
 
 

Evolution of a Computer Program for Classifying Protein Segments as 
Transmembrane Domains Using Genetic Programming 

John R. Koza 

Computer Science Department 
Stanford University 

Stanford, CA 94305-2140 USA 
Koza@CS.Stanford.Edu 
PHONE 415-941-0336 

 
 

Abstract 
The recently-developed genetic programming 
paradigm is used to evolve a computer program to 
classify a given protein segment as being a 
transmembrane domain or non-transmembrane area 
of the protein.  Genetic programming starts with a 
primordial ooze of randomly generated computer 
programs composed of available programmatic 
ingredients and then genetically breeds the 
population of programs using the Darwinian 
principle of survival of the fittest and an analog of 
the naturally occurring genetic operation of 
crossover (sexual recombination).  Automatic 
function definition enables genetic programming to 
dynamically create subroutines dynamically during 
the run.  Genetic programming is given a training set 
of differently-sized protein segments and their 
correct classification (but no biochemical 
knowledge, such as hydrophobicity values).    
Correlation is used as the fitness measure to drive 
the evolutionary process.  The best genetically-
evolved program achieves an out-of-sample 
correlation of 0.968 and an out-of-sample error rate 
of 1.6%.  This error rate is better than that reported 
for four other algorithms reported at the First 
International Conference on Intelligent Systems for 
Molecular Biology.  Our genetically evolved 
program is an instance of an algorithm discovered by 
an automated learning paradigm that is superior to 
that written by human investigators. 

Introduction 

At the First International Conference  on Intelligent 
Systems for Molecular Biology, Weiss, Cohen, and 
Indurkhya (1993) explored the problem of identifying 
transmembrane domains in protein sequences.  Starting 
with knowledge about the Kyte-Doolittle hydrophobicity 
scale (Kyte and Doolittle 1982), they used the SWAP-1 
induction technique to discover an algorithm for this 

classification task.  In their first experiment, they equaled 
the error rate of the best of three human-written 
algorithms for this classification task.  
Genetic programming is a domain-independent method 
for evolving computer programs that solve, or 
approximately solve, problems.   To accomplish this, 
genetic programming starts with a primordial ooze of 
randomly generated computer programs composed of the 
available programmatic ingredients, and breeds the 
population or programs using the Darwinian principle of 
survival of the fittest and an analog of the naturally 
occurring genetic operation of crossover (sexual 
recombination).  Automatic function definition enables 
genetic programming to dynamically create subroutines 
dynamically during the run.   
The question arises as to whether genetic programming 
can evolve a classifying program consisting of initially 
unspecified detectors, an initially unspecified iterative 
calculation incorporating the as-yet-undiscovered 
detectors, and an initially unspecified final calculation 
incorporating the results of the as-yet-undiscovered 
iteration. The genetically evolved program in this paper 
accomplishes this.  It achieves a better error rate than all 
four algorithms described in Weiss, Cohen, and 
Indurkhya (1993).  When analyzed, the genetically 
evolved program has a simple biological interpretation.  

Transmembrane Domains in Proteins 

Proteins are polypeptide molecules composed of 
sequences of amino acids.  There are 20 amino acids (also 
called residues) in the alphabet of proteins.  They are 
denoted by the letters A, C, D, E, F, G, H, I, K, L, M, N, 
P, Q, R, S, T, V, W, and Y.  Broadly speaking, the 
sequence of amino acids in a protein determines the 
locations of its atoms in three-dimensional space; this, in 
turn, determines the biological structure and function of a 
protein (Anfinsen 1973).   



A transmembrane protein is a protein that finds itself 
embedded in a membrane (e.g., a cell wall) in such a way 
that part of the protein is located on one side of the 
membrane, part is within the membrane, and part is on the 
opposite side of the membrane.  Transmembrane proteins 
often cross back and forth through the membrane several 
times and have short loops immersed in the different 
milieu on each side of the membrane.  The length of each 
transmembrane domain and each loop or other non-
transmembrane area are usually different.  
Transmembrane proteins perform functions such as 
sensing the presence of certain chemicals or certain 
stimuli on one side of the membrane and transporting 
chemicals or transmitting signals to the other side of the 
membrane.  Understanding the behavior of 
transmembrane proteins requires identification of their 
transmembrane domains.   
Biological membranes are of hydrophobic (water-hating) 
composition.  The amino acids in the transmembrane 
domain of a protein that are exposed to the membrane 
therefore have a pronounced tendency to be hydrophobic.  
This tendency toward hydrophobicity is an overall 
distributional characteristic of the entire protein segment 
(not of any particular one or two amino acids of the 
segment).  Many transmembrane domains are α-helices, 
so all the residues of the helix are exposed to the 
membrane (and are therefore predominantly 
hydrophobic). Although some transmembrane domains 
are β-strands (so that only some residues that are actually 
exposed to the membrane), very few such transmembrane 
domains are annotated in the computerized databases.  
Thus, as a practical matter, our discussion here is limited 
to α-helical transmembrane domains.     
Consider, for example, the 161-residue mouse peripheral 
myelin protein 22 (identified by the locus name 
"PM22_MOUSE" in release 27 of the SWISS-PROT 
computerized database of proteins (Bairoch and 
Boeckmann 1991).    The four transmembrane domains of 
this protein  are located at residues 2–31, 65–91, 96–119, 
and 134–156.   
A successful classifying program should identify a 
segment such as the following 24-residue segment from 
positions 96–119: 

FYITGFFQILAGLCVMSAAAIYTV,                   (1) 
as a transmembrane domain.   
A successful classifying program should also identify the 
following 27-residue segment between positions 35–61:  

