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Many seemingly different problems in machine learning, artificial 
intelligence, and symbolic processing can be viewed as requiring the 
discovery of a computer program that produces some desired output for 
particular inputs.  When viewed in this way, the process of solving these 
problems becomes equivalent to searching a space of possible computer 
programs for a highly fit individual computer program.  The recently 
developed genetic programming paradigm described herein provides a 
way to search the space of possible computer programs for a highly fit 
individual computer program to solve (or approximately solve) a 
surprising variety of different problems from different fields.  In genetic 
programming, populations of computer programs are genetically bred 
using the Darwinian principle of survival of the fittest and using a genetic 
crossover (sexual recombination) operator appropriate for genetically 
mating computer programs.  Genetic programming is illustrated via an 
example of machine learning of the Boolean 11-multiplexer function, 
symbolic regression of the econometric exchange equation from noisy 
empirical data, the control problem of backing up a tractor-trailer truck, 
the classification problem of distinguishing between two intertwined 
spirals., and the robotics problem of controlling an autonomous mobile 
robot to find a box in the middle of an irregular room and move the box to 
the wall.   
Hierarchical automatic function definition enables genetic programming 
to define potentially useful functions automatically and dynamically 
during a run – much as a human programmer writing a complex computer 
program creates subroutines (procedures, functions) to perform groups of 
steps which must be performed with different instantiations of the dummy 
variables (formal parameters) in more than one place in the main program.  
Hierarchical automatic function definition is illustrated via the machine 
learning of the Boolean 11-parity function.    

Keywords:  Genetic programming, genetic algorithm, crossover, 
hierarchical automatic function definition, symbolic regression, Boolean 
11-multiplexer, econometric exchange equation, truck backer-upper, 
intertwined spirals, box moving robot, Boolean 11-parity.   

1. Introduction and Overview 

Computer programs are among the most complex and 
intricate structures created by man.  Computer 
programs are usually written line-by-line by applying 
human knowledge and intelligence to the problem at 
hand.  Writing a computer program is usually difficult.   

Indeed, one of the central questions in computer 
science (attributed to Arthur Samuel in the 1950s) is  

How can computers learn to solve 
problems without being explicitly 
programmed?   In other words, how can 
computers be made to do what is 
needed to be done, without being told 
exactly how to do it? 
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In the natural world, complex and intricate 
structures do not arise via explicit design and 
programming or from the application of human 
intelligence.  Instead, complex and successful organic 
structures evolve over a period of time as the 
consequence of Darwinian natural selection and the 
creative effects of sexual recombination (genetic 
crossover) and mutation.  Complex structures evolve 
in nature as a consequence of a fitness metric applied 
by the problem environment because structures that 
are more fit in grappling with their environment 
survive and reproduce at a higher rate.  

The question arises as to whether an analog of 
natural selection and genetics can be applied to the 
problem of creating a program that enables a computer 
to solve a problem.  That is, can complex computer 
programs be created, not via human intelligence, but 
by applying a fitness measure appropriate to the 
problem environment?   

Such a process of genetically breeding of computer 
programs might start with a primordial ooze consisting 
of a population of hundreds or thousands of randomly 
created computer programs of various randomly 
determined sizes and shapes.  In such a process, each 
program in the population would be observed as it 
tries to grapple with its environment – that is, to solve 
the problem at hand.  A value would then be assigned 
to each program reflecting how fit it is in solving the 
problem at hand.  We might then allow a program in 
the population to survive to a later generation of the 
process with a probability proportionate to its 
observed fitness.  Additionally, we might also select 
pairs of programs from the population with a 
probability proportionate to their observed fitness and 
create new offspring by recombining subprograms 
from them at random.  We would apply the above 
steps to the population of programs over a number of 
generations. 

Anyone who has ever written and debugged a 
computer program and has experienced their brittle, 
highly non-linear, and perversely unforgiving nature 
will probably be understandably skeptical about the 
proposition that the biologically motivated process 
sketched above could possibly produce a useful 
computer program.  However, in this article, we will 
present a number of examples from various fields 
supporting the surprising and counter-intuitive notion 
that computers can indeed by programmed by means 
of natural selection.  We will show, via examples, that 
the recently developed genetic programming paradigm 
provides a way to search the space of all possible 
programs to find a function which solves, or 
approximately solves, a problem.   

2. Background on Genetic Algorithms and 
Genetic Programming 

John Holland's pioneering 1975 Adaptation in Natural 
and Artificial Systems described how the evolutionary 
process in nature can be applied to artificial systems 
using the genetic algorithm operating on fixed length 
character strings [Holland 1975].  Holland 
demonstrated that a population of fixed length 
character strings (each representing a proposed 
solution to a problem) can be genetically bred using 
the Darwinian operation of fitness proportionate 
reproduction and the genetic operation of 
recombination.  The recombination operation 
combines parts of two chromosome-like fixed length 
character strings, each selected on the basis of their 
fitness, to produce new offspring strings.  Holland 
established, among other things, that the genetic 
algorithm is a near optimal approach to adaptation in 
that it maximizes expected overall average payoff 
when the adaptive process is viewed as a multi-armed 
slot machine problem requiring an optimal allocation 
of future trials given currently available information.  
The genetic algorithm has proven successful at 
searching nonlinear multidimensional spaces in order 
to solve, or approximately solve, a wide variety of 
problems [Goldberg 1989, Davis 1987, Davis 1991, 
Davidor 1991, Michalewicz 1992].  Recent conference 
proceedings provide an overview of current work in 
the field [Schaffer 1989, Forrest 1990, Belew and 
Booker 1991, Rawlins 1991, Meyer and Wilson 1991, 
Schwefel et al. 1991, Langton et al. 1992, Whitley 
1992].   

Representation is a key issue in genetic algorithm 
work because genetic algorithms directly manipulate a 
coded chromosomal representation of the problem.  
The representation scheme can therefore severely limit 
the window by which the system observes its world.  
On the other hand, the use of fixed length character 
strings has permitted Holland and others to construct a 
significant body of theory as to why genetic 
algorithms work.  Much of this theoretical analysis 
depends on the mathematical tractability of the fixed 
length character strings as compared with 
mathematical structures that are more complex and 
comparatively less susceptible to theoretical analysis.  
The need for increasing the complexity of the 
structures undergoing adaptation using the genetic 
algorithm has been reflected by considerable work 
over the years in that direction [Smith 1980, Cramer 
1985, Holland 1986, Holland et al. 1986, Wilson 
1987a, Wilson 1987b, Fujiki and Dickinson 1987, 
Goldberg et al 1989].   

For many problems in machine learning and 
artificial intelligence, the most natural representation 
for a solution is a computer program (i.e., a 
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hierarchical composition of primitive functions and 
terminals) of indeterminate size and shape, as opposed 
to character strings whose size has been determined in 
advance.  It is difficult, unnatural, and overly 
restrictive to attempt to represent hierarchies of 
dynamically varying size and shape with fixed length 
character strings.    

Genetic programming provides a way to find a 
computer program of unspecified size and shape to 
solve, or approximately solve, a problem.  The book 
Genetic Programming: On the Programming of 
Computers by Means of Natural Selection [Koza 
1992a] describes genetic programming in detail.  A 
videotape visualization of applications of genetic 
programming can be found in the Genetic 
Programming: The Movie [Koza and Rice 1992].  See 
also Koza [1992b].   

3. Overview of Genetic Programming 

Genetic programming continues the trend of dealing 
with the problem of representation in genetic 
algorithms by increasing the complexity of the 
structures undergoing adaptation.  In particular, the 
individuals in the population in genetic programming 
are hierarchical compositions of primitive functions 
and terminals appropriate to the particular problem 
domain.  The set of primitive functions used typically 
includes arithmetic operations, mathematical 
functions, conditional logical operations, and domain-
specific functions.  The set of terminals used typically 
includes inputs appropriate to the problem domain and 
various numeric constants.   

The compositions of primitive functions and 
terminals described above correspond directly to the 
computer programs found in programming languages 
such as LISP (where they are called symbolic 
expressions or S-expressions).  An S-expression can 
be represented as a rooted, point-labeled tree with 
ordered branches in which the root and other internal 
points of the tree are labeled with functions and in 
which the external points of the tree are labeled with 
terminals.  In fact, these compositions correspond 
directly to the parse tree that is internally created by 
the compilers of most programming languages.  Thus, 
genetic programming views the search for a solution to 
a problem as a search in the space of all possible 
compositions of functions that can be recursively 
composed of the available primitive functions and 
terminals. 

Of course, virtually any problem in artificial 
intelligence, symbolic processing, and machine 
learning can be viewed as requiring discovery of a 
computer program that produces some desired output 
for particular inputs.  The process of solving these 
problems can be reformulated as a search for a highly 
fit individual computer program in the space of 

possible computer programs.  When viewed in this 
way, the process of solving these problems becomes 
equivalent to searching a space of possible computer 
programs for the fittest individual computer program.  
In particular, the search space is the space of all 
possible computer programs composed of functions 
and terminals appropriate to the problem domain.  
Genetic programming provides a way to search for this 
fittest individual computer program.   

In genetic programming, populations of hundreds 
or thousands of computer programs are genetically 
bred.  This breeding is done using the Darwinian 
principle of survival and reproduction of the fittest 
along with a genetic recombination (crossover) 
operation appropriate for mating computer programs.  
As will be seen, a computer program that solves (or 
approximately solves) a given problem may emerge 
from this combination of Darwinian natural selection 
and genetic operations. 

Genetic programming starts with an initial 
population of randomly generated computer programs 
composed of functions and terminals appropriate to 
the problem domain.  The functions may be standard 
arithmetic operations, standard programming 
operations, standard mathematical functions, logical 
functions, or domain-specific functions.  Depending 
on the particular problem, the computer program may 
be Boolean-valued, integer-valued, real-valued, 
complex-valued, vector-valued, symbolic-valued, or 
multiple-valued.  The creation of this initial random 
population is, in effect, a blind random search of the 
search space of the problem. 

Each individual computer program in the 
population is measured in terms of how well it 
performs in the particular problem environment.  This 
measure is called the fitness measure.   

The nature of the fitness measure varies with the 
problem.  For many problems, fitness is naturally 
measured by the error produced by the computer 
program.  The closer this error is to zero, the better the 
computer program.  If one is trying to find a good 
randomizer, the fitness of a given computer program 
might be measured via entropy.  The higher the 
entropy, the better the randomizer.  If one is trying to 
recognize patterns or classify examples, the fitness of a 
particular program might be the number of examples 
(instances) it handles correctly.  The more examples 
correctly handled, the better.  In a problem of optimal 
control, the fitness of a computer program may be the 
amount of time or fuel or money required to bring the 
system to a desired target state.  The smaller the 
amount of time or fuel or money, the better.  For some 
problems, fitness may consist of a combination of 
factors such as correctness, parsimony, or efficiency. 

Typically, each computer program in the 
population is run over a number of different fitness 
cases so that its fitness is measured as a sum or an 
average over a variety of representative different 
situations.  These fitness cases sometimes represent a 
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sampling of different values of an independent 
variable or a sampling of different initial conditions of 
a system.  For example, the fitness of an individual 
computer program in the population may be measured 
in terms of the sum of the squares of the differences 
between the output produced by the program and the 
correct answer to the problem.  This sum may be taken 
over a sampling of different inputs to the program.  
The fitness cases may be chosen at random or may be 
structured in some way. 

The computer programs in generation 0 will have 
exceedingly poor fitness.  Nonetheless, some 
individuals in the population will turn out to be 
somewhat fitter than others.  These differences in 
performance are then exploited. 

The Darwinian principle of reproduction and 
survival of the fittest and the genetic operation of 
sexual recombination (crossover) are used to create a 
new offspring population of individual computer 
programs from the current population of programs.   

The reproduction operation involves selecting on 
the basis of fitness (i.e., the fitter the program, the 
more likely it is to be selected), a computer program 
from the current population of programs, and allowing 
it to survive by copying it into the new population.   

The genetic process of sexual reproduction 
between two parental computer programs is used to 
create new offspring computer programs from two 
parental programs selected on the basis of fitness.  The 
parental programs are typically of different sizes and 
shapes.  The offspring programs are composed of 
subexpressions (subtrees, subprograms, subroutines, 
building blocks) from their parents.  These offspring 
programs are typically of different sizes and shapes 
than their parents.   

Intuitively, if two computer programs are 
somewhat effective in solving a problem, then some of 
their parts probably have some merit.  By recombining 
randomly chosen parts of somewhat effective 
programs, we may produce new computer programs 
that are even fitter in solving the problem.   

For example, consider the following computer 
program (LISP symbolic expression):  
(+ (* 0.234 Z) (- X 0.789)), 

which we would ordinarily write as 
0.234 Z + X – 0.789. 

This program takes two inputs (X and Z) and produces 
a floating point output.  In the prefix notation used, the  
multiplication function * is first applied to the 
terminals 0.234 and Z to produce an intermediate 
result.  Then,  the subtraction function – is applied to 
the terminals X and 0.789 to produce a second 
intermediate result.  Finally, the addition function + is 
applied to the two intermediate results to produce the 
overall result.  

Also, consider a second program: 
(* (* Z Y) (+ Y (* 0.314 Z))), 

which is equivalent to 

ZY (Y + 0.314 Z). 
In figure 1, these two programs are depicted as 

rooted, point-labeled trees with ordered branches.  
Internal points (i.e., nodes) of the tree correspond to 
functions (i.e., operations) and external points (i.e., 
leaves, endpoints) correspond to terminals (i.e., input 
data).  The numbers beside the function and terminal 
points of the tree appear for reference only. 

0.234Z + X – 0.789

X 0.789

–

0.234 Z

*

+

ZY(Y + 0.314Z)

Z Y

*

0.314 Z

*Y

+

*
1 1

2 25 5

8 9

3 34 46 7 76

 
Figure 1  Two Parental computer programs.   

The crossover operation creates new offspring by 
exchanging sub-trees (i.e., sub-lists, subroutines, 
subprocedures) between the two parents.   

Assume that the points of both trees are numbered 
in a depth-first way starting at the left.  Suppose that 
the point number 2 (out of 7 points of the first parent) 
is randomly selected as the crossover point for the first 
parent and that the point number 5 (out of 9 points of 
the second parent) is randomly selected as the 
crossover point of the second parent. The crossover 
points in the trees above are therefore the * in the first 
parent and the + in the second parent.  The two 
crossover fragments are the two sub-trees shown in 
figure 2. 

