOT function).  

Three crossovers and one branch creation then occur on the maternal 
lineage; however, the ADF1 that was created in generation 11 and that 
performs the odd-2-parity functions remains intact.  

The 100%-correct solution that emerged in generation 15 had an 
argument map of {1, 2, 1, 1, 2}. Only ADF0 and ADF1 of this particular 
program are referenced by the result-producing branch. 
ADF0 performs the NOT function and is shown below: 

(AND (NAND (OR ARG0 ARG0) (AND (AND ARG0 ARG0) (OR 
ARG0 ARG0))) (AND (NAND (OR ARG0 ARG0) 
(NOR ARG0 ARG0)) (OR (AND ARG0 ARG0) (NOR 
ARG0 ARG0)))) 

ADF1 defines the odd-2-parity function by hierarchically referring 
to ADF0. ADF1 is shown below:    
(ADF0 (AND (NAND (OR ARG1 ARG0) (AND (NAND ARG1 ARG0) 

(OR ARG1 ARG1))) (AND (NAND ARG0 (NOR ARG1 
ARG0)) (OR (AND ARG1 ARG1) (NOR ARG0 
ARG0))))) 

Thus, a hierarchy of function definitions has emerged.  

6  CONCLUSIONS 

It is possible to evolve the architecture of a multi-part program using the 
new architecture-altering operations described herein while concurrently 
solving a problem in genetic programming.  

More computational effort is required to perform the concurrent tasks 
of evolving the architecture while solving the problem than is required 
merely to solve the problem when the architecture is given. Future work 
will attempt to quantify the difference in these amounts of computation 
effort.  
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