TTDLWQNCTTSALGAVQHCYSSSVSEW        (2) 
as being in a non-transmembrane area of the protein.   
This classification problem will be solved by genetic 
programming without reference to any knowledge about 
the hydrophobicity of the 20 amino acids; however, we 
will use such knowledge to explain the problem (and, 
later, to interpret the genetically evolved program).  Two 
thirds of the 24 residues of segment (1) are in the 

category consisting of I, V, L, F, C, M, or A having the 
highest numerical values of  hydrophobicity on Kyte-
Doolittle scale.  If a human were clustering the 20 
hydrophobicity values into three categories with the 
benefit of knowledge of the Kyte-Doolittle 
hydrophobicity scale, these seven residues would be 
categorized into a hydrophobic category.  Seven of the 24 
residues of segment (1) (i.e., two Gs, two Ts, two Ys, and 
one S) are in the category consisting of G, T, S, W, Y, P 
(which the knowledgeable human would cluster into a 
neutral category).  Only one residue of segment (1) (i.e., 
the Q at position 103) is in the category consisting of H, 
Q, N, E, D, K, R (which the knowledgeable human would 
cluster into a hydrophilic category).  Even through there 
are some residues from all three categories in 
segments(1), segment (1) is predominantly hydrophobic 
and is, in fact, a transmembrane domain of 
PM22_MOUSE.   
In contrast, 13 of the 27 (about half) of the residues of 
segment (2) are neutral, eight (about a quarter) are 
hydrophobic, and six (about a quarter) are hydrophilic.  
This distribution is very different from that of segment 
(1).  Segment (2) is, in fact, a non-transmembrane area of 
PM22_MOUSE.   

Background on Genetic Programming 

John Holland's pioneering 1975 Adaptation in Natural 
and Artificial Systems described how the evolutionary 
process in nature can be applied to artificial systems using 
the genetic algorithm operating on fixed length character 
strings (Holland 1975, 1992). Additional information on 
current work in genetic algorithms can be found in 
Goldberg (1989), Forrest (1993), Davis (1987, 1993), and 
Michalewicz (1992).  
Genetic programming is an extension of the genetic 
algorithm in which the genetic population consists of 
computer programs (that is, compositions of primitive 
functions and terminals).  As described in Genetic 
Programming: On the Programming of Computers by 
Means of Natural Selection (Koza 1992), genetic 
programming is a domain independent method that 
genetically breeds populations of computer programs to 
solve problems by executing the following three steps: 
(1) Generate an initial population of random 

computer programs composed of the primitive functions 
and terminals of the problem. 

(2) Iteratively perform the following sub-steps until 
the termination criterion has been satisfied: 
(a) Execute each program in the population and assign 

it a fitness value according to how well it solves the 
problem. 

(b) Create a new population of programs by applying 
the following two primary operations.  The 
operations are applied to program(s) in the 
population selected with a probability based on 



 

fitness (i.e., the fitter the program, the more likely it 
is to be selected). 

(i) Reproduction: Copy an existing 
program to the new population. 
(ii) Crossover: Create two new 
offspring programs for the new population by 
genetically recombining randomly chosen parts of 
two existing programs.  The genetic crossover 
(sexual recombination) operation (described 
below) operates on two parental computer 
programs and produces two offspring programs 
using parts of each parent.  

(3) The single best computer program in the 
population produced during the run is designated as the 
result of the run of genetic programming.  This result 
may be a solution (or approximate solution) to the 
problem.   

Recent advances in genetic programming are described in 
Kinnear (1994).  A videotape visualization of numerous 
applications of genetic programming can be found in 
Koza and Rice (1992) and Koza (1994).   
The genetic crossover operation operates on two parental 
computer programs selected with a probability based on 
fitness and produces two new offspring programs 
consisting of parts of each parent.   
For example, consider the following computer program 
(shown here as a LISP symbolic expression):  
(+ (* 0.234 Z) (- X 0.789)). 

We would ordinarily write this LISP S-expression as 
0.234z + x − 0.789.  This two-input, one-output 
computer program takes X and Z as inputs and produces a 
single floating point output.   
Also, consider a second program: 
(* (* Z Y) (+ Y (* 0.314 Z))). 

This program is equivalent to zy(y + 0.314z).  
The crossover operation creates new offspring by 
exchanging sub-trees (i.e., subroutines, sublists, 
subprocedures, subfunctions) between the two parents.  
The two parents are typically of different sizes and 
shapes.  The sub-trees to be exchanged (called crossover 
fragments) are selected at random by selecting crossover 
points at random.  Suppose that crossover points are the 
multiplication (*) in the first parent and the addition (+) 
in the second parent.  The two crossover fragments are 
the underlined sub-programs (sub-lists) in the two 
parental LISP S-expressions. 
The two offspring resulting from crossover are 
(+ (+ Y (* 0.314 Z)) (- X 0.789)) 

and 
(* (* Z Y) (* 0.234 Z)). 

Assuming closure among the functions and terminals of 
which the parental programs are composed, crossover 
produces syntactically and semantically valid programs as 