0.234 Z

*

0.234Z

0.314 Z

*Y

+

Y + 0.314Z  
Figure 2  Two Crossover Fragments. 

These two crossover fragments correspond to the 
underlined sub-programs (sub-lists) in the two parental 
computer programs.  The two offspring resulting from 
crossover are 
(+ (+ Y (* 0.314 Z)) (- X 0.789)) 

and 
(* (* Z Y) (* 0.234 Z)). 

The two offspring are shown in figure 3.   
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X 0.789

–

+

0.314 Z

*Y

+

Y + 0.314Z + X – 0.789

Z Y

*

*

0.234 Z

*

0.234Z  Y2

 
Figure 3  Two Offspring. 

Thus, crossover creates new computer programs 
using parts of existing parental programs.  Because 
entire sub-trees are swapped, this crossover operation 
always produces syntactically and semantically valid 
programs as offspring regardless of the choice of the 
two crossover points.  Because programs are selected 
to participate in the crossover operation with a 
probability proportional to fitness, crossover allocates 
future trials to areas of the search space represented by 
programs containing parts from promising programs. 

After the operations of reproduction and crossover 
are performed on the current population, the 
population of offspring (i.e., the new generation) 
replaces the old population (i.e., the old generation).   

Each individual in the new population of computer 
programs is then measured for fitness, and the process 
is repeated over many generations. 

At each stage of this highly parallel, locally 
controlled, decentralized process, the state of the 
process will consist only of the current population of 
individuals.  The force driving this process consists 
only of the observed fitness of the individuals in the 
current population in grappling with the problem 
environment.  

As will be seen, this algorithm will produce 
populations of computer programs which, over many 
generations, tend to exhibit increasing average fitness 
in dealing with their environment.  In addition, these 
populations  of computer programs can rapidly and 
effectively adapt to changes in the environment.   

Typically, the best individual that appeared in any 
generation of a run (i.e., the best-so-far individual) is 
designated as the result produced by genetic 
programming.   

The hierarchical character of the computer 
programs that are produced is an important feature of 
genetic programming.  The results of genetic 
programming are inherently hierarchical.  In many 
cases the results produced by genetic programming are 
default hierarchies, prioritized hierarchies of tasks, or 
hierarchies in which one behavior subsumes or 
suppresses another. 

The dynamic variability of the computer programs 
that are developed along the way to a solution is also 
an important feature of genetic programming.  It 
would be difficult and unnatural to try to specify or 
restrict the size and shape of the eventual solution in 

advance.  Moreover, advance specification or 
restriction of the size and shape of the solution to a 
problem narrows the window by which the system 
views the world and might well preclude finding the 
solution to the problem at all. 

Another important feature of genetic programming 
is the absence or relatively minor role of preprocessing 
of inputs and postprocessing of outputs.  The inputs, 
intermediate results, and outputs are typically 
expressed directly in terms of the natural terminology 
of the problem domain.  The computer programs 
produced by genetic programming consist of functions 
that are natural for the problem domain.  

Finally, the structures undergoing adaptation in 
genetic programming are active.  They are not passive 
chromosomal encodings of the solution to the 
problem.  Instead, given a computer on which to run, 
the structures in genetic programming are active 
program structures that are capable of being executed 
in their current form. 

In summary, genetic programming breeds computer 
programs to solve problems by executing the 
following three steps: 
(1) Generate an initial population of random 

computer programs composed of the primitive 
functions and terminals of the problem. 

(2) Iteratively perform the following sub-steps until 
the termination criterion for the run has been 
satisfied: 

(a) Execute each program in the population so 
that a fitness measure indicating how well the 
program solves the problem can be computed 
for the program. 

(b) Create a new population of programs by 
selecting program(s) in the population with a 
probability based on fitness (i.e., the fitter the 
program, the more likely it is to be selected) 
and then applying the following primary 
operations: 

(i) Reproduction: Copy an existing program 
to the new population. 

(ii) Crossover: Create two new offspring 
programs for the new population by 
genetically recombining randomly 
chosen parts of two existing programs.   

(3) The single best computer program in the 
population produced during the run is designated 
as the result of the run of genetic programming.  
This result may be a solution (or approximate 
solution) to the problem.   

Figure 4 is a flowchart for genetic programming.  
The index i refers to an individual in the population of 
size M.  The variable GEN is the number of the current 
generation.  The box labeled "Evaluate fitness of each 
individual in the population" typically consumes the 
vast majority of computer resources.   
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Select Two Individuals 
Based on Fitness

Gen := 0

Create Initial 
Random Population

No
Evaluate fitness of each 
individual in population

Yes

No
Gen := Gen + 1

Yes Designate 
Result

End

i = M?

Select Genetic Operation 
Probabalistically

i := i + 1

Termination 
Criterion Satisfied?

i := 0

Pr

Perform 
Crossover

Insert Two 
Offspring 
into New 

Population

i := i + 1
Perform Reproduction

Copy into New 
Population

Select One  
Individual 

Based on Fitness

Pc

 
Figure 4   Flowchart for genetic programming. 

In the remainder of this article, we illustrate genetic 
programming with several examples chosen to 
illustrate various different categories of problems, 
namely 
• symbolic regression of a Boolean-valued function, 
• symbolic regression of noisy numeric-valued 

empirical data, 
• a multidimensional control problem, 
• a classification problem,  
• a robotics problem, and 
• a problem employing hierarchical automatic 

function definition. 

4. Symbolic Regression - 11-Multiplexer 

The problem of symbolic function identification 
(symbolic regression) requires developing a 
composition of terminals and functions that can return 
the correct value of the function after seeing a finite 
sampling of combinations of the independent variable 
associated with the correct value of the dependent 
variable.  The problem of machine learning of a 

Boolean function is a special case of symbolic 
regression in which the independent variables are 
Boolean-valued, the functions being composed are 
Boolean functions, and the dependent variable is 
Boolean-valued.  

The problem of learning the Boolean 11-
multiplexer function will serve to show the interplay in 
genetic programming of  
• the genetic variation inevitably created in the initial 

random generation,  
• the small improvements for some individuals in the 

population via localized hill-climbing from 
generation to generation,  

• the way particular individuals become specialized 
and able to correctly handle certain sub-cases of the 
problem (case-splitting), 

• the creative role of crossover in recombining 
valuable parts of more fit parents, 

• how the nurturing of a large population of 
alternative solutions to the problem (rather than a 
single point in the solution space) helps avoid false 
peaks in the search for the solution to the problem, 
and 

• that it is not necessary to determine in advance the 
size and shape of ultimate solution or the 
intermediate results that may contribute to the 
solution. 
The input to the Boolean N-multiplexer function 

consists of k address bits ai and 2k data bits di, where 

N = k + 2k.  That is, the input consists of the k+2k bits 
ak-1, ... , a1, a0,  d2k-1, ... , d1,  d0.  

The value of the Boolean multiplexer function is 
the Boolean value (0 or 1) of the particular data bit 
that is singled out by the k address bits of the 
multiplexer.  For example, for the Boolean 11-
multiplexer (where k = 3), if the three address bits 
a2a1a0 are 110, the multiplexer singles out data bit 
number 6 (i.e., d6) to be the output of the multiplexer.  
Figure 5 shows a Boolean 11-multiplexer with an 
input of 11001000000 and the corresponding output of 
1.   

a2
a1
a0

d7
d6
d5
d4
d3
d2
d1
d0

Output1

1
1
0

0
1
0
0
0
0
0
0

 
Figure 5  Boolean 11-multiplexer 
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There are five major steps in preparing to use genetic 
programming, namely determining 
(1) the set of terminals, 
(2) the set of primitive functions,  
(3) the fitness measure, 
(4) the parameters for controlling the run, and 
(5) the method for designating a result and the 

criterion for terminating a run. 
The first major step in preparing to use genetic 

programming is the identification of the set of 
terminals that will be available for constructing the 
computer programs (S-expressions) that will try to 
solve the problem. This choice is especially straight-
forward for this problem. The terminal set for this 
problem consists of the 11 inputs to the Boolean 11-
multiplexer. Thus, the terminal set T for this problem 
consists of 

T = {A0, A1, A2, D0, D1, ... , D7}. 
The second major step in preparing to use genetic 

programming is the identification of a sufficient set of 
primitive functions that will be available for 
constructing the computer programs (S-expressions) 
that solve the problem. Thus, the function set F for this 
problem is  

F = {AND, OR, NOT, IF} 
taking 2, 2, 1, and 3 arguments, respectively.   

The IF function is the Common LISP function that 
performs the IF-THEN-ELSE operation.  That is, the 
IF function returns the results of evaluating its third 
argument (the “else” clause) if its first argument is 
NIL (False) and otherwise returns the results of 
evaluating its second argument (the “then” clause).   

The above function set F is known to be sufficient 
to realize any Boolean function.   

Since genetic programming operates on an initial 
population of randomly generated compositions of the 
available functions and terminals (and later performs 
genetic operations, such as crossover, on these 
individuals), each primitive function in the function set 
should be well defined for any combination of 
arguments from the range of values returned by every 
primitive function that it may encounter and the value 
of every terminal that it may encounter.  The above 
function set F of primitive functions satisfies the 
closure property. 

The search space for this problem is the set of all 
LISP S-expressions that can be recursively composed 
of the primitive functions from the function set F and 
terminals from the terminal set T.  Another way to 
look at the search space is that the Boolean multiplexer 
function with k+2k arguments is a particular one of 
2k+2k possible Boolean functions of k+2k arguments.  
For example, when k=3, then  k+2k = 11 and this 

search space is of size 2211
.  That is, the search space 

is of size  22048, which is approximately 10616.  
The third major step in preparing to use genetic 

programming is the identification of the fitness 
measure for evaluating the goodness of an individual 
S-expression  in the population.   Fitness is often 
evaluated over a number of fitness cases – just as 
computer programs are typically debugged by 
examining their output over a number of test cases.  
The set of fitness cases must be representative of the 
problem as a whole.  The reader may find it helpful to 
think of these fitness cases as the “environment” in 
which the genetic population of computer programs 
must adapt.  There are 211 = 2,048 possible 
combinations of the 11 arguments 
a0a1a2d0d1d2d3d4d5d6d7 along with the associated 
correct value of the 11-multiplexer function.  For this 
particular problem, we use the entire set of 2,048 
combinations of arguments as the fitness cases for 
evaluating fitness (although we could, of course, use 
sampling).  

We begin by defining raw fitness in the simplest 
way that comes to mind using the natural terminology 
of the problem.  The raw fitness of a LISP S-
expression in this problem is simply the number of 
fitness cases (taken over all 2,048 fitness cases) where 
the Boolean value returned by the S-expression for a 
given combination of arguments is the correct Boolean 
value.  Thus, the raw fitness of an S-expression can 
range over 2,049 different values between 0 and 2,048. 
A raw fitness of 2,048 denotes a 100% correct 
individual S-expression.  

It is useful to define a fitness measure called 
standardized fitness where a smaller value is better and 
a zero value is best.     Since a bigger value of raw 
fitness is better for this problem, standardized fitness is 
different from raw fitness for this problem.  In 
particular, standardized fitness equals the maximum 
possible value of raw fitness rmax (i.e., 2,048) minus 
the observed raw fitness. The standardized fitness can 
also be viewed as the sum, taken over all 2,048 fitness 
cases, of the Hamming distances (errors) between the 
Boolean value returned by the S-expression for a 
given combination of arguments and the correct 
Boolean value.  The Hamming distance is zero if the 
Boolean value returned by the S-expression agrees 
with the correct Boolean value and is one if it 
disagrees.  Thus, the sum of the Hamming distances is 
equivalent to the number of mismatches. 

The fourth major step in using genetic 
programming is selecting the values of certain 
parameters.   

The two major parameters that are used to control 
the process are the population size M and the 
maximum number of generations Ngen to be run.  
Ngen was 51 throughout this article.  Our choice of 
4,000 as the population size for this problem reflects 
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an estimate on our part as to the likely complexity of 
this problem and the practical limitations of available 
computer memory.   

In addition, genetic programming is controlled by a 
number of additional secondary parameters.  Our 
choice of values for the various secondary parameters 
that control the runs of genetic programming are the 
same default values as we have used on numerous 
other problems [Koza 1992a]. Specifically, each new 
generation is created from the preceding generation by 
applying the fitness proportionate reproduction 
operation to 10% of the population and by applying 
the crossover operation to 90% of the population (with 
both parents selected with a probability proportionate 
to fitness).  In selecting crossover points, 90% were 
internal (function) points of the tree and 10% were 
external (terminal) points of the tree.  For the practical 
reason of avoiding the expenditure of large amounts of 
computer time on an occasional oversized programs, 
the depth of initial random programs was limited to 6 
and the depth of programs created by crossover was 
limited to 17.  The individuals in the initial random 
generation were generated so as to obtain a wide 
variety of different sizes and shapes among the S-
expressions.  Fitness is "adjusted" to emphasize small 
differences near zero.  Spousal selection was also 
fitness proportionate.  Details of the selection of these 
secondary parameters can be found in Koza [1992a].   
We believe that sufficient information is provided 
herein and in Koza [1992a] to allow replication of the 
experimental results reported herein, within the limits 
inherent in a probabilistic algorithm.  Common LISP 
software is listed in Koza [1992a] for genetic 
programming. 

Finally, the fifth major step in preparing to use 
genetic programming is the selection of the criterion 
for terminating a run and the selection of the method 
for designating a result.  In this problem we have a 
way to recognize a solution when we find it.  When 
the raw fitness is 2,048 (i.e., the standardized fitness is 
zero), we have a 100% correct solution to this 
problem.  Thus, we terminate a run after a specified 
maximum number of generations Ngen (e.g.,  51) or 
earlier if we find an individual with a raw fitness of 
2,048.  For all the problems in this article, we will 
terminate a given run either after 51 generations and 
we designate the best single individual in the 
population at the time of termination as the result of 
genetic programming.   

We now illustrate genetic programming by 
discussing one particular run of the Boolean 11-
multiplexer in detail.  The process begins with the 
generation of the initial random population (i.e., 
generation 0). 

Predictably, the initial random population includes 
a variety of highly unfit individuals.  Many individual 
S-expressions in this initial random population are 
merely constants, such as the contradictory (AND A0 

(NOT A0)).  Other individuals are passive and 
merely pass an input through as the output, such as 
(NOT (NOT A1)).  Other individuals are 
inefficient, such as (OR D7 D7).  Some of these 
initial random individuals base their decision on 
precisely the wrong arguments, such as (IF D0 A0 
A2).  This individual uses the data bit D0 to decide 
what output to take.  Many of the initial random 
individuals are partially blind in that they do not 
incorporate all 11 arguments that are known to be 
necessary to solve the problem.  Some S-expressions 
are just nonsense, such as  
(IF (IF (IF D2 D2 D2) D2 D2) D2 D2). 

Nonetheless, even in this highly unfit initial 
random population, some individuals are somewhat 
more fit than others.   For this particular run, the 
individuals in the initial random population had values 
of standardized fitness ranging from 768 mismatches 
(i.e., 1,280 matches) to 1,280 mismatches (i.e., 768 
matches). 

The worst individual in the population for the 
initial random generation was 
(OR (NOT A1) (NOT (IF (AND A2 A0) D7 D3))). 

This individual had a standardized fitness of 1,280 
(i.e., raw fitness of only 768).  

As it happens, a total of 23 individuals out of the 
4,000 in this initial random population tied with the 
highest score of 1,280 matches on generation 0. One 
of these 23 high scoring individuals was the S-expres-
sion 
 (IF A0 D1 D2). 

This individual scores 1,280 matches by scoring 
512 matches for the one quarter (i.e., 512) of the 2,048 
fitness cases for which A2 and A1 are both NIL and 
by scoring an additional 768 matches on 50% of the 
remaining three quarters (i.e., 1,536) of the fitness 
cases. 

This individual has obvious shortcomings.  
Notably, it is partially blind in that it uses only 3 of the 
11 necessary terminals of the problem.  As a 
consequence of this fact alone, this individual cannot 
possibly be a correct solution to the problem.  This 
individual nonetheless does some things right.  For 
example, this individual uses one of the three address 
bits (A0) as the basis for its action.  It could easily 
have done this wrong and used one of the eight data 
bits. In addition, this individual uses only data bits (D1 
and D2) as its output. It could have done this wrong 
and used address bits. Moreover, if A0 (which is the 
low order binary bit of the 3-bit address) is T (True), 
this individual selects one of the three odd numbered 
data bits (D1) as it output.  Moreover, if A0 is NIL, 
this individual selects one of the three even numbered 
data bits (D2) as its output. In other words, this 
individual correctly links the parity of the low order 
address bit A0 with the parity of the data bit it selects 
as its output.  This individual is far from perfect, but it 
is far from being without merit. It is more fit than 
3,977 of the 4,000 individuals in the population. 
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The average standardized fitness for all 4,000 
individuals in the population for generation 0 is 985.4.  
This value of average standardized fitness for the 
initial random population forms the baseline and 
serves as a useful benchmark for monitoring later 
improvements in the average standardized fitness of 
the population.   

The hits histogram is a useful monitoring tool 
based on the auxiliary hits measure. This histogram 
provides a way of viewing the population as a whole 
for a particular generation. The horizontal axis of the 
hits histogram is the number of hits (i.e., matches, for 
this problem) and the vertical axis is the number of 
individuals in the population scoring that number of 
hits.  Fifty different levels of fitness are represented in 
the hits histogram for the population at generation 0 of 
this problem. In order to make this histogram legible 
for this problem, we have divided the horizontal axis 
into buckets of size 64.  For example, 1,553 
individuals out of 4,000 (i.e., about 39%) had between 
1,152 and 1215 matches (hits).  This well-populated 
range includes the mode of the distribution which 
occurs at 1,152 matches (hits).  There are 1490 
individuals with 1,152 matches (hits). Figure 6 shows 
the hits histogram of the population for generation 0 of 
this run of this problem.  
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Figure 6   Hits histogram for generation 0. 

The Darwinian reproduction operation and the 
genetic crossover operation are then applied to parents 
selected from the current population with probabilities 
proportionate to fitness to breed a new population.   
When these operations are completed, the new 
population (i.e., the new generation) replaces the old 
population. 

The initial random generation is an exercise in 
blind random search.  In going from generation 0 to 
generation 1, genetic programming works with the 
inevitable genetic variation existing in an initial 
random population.    The search is a parallel search of 
the search space because there are 4,000 individual 
points involved.   

Although the vast majority of the new offspring are 
again highly unfit, some of them tend to be somewhat 
more fit than others.  Moreover, over a period of time 
and many generations, some of them tend to be 
slightly more fit than those existing in the earlier 
generation.  In this run, the average standardized 
fitness of the population immediately begins 
improving (i.e., decreasing) from the baseline value of 
985.4 for generation 0 to about 891.9 for generation 1.  
We typically see this kind of generally improving 
trend in average standardized fitness from generation 

to generation.  As it happens, in this particular run of 
this particular problem, the average standardized 
fitness improves (i.e., decreases) monotonically 
between generation 2 and generation 9 and assumes 
values of 845, 823, 763, 731, 651, 558, 459, and 382, 
respectively.  We usually see a generally improving 
trend in average standardized fitness from generation 
to generation, but not necessarily a monotonic 
improvement. 

In addition, we similarly usually see a generally 
improving trend in the standardized fitness of the best 
single individual in the population from generation to 
generation.  As it happens, in this particular run of this 
particular problem, the standardized fitness of the best 
single individual in the population improves (i.e., 
decreases) monotonically between generation 2 and 
generation 9.  In particular, it assumes values of 640, 
576, 384, 384, 256, 256, 128, and 0 (i.e., a perfect 
score), respectively.   

On the other hand, the standardized fitness of the 
worst single individual in the population fluctuates 
considerably.  For this particular run, the standardized 
fitness of the worst individual starts at 1280, fluctuates 
considerably between generations 1 and 9, and then 
deteriorates (increases) to 1792 by generation 9. 

Figure 7 shows the standardized fitness (i.e., 
mismatches) for generations 0 through 9 of this run for 
the best single individual in the population, the worst 
single individual in the population, and the average for 
the population.  
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Figure 7  Standardized fitness of worst-of-generation 
individual, average standardized fitness of population, 
and standardized fitness of best-of-generation 
individual for generations 0 through 9.  

In generation 1, the raw fitness for the best single 
individual in the population rises to 1,408 matches 
(i.e., standardized fitness of 640).  Only one individual 
in the population attained this high score of 1408 in 
generation 1, namely  
(IF A0 (IF A2 D7 D3) D0). 

Note that this individual performs better than the best 
individual from generation 0 for two reasons. First, 
this individual considers two of the three address bits 
(A0 and A2) in deciding which data bit to choose as 
output, whereas the best individual in generation 0 
considered only one of the three address bits (A0). 
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Second this best individual from generation 1 
incorporates three of the eight data bits as its output, 
whereas the best individual in generation 0 incorpo-
rated only two of the eight potential data bits as 
output.  Although still far from perfect, the best 
individual from generation 1 is less blind and more 
complex than the best individual of the previous 
generation.  This best-of-generation individual consists 
of 7 points, whereas the best-of-generation individual 
from generation 0 consisted of only 4 points.  Note 
that these 21 individuals are not just copies of the best-
of-generation individual from generation 1.  Instead, 
they represent a number of different programs with the 
same fitness, but different structure and behavior. 

In generation 2, the best raw fitness remained at 
1,408; however, the number of individuals in the 
population sharing this high score rose from 1 to 21.  
The high point of the hits histogram advanced from 
1,152 for generation 0 to 1,280 for generation 2. There 
are 1,620 individuals with 1,280 hits. 

In generation 3, one individual in the population 
attained a new high score of 1,472 matches (i.e., 
standardized fitness of 576). This individual has 16 
points and is 
(IF A2 (IF A0 D7 D4) 
       (AND (IF (IF A2 (NOT D5) A0) D3 D2) D2)). 

Generation 3 shows further advances in fitness for the 
population as a whole.  The number of individuals 
with 1,280 hits (the high point for generation 2) has 
risen to 2,158 for generation 3.  Moreover, the center 
of gravity of the fitness histogram has shifted 
significantly from left to right. In particular, the 
number of individuals with 1,280 hits or better has 
risen from 1,679 in generation 2 to 2,719 in generation 
3. 

In generations 4 and 5, the best single individual 
has 1,664 hits. This score is attained by only one 
individual in generation 4, but is attained by 13 
individuals in generation 5.  One of these 13 
individuals is 
(IF A0 (IF A2 D7 D3) 
       (IF A2 D4 (IF A1 D2 (IF A2 D7 D0)))). 

Note that this individual uses all three address bits 
(A2, A1, and A0) in deciding upon the output.  It also 
uses five of the eight data bits.  By generation 4, the 
high point of the histogram has moved to 1,408 with 
1,559 individuals. 

In generation 6, four individuals attain a score of 
1,792 hits. The high point of the histogram has moved 
to 1,536 hits.   

In generation 7, 70 individuals attain this score of 
1,792 hits. 

In generation 8, there are four best-of-generation 
individuals.  They all attain a score of 1,920 hits.  The 
mode (high point) of the histogram has moved to 
1,664.  1,672 individuals share this value.  Moreover, 
an additional 887 individuals score 1,792.  

In generation 9, one individual emerges with a 
l00% perfect score of 2,048 hits. That individual is 

(IF A0 (IF A2 (IF A1 D7 (IF A0 D5 D0)) 
              (IF A0 (IF A1 (IF A2 D7 D3) D1) 
                     D0)) 
       (IF A2 (IF A1 D6 D4) 
              (IF A2 D4 
                     (IF A1 D2 (IF A2 D7 D0))))) 

Figure 8 shows the 100% correct individual from 
generation 9. 
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IF

IF

A0 D5 D0 IF

A2 D7 D3
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IFA0 D0

IF

IF

A2 IF

A1 D6 D4

IF

D7 D0

D2A1

IFD4A2

IF

IFA0

IF

A2  
Figure 8  100% correct individual from generation 9. 

This 100% correct individual from generation 9 is a 
hierarchical structure consisting of 37 points (i.e., 12 
functions and 25 terminals).   

Note that the size and shape of this solution 
emerged from genetic programming.  This particular 
size and this particular hierarchical structure was not 
specified in advance.  Instead, it evolved as a result of 
reproduction, crossover, and the relentless pressure of 
fitness.  In generation 0, the best single individual in 
the population had 12 points.  The number of points in 
the best single individual in the population varied from 
generation to generation.  It was 4 in generation 0, 
while it was 37 for generation 9. 

This 100% correct individual can be simplified to 
(IF A0 (IF A2 (IF A1 D7 D5) (IF A1 D3 D1)) 
       (IF A2 (IF A1 D6 D4) (IF A1 D2 D0))). 

When so rewritten, it can be seen that this 
individual correctly performs the 11-multiplexer 
function by first examining address bits A0, A2, and 
A1 and then choosing the appropriate one of the eight 
possible data bits. 

Figure 9 shows, side by side, the hits histograms 
for generations 3, 5, 7, and 9 of this run.  As one 
progresses from generation to generation, note the left-
to-right “slinky” undulating movement of the center of 
mass of the histogram and the high point of the his-
togram.  This movement reflects the improvement of 
the population as a whole as well as the best single 
individual in the population.  There is a single 100% 
correct individual with 2,048 hits at generation 9; 
however, because of the scale of the vertical axis of 
this histogram, it is not visible in a population of size 
4,000.  
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Figure 9  Hits histograms for generations 3, 5, 7, and 9 
for the 11-multiplexer.  

Further insight can be gained by studying the 
genealogical audit trail consisting of a complete record 
of the details of each genetic operation that is 
performed at each generation.  The creative role of 
crossover and case-splitting is illustrated by an 
examination of the genealogical audit trail for the 
l00% correct individual emerging at generation 9. 

The l00% correct individual emerging at generation 
9 is the child resulting from the most common genetic 
operation used in the process, namely crossover.  The 
first parent from generation 8 had rank location of 58 
in the population (with a rank of 0 being the very best) 
and scored 1,792 hits (out of 2,048).  The second 
parent  from generation 8 had rank location 1 and 
scored 1,920 hits.  Note that it is entirely typical that 
the individuals selected to participate in crossover 
have relatively high rank locations in the population 
since crossover is performed among individuals in a 
mating pool created proportional to fitness. 

The first parent from generation 8 (scoring 1,792) 
was 
(IF A0 (IF A2 D7 D3) 
       (IF A2 (IF A1 D6 D4) 
              (IF A2 D4 
                  (IF A1 D2 (IF A2 D7 D0)))))). 

Figure 10 shows this first parent from generation 8 
. 
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Figure 10   First parent (scoring 1,792 hits) from 
generation 8 for 100% correct individual in generation 
9. 

Note that this first parent starts by examining 
address bit A0.  If A0 is T, the emboldened and under-
lined portion then examines address bit A2.  It then, 
partially blindly, makes the output equal D7 or D3 
without even considering address bit A1.  Moreover, 
the emboldened and underlined portion of this 
individual does not even contain data bits D1 and D5.  

On the other hand, when A0 is NIL, this first 
parent is 100% correct.  In that event, it examines A2 
and, if A2 is T, it then examines A1 and makes the 
output equal to D6 or D4 according to whether A1 is T 
or NIL.  Moreover, if A2 is NIL, it twice retests A2 
(unnecessarily, but harmlessly) and then correctly 
makes the output equal to (IF A1 D2 D0).  Note 
that the 100% correct portion of this first parent, 
namely, the sub-expression 
(IF A2 (IF A1 D6 D4) 
       (IF A2 D4 (IF A1 D2 (IF A2 D7 D0)))) 

is itself a 6-multiplexer.   
This embedded 6-multiplexer tests A2 and A1 and 

correctly selects amongst D6, D4, D2, and D0.  This 
fact becomes clearer if we simplify this sub-expression 
by removing the two extraneous tests and removing 
the D7 (which is unreachable).  This sub-expression 
simplifies to the following: 
(IF A2 (IF A1 D6 D4) 
       (IF A1 D2 D0)) 

In other words, this imperfect first parent handles 
part of its environment correctly and part of its 
environment incorrectly.  In particular, this first parent 
handles the even-numbered data bits correctly and is 
partially correct in handling the odd-numbered data 
bits. 