offspring.  Because programs are selected to participate in 
the crossover operation with a probability based on their 
fitness, crossover allocates future trials of the search for a 
solution to the problem to regions of the space of possible 
computer programs containing programs with promising 
parts.   
Automatic function definition is used to enable genetic 
programming to evolve subroutines during a run.  
Automatic function definition can be implemented within 
the context of genetic programming by establishing a 
constrained syntactic structure for the individual 
programs in the population as described in Genetic 
Programming II: Scalable Automatic Programming by 
Means of Automatically Defined Functions (Koza 1994).  
Each program in the population contains one (or more) 
function-defining branches, one main result-producing 
branch, and possibly other types of branches (such as 
iteration-performing branches).  The function-defining 
branch(es) define the automatically defined functions 
ADF0, ADF1, etc.  The result-producing branch may 
invoke the automatically defined functions.  The value 
returned by the overall program consists of the value 
returned by the result-producing branch.   
The initial random generation of the population 
(generation 0) is created so that every individual program 
in the population has a constrained syntactic structure 
consisting of the problem's particular arrangement of 
branches.  Each branch is composed of functions and 
terminals appropriate to that branch.  This constrained 
syntactic structure must be preserved as the run proceeds 
from generation to generation.  Structure-preserving 
crossover is implemented by limiting crossover to points 
lying within the bodies of the various branches (branch 
typing).  The crossover point for the first parent is 
randomly selected, without restriction, from the body of 
any one of the branches.  However, once this selection is 
made for the first parent, the crossover point of the 
second parent is randomly selected from the body from 
the same type of branch.   This method of performing 
crossover preserves the syntactic validity of all offspring 
throughout the run.  As the run progresses, genetic 
programming will evolve different function-defining 
branches, different result-producing branches, and 
different ways of calling these automatically defined 
functions from the result-producing branch.  

Preparatory Steps 

In applying genetic programming with automatic function 
definition to a problem, there are six major preparatory 
steps.  These steps involve determining  
(1) the set of terminals for each branch, 
(2) the set of functions for each branch,  
(3) the fitness measure, 
(4) the parameters and variables for controlling the 

run,  



(5) the criterion for designating a result and 
terminating a run, and 

(6) the architecture of the overall program.    
We begin by deciding that the overall architecture of the 
yet-to-be-evolved classifying program will have to be 
capable of categorizing the residues into useful 
categories, then iteratively performing some arithmetic 
calculations and conditional operations on the categories, 
and finally performing some arithmetic calculations and 
conditional operations to reach a conclusion.  This 
suggests an overall architecture for the classifying 
program of several automatically defined functions  (say 
ADF0, ADF1, ADF2) to serve as detectors for 
categorization, an iteration-performing branch, IPB0, for 
performing arithmetic operations and conditional 
operations for examining the residues of the protein 
segment using the as-yet-undiscovered detectors, and a 
result-producing branch, RPB0, for performing arithmetic 
operations and conditional operations for reaching a 
conclusion using the as-yet-undiscovered iteration.   
Automatically defined functions seem well suited to the 
role of dynamically defining categories of the amino 
acids.  If the automatically defined functions are to play 
the role of set formation, each defined function should be 
able to interrogate the current residue as to which of the 
20 amino acids it is.  Since we anticipate that some 
numerical calculations will subsequently be performed on 
the result of the categorization of the residues, we employ 
numerical-valued logic, rather than Boolean-valued logic 
returning the non-numerical values of True and False.  
One way to implement this approach is to define 20 
numerical-valued zero-argument logical functions for 
determining whether the residue currently being 
examined is a particular amino acid.  For example, (A?) 
is the zero-argument residue-detecting function returning 
a numerical +1 if the current residue is alanine (A) but 
otherwise returning a numerical –1.  A similar residue-
detecting function is defined for each of the 19 other 
amino acids.  Since we envisage that the automatically 
defined functions will be used for set formation, it seems 
reasonable to include the logical disjunctive function in 
the function set of the automatically defined functions.  
Specifically, ORN is the two-argument numerical-valued 
disjunctive function returning +1 if either or both of its 
arguments are positive, but returning –1 otherwise. 
The terminal set Tfd for each of the three function-
defining branches (ADF0, ADF1, and ADF2) contains the 
20 zero-argument numerical-valued residue-detecting 
functions.  That is,  
Tfd = {(A?), (C?), ... , (Y?)}. 
The function set Ffd for the three function-defining 
branches (ADF0, ADF1, and ADF2) contains only the 
two-argument numerically-valued logical disjunctive 
function.  That is,  
Ffd = {ORN}.   

Typical computer programs contain iterative operators 
that perform some specified work until some condition 
expressed by a termination predicate is satisfied.  When 
we attempt to include iterative operators in genetically-
evolved programs, we face the practical problem that both 
the work and the termination predicate are initially 
created at random and are subsequently subject to 
modification by the crossover operation.  Consequently, 
iterative operators will, at best, be nested and consume 
enormous amounts of computer time or will, at worst, 
have unsatisfiable termination predicates and go into 
infinite loops.  This problem can sometimes be partially 
alleviated by imposing arbitrary time-out limits (e.g., on 
each iterative loop individually and all iterative loops 
cumulatively).   
In problems where we can envisage one iterative 
calculation being usefully performed over a particular 
known, finite set, there is an attractive alternative to 
permitting imposing arbitrary time-out limits.   For such 
problems, the iteration can be restricted to exactly one 
iteration over the finite set.  The termination predicate of 
the iteration is thereby fixed and is not subject to 
evolutionary modification.  Thus, there is no nesting and 
there are no infinite loops.   
In the case of problems involving the examination of the 
residues of a protein, iteration can very naturally be 
limited to the ordered set of amino acid residues of the 
protein segment involved.  Thus, for this problem, we 
employ one iteration-performing branch, with the 
iteration restricted to the ordered set of amino acid 
residues in the protein segment.  That is, each time 
iterative work is performed by the body of the iteration-
performing branch, the current residue of the protein is 
advanced to the next residue of the protein segment until 
the end of the entire protein segment is encountered.  The 
result-producing (wrap-up) branch produces the final 
output of the overall program.  
Useful iterative calculations typically require both an 
iteration variable and memory (state).  That is, the nature 
of the work performed by the body of the iteration-
performing branch typically varies depending on the 
current value of the iteration variable.  Memory is 
typically required to transmit information from one 
iteration to the next.  In this problem, the same work is 
executed as many times as there are residues in a protein 
segment, so the iteration variable is the residue at the 
current position in the segment.  Depending on the 
problem, the iteration variable may be explicitly available 
or be implicitly available through functions that permit it 
to be interrogated.  For this problem, the automatically 
defined functions provide a way to interrogate the 
residues of the protein sequence.    
Memory can be introduced into any program by means of 
settable variables, M0, M1, M2, and M3.   Settable 
variables are initialized to some appropriate value (e.g., 
zero) at the beginning of the execution of the iteration-