The tree representing this first parent has 22 points. 
The crossover point chosen at random at the end of 
generation 8 was point 3 and corresponds to the 
second occurrence of the function IF. That is, the 
crossover fragment consists of the incorrect, 
emboldened and underlined sub-expression  
(IF A2 D7 D3).    

The second parent from generation 8 (scoring 
1,920 hits) was 
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(IF A0 (IF A0 
           (IF A2 (IF A1 D7 (IF A0 D5 D0))  
                    (IF A0 (IF A1 (IF A2 D7 
                                             D3) 
                                     D1) 
                             D0))  
           (IF A1 D6 D4)) 
       (IF A2 D4 
              (IF A1 D2 
                     (IF A0 D7 (IF A2 D4 D0)))))) 

Figure 11 shows the second parent from generation 
8. 
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Figure 11  Second parent (scoring 1,920 hits) from 
generation 8 for 100% correct individual in generation 
9. 

The tree representing this second parent has 40 
points.  The crossover point chosen at random for this 
second parent was point 5.  This point corresponds to 
the third occurrence of the function IF.  That is, the 
crossover fragment consists of the emboldened and 
underlined sub-expression of this second parent.  

This sub-expression of this second parent 100% 
correctly handles the case when A0 is T (i.e., the odd 
numbered addresses).  This sub-expression makes the 
output equal to D7 when the address bits are 111; it 
makes the output equal to D5 when the address bits are 
101; it makes the output equal to D3 when the address 
bits are 011; and it makes the output equal to D1 when 
the address bits are 001.  

Note that the 100% correct portion of this second 
parent, namely, the sub-expression 
(IF A2 (IF A1 D7 (IF A0 D5 D0))  
       (IF A0 (IF A1 (IF A2 D7 D3) D1) D0)) 

is itself a 6-multiplexer.   
This embedded 6-multiplexer in this second parent 

tests A2 and A1 and correctly selects amongst D7, D5, 
D3, and D1 (i.e., the odd numbered data bits).  This 
fact becomes clearer if we simplify this sub-expression 
of this second parent to the following: 
(IF A2 (IF A1 D7 D5)  
       (IF A1 D3 D1) 

In other words, this imperfect second parent 
handles part of its environment correctly and part of its 
environment incorrectly.  This second parent does not 
do very well when A0 is NIL (i.e., the even numbered 
data bits).  This second parent correctly handles the 

odd-numbered data bits and incorrectly handles the 
even-numbered data bits. 

Even though neither parent is perfect, these two 
imperfect parents contain complementary portions 
which, when mated together, produce a 100% correct 
offspring individual.  In effect, the creative effect of 
the crossover operation blends the two cases of the 
implicitly “case-split” environment into a single 100% 
correct solution. 

Figure 12 shows this case splitting by showing the 
100% correct offspring from generation 9 as two 6-
multiplexers: 
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IF

6-Multiplexer from 
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A2 and A1 to select 
amongst D7, D5, 

D3 and D1

6-Multiplexer from 
first parent using 

A2 and A1 to select 
amongst D6, D4, 

D2 and D0

 
Figure 12  Simplified 100% correct individual from 
generation 9 shown as a hierarchy of two 6-
multiplexers. 

Figure 13 also shows this simplified version of the 
100% correct individual from generation 9. 
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Figure 13  Simplified 100% correct individual from 
generation 9 shown as a hierarchy of two 6-
multiplexers. 

Of course, not all crossovers between individuals 
are useful and productive.  In fact, a large fraction of 
the individuals produced by the genetic operations are 
useless.  But the existence of a population of 
alternative solutions to a problem provides the 
ingredients with which genetic recombination 
(crossover) can produce some improved individuals. 
The relentless pressure of natural selection based on 
fitness then causes these improved individuals to be 
preserved and to proliferate. Moreover, genetic 
variation and the existence of a population of 
alternative solutions to a problem makes it unlikely 
that the entire population will become trapped on local 
maxima. 

Interestingly, the same crossover that produced the 
100% correct individual also produced a runt scoring 
only 256 hits.  In this particular crossover, the two 
crossover fragments not used in the 100% correct 
individual combined to produce an unusually unfit 
individual.  This is one of the reasons why there is 
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considerable variability from generation to generation 
in the worst single individual in the population. 

As one traces the ancestry of the 100% correct 
individual created in generation 9 deeper back into the 
genealogical audit tree (i.e., towards earlier 
generations), one encounters parents scoring generally 
fewer and fewer hits.  That is, one encounters more S-
expressions that perform irrelevant, counterproductive, 
partially blind, and incorrect work.  But if we look at 
the sequence of hits in the forward direction, we see 
localized hill-climbing in the search space occurring in 
parallel throughout the population as the creative 
operation of crossover recombines complementary, co-
adapted portions of parents to produce improved 
offspring. 

The solution to the 11-multiplexer problem in this 
run was a hierarchy consisting of two 6-multiplexers.  
In a run where we applied genetic programming to the 
simpler Boolean 6-multiplexer, we obtained the 
following 100% correct solution  
(IF (AND A0 A1) D3 (IF A0 D1 (IF Al D2 D0))). 

This solution to the 6-multiplexer is also a 
hierarchy.  It is a hierarchy that correctly handles the 
particular fitness cases where (AND A0 A1) is true 
and then correctly handles the remaining cases where 
(AND A0 A1) is false. 

Default hierarchies often emerge from genetic 
programming.  A default hierarchy incorporates 
partially correct sub-rules into a perfect overall 
procedure by allowing the partially correct (default) 
sub-rules to handle the majority of the environment 
and by then dealing in a different way with certain 
specific exceptional cases in the environment.  The S-
expression above is also a default hierarchy in which 
the output defaults to  
(IF A0 D1 (IF Al D2 D0)) 

three quarters of the time.  However, in the specific 
exceptional fitness case where both address bits (A0 
and A1) are both T, the output is the data bit D3.   

Default hierarchies are considered desirable in 
induction problems [Holland 1986, Holland et. al. 
1986, Wilson 1988] because they are often 
parsimonious and they are a human-like way of 
dealing with situations.   

5. Symbolic Regression - Empirical Data 

An important problem area in virtually every area of 
science is finding the relationship underlying 
empirically observed values of the variables measuring 
a system.  In practice, the observed data may be noisy 
and there may be no known way to express the 
relationships involved in a precise way.   

The learning of the Boolean multiplexer function is 
an example of the general problem of symbolic 
function identification (symbolic regression).  In this 

section, we discuss symbolic regression as applied to 
real-valued functions over real-valued domains. 

In conventional linear regression, one is given a set 
of values of various independent variable(s) and the 
corresponding values for the dependent variable(s). 
The goal is to discover a set of numerical coefficients 
for a linear combination of the independent variable(s) 
which minimizes some measure of error (such as the 
square root of the sum of the squares of the 
differences) between the given values and computed 
values of the dependent variable(s).  Similarly, in 
quadratic regression, the goal is to discover a set of 
numerical coefficients for a quadratic expression 
which similarly minimizes error.  

Of course, it is left to the researcher to decide 
whether to do a linear regression, quadratic regression, 
a higher order polynomial regression, or whether to try 
to fit the data points to some non-polynomial family of 
functions (e.g.,  sines and cosines of various 
periodicities, etc.).  But, often, the issue is deciding 
what type of function most appropriately fits the data, 
not merely computing the numerical coefficients after 
the type of function for the model has already been 
chosen.  In other words, the real problem is often both 
the discovery of the correct functional form that fits 
the data and the discovery of the appropriate numeric 
coefficients that go with that functional form. We call 
the problem of finding a function, in symbolic form, 
that fits a given finite sample of data by the name 
“symbolic regression.” It is “data to function” 
regression. 

The problem of discovering empirical relationships 
from actual observed data is illustrated by the well-
known non-linear econometric exchange equation  

P=
MV
Q  .  

This equation states the relationship between the gross 
national product Q of an economy, the price level P, 
the money supply M, and the velocity of money V.   

Suppose that our goal is to find the econometric 
model expressing the relationship between quarterly 
values of the price level P and the quarterly values of 
the three other quantities appearing in the equation. 
That is, our goal is to rediscover the relationship 

P=
MV
Q    

from the actual observed noisy time series data.  
Moreover, suppose that certain additional economic 
data is also available which is irrelevant to this 
relationship, but not preidentified as being irrelevant.  
Many economists believe that inflation (which is the 
change in the price level) can be controlled by the 
central bank via adjustments in the money supply M.  
Specifically, the "correct" exchange equation for the 
United States in the postwar period is the non-linear 
relationship 

GD = 
(1.6527 * M2)

GNP82   
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where 1.6527 is the actual long-term historic postwar 
value of the M2 velocity of money in the United States 
[Hallman et. al. 1989].  Interest rates are not a relevant 
variable in this well-known relationship.   

In particular, suppose we are given the 120 actual 
quarterly values from 1959:1 (i.e., the first quarter of 
1959) to 1988:4 of following four econometric time 
series: 
• Inflation or price level P (the dependent variable 

here) is represented by the Gross National Product 
Deflator (normalized to 1.0) for 1982 
(conventionally called GD).  

• The gross national product of the economy Q (one of 
the independent variables) is represented by the 
annual rate for the United States Gross National 
Product in billions of 1982 dollars (conventionally 
called GNP82). 

• The money supply M (another of the independent 
variables) is represented by the monthly values of 
the seasonally adjusted money stock M2 in billions 
of dollars, averaged for each quarter (conventionally 
called M2). 

• Interest rates (an independent variable that happens 
to be irrelevant to the calculation here) are 
represented by the monthly interest rate yields of 3-
month Treasury bills, averaged for each quarter 
(conventionally called FYGM3).   
The four time series used here were obtained from 

the CITIBASE data base of machine-readable 
econometric time series [Citibank 1989].   

As a point of reference, the sum of the squared 
errors between the actual gross national product 
deflator GD from 1959:1 to 1988:4 and the fitted GD 
series calculated from the above model over the entire 
30-year period involving 120 quarters (1959:1 to 
1988:4) is very small, namely 0.077193.   The 
correlation R2 was 0.993320.   

These 120 combinations of the above three 
independent variables (M2), and the associated value 
of the dependent variables (GD, GNP82, and FYGM3) 
are the set from which we will draw the fitness cases 
that will be used to evaluate the fitness of any 
proposed S-expression.   

The goal is to find a function, in symbolic form, 
that is a good fit or perfect fit to the numerical data 
points.  The solution to this problem of finding a 
function in symbolic form that fits a given sample of 
data can be viewed as a search for a mathematical 
expression (S-expression) from a space of possible S-
expressions that can be composed from a set of 
available functions and arguments.  

The appearance of numeric constants (such as the 
constant 1.6527 in the above correct equation) is 
typical of relations among empirical data from the real 
world.  Thus, we must deal with the problem of 
discovering coefficients and constant values while 
doing symbolic regression. 

Constants can be created in genetic programming 
by adding an ephemeral random constant ← to the 
terminal set.  During the creation of generation 0, 
whenever the ephemeral random constant ← is chosen 
for an endpoint of the tree, a random number of an 
appropriate type in a specified range is generated and 
attached to the tree at that point.   For example, in the 
real-valued symbolic regression problem at hand, the 
ephemeral random constants are of floating point type 
and their range is between -1.000 and +1.000.      

This random generation is done anew each time 
when an ephemeral ← terminal is encountered, so that 
the initial random population contains a variety of 
different random constants of the specified type.  Once 
generated and inserted into the S-expressions of the 
initial random population, these constants remain fixed 
thereafter.  However, after the initial random 
generation, the numerous different random constants 
will be moved around from tree to tree by the 
crossover operation. In many instances, these 
constants will be combined via the arithmetic 
operations in the function set of the problem.   

This “moving around”  and "combining" of the 
random constants is not at all haphazard, but, instead, 
is driven by the overall goal of achieving ever better 
levels of fitness.  For example, a symbolic expression 
that is a reasonably good fit to a target function may 
become a better fit if a particular constant is, for 
example, decreased slightly.  A slight decrease can be 
achieved in several different ways.  For example, there 
may be a multiplication by 0.90, a division by 1.10, a 
subtraction of 0.08, or an addition of -0.004.  If a 
decrease of precisely 0.09 in a particular constant 
would produce a perfect fit, a decrease of 0.07 will 
usually fit better than a decrease of only 0.05.  Thus, 
the relentless pressure of the fitness function in the 
natural selection process determines both the direction 
and magnitude of the adjustments of the original 
numerical constants.  It is thus possible to genetically 
evolve numeric constants as required to perform a 
required symbolic regression on numeric data.   

We first divide the 30-year, 120-quarter period into 
a 20-year, 80-quarter in-sample period running from 
1959:1 to 1978:4 and a 10-year, 40-quarter out-of-
sample period running from 1979:1 to 1988:4.  This 
allows us to use the first two-thirds of the data to 
create the model and to then use the last third of the 
data to test the model. 

The first major step in using genetic programming 
is to identify the set of terminals.  The terminal set for 
this problem is  

T = {GNP82, FM2, FYGM3, ←}. 
The terminals GNP82, FM2, and FYGM3 correspond 
to the independent variables of the model and provide 
access to the values of the time series.  In effect, these 
terminals are functions of the unstated, implicit time 
variable which ranges over the various quarters.   
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The second major step in using genetic 
programming is to identify a set of functions.  The set 
of functions chosen for this problem is  

F = {+, -, *, %, EXP, RLOG}  
taking 2, 2, 2, 2, 1, and 1 arguments, respectively.  

It is necessary to ensure closure by protecting 
against the possibility of division by zero and the 
possibility of creating extremely large or small floating 
point values.  Accordingly, the protected division 
function % ordinarily returns the quotient; however, if 
division by zero is attempted, it returns 1.0.  The one-
argument exponential function EXP ordinarily returns 
the result of raising e to the power indicated by its one 
argument.  If the result of evaluating EXP or any of the 
four arithmetic functions would be greater than 1010 
or less than 10-10, then the nominal value 1010 or 10-
10, respectively, is returned.  The protected logarithm 
function RLOG returns 0 for an argument of 0 and 
otherwise returns the logarithm of the absolute value 
of the argument.  