 

performing branch.  These settable variables typically 
change as a result of each iteration.    
The terminal set Tipb0 for the iteration-performing branch 
is  
Tipb0 = {LEN, M0, M1, M2, M3, ←}. 
Here ← represents floating-point random constants 
between –10.000 and +10.000 with a granularity of 0.001 
and LEN is the length of the current protein segment.   
Since we envisage that the iteration-performing branch 
will perform numerical calculations and make decisions 
based on these calculations, it seems reasonable to 
include the four arithmetic operations and a conditional 
operator in the function set.  We have used the four 
arithmetic functions (+, -, *, and %) and the conditional 
comparative operator IFLTE (If Less Than or Equal) on 
many previous problems, so we include them in the 
function set for the iteration-performing branch.   The 
protected division function % takes two arguments and 
returns one when division by 0 is attempted (including 0 
divided by 0), and, otherwise, returns the normal quotient.  
The four-argument conditional branching function 
IFLTE evaluates and returns its third argument if its first 
argument is less than or equal to its second argument and 
otherwise evaluates and returns its fourth argument.   
Since a numerical calculation is to be performed on the 
results of the categorization performed by the function-
defining branches, the functions ADF0, ADF1, and ADF2 
are included in the function set for the iteration-
performing branch.   
We need a way to change the settable variables M0, M1, 
M2, and M3.  The one-argument setting function SETM0 
can be used to set M0 to a particular value.  Similarly, the 
setting functions SETM1, SETM2, and SETM3 can be 
used to set the respective values of the settable variables 
M1, M2, and M3, respectively.  Thus, memory can be 
written (i.e., the state can be set) with the setting 
functions, SETM0, SETM1, SETM2, and SETM3, and 
memory can be read (i.e., the state can be interrogated) 
merely by referring to the terminals, M0, M1, M2, and M3.   
Thus, the function set Fipb0 for the iteration-performing 
branch, IPB0, is  
Fipb0 = {ADF0, ADF1, ADF2, SETM0, SETM1, 

SETM2, SETM3, IFLTE, +, -, *, %}. 
taking 0, 0, 0, 1, 1, 1, 1, 4, 2, 2, 2, and 2 arguments, 
respectively.   
The result-producing (wrap-up) branch then performs a 
non-iterative floating-point calculation and produces the 
final result of the overall program.  The settable variables 
M0, M1, M2, and M3 provide a way to pass the results of 
the iteration-performing branch to the result-producing 
branch.     
The terminal set Trpb0 for the result-producing branch, 
RPB0, is  
Trpb0 = {LEN, M0, M1, M2, M3, ←}. 

The function set Frpb0 for the result-producing branch 
RPB0, is  
Frpb0 = {IFLTE, +, -, *, %} 
taking 4, 2, 2, 2, and 2 arguments, respectively.   
A wrapper is used to convert the floating-point value 
produced by the result-producing branch into a binary 
outcome.  If the genetically-evolved program returns a 
positive value, the segment will be classified as a 
transmembrane domain, but otherwise it will be classified 
as a non-transmembrane area.   
Release 25 of the SWISS-PROT protein data base 
contains 248 mouse transmembrane proteins averaging 
499.8 residues in length.  Each protein contains between 
one and 12 transmembrane domains, the average being 
2.4.  The transmembrane domains range in length from 15 
and 101 residues and average 23.0 in length.   
123 of the 248 proteins were arbitrarily selected to create 
the in-sample set of fitness cases to measure fitness 
during the evolutionary process.  One of the 
transmembrane domains of each of these 123 proteins 
was selected at random as a positive fitness case for this 
in-sample set.  One segment of the same length as a 
random one of the transmembrane segments that is not 
contained in any of the protein's transmembrane domains 
was selected from each protein as a negative fitness case.  
Thus, there are 123 positive and 123 negative fitness 
cases in the in-sample set of fitness cases.   
The evolutionary process is driven by fitness as measured 
by the set of in-sample fitness cases.  However, the true 
measure of performance for a classifying program is how 
well it generalizes to different cases from the same 
problem environment.  Thus, 250 out-of-sample fitness 
cases (125 positive and 125 negative) were created from 
the remaining 125 proteins in a manner similar to the 
above.   These out-of-sample fitness cases were then used 
to validate the performance of the genetically-evolved 
classifying programs.   
Fitness will measure how well a particular genetically-
evolved classifying program predicts whether the segment 
is, or is not, transmembrane domain.  Fitness is measured 
over a number of trials, which we call fitness cases.  The 
fitness cases for this problem consist of protein segments.   
When a genetically-evolved classifying program in the 
population is tested against a particular fitness case, the 
outcome can be a true-positive, true-negative, false-
positive, or false-negative.  Fitness can be measured by 
the correlation coefficient C.  When the predictions and 
observations each take on only two possible values, 
correlation is a general, and easily computed, measure for 
evaluating the performance of a classifying program.  
Consider a vector in a space of dimensionality Nfc of the 
correct answers (with the integer 1 representing a 
transmembrane domain and the integer 0 representing a 
non-transmembrane area) and the vector of length Nfc of 
the predictions (1 or 0) produced by a particular 



genetically evolved program.  Suppose each vector is 
transformed into a zero-mean vector by subtracting the 
mean value of all of its components from each of its 
components.  The correlation, C, is the cosine of the angle 
in this space of dimensionality Nfc between the zero-
mean vector of correct answers and the zero-mean vector 
of predictions. The correlation coefficient indicates how 
much better a particular predictor is than a random 
predictor.  A correlation C  of –1.0 indicates vectors 
pointing in opposite directions in Nfc-space (i.e., greatest 
negative correlation); a correlation of +1.0 indicates 
coincident vectors (i.e., greatest positive correlation); a 
correlation C of 0.0 indicates orthogonal vectors (i.e., no 
correlation).   
The correlation, C, lends itself immediately to being the 
measure of raw fitness measure for a genetically evolved 
computer program.  Since raw fitness ranges between –
1.0 and +1.0 (higher values being better), standardized 

fitness ("zero is best") can then be defined as 
1 −C

2
.  

Standardized fitness ranges between 0.0 and +1.0, lower 
values being better and a value of 0 being the best.  Thus, 
a standardized fitness of 0 indicates perfect agreement 
between the predicting program and the observed reality; 
a standardized fitness of +1.0 indicates perfect 
disagreement; a standardized fitness of 0.50 indicates that 
the predictor is no better than random.   
The error rate is the number of fitness cases for which 
the classifying program is incorrect divided by the total 
number of fitness cases.  The error rate is a less general 
measure of performance for a classifying program; 
however, Weiss, Cohen, and Indurkhya (1993) use the 
error rate as their yardstick for comparing three methods 
in the biological literature with their new algorithm 
created using the SWAP-1 induction technique.   
Therefore, we present our final results in terms of both 
correlation and error rate and we use error rate for the 
purpose of comparing results.   
Population size, M, was 4,000.  The maximum number of 
generations to be run, G, was set to 21.  The other 
parameters for controlling the runs of genetic 
programming were the default values specified in Koza 
(1994) and which have been used for a number of 
different problems.  

Results 

We now describe the two best runs out of out 11 runs of 
this problem, starting with the second best.   
The vast majority of the randomly generated programs in 
the initial random population (generation 0) of run 1 have 
a zero or near-zero correlation, C,  indicating that they are 
no better than random in classifying whether a protein 
segment is a transmembrane domain.  However, even in 
the initial random population, some individuals are better 
than others.   

The best-of-generation classifying program from 
generation 0 of run 1 has an in-sample correlation of 0.48 
as a result of getting 99 true positives, 83 true negatives, 
40 false positives, and 24 false negatives over the 246 in-
sample fitness cases.  This program has a standardized 
fitness of 0.26.  This program myopically looks at only 
the last residue of the protein segment and categorizes the 
entire segment based only on one, highly flawed 
automatically defined function.  However, this program is 
better than any of the other 3,999 programs in the 
population at generation 0.  In the valley of the blind, the 
one-eyed man is king.   
The worst-of-generation classifying program from 
generation 0 of run 1 has an in-sample correlation of –0.4 
and standardized fitness is 0.70.  This program achieves 
this negative value of correlation by using incomplete 
information in precisely the wrong way.   
In generation 2 of run 1, the best-of-generation program 
achieves an incrementally better value for correlation 
(0.496 in-sample and 0.472 out-of-sample) by virtue of an 
incremental change consisting of just one residue in the 
definition of ADF0.   
There is a major qualitative change in generation 5.  The 
best of generation 5 is the first best-of-generation 
program that makes its prediction based on the entire 
protein segment.  This program contains 62 points (i.e., 
62 functions and terminals in the bodies of the branches), 
has a distinctly better in-sample correlation of 0.764, an 
out-of-sample correlation of 0.784, and a standardized 
fitness of 0.12.  
(progn (defun ADF0 () 

(values (ORN (ORN (I?) (A?)) (ORN 
(ORN (L?) (G?)) (N?))))) 

(defun ADF1 () 
(values (ORN (ORN (ORN (ORN (G?) 
(D?)) (ORN (E?) (V?))) (ORN (ORN 
(R?) (E?)) (ORN (T?) (P?)))) 
(ORN (N?) (S?))))) 

(defun ADF2 () 
(values (ORN (ORN (ORN (L?) (R?)) 
(ORN (V?) (P?))) (ORN (G?) 
(L?))))) 

(progn (looping-over-residues  (SETM1 (- (+ M1 
(ADF0)) (ADF1)))) 

(values (* (% (+ (% -9.997 M3) M1) 6.602) (+ 6.738 
(% (- M3 L) (+ M3 M2))))))) 

The iteration-performing branch of this program uses the 
settable variable M1 to create a running sum of the 
difference between two quantities.  Specifically, as the 
iteration-performing branch is iteratively executed over 
the protein segment, M1 is set to the current value of M1 
plus the difference between ADF0 and ADF1.  ADF0 
consists of nested ORNs involving the three hydrophobic 
residues (I, A, and L), one neutral residue (G), and one 
hydrophilic residue (N).  ADF1 consists of nested ORNs 
involving one hydrophobic residue (V), four neutral 
residues (G, T, P, and S), and the four most hydrophilic 
residues (D, E, R, and N).   