Notice that we are not told a priori whether the 
unknown functional relationship between the given 
observed data (the three independent variables) and 
the target function (the dependent variable, GD) is 
linear, polynomial, exponential, logarithmic, 
nonlinear, or otherwise.  The unknown functional 
relationship could be any combination of the functions 
in the function set.  Notice also that we are also not 
given the known constant value V for the velocity of 
money.  And, notice that we are not told that the 3-
month Treasury bill yields (FYGM3) contained in the 
terminal set and the addition, subtraction, exponential, 
and logarithm functions are all irrelevant to finding the 
econometric model for the dependent variable GD of 
this problem.  

The third major step in using genetic programming 
is identification of the fitness function for evaluating 
how good a given computer program is at solving the 
problem at hand. 

The fitness of an S-expression is the sum, taken 
over the 80 in-sample quarters, of squares of 
differences between the value of the price level 
produced by S-expression and the target value of the 
price level given by the GD time series.   

Population size was 500 here. 
The initial random population (generation 0) was, 

predictably, highly unfit.  In one run, the sum of 
squared errors between the single best S-expression in 
the population and the actual GD time series was 1.55.  
The correlation R2 was 0.49. 

As before, after the initial random population was 
created, each successive new generation in the 
population was created by applying the operations of 
fitness proportionate reproduction and genetic 
recombination (crossover). 

In generation 1, the sum of the squared errors for 
the new best single individual in the population 
improved to 0.50.  

In generation 3, the sum of the squared errors for 
the new best single individual in the population 
improved to 0.05.  This is approximately a 31-to-1 
improvement over the initial random generation.  The 
value of R2 improved to 0.98.  In addition, by 
generation 3, the best single individual in the 
population came within 1% of the actual GD time 
series for 44 of the 80 in-sample points. 

In generation 6, the sum of the squared errors for 
the new best single individual in the population 
improved to 0.027. This is approximately a 2-to-1 
improvement over generation 3.  The value of R2 
improved to 0.99. 

In generation 7, the sum of the squared errors for 
the new best single individual in the population 
improved to 0.013.  This is approximately a 2-to-1 
improvement over generation 6.  

In generation 15, the sum of the squared errors for 
the new best single individual in the population 
improved to 0.011.  This is an additional improvement 
over generation 7 and represents approximately a 141-
to-1 improvement over generation 0.  The correlation 
R2 was 0.99. 

In one run, the best single individual had a sum of 
squared errors of only 0.009272 over the in-sample 
period.  Figure 14 graphically depicts this best-of-run 
individual.   



16 Koza 

0.47

-0.005

0.832

%

%

%

GNP82

GNP82GNP82GNP82

-

+

*

-0.83

-0.126

%

%

GNP82

GNP82

FM2

FM2

FM2 -

-

+

+

+

*

-0.583-0.402

*

 
Figure 14   Best-of-run individual for exchange 
equation problem. 

This best-of-run individual is equivalent to 

GD = 
(1.634 * M2)

GNP82   

Notice the sub-tree (* -0.402 0 -0.583) on the left 
of this best-of-run individual.  This sub-expression 
evaluates to +0.234.  The numeric constants -0.402 0 
and -0.583 were created in generation 0 by the 
constant creation process.  These two constants are 
combined into a new constant (+0.234), which, in 
conjunction with other such constants, eventually 
produces the overall 1.634 constant as the velocity of 
money.   

Although genetic programming has succeeded in 
finding an expression that fits the given data rather 
well, there is always a concern that a fitting technique 
may be overfitting (i.e., memorizing) the data.  If a 
fitting technique overfits the data, the model produced 
has no ability to generalize to new combinations of the 
independent variables and therefore has little or no 
predictive or explanatory value.  We can validate the 
model produced from the 80-quarter in-sample period 
with the data from the 40-quarter out-of-sample 
period. 

Table 1 shows the sum of the squared errors and R2 
for the entire 120-quarter period, the 80-quarter in-
sample period, and the 40-quarter out-of-sample 
period. 

Table 1  Comparison of in-sample and out-of-
sample periods 

Data Range 1- 120 1 - 80 81 - 120 

R2 0.993480 0.997949 0.990614       

Sum of Squared Error 0.075388 0.009272 0.066116 
Figure 15 shows both the gross national product 

deflator GD from 1959:1 to 1988:4 and the fitted GD 
series calculated from the above genetically produced 
model for 1959:1 to 1988:4.  The actual GD series is 
shown as a line with dotted points.  The fitted GD 
series calculated from the above model is an ordinary 
line.   
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Figure 15  Gross national product deflator and fitted 
series computed from genetically produced model. 

Figure 16 shows the residuals from the fitted GD 
series calculated from the above genetically produced 
model for 1959:1 to 1988:4. 
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Figure 16  Residuals between the gross national 
product deflator and fitted series computed from 
genetically produced model  

We can further increase confidence that this 
genetically evolved model is not overfitting the data 
by dividing the same 30-year period into a different set 
of in-sample and out-of-sample periods.  When we 
divide the 30-year, 120-quarter period into a 10-year, 
40-quarter out-of-sample period running from 1959:1 
to 1968:4 and a 20-year, 80-quarter in-sample period 
running from 1969:1 to 1988:4, we obtain a virtually 
identical model.  See Koza [1992a].   

6. Control – Truck Backer-Upper 

Problems of optimal control involve a system that is 
described by  state variables.  The future state of the 
system is determined by the choice of certain control 
variables.  The objective in optimal control is to 
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choose the control variables so as to cause the system 
to go to a specified target state with an optimal 
(typically minimal) cost. 

Anyone who has tried to back up a tractor-trailer 
truck to a loading dock knows that it presents a 
difficult problem of control.  Nguyen and Widrow 
[1990] successfully illustrated the capabilities of 
neural networks by finding a controller for this multi-
dimensional control problem.   

Problems of control can be viewed as requiring the 
discovery of a computer program (i.e. controller, 
control strategy) that takes the state variables of a 
problem as its inputs and produces the values of the 
control variable(s) as its outputs.    

Genetic programming is well suited to difficult 
control problems where no exact solution is known 
and where an exact solution is not required.  When 
genetic programming solves a problem, it produces a 
computer program that takes the state variables of the 
system as input and produces the actions required to 
solve the problem as output.  The solution to a 
problem produced by genetic programming is not just 
a numerical solution applicable to a single specific 
numerical combination of states, but, instead, comes in 
the form of a general function (computer program) that 
maps the state variables of the system into values of 
the control variable(s).  There is no need to specify the 
exact size and shape of the computer program in 
advance.  The needed structure is evolved in response 
to the selective pressures of Darwinian natural 
selection and genetic sexual recombination.   

The truck backer-upper problem is a four 
dimensional control problem.  Figure 17 shows a 
loading dock and tractor-trailer.  The loading dock is 
the Y-axis.  The trailer and tractor are connected at a 
pivot point.   

The state space of the system is four dimensional.  
X is the horizontal position of the midpoint of the rear 
of the trailer and Y is the vertical position of the 
midpoint.  The target point for the midpoint of the rear 
of the trailer is (0,0).  The angle θt  (also called 
TANG) is the angle of the trailer with respect to the 
loading dock (measured, in radians, from the positive 
X-axis with counterclockwise being positive).  The 
difference angle θd (also called DIFF) is the angle of 
the tractor relative to the longitudinal axis of the trailer 
(measured, in radians, from the longitudinal axis of the 
trailer with counterclockwise being positive).   
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Figure 17  In the truck backer-upper problem, the goal 
is to bring the midpoint of the rear of the trailer to the 
target point (0,0) on the loading dock.  The control 
variable is the steering angle u(t) for the tires of the 
tractor (cab).  The cab is connected to the trailer via 
the pivot.   

The truck backs up at a constant speed so that the 
front wheels of the tractor (cab) move a fixed distance 
backwards with each time step.  Steering is 
accomplished by changing the angle u (i.e. the control 
variable) of the front tires of the tractor (cab) with 
respect to the current orientation of the tractor.   

The goal is to guide the midpoint of the rear of the 
trailer so that it ends up at (or very close to) the target 
point (0,0) on the loading dock while never allowing 
the midpoint of the rear of the truck to touch the 
loading dock.  We want to find a control strategy 
which specifies the change in angle u of the front tires 
of the tractor (cab) in terms of the four state variables 
of the system (namely, X, Y, TANG, and DIFF) 

The equations of motion that govern the tractor-
trailer system are 

 A = r cos u[t] 
 B = A cos(θc[t] –θt[t]) 
 C = A sin(θc[t] – θt[t]) 
 x[t + 1] = x[t] – B cosθt 
 y[t + 1] = y[t] – B sinθt 
 θc[t + 1] = tan-1   Error!) 
 θt[t + 1] = tan-1  Error!) 
 θd[t] = θt[t] – θc[t] 

In these equations, tan-1 



x

y   is the two argument 

arctangent function (also called ATG here) delivering 
an angle in the range -π to π.  The length of the tractor 
(i.e. cab) dc is 6 meters and the length of the trailer ds 
is 14 meters.  As in Nguyen and Widrow [1990], the 
truck only moves backwards.  The distance moved in 
one time step is r. The angle θt is TANG. The angle of 
the tractor relative to the X axis is θc.  

The first major step in preparing to use genetic 
programming is to identify the set of terminals.  The 
four state variables of the system (i.e. X, Y, TANG, 
DIFF) can be viewed as inputs to the unknown 
computer program which we want to find for 
controlling the system.  Thus, the terminal set T for 
this problem is T = {X, Y, TANG, DIFF, ← }.  When 
the initial population of random individuals is created, 
every occurrence of this ephemeral random constant in 
an S-expression is replaced by a separately generated 
random floating point number in the range between -
1.000 and +1.000.  

The second major step in preparing to use genetic 
programming is to identify a sufficient set of functions 
to solve for the problem.  We do not know the solution 
to this problem.  We have no assurance that a chosen 
function set will be sufficient for the problem.  
However, the function set F consisting of four 
arithmetic operations, the two argument Arctangent 
function ATG, and the conditional comparative 
operator IFLTZ ("If Less than Zero") seems 
reasonable.  Thus, the function set for this problem is 
F = {+, -, *, %, ATG, IFLTZ}. taking 2, 2, 2, 2, 2, and 
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3 arguments, respectively.  The protected division 
function % returns one when division by zero is 
attempted, and, otherwise, returns the normal quotient.  
The conditional branching operator IFLTZ ("If Less 
than Zero") evaluates its third argument is its first 
argument is less than zero and otherwise evaluates its 
second argument.  Since IFLTZ returns a floating 
point value and % protects against division by zero, 
there is closure among the functions of the function 
set.  The IFLTZ operator is implemented as a macro 
[Koza 1992a]. 

In selecting this function set, we included the 
Arctangent function ATG because we thought it might 
be useful in computing angles from the various 
distances involved in this problem and we included the 
conditional comparative operator IFLTZ so that 
actions could be made conditional on certain 
conditions being satisfied.  As it developed, ATG did 
not appear in the best solution we found.  It is, of 
course, necessary to choose a function set and terminal 
set that together are capable and sufficient to solve the 
problem at hand.  We had no assurance, in advance, 
that this function set and terminal set would be 
sufficient to solve this problem. 

The third major step in preparing to use genetic 
programming is the identification of the fitness 
measure for evaluating how good a given computer 
program is at solving the problem at hand.  For this 
problem, fitness is an error measure.  Each program is 
tested against a simulated environment consisting of 
eight fitness cases, each consisting of a set of initial 
conditions for X, Y, and TANG.  X is either 20 or 40 
meters.  Y is either -50 or 50 meters.  TANG is either - 
π/2 or + π/2.  As in Nguyen and Widrow [1990], the 
difference angle DIFF is initially always zero (i.e. the 
tractor and trailer are initially coaxial).   

Time is measured in time steps of 0.02 seconds.  A 
total of 3000 time steps (i.e. 60 seconds) are allowed 
for each fitness case  The speed of the tractor-trailer is 
0.2 meters per time step.  Termination of a fitness case 
occurs when (1) time runs out, (2) the trailer crashes 
into the loading dock (i.e. X becomes zero), or (3) the 
midpoint of the rear of the trailer comes close to the 
target (0,0) point.  A hit for this problem occurs when 
the value of X is less than 0.1 meters, the absolute 
value of Y is less than 0.42 meters, and the absolute 
value of TANG is less than 0.12 radians (i.e. about 14 
degrees).   

Fitness is the sum, over the fitness cases, of the 
sum of the squares of the differences, at the time of 
termination of the fitness case, between the value of X 
and the target value of X (i.e. 0), the difference 
between the value of Y and the target value of Y (i.e. 
0), and difference between the value of TANG and the 
target value of TANG (i.e. 0).   

A wrapper (output interface) is used to convert the 
value returned by a given individual computer 
program to a value appropriate to the problem domain.  

In particular, if the program evaluates to a number 
between -1.0 and +1.0, the tractor turns its wheels to 
that particular angle (in radians) relative to the 
longitudinal axis of the tractor and backs up for one 
time step at a constant speed.  Outside that range the 
control variable saturates. 

As in Nguyen and Widrow [1990], if a choice of 
the control variable u would cause the absolute value 
of difference DIFF to exceed 90 degrees, DIFF is 
constrained to 90 degrees to prevent jack-knifing. 

The population size is 1,000 here.   
We will terminate a given run of this problem when 

either (i) genetic programming produces a computer 
program for which all eight fitness cases terminate 
according to condition (3) above, or (ii) 51 generations 
have been run.   

In one run, the best single individual computer 
program in the initial population of randomly created 
individual programs was, as one would expect, 
incapable of backing the tractor-trailer to the loading 
dock for any of the eight initial conditions (fitness 
cases) of the tractor-trailer truck.  This best-of-
generation individual program had an enormous value 
of fitness, namely 26,956.  This S-expression has 19 
points and is shown below: 
(- (ATG (+ X Y) (ATG X Y)) (IFLTZ (- TANG X) (IFLTZ 
Y TANG TANG) (* 0.3905 DIFF))) 

However, even in generation 0, some individuals 
are better than others.  

In the next few generations, fitness began to 
improve (i.e. drop) substantially.  It dropped to 4790 
for generations 1 and 2, 3131 in generation 3, and 228 
for generations 4 and 5.  Moreover, in addition to 
coming closer to the loading dock, for generations 4 
and 5, the best-of-generation individual was successful 
in backing up the truck for one of the eight fitness 
cases. 

Fitness improved to 202 for generation 6.  By 
generation 11, fitness had improved to 38.9 and the 
best-of-generation individual was successful for three 
of the eight fitness cases.  Between generations 14 and 
21, fitness for the best-of-generation individual ranged 
between 9.99 and 9.08 and the best-of-generation 
individual was successful for five fitness cases.   
Between generation 22 and 25, fitness for the best-of-
generation individual ranged between 8.52 and 8.47 
and the best-of-generation individual was successful 
for seven fitness cases.  Of course, the vast majority of 
individual computer programs in the population were 
still ineffective in solving the problem (although  
average performance is also improving). 

In generation 26, the  fitness of the best-of-
generation individual had improved to 7.41.  This best-
of-generation control strategy was capable of backing 
up the tractor-trailer to the loading dock for all eight 
fitness cases.  This computer program has 108 points 
(i.e. functions and terminals) and is shown below. 
(% (+ (+ (IFLTZ Y Y (+ (% (+ (+ (+ (+ (+ (IFLTZ DIFF Y 
(% Y TANG)) (- DIFF X)) (+ (- -0.0728 Y) (% Y TANG))) 



Genetic Programming as a Means for Programming Computers by Natural Selection 19 

(- DIFF X)) (+ (- -0.0728 Y) (IFLTZ DIFF Y (% Y 
TANG)))) (% Y TANG)) TANG) (- (% (% (+ (+ (IFLTZ Y 
Y (% Y TANG)) (- TANG X)) (+ (- -0.0728 Y) (% Y 
TANG))) TANG) TANG) X))) (- DIFF X)) (+ (+ (+ (+ (+ 
(IFLTZ DIFF Y (% Y TANG)) (- DIFF X)) (+ (- -0.0728 
Y) (% Y TANG))) (- DIFF X)) (+ (- -0.0728 Y) (% Y 
TANG))) (% Y TANG))) TANG) 

As can be seen, this simplified function partitions 
the space into two parts according to the sign of Y.   

Note that this S-expression is probably not a time-
optimal solution, since it uses two different strategies 
for handling two cases that could, in fact, be handled 
in a symmetric way.  Nonetheless, the S-expression 
does the job and scores maximal fitness with the 
distance-based fitness measure being used for this 
problem (which does not specifically call for time 
optimality). 

Figure 18 shows the curved trajectory of the 
midpoint of the back of the trailer for one of the four 
fitness cases for which Y is negative for the best-of-run 
individual from generation 26. 
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Figure 18   Curved trajectory of the back of trailer for a 
fitness cases for which Y is negative for the best-of-run 
individual of the truck backer upper problem. 

Figure 19 shows the almost linear trajectory of the 
midpoint of the back of the trailer for one of the four 
fitness cases for which Y is positive for the best-of-run 
individual from generation 26. 
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Figure 19   Almost linear trajectory of the back of 
trailer for a fitness cases for which Y is positive for the 
best-of-run individual of the truck backer upper 
problem. 

No mathematically exact solution to this problem is 
known.  The above control strategy is almost certainly 
not the exact solution.  However, this genetically 
created control strategy works.  It is an approximately 
correct computer program that emerged from a 
competitive genetic process that searches the space of 
possible programs for a satisficing result.   

Interestingly, on 89.6% of the time steps involved 
in evaluating the above best-of-generation individual 
from generation 26, the absolute value of the control 
variable returned by this individual exceeded one (i.e., 
the genetically evolved solution chose to apply a bang-
bang force).    

Note also that we did not pre-specify the size and 
shape of the solution.  We did not specify that the 
solution would have 108 points.  As we proceeded 
from generation to generation, the size and shape of 
the best-of-generation individuals changed as a result 
of the selective pressure exerted by the fitness measure 
and the genetic operations.  For example, there were 
only 19 points for the best-of-generation individual for 
generation 0 (i.e. the initial random generation). 

Note that the 108 point computer program from 
generation 26 could easily be encoded into a controller 
using ones preferred programming language. 

On this particular run, we obtained a control 
strategy satisfying the termination criterion of the 
problem after processing 27,000 individuals (i.e. 1,000 
individuals for an initial random generation and 26 
additional generations).  We have achieved similar 
results in other runs of this problem.   

The difficulty of this problem arises, of course, 
from Nguyen and Widrow's choice of the four states 
[Geva, Sitte, and Willshire, 1992]. 

Koza and Keane [1990a, 1990b] have applied 
genetic programming to the cart centering and broom 
balancing problems.   
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7. Classification – Intertwined Spirals 

Learning problems often present themselves as 
problems of classification.  In classification problems, 
the goal is to discern a pattern and to develop a 
procedure capable of successfully performing the 
classification.  The procedure is typically developed 
using a sample of data and is considered successful if 
it learns to correctly classify both the original sample 
and previously unseen points that are a reasonable 
generalization of the original sample points.  Learning 
relationships that successfully discriminate among 
instances associated with problem solving choices is 
one approach to problem solving in artificial 
intelligence.  

Lang and Whitbrock [1989] used a neural network 
to solve the challenging problem of distinguishing two 
intertwined spirals.  In their statement of the problem, 
the two spirals coil around the origin three times in the 
x-y-plane.  The x-y-coordinates of 97 points from each 
spiral are given.  The problem involves learning to 
classify each point as to which spiral it belongs.   

Figures 20 and 21 show the two spirals. The 97 
points of the first spiral are indicated by large or small 
squares and the 97 points of the second spiral are 
indicated by large or small circles.  The first spiral 
belongs to class +1 and the second spiral belongs to 
class -1.  The task as defined by Lang and Whitbrock 
is limited to the 194 points in the three turns of these 
two spirals and does not involve dealing with points 
that would lie on a fourth or later turns of the 
extensions of the same spirals.  The difficulty of this 
problem arises, of course, from Lang and Whitbrock's 
choice of Cartesian coordinates (as opposed to, say, 
polar coordinates). 

The terminal set for this problem consists of the x 
and y position of the 194 given points.  In addition, 
since we may need numerical constants in a computer 
program capable of processing the 194 given points, 
we include the ephemeral random floating point 
constant ← in the terminal set.  Thus, the terminal set 
is T = {X, Y, ←}. 

As to the function set for this problem, it seems 
reasonable to try to write a computer program for 
determining to which spiral a given point belongs in 
terms of the four arithmetic operations, a conditional 
comparative function for decision making, and the 
trigonometric sine and cosine functions.  Thus, the 
function set for this problem is F = (+, -, *, %, IFLTE, 
SIN, COS}, taking 2, 2, 2, 2, 4, 1, and 1 arguments, 
respectively.   

IFLTE (If-Less-Than-or-Equal) is a four-argument 
conditional comparative operator that executes its third 
argument if its first argument is less than its second 
argument and, otherwise, executes the fourth (else) 

argument.  The IFLTE operator is implemented as a 
macro [Koza 1992a]. 

Since the S-expressions in the population are 
compositions of functions and terminals operating on 
floating point numbers and since the S-expressions in 
this problem must produce a binary output (+1 or -1) 
to designate the class, a wrapper (output interface) is 
required.  This wrapper maps any positive value to 
class +1 and maps any other value to class -1. 

The fitness of an individual S-expression is 
computed using fitness cases.  The fitness cases are the 
194 x-y coordinates of the given points belonging to 
the spirals and the class (+1 or -1) associated with each 
point.  Raw fitness (hits) is the number of points (0 to 
194) that are correctly classified.   

The population size is 10,000 here.  We will 
terminate a given run when either (i) genetic 
programming produces a computer program which 
scores a raw fitness of 194, or (ii) 51 generations have 
been run.  

As one would expect, the individual S-expressions 
in the initial population of randomly created computer 
programs are highly unfit in solving the problem.  In 
one run, approximately 31% of the initial random 
individuals in generation 0 correctly classified 
precisely 50% of the points (i.e., 97 out of a possible 
194 points).  Some of these individuals, such as (* (* 
X X) 0.502), scored 50% by virtue of always returning 
a value with the same sign and therefore classifying all 
the points as belonging to one spiral.  Others, such as 
(* X Y)  scored 50% by virtue of dividing the space 
into parts which contain exactly half of the points.  In 
addition, about 30% of the population scored between 
88 and 96 hits while about 32% scored between 98 
and 106 hits.  The worst-of-generation individual from 
generation 0 scored 71 hits while the best-of-
generation individual scored 128 hits.   

The best-of-generation individual from generation 
0 scored 128 hits out of a possible 194 hits and is 
below: 
(SIN (% Y 0.30400002)) 

In generation 1, a partially blind best-of-generation 
individual works by classifying points into vertical 
bands of varying width.  Because it is particularly 
effective near the X-axis, it does better than the best-
of-generation individual from generation 0. 

 
 
Insert Fig. 20 here 
 
 

Figure 20  Classification performed by best-of-
generation individual from generation 3. 

For generation 3, the best-of-generation individual 
contained 48 points, scored 139 hits, and incorporated 
both X and Y.  It is shown below: 
(SIN (- (+ (IFLTE (* X -0.25699997) (* X X) (COS Y) (+ 
(SIN (COS X)) (+ (* 0.18500006 -0.33599997) (IFLTE Y 
0.42000008 X -0.23399997)))) (SIN (SIN Y))) (+ (IFLTE 
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(% (COS X) (SIN -0.594)) (+ -0.553 Y) (% Y -0.30499995) 
(+ Y X)) (COS (% X 0.5230001))))) 

Figure 20 shows that the best-of-generation 
individual from generation 3 does especially well near 
the origin.  The points of one spiral are indicated with 
boxes and the points of the other spiral are indicated 
with circles.  Correctly classified points are indicated 
by large boxes or circles.   

 
 
Insert Fig. 20 here 
 
 

Figure 21  Classification performed by best-of-
generation individual from generation 33. 

On generation 33, the best-of-generation individual 
scored 192 out of 194.  It had 169 points.  Figure 21 
shows the classification performed by the best-of-
generation individual scoring 192 from generation 33.  
There are now only two incorrectly classified points in 
this figure.  One is shown as a small circle in a region 
in the upper left section of the figure which the S-
expression incorrectly classified as gray, instead of 
white.  The second is shown as a small square in the 
lower right section of the figure which the S-
expression incorrectly classified as white, instead of 
gray. 

On generation 36, the following S-expression 
containing 179 points and scoring 194 out of 194 hits 
emerged: 
(SIN (IFLTE (IFLTE (+ Y Y) (+ X Y) (- X Y) (+ Y Y)) (* 
X X) (SIN (IFLTE (% Y Y) (% (SIN (SIN (% Y 
0.30400002))) X) (% Y 0.30400002) (IFLTE (IFLTE (% 
(SIN (% (% Y (+ X Y)) 0.30400002)) (+ X Y)) (% X -
0.10399997) (- X Y) (* (+ -0.12499994 -0.15999997) (- X 
Y))) 0.30400002 (SIN (SIN (IFLTE (% (SIN (% (% Y 
0.30400002) 0.30400002)) (+ X Y)) (% (SIN Y) Y) (SIN 
(SIN (SIN (% (SIN X) (+ -0.12499994 -0.15999997))))) (% 
(+ (+ X Y) (+ Y Y)) 0.30400002)))) (+ (+ X Y) (+ Y Y))))) 
(SIN (IFLTE (IFLTE Y (+ X Y) (- X Y) (+ Y Y)) (* X X) 
(SIN (IFLTE (% Y Y) (% (SIN (SIN (% Y 0.30400002))) 
X) (% Y 0.30400002) (SIN (SIN (IFLTE (IFLTE (SIN (% 
(SIN X) (+ -0.12499994 -0.15999997))) (% X -0.10399997) 
(- X Y) (+ X Y)) (SIN (% (SIN X) (+ -0.12499994 -
0.15999997))) (SIN (SIN (% (SIN X) (+ -0.12499994 -
0.15999997)))) (+ (+ X Y) (+ Y Y))))))) (% Y 
0.30400002))))) 

Figure 22 shows the fitness histograms for five 
different generations of the run.  Each bar in the 
histogram represents a range of ten levels of fitness 
between 0 and 194.  Note the undulating left-to-right 
movement of the fitness of the population over the 
generations.   
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Figure 22  Fitness histograms for generations 0, 12, 
and 36 of intertwined spirals problem. 

If we retest the best-of-run individual from 
generation 36 on the two intertwined spirals with 
sample points chosen twice as dense, we find that 372 
of the 388 points (i.e., 96%) are correctly classified.  
And, if we retest with sample points that are ten times 
more dense, we find that 1,818 of the 1,940 points 
(i.e., 94%) are still correctly classified.   

Note that we did not pre-specify the size and shape 
of the solution to the problem.  As we proceeded from 
generation to generation, the size and shape of the 
best-of-generation individuals changed.   The structure 
of the S-expression emerged as a result of the selective 
pressure exerted by the fitness measure (i.e. number of 
fitness cases correctly classified).   

8. Robotics – Box Moving Robot 

In the box moving problem, an autonomous mobile 
robot must find a box located in the middle of an 
irregularly shaped room and move it to the edge of the 
room within a reasonable amount of time.  Mahadevan 
and Connell [1991] reported on using reinforcement 
learning techniques in producing a program to control 
an autonomous mobile robot to perform this task in the 
style of the subsumption architecture [Brooks 1986, 
Connell 1990, Mataric 1990].   

The robot has 12 sonar sensors which report the 
distance to the the nearest object (whether wall or box) 
as a floating point number in feet.  The twelve sonar 
sensors (each covering 30°) together provide 360° 
coverage around the robot.   

The robot is able to move forward, turn right, and 
turn left.  After the robot finds the box, it can move the 
box by pushing against it.  However, this sub-task may 
prove difficult because if the robot applies force not 
coaxial with the center of gravity of the box, the box 



22 Koza 

will start to rotate.  The robot will then lose contact 
with the box and will probably then fail to push the 
box to the wall in a reasonable amount of time.   

The robot is considered successful if any part of the 
box touches any wall within the allotted amount of 
time.  