 

Because the neutral G residue and the hydrophilic N 
residue appear in both ADF0 and ADF1, there is no net 
effect on the running sum of the differences, M1, 
calculated by the iteration-performing branch when the 
current residue is either G or N.  There is a positive 
contribution (from ADF0) to the running sum M1 only 
when the current residue is I, A, or L (all of which are 
hydrophobic), and there is a negative contribution (from 
ADF1)  to the running sum M1 only when the current 
residue is D, E, or R (all of which are hydrophilic).  The 
running sum M1 is a count (based on a sample of only 
three of the seven hydrophobic residues and only three of 
the seven hydrophilic residues) of the excess of 
hydrophobic residues over hydrophilic residues.   
When simplified, the result-producing branch is 
equivalent to 1.17 × (M1 + 1) , so the protein segment is 
classified as a transmembrane domain whenever M1 is 
greater than 0.  In other words, whenever the number of 
occurrences of the three particular hydrophobic residues 
(I, A, and L) equals or exceeds the number of occurrences 
of the three particular hydrophilic residues (D, E, and R), 
the segment is classified as a transmembrane domain.  
This relatively simple calculation is a highly imperfect 
predictor of transmembrane domains, but it is often 
correct.  Because it examines the entire given protein 
segment, it is considerably better than any of its 
ancestors. 
In generation 6 of run 1, the best-of-generation program 
has marginally better values for correlation (0.766 in-
sample and 0.834 out-of-sample).  This improvement is a 
consequence of a small, but beneficial, evolutionary 
change in the definition of ADF1.  This small incremental 
improvement (produced by the crossover operation) is 
typical of the intergenerational improvements produced 
by genetic programming. 
The 62-point best of generation 8 of run 1 exhibits a 
substantial jump in performance over all its predecessors 
from previous generations.   In-sample correlation rises to 
0.92; out-of-sample correlation rises to 0.89.  
(progn (defun ADF0 () 

(values (ORN (ORN (ORN (I?) (M?)) 
(ORN (V?) (C?))) (ORN (ORN (L?) 
(G?)) (N?))))) 

(defun ADF1 () 
(values (ORN (ORN (ORN (ORN (G?) 
(D?)) (ORN (E?) (V?))) (ORN (ORN 
(R?) (E?)) (ORN (T?) (P?)))) 
(ORN (N?) (S?))))) 

(defun ADF2 () 
(values (ORN (ORN (ORN (L?) (R?)) 
(ORN (V?) (P?))) (ORN (G?) 
(L?))))) 

(progn (looping-over-residues (SETM1 (- (+ M1 
(ADF0)) (ADF1)))) 

(values (* (+ M1 M3) (+ 6.738 (% (- M3 L) (+ M3 
M2))))))) 

In this program, ADF0 tests for four (I, M, C, and L) of 
the seven hydrophobic residues, instead of three.  

Moreover, isoleucine (I), the most hydrophobic residue 
among the seven hydrophobic residues on the Kyte-
Doolittle scale, has become one of the residues 
incorporated into ADF0.  More important, ADF1 tests for 
three neutral residues (T, P, and S) as well as three 
hydrophilic residues (D, E, and R).  The result-producing 
branch calculates 7. 738M1 .  As before, a protein segment 
is classified as a transmembrane domain whenever the 
running sum M1 is positive.   
The three neutral residues (T, P, and S) in ADF1, play an 
important role in ADF1 since a positive value of M1 can 
be achieved only if there are enough sampled 
hydrophobic residues in the segment to counterbalance 
the sum of the number of sampled hydrophilic and neutral 
residues.   
In generation 11 of run 1, the 78-point best-of-generation 
program shown below has an in-sample correlation of 
0.94 and a standardized fitness of 0.03.  It scored 117 true 
positives, 122 true negatives, 1 false positive, and 6 false 
negatives over the 246 in-sample fitness cases.  It has an 
out-of-sample correlation of 0.96 and a standardized 
fitness of 0.02 as a result of getting 122 true positives, 
123 true negatives, 2 false positives, and 3 false negatives 
over the 250 out-of-sample fitness cases.  Its out-of-
sample error rate is only 2.0%.   
(progn (defun ADF0 () 

(values (ORN (ORN (ORN (I?) (M?)) 
(ORN (V?) (C?))) (ORN (ORN (L?) 
(G?)) (N?))))) 

(defun ADF1 () 
(values (ORN (ORN (ORN (ORN (G?) 
(D?)) (ORN (E?) (V?))) (ORN (ORN 
(R?) (E?)) (ORN (ORN (ORN (ORN 
(G?) (D?)) (ORN (E?) (V?))) (ORN 
(ORN (R?) (K?)) (ORN (T?) 
(P?)))) (ORN (N?) (S?))))) (ORN 
(N?) (S?))))) 

(defun ADF2 () 
(values (ORN (ORN (ORN (L?) (Y?)) 
(ORN (V?) (P?))) (ORN (G?) 
(L?))))) 

(progn (looping-over-residues (SETM1 (- (+ M1 
(ADF0)) (ADF1)))) 

(values (* (+ M1 M3) (+ 6.738 (% (- M3 L) (+ M3 
M2))))))) 

The iteration-performing branch of this program uses the 
settable variable M1 to create a running sum of the 
difference between two quantities.  Specifically, as the 
iteration-performing branch is iteratively executed over 
the protein segment, M1 is set to the current value of M1 
plus the difference between ADF0 and ADF1.   
The result-producing branch calculates 7. 738M1 .  Thus, a 
protein segment will be classified as being a 
transmembrane domain whenever the running sum M1 is 
positive.   
In this program, ADF0 tests for four (I, M, C, and L) of 
the seven hydrophobic residues, including isoleucine (I), 
the most hydrophobic residue among the seven 
hydrophobic residues on the Kyte-Doolittle scale.   