The robot is capable of executing three primitive 
motor functions, namely, moving forward by a 
constant distance, turning right by 30°, and turning left 
by 30°.  The three primitive motor functions MF, 
TR, and TL each take one time step (i.e., 1.0 
seconds) to execute.  All sonar distances are 
dynamically recomputed after each execution of a 
move or turn.  The function TR (Turn Right) turns the 
robot 30° to the right (i.e., clockwise).  The function 
TL (Turn Left) turns the robot 30° to the left (i.e., 
counter-clockwise).  The function MF (Move 
Forward) causes the robot to move 1.0 feet forward in 
the direction it is currently facing in one time step.  If 
the robot applies its force orthogonally to the midpoint 
of an edge of the box, it will move the box about 0.33 
feet per time step. 

The robot has a BUMP and a STUCK detector.  
We used a 2.5 foot wide box.  The north (top) wall and 
west (left) wall of the irregularly shaped room are each 
27.6 feet long.   

The sonar sensors, the two binary sensors, and the 
three primitive motor functions are not labeled, 
ordered, or interpreted in any way.  The robot does not 
know a priori what the sensors mean nor what the 
primitive motor functions do.  Note that the robot does 
not operate on a cellular grid; its state variables 
assume a continuum of different values.   

The first major step in preparing to use genetic 
programming is to identify the set of terminals.  We 
include the 12 sonar sensors and the three primitive 
motor functions (each taking no arguments) in the 
terminal set.  Thus, the terminal set T for this problem 
is   

T = {S00, S01, S02, S03, ... , S11, SS, (MF), 
(TR), (TL)}. 

The second major step in preparing to use genetic 
programming is to identify a sufficient set of primitive 
functions for the problem.  The function set F consists 
of  

F = {IFBMP, IFSTK, IFLTE, PROGN2}. 
The functions IFBMP and IFSTK are based on the 

BUMP detector and the STUCK detector defined by 
Mahadevan and Connell [1991].  Both of these 
functions take two arguments and evaluate their first 
argument if the detector is on and otherwise evaluates 
their second argument. 

The IFLTE (If-Less-Than-or-Equal) function is a 
four-argument comparative branching operator that 
executes its third argument if its first argument is less 
than its second (i.e., then) argument and, otherwise, 
executes the fourth (i.e., else) argument.  The operator 

IFLTE is implemented as a macro in LISP so that only 
either the third or fourth argument is evaluated 
depending on the outcome of the test involving the 
first and second argument.  Since the terminals in this 
problem take on floating point values, this function is 
used to compare values of the terminals.  IFLTE 
allows alternative actions to be executed based on 
comparisons of observation from the robot's 
environment.  IFLTE allows, among other things, a 
particular action to be executed if the robot's 
environment is applicable and allows one action to 
suppress another.  It also allows for the computation of 
the minimum of a subset of two or more sensors. 
IFBMP and IFSTK are similarly defined as macros 

The connective function PROGN2 taking two 
arguments evaluates both of its arguments, in 
sequence, and returns the value of its second 
argument. 

Although the main functionality of the moving and 
turning functions lies in their side effects on the state 
of the robot, it is necessary, in order to have closure of 
the function set and terminal set, that these functions 
return some numerical value.  For Version 1 only, we 
decided that each of the moving and turning functions 
would return the minimum of the two distances 
reported by the two sensors that look forward.  Also, 
for Version 1 only, we added one derived value, 
namely the terminal SS (Shortest Sonar) which is the 
minimum of the 12 sonar distances S0, S1, ... , S11, in 
the terminal set T.   

The third major step in preparing to use genetic 
programming is the identification of the fitness 
function for evaluating how good a given computer 
program is at solving the problem at hand.      

The fitness of an individual S-expression is 
computed using fitness cases in which the robot starts 
at various different positions in the room.  The fitness 
measure for this problem is the sum of the distances, 
taken over four fitness cases, between the wall and the 
point on the box that is closest to the nearest wall at 
the time of termination of the fitness case. 

A fitness case terminates upon execution of 350 
time steps or when any part of the box touches a wall.  
If, for example, the box remains at its starting position 
for all four fitness cases, the fitness is 26.5 feet.  If, for 
all four fitness cases, the box ends up touching the 
wall prior to timing out for all four fitness cases, the 
raw fitness is zero (and minimal).   

The population size is 500 here.   

8.1 Version 1 

Figure 23 shows the irregular room, the starting 
position of the box, and the starting position of the 
robot for the particular fitness case in which the robot 
starts in the southeast part of the room.  The raw 
fitness of a majority of the individual S-expressions 
from generation 0 is 26.5 (i.e., the sum, over the four 
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fitness cases, of the distances to the nearest wall) since 
they cause the robot to stand still, to wander around 
aimlessly without ever finding the box, or, in the case 
of the individual program shown in the figure, to move 
toward the box without reaching it.  

Even in generation 0, some individuals are better 
than others.  Figure 24 shows the trajectory of the 
best-of-generation individual from generation 0 from 
one run.  This individual containing 213 points finds 
the box and moves it a short distance for one of the 
four fitness cases, thereby scoring a raw fitness of 
24.5.  

Robot 
Start

Box 
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Robot 
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Figure 23  Typical random robot trajectory from 
generation 0. 

Robot
Start

Box 
Start

Robot 
End

 
Figure 24  Trajectory of the best-of-generation 
individual for generation 0. 

The Darwinian operation of fitness proportionate 
reproduction and genetic crossover (sexual 
recombination) is now applied to the population, and a 
new population of S-expressions is produced.  Fitness 
progressively improved between generations 1 and 6.   

In generation 7, the best-of-generation individual 
succeeded in moving the box to the wall for one of the 
four fitness cases (i.e., it scored one hit).  Its fitness 
was 21.52 and it had 59 points (i.e. functions and 
terminals) in its program tree. 

By generation 22, the fitness of the best-of-
generation individual improved to 17.55. Curiously, 
this individual, unlike many earlier individuals, did not 
succeed in actually moving the box to a wall for any of 
the fitness cases. 

By generation 35, the best-of-generation individual 
had 259 points and a fitness of 10.77. 

By generation 45 of the run, the best-of-generation 
individual computer program was successful, for all 
four fitness cases, in finding the box and pushing it to 
the wall within the available amount of time.  Its 
fitness was zero.  This best-of-run individual had 305 
points. 

Note that we did not pre-specify the size and shape 
of the solution to the problem.  As we proceeded from 
generation to generation, the size and shape of the 
best-of-generation individuals changed.  The number 
of points in the best-of-generation individual was 213 
in generation 0, 59 in generation 7, 259 in generation 
35, and 305 in generation 45.   The structure of the S-
expression emerged as a result of the selective 
pressure exerted by the fitness measure.  

Figure 25shows the trajectory of the robot and the 
box for the 305-point best-of-run individual from 
generation 45 for the fitness case where the robot 
starts in the southeast part of the room.  For this fitness 
case, the robot moves more or less directly toward the 
box and then pushes the box almost flush to the wall.   

Figure 26 shows the trajectory of the robot and the 
box for the fitness case where the robot starts in the 
northwest part of the room.  Note that the robot clips 
the southwest corner of the box and thereby causes it 
to rotate in a counter clockwise direction until the box 
is moving almost north and the robot is at the midpoint 
of the south edge of the box. 

Figure 27 shows the trajectory of the robot and the 
box for the fitness case where the robot starts in the 
northeast part of the room.  For this fitness case, the 
robot's trajectory to reach the box is somewhat 
inefficient.  However, once the robot reaches the box, 
the robot pushes the box more of less directly toward 
the west wall.   

Figure 28 shows the trajectory of the robot and the 
box for the fitness case where the robot starts in the 
southwest part of the room.  
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Figure  25  Trajectory of the best-of-run individual 
with the robot starting in the southeast. 

Robot 
Start

Box 
Start

 
Figure  26  Trajectory of the best-of-run individual 
 with the robot starting in the northwest . 
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Figure  27  Trajectory of the best-of-run individual 
with the robot starting in the northeast. 
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Figure 28  Trajectory of the best-of-run individual 
with the robot starting in the southwest. 

 

8.2 Version 2 

In the foregoing discussion of the box moving 
problem, the solution was facilitated by the presence 
of the sensor SS in the terminal set and the fact that the 
functions MF, TL, and TR returned a numerical value 
equal to the minimum of several designated sensors.  
This is in fact the way we solved it the first time. 

This problem can, however, also be solved without 
the terminal SS being in the terminal set and with the 
three functions each returning a constant value of zero.  
We call these three new functions MF0, TL0, and TR0.  
The new function set is F0 = {MF0, TR0, TL0, IFLTE, 
PROGN2}.  We raised the population size from 500 to 
2,000 in the belief that version 2 of this problem 
would be much more difficult to solve.   

In our first (and only) run of version 2 of this 
problem, an 100%-correct S-expression containing 

207 points with a fitness of 0.0 emerged on generation 
20: 
(IFSTK (IFLTE (IFBMP (IFSTK (PROGN2 S02 S09) 
(IFSTK S10 S07)) (IFBMP (IFSTK (IFLTE (MF0) (TR0) 
S05 S09) (IFBMP S09 S08)) (IFSTK S07 S11))) (IFBMP 
(IFBMP (PROGN2 S07 (TL0)) (PROGN2 (TL0) S03)) 
(IFBMP (PROGN2 (TL0) S03) (IFLTE S05 (TR0) (MF0) 
S00))) (IFLTE (IFBMP S04 S00) (PROGN2 (IFLTE S08 
S06 S07 S11) (IFLTE S07 S09 S10 S02)) (IFBMP (IFLTE 
(TL0) S08 S07 S02) (IFLTE S10 S00 (MF0) S08)) (IFBMP 
(PROGN2 S02 S09) (IFBMP S08 S02))) (IFSTK 
(PROGN2 (PROGN2 S04 S06) (IFBMP (MF0) S03)) 
(PROGN2 (IFSTK S05 (MF0)) (IFBMP (IFLTE (TR0) S08 
(IFBMP S07 S06) S02) (IFLTE S10 (IFBMP S10 S08) 
(MF0) S08))))) (IFLTE (PROGN2 S04 S06) (PROGN2 
(IFSTK (IFBMP (MF0) S09) (IFLTE S10 S03 S03 S06)) 
(IFSTK (IFSTK S05 S01) (IFBMP (MF0) S07))) (PROGN2 
(IFLTE (IFSTK S01 (TR0)) (PROGN2 S06 (MF0)) (IFLTE 
S05 S00 (MF0) S08) (PROGN2 S11 S09)) (IFBMP (MF0) 
(IFSTK S05 (IFBMP (PROGN2 (IFSTK (PROGN2 S07 
S04) (IFLTE S00 S07 S06 S07)) (PROGN2 S04 S06)) 
(IFSTK (IFSTK (IFBMP S00 (PROGN2 S06 S10)) (IFSTK 
(MF0) S10)) (IFBMP (PROGN2 S08 S02) (IFSTK S09 
S09))))))) (IFLTE (IFBMP (PROGN2 S11 S09) (IFBMP 
S08 S11)) (PROGN2 (PROGN2 S06 S03) (IFBMP (IFBMP 
S08 S02) (MF0))) (IFSTK (IFLTE (MF0) (TR0) S05 S09) 
(IFBMP (PROGN2 (TL0) S02) S08)) (IFSTK (PROGN2 
S02 S03) (PROGN2 S01 S04))))) 

Figure 29 shows the hits histogram for generations 
0, 15, and 20.  Note the left-to-right undulating 
movement of the center of mass of the histogram and 
the high point of the histogram.  This “slinky” 
movement reflects the improvement of the population 
as a whole.   

Koza and Rice [1992b] compares genetic 
programming with reinforcement learning in 
connection with this problem. 

We have also employed genetic programming to 
evolve a computer program to control a wall 
following robot using the subsumption architecture 
[Koza 1992d] based on impressive work successfully 
done by Mataric [1990] in programming an 
autonomous mobile robot called TOTO.   

9. Hierarchical Automatic Function Definition - 
11-Parity Function 

A key goal in machine learning and artificial 
intelligence is to facilitate the solution of a problem 
by automatically and dynamically decomposing the 
problem into simpler subproblems.   

When a human programmer writes a computer 
program to solve a problem, he often creates a 
subroutine (procedure, function) enabling a common 
calculation to be performed without tediously 
rewriting the code for that calculation.  For example, 
if a programmer needed to write a program for 
Boolean parity functions of several different high 
orders, he might find it convenient first to write a 
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Figure 129 Hits histogram for generations 0, 15, and 20 
for Version 2. 
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subroutine for some lower-order parity function.  He 
would call on the code for this low-order parity 
function at different places and with different 
combinations of arguments from his main program and 
then combine the results in the main program to 
produce the desired higher-order parity function.  
Specifically, if a programmer were using the LISP 
programming language, he might first write a function 
definition for the odd-2-parity function xor 
(exclusive-or) as follows: 
(defun xor (arg0 arg1) 
  (values (or (and arg0 (not arg1)) (and (not arg0) arg1)))). 

This function definition (called a "defun" in 
LISP) does four things.  First, it assigns a name, xor, 
to the function being defined thereby permitting 
subsequent reference to it.  Second, this function 
definition identifies the argument list of the function 
being defined, namely the list (arg0 arg1) 
containing two dummy variables (formal parameters) 
called arg0 and arg1.  Third, this function definition 
contains a body which performs the work of the 
function.  Fourth, this function definition identifies the 
value to be returned by the function.  In this example, 
the single value to be returned is emphasized via an 
explicit invocation of the values function.  This 
particular function definition has two dummy 
arguments, returns only a single value, has no side 
effects, and refers only to the two local dummy 
variables (i.e., it does not refer to any of the actual 
variables of the overall problem contained in the 
"main" program).  However, in general, defined 
functions may have any number of arguments 
(including no arguments), may return multiple values 
(or no values), may or may not perform side effects, 
and may or may not explicitly refer to the actual 
(global) variables of the main program.   

Once the function xor is defined, it may then be 
repeatedly called with different instantiations of its 
arguments from more than one place in the main 
program.  For example, if the programmer needed the 
even-4-parity at some point in his main program, he 
might write 
(xor (xor d0 d1) (not (xor d2 d3))). 

Function definitions exploit the underlying 
regularities and symmetries of a problem by obviating 
the need to tediously rewrite lines of essentially similar 
code.  A function definition is especially efficient 
when it is repeatedly called with different 
instantiations of its arguments.  However, the 
importance of function definition goes well beyond 
efficiency.  The process of defining and calling a 
function, in effect, decomposes the problem into a 
hierarchy of subproblems.   