ADF1 tests for four of the seven hydrophilic residues (D, 
E, R, and K) and three neutral residues (T, P, and S).  D, E, 
R, and K are the most hydrophilic residues from among 
the seven hydrophilic residues according to the Kyte-
Doolittle scale.   The three neutral residues (T, P, and S) in 
ADF1 play an important role in ADF1 since a positive 
value of M1 can be achieved only if there are a 
sufficiently large number of sampled hydrophobic 
residues in the segment to counterbalance the sum of the 
number of sampled hydrophilic residues and sampled 
neutral residues.   
The three residues V, G, and N play no role in the 
calculation of the running sum M1 since they appear in 
both ADF0 and ADF1.   
ADF2 is ignored by the iteration-performing branch and 
therefore plays no role at all in this program.   
The operation of this program from generation 11 of run 
1 can be summarized as follows:  If the number of 
occurrences of I, M, C, and L in a given protein segment 
exceeds the number of occurrences of D, E, R, K, T, P, 
and S, then classify the segment as a transmembrane 
domain; otherwise, classify it as non-transmembrane. 
After generation 11 of run 1, the in-sample performance 
of the best-of-generation program continues to improve.  
For example, the in-sample correlation improves from 
0.94 to 0.98 between generations 11 and 18 and the 
number of in-sample errors (i.e., false positives plus false 
negatives) drops from 7 to 3.  However, this apparent 
improvement after generation 11 is illusory and is due to 
overfitting.  Genetic programming is driven to achieve 
better and better values of fitness by the relentless effects 
of Darwinian natural selection.  Fitness for this problem is 
based on the value of the correlation for the predictions 
made by the genetically-evolved program on the in-
sample set of fitness cases.  However, the true measure of 
performance for a classifying algorithm is how well it 
generalizes to other, previously unseen sets of data (i.e., 
the out-of-sample data).  In this run, the out-of-sample 
correlation drops from 0.96 to 0.94 between generations 
11 and 18 and the number of out-of-sample errors 
increases from 5 to 7.  The maximum value of out-of-
sample correlation is attained at generation 11.  After 
generation 11, the evolved classifying programs are being 
fit more and more to the idiosyncrasies of the particular 
in-sample fitness cases employed in the computation of 
fitness.  The classifying programs after generation 11 are 
not getting better at classifying whether proteins segments 
are transmembrane domains.  Instead, they are merely 
getting better at memorizing the in-sample data.  In fact, a 
continuation of this run out to generation 50 produces no 
result better than that attained at generation 11.   
We now consider run 2.  This best-of-all run produced the 
best value of out-of-sample correlation of any run, 
namely 0.968.   

(progn (defun ADF0 () 
(values (ORN (ORN (ORN (I?) (H?)) 
(ORN (P?) (G?))) (ORN (ORN (ORN 
(Y?) (N?)) (ORN (T?) (Q?))) (ORN 
(A?) (H?)))))) 

(defun ADF1 () 
(values (ORN (ORN (ORN (A?) (I?)) 
(ORN (L?) (W?))) (ORN (ORN (T?) 
(L?)) (ORN (T?) (W?)))))) 

(defun ADF2 () 
(values (ORN (ORN (ORN (ORN (ORN 
(D?) (E?)) (ORN (ORN (ORN (D?) 
(E?)) (ORN (ORN (T?) (W?)) (ORN 
(Q?) (D?)))) (ORN (K?) (P?)))) 
(ORN (K?) (P?))) (ORN (T?) 
(W?))) (ORN (ORN (E?) (A?)) (ORN 
(N?) (R?)))))) 

(progn (loop-over-residues (SETM0 (+ (- (ADF1) 
(ADF2)) (SETM3 M0)))) 

(values (% (% M3 M0) (% (% (% (- L -0.53) (* M0 
M0)) (+ (% (% M3 M0) (% (+ M0 M3) (% M1 
M2))) M2)) (% M3 M0)))))) 

This high correlation was achieved on generation 20 by 
the 105-point program above with an in-sample 
correlation of 0.976 resulting from getting 121 true 
positives, 122 true negatives, 1 false positive, and 2 false 
negatives over the 246 in-sample fitness cases.  Its out-of-
sample correlation of 0.968 is the result of getting 123 
true positives, 123 true negatives, 2 false positives, and 2 
false negatives over the 250 out-of-sample fitness cases.  
Its out-of-sample error rate is only 1.6%.   
Ignoring the three residues common to the definition of 
both ADF1 and ADF2, ADF1 returns 1 if the current 
residue is I or L and ADF2 returns 1 if the current residue 
is D, E, K, R, Q, N, or P.  I and L are two of the seven 
hydrophobic residues on the Kyte-Doolittle scale.  D, E, 
K, R, Q, and N are six of the seven hydrophilic residues, 
and P is one of the neutral residues.   
In the iteration-performing branch of this program from 
generation 20 of run 2, M0 is the running sum of the 
differences of the values returned by ADF1 and ADF2.  
M0 will be positive only if the hydrophobic residues in the 
protein segment are so numerous that the occurrences of I 
and L outnumber the occurrences of the six hydrophilic 
residues and one neutral residue of ADF2.  M3 is the same 
as the accumulated value of M0 except that M3 lags M0 by 
one residue.  Because the contribution to M3 in the 
iteration-performing branch of the last residue is either 0 
or 1, M3 is either equal to M0 or is one less than M0.   
The result-producing branch is equivalent to 

M3
3

M0 (M0 + M3 )(Len + 0. 53)
 

The subexpression (- LEN -0.53) is always positive 
and therefore can be ignored in determining whether the 
result-producing branch is positive or nonpositive.  
Because of the close relationship between M0 and M3, 
analysis shows that the result-producing branch identifies 
a protein segment as a transmembrane domain whenever 
the running sum of the differences, M0, is greater than 0, 



 

except for the special case when M0 = 1 and M3 = 0.  This 
special case occurs only when the running values of M0 
and M3 are tied at 0 and when the very last residue of the 
protein segment is I or L (i.e., ADF1 returns 1).   
Ignoring this special case, we can summarize the 
operation of this overall best-of-all program from 
generation 20 of run 2 as follows:  If the number of 
occurrences of I and L in a given protein segment exceeds 
the number of occurrences of D, E, K, R, Q, N, and P, 
classify the segment as a transmembrane domain; 
otherwise, classify it as a non-transmembrane area.   
Out-of-sample correlation closely tracks the in-sample 
correlation in the neighborhood of generation 20 of run 2.  
At generation 20, the out-of-sample correlation is 0.968 
and the in-sample correlation is 0.976.   

Additional Work 

We redid the above work using arithmetic and conditional 
operations in the function set of the automatically defined 
functions (rather than the set-creating OR function).  Our 
best-of-all evolved program in this arithmetic-performing 
version of the transmembrane also scored an out-of-
sample error rate of 1.6% (Koza 1994).   

Conclusions 

Table 1 shows the out-of-sample error rate for the four 
algorithms for classifying transmembrane domains 
reviewed in Weiss, Cohen, and Indurkhya (1993) as well 
as the out-of-sample error rate of our best-of-all 
genetically-evolved program from generation 20 of run 2 
above.  We wrote a computer program to test the solution 
discovered by the SWAP-1 induction technique used in 
the first experiment of Weiss, Cohen, and Indurkhya 
(1993).  Our implementation of their solution produced an 
error rate on our test data identical to the error rate 
reported by them on their own test data (i.e., the 2.5% of 
row 4 of the table). 
Table 1  Comparison of five methods.   
Method Error 

rate 
von Heijne 1992 2.8% 
Engelman, Steitz, and Goldman 
1986 

2.7% 

Kyte-Doolittle 1982 2.5% 
Weiss, Cohen, and Indurkhya 1993 2.5% 
Best genetically-evolved program  1.6% 
As can be seen, the error rate of the best-of-all 
genetically-evolved program  from generation 20 of run 2 
is better than the error rates of the other four methods 
reported in the table.  This genetically evolved program is 
an instance of an algorithm discovered by an automated 
learning paradigm that is superior to that written by 

human investigators. In fact, our second best genetically 
evolved program (from generation 11 of run 1) also 
outscores the other four methods (with an out-of-sample 
error rate of 2.0%). 
In summary, without using foreknowledge of 
hydrophobicity, genetic programming with automatic 
function definition was able to evolve a successful 
classifying program consisting of initially-unspecified 
detectors, an initially-unspecified iterative calculation 
incorporating the as-yet-undiscovered detectors, and an 
initially-unspecified final calculation incorporating the 
results of the as-yet-undiscovered iteration.   

Acknowledgments 

James P. Rice of the Knowledge Systems Laboratory at 
Stanford University did the computer programming of the 
above on a Texas Instruments Explorer II+ computer.  

References 

[]Anfinsen, C. B. 1973.  Principles that govern the 
folding of protein chains.  Science 81: 223-230.  

Bairoch, A. and Boeckmann, B. 1991.  The SWISS 
PROT protein sequence data bank.  Nucleic Acids 
Research 19: 2247–2249.  

Davis, L. (editor).  l987. Genetic Algorithms and 
Simulated Annealing.  Pittman. 

Davis, L. 1991. Handbook of Genetic Algorithms. Van 
Nostrand Reinhold. 

Engelman, D., Steitz, T., and Goldman, A. 1986.  
Identifying nonpolar transbilayer helices in amino acid 
sequences of membrane proteins.  Annual Review of 
Biophysics and Biophysiological Chemistry.  Volume 
15.  

Forrest, S. (editor). 1993.  Proceedings of the Fifth 
International Conference on Genetic Algorithms.  
Morgan Kaufmann.  

Goldberg, D. E.  l989. Genetic Algorithms in Search, 
Optimization, and Machine Learning. Addison-Wesley.   

Holland, J. H.  Adaptation in Natural and Artificial 
Systems: An Introductory Analysis with Applications to 
Biology, Control, and Artificial Intelligence.  Ann 
Arbor, MI: University of Michigan Press 1975.  Also 
available from Cambridge, MA: The MIT Press 1992. 

Kinnear, K. E. Jr. (editor). 1994. Advances in Genetic 
Programming. Cambridge, MA: The MIT Press.   

Koza, J. R.  1992. Genetic Programming: On the 
Programming of Computers by Means of Natural 
Selection.  Cambridge, MA: The MIT Press.  

Koza, J. R.  1994.  Genetic Programming II: Automatic 
Discovery of Reusable Programs.  Cambridge, MA: 
The MIT Press.   

Koza, J. R., and Rice, J. P. 1992.Genetic Programming: 
The Movie.  Cambridge, MA: The MIT Press.  



Koza, J. R.  1994. Genetic Programming II Videotape: 
The Next Generation.  Cambridge, MA: The MIT Press.   

Kyte, J. and Doolittle, R.  1982.  A simple method for 
displaying the hydropathic character of proteins.  
Journal of Molecular Biology.  157:105-132.  

Matthews, B. W. 1975.  Comparison of the predicted and 
observed secondary structure of T4 phage lysozyme.  
Biochemica et Biophysica Acta.  405:442-451.  

Michalewicz, Z.  1992. Genetic Algorithms + Data 
Structures = Evolution Programs.  Springer-Verlag.   

von Heijne, G.  Membrane protein structure prediction: 
Hydrophobicity analysis and the positive-inside rule.  
Journal of Molecular Biology.  225:487–494.   

Weiss, S. M., Cohen, D. M., and Indurkhya, N. 1993. 
Transmembrane segment prediction from protein 
sequence data. In Hunter, L., Searls, D., and Shavlik, J. 
(editors).  Proceedings of the First International 
Conference on Intelligent Systems for Molecular 
Biology. Menlo Park, CA: AAAI Press. 

 