The ability to extract a reusable subroutine is 
potentially very useful in many domains.  Consider the 
problem of discovery of a neural network to recognize 
patterns presented as an array of pixels.  Suppose the 
solution of a pattern recognition problem requires 
discovery of a particular feature (e.g., a line end) 

within the 3 by 3 pixel region in the upper left corner 
of an 8 by 8 array of pixels and also requires discovery 
of that same feature within a 3 by 3 pixel region in the 
lower left corner of the overall array.  Existing neural 
net paradigms can successfully discover the useful 
feature among the nine pixels p11, p12, p13, p21, p22, 
p23, p31, p32, p33 in the upper left corner of a 8 by 8 
array of pixels and can independently rediscover the 
same useful feature among the nine pixels p61, p62, 
p63, p16, p71, p72, p73, p81, p82, p83 in the lower left 
corner of the overall array.  But existing neural net 
paradigms do not provide a way to discover the 
common feature just once, to generalize the feature so 
that it is not rigidly expressed in terms of particular 
pixels but is parameterized by its position, and to then 
reuse the generalized feature detector to recognize 
occurrences of the feature in different 3 by 3 pixel 
regions within the array.  That is, existing paradigms 
do not provide a way to discover a function of nine 
dummy variables just once and to call that function 
twice (once with p11, ..., p33 as arguments and once 
with p61, ..., p83 as arguments).  Such an ability would 
amount to discovering a nine-input subassembly of 
neurons with appropriate weights, making a copy of 
the entire subassembly, implanting the copy elsewhere 
in the overall neural net, and then connecting nine 
different pixels as inputs to the subassembly in its new 
location in the overall neural net.   

Hierarchical automatic function definition can be 
implemented within the context of genetic 
programming by establishing a constrained syntactic 
structure for the individual S-expressions in the 
population [Koza 1992a].  Each individual S-
expression in the population contains one (or more) 
function-defining branches and one (or more) "main" 
result-producing branches.  The result-producing 
branch may call the defined functions.  One defined 
function may hierarchically refer to another already-
defined function (and potentially even itself), although 
such hierarchical or recursive references will not be 
used in this article.   

9.1 Learning the Even-Parity Function without 
Hierarchical Automatic Function Definition 

In order to establish the facilitating benefits of 
hierarchical automatic function definition in genetic 
programming, we first solve some benchmark 
problems without using hierarchical automatic 
function definition. 

The Boolean even-parity function of k Boolean 
arguments returns T (True) if an even number of its 
arguments are T, and otherwise returns NIL (False).   

In applying genetic programming to the even-parity 
function of k arguments, the terminal set T consists of 
the k Boolean arguments D0, D1, D2, ... involved in 
the problem, so that 
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T = {D0, D1, D2, ...}. 
The function set F for all the examples herein 

consists of the following computationally complete set 
of four two-argument primitive Boolean functions: 

F = {AND, OR, NAND, NOR}. 
The Boolean even-parity functions appear to be the 

most difficult Boolean functions to find via a blind 
random generative search of S-expressions using the 
above function set F and the terminal set T.  For 
example, even though there are only 256 different 
Boolean functions with three arguments and one 
output, the Boolean even-3-parity function is so 
difficult to find via a blind random generative search 
that we did not encounter it at all after randomly 
generating 10,000,000 S-expressions using this 
function set F and terminal set T.  In addition, the 
even-parity function appears to be the most difficult to 
learn using genetic programming using the function 
set F and terminal set T above [Koza 1992a].  

In applying genetic programming to the problem of 
learning the Boolean even-parity function of k 
arguments, the 2k combinations of the k Boolean 
arguments constitute an exhaustive set of fitness cases 
for learning this function.  The standardized fitness of 
an S-expression is the sum, over these 2k fitness cases, 
of the Hamming distance (error) between the value 
returned by the S-expression and the correct value of 
the Boolean function.  Standardized fitness ranges 
between 0 and 2k; a value closer to zero is better.  The 
raw fitness is equal to the number of fitness cases for 
which the S-expression is correct (i.e., 2k minus 
standardized fitness); a higher value is better.   

We first consider how genetic programming would 
solve the problems of learning the even-3-parity 
function (three-argument Boolean rule 105), the even-
4-parity function (four-argument Boolean rule 
38,505), and the even-5-parity function  (five-
argument Boolean rule 1,771,476,585).  In identifying 
these k-argument Boolean functions in this way, we 
are employing a numbering scheme wherein the value 
of the function for the 2k combinations of its k 
Boolean arguments are concatenated into a 2k-bit 
binary number and then converted to the equivalent 
decimal number.  For example, the 23 = 8 values of 
the even-3-parity function are 0, 1, 1, 0, 1, 0, 0, and 1 
(going from the fitness case consisting of three true 
arguments to the fitness case consisting of three false 
arguments).  Since 011010012 = 10510, the even-3-
parity function is referred to as three-argument 
Boolean rule 105.   

The terminal set T for the even-3-parity problem 
consists of  

T = {D0, D1, D2}. 
In one run of genetic programming using a 

population size of 4,000 (the value of M used 
consistently in this section, except as otherwise noted), 

genetic programming discovered the following S-
expression containing 45 points (i.e., 22 functions and 
23 terminals) with a perfect value of raw fitness of 8 
(out of a possible value of 23 = 8) in generation 5: 
(AND (OR (OR D0 (NOR D2 D1)) D2) (AND (NAND 
(NOR (NOR D0 D2) (AND (AND D1 D1) D1)) (NAND 
(OR (AND D0 D1) D2) D0)) (OR (NAND (AND D0 D2) 
(OR (NOR D0 (OR D2 D0)) D1)) (NAND (NAND D1 
(NAND D0 D1)) D2)))). 

We then considered the even-4-parity function.  In 
one run, genetic programming discovered the 
following S-expression containing 149 points with a 
perfect value of raw fitness of 16 (out of 24 = 16) in 
generation 24: 
(AND (OR (OR (OR (NOR D0 (NOR D2 D1)) (NAND 
(OR (NOR (AND D3 D0) D2) (NAND D0 (NOR D2 (AND 
D1 (OR D3 D2))))) D3)) (AND (AND D1 D2) D0)) 
(NAND (NAND (NAND D3 (OR (NOR D0 (NOR (OR D3 
D2) D2)) (NAND (AND (AND (AND D3 D2) D3) D2) 
D3))) (NAND (OR (NAND (OR D0 (OR D0 D1)) (NAND 
D0 D1)) D3) (NAND D1 D3))) D3)) (OR (OR (NOR (NOR 
(AND (OR (NOR D3 D0) (NOR (NOR D3 (NAND (OR 
(NAND D2 D2) D2) D2)) (AND D3 D2))) D1) (AND D3 
D0)) (NOR D3 (OR D0 D2))) (NOR D1 (AND (OR (NOR 
(AND D3 D3) D2) (NAND D0 (NOR D2 (AND D1 D0)))) 
(OR (OR D0 D3) (NOR D0 (NAND (OR (NAND D2 D2) 
D2) D2)))))) (AND (AND D2 (NAND D1 (NAND (AND 
D3 (NAND D1 D3)) (AND D1 D1)))) (OR D3 (OR D0 
(OR D0 D1)))))). 

Figure 30 presents two curves, called the 
performance curves, relating to the even-3-parity 
function over a series of runs.  The curves are based 
on 66 runs with a population size M of 4,000 and a 
maximum number of generations to be run G of 51.   

The rising curve in figure 30 shows, by generation, 
the experimentally observed cumulative probability of 
success, P(M,i), of solving the problem by generation i 
(i.e., finding at least one S-expression in the 
population which produces the correct value for all 23 
= 8 fitness cases).  As can be seen, the experimentally 
observed value of the cumulative probability of 
success, P(M,i), is 91% by generation 9 and 100% by 
generation 21 over the 66 runs. 
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Figure 30   Performance curves for even-3-parity 
function showing that it is sufficient to process 80,000 
individuals to yield a solution with 99% probability 
with genetic programming.  

The second curve in figure 30 shows, by 
generation, the number of individuals that must be 
processed, I(M,i,z), to yield, with probability z, a 
solution to the problem by generation i.  I(M,i,z) is 
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derived from the experimentally observed values of 
P(M,i).  Specifically, I(M,i,z) is the product of the 
population size M, the generation number i, and the 
number of independent runs R(z) necessary to yield a 
solution to the problem with probability z by 
generation i.  In turn, the number of runs R(z) is given 
by 

R(z) = 



 log(1–z)

log(1–P(M,i))   ,  

where the square brackets indicates the ceiling 
function for rounding up to the next highest integer.  
The probability z will be 99% herein.   

As can be seen, the I(M,i,z) curve reaches a 
minimum value at generation 9 (highlighted by the 
light dotted vertical line).   For a value of P(M,i) of 
91%, the number of independent runs R(z) necessary 
to yield a solution to the problem with a 99% 
probability by generation i is 2.  The two summary 
numbers (i.e., 9 and 80,000) in the oval indicate that if 
this problem is run through to generation 9 (the initial 
random generation being counted as generation 0), 
processing a total of 80,000 individuals (i.e., 4,000 ∞ 
10 generations ∞ 2 runs) is sufficient to yield a 
solution to this problem with 99% probability.  This 
number 80,000 is a measure of the computational 
effort necessary to yield a solution to this problem 
with 99% probability.   

Figure 31 shows similar performance curves for the 
even-4-parity function based on 60 runs.  The 
experimentally observed cumulative probability of 
success, P(M,i), is 35% by generation 28 and 45% by 
generation 50.  The I(M,i,z) curve reaches a minimum 
value at generation 28.  For a value of P(M,i) of 35%, 
the number of runs R(z) is 11.  The two numbers in the 
oval indicate that if this problem is run through to 
generation 28, processing a total of 1,276,000 (i.e., 
4,000 ∞ 29 generations ∞ 11 runs) individuals is 
sufficient to yield a solution to this problem with 99% 
probability.   
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Figure 31   Performance curves for even-4-parity 
function showing that it is sufficient to process 
1,276,000 individuals to yield a solution with 99% 
probability with genetic programming. 

Thus, according to this measure of computational 
effort, the even-4-parity problem is about 16 times 
harder to solve than the even-3-parity problem.   

We are unable to directly extend this comparison of 
the computational effort necessary to solve the even-
parity problem with increasing numbers of arguments 

with our chosen population size of 4,000.  When the 
even-5-parity function was run with a population size 
of 4,000 and each run arbitrarily stopped at our chosen 
maximum number G = 51 of generations to be run, no 
solution was found after 20 runs.  (Solutions might 
well have been found if we had continued the run, but 
we did not do this).  Even after increasing the 
population size to 8,000 (with G = 51), we did not get 
a solution until our eighth run.  This solution 
contained 347 points.   

Notice that the structural complexity (i.e., the total 
number of function points and terminal points in the S-
expression) of the solutions produced in these three 
cited runs dramatically increased with an increasing 
number of arguments (i.e. structural complexity was 
45, 149, and 347, respectively, above for the 3-, 4-, 
and 5-parity functions).   

The population size of 4,000 is undoubtedly not 
optimal for any particular parity problem and is 
certainly not optimal for all sizes of parity problems.  
Nonetheless, it is clear that learning the even-parity 
functions with increasing numbers of arguments 
requires dramatically increasing computational effort 
and that the structural complexity of the solutions 
become increasingly large.   

9.2 Hierarchical Automatic Function Definition 

The inevitable increase in computational effort and 
structural complexity for solving parity problems of 
order greater than four could be controlled if we could 
discover the underlying regularities and symmetries of 
this problem and then hierarchically decompose the 
problem into more tractable sub-problems.  
Specifically, we need to discover a function 
parameterized by dummy variables that would be 
helpful in decomposing and solving the problem.   

If a human programmer were writing code for the 
even-3-parity or even-4-parity functions, he would 
probably choose to call upon either the odd-2-parity 
function (also known as the exclusive-or function 
XOR) or the even-2-parity function (also known as the 
equivalence function EQV).  If a human programmer 
were writing code for the even-5-parity function and 
parity functions with additional arguments, he would 
probably also want to call upon either the even-3-
parity (three-argument Boolean rule 105) or the odd-3-
parity (three-argument Boolean rule 150).  These 
lower-order parity functions would greatly facilitate 
writing code for the higher-order parity functions.  
None of these low-order parity functions are, of 
course, in our original set F of available primitive 
Boolean functions.   

The potentially helpful role of dynamically 
evolving useful "building blocks" in genetic 
programming has been recognized for some time 
[Koza 1990].  However, when we talk about 
"hierarchical automatic function definition" in this 
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article, we are not contemplating merely defining a 
function in terms of a sub-expression composed of 
particular fixed terminals (i.e., actual variables) of the 
problem.  Instead, we are contemplating defining 
functions parameterized by dummy variables (formal 
parameters).  Specifically, if the exclusive-or function 
XOR were being automatically defined during a run, it 
would be a version of XOR parameterized by two 
dummy variables (perhaps called ARG0 and ARG1), 
not a mere call to  XOR with particular fixed actual 
variables of the problem (e.g., D0 and D1).  When this 
parameterized version of the XOR function is called, 
its two dummy variables ARG0 and ARG1 would be 
instantiated with two specific values, which would 
either be the values of two terminals (i.e., actual 
variables of the problem) or the values of two 
expressions (each composed ultimately of terminals).  
For example, the exclusive-or function XOR might be 
called via (XOR D0 D1) on one occasion and via 
(XOR D2 D3) on another occasion.  On yet another 
occasion, XOR might be called via  
(XOR (AND D1 D2) (OR D0 D2)), 

where the two arguments to XOR are the values 
returned by the expressions (AND D1 D2) and (OR 
D0 D2), respectively.  Each of these expressions is 
ultimately composed of the actual variables (i.e., 
terminals) of the problem.   

Moreover, when we talk about "automatic" and 
"dynamic" function definition, the goal is to 
dynamically evolve a dual structure containing both 
function-defining branches and result-producing (i.e., 
value-returning) branches by means of natural 
selection and genetic operations.  We expect that 
genetic programming will dynamically evolve 
potentially useful function definitions during the run 
and also dynamically evolve an appropriate result-
producing "main" program that calls these 
automatically defined functions.   

Note that many existing paradigms for machine 
learning and artificial intelligence do define functional 
subunits automatically and dynamically during runs 
(the specific terminology, of course, being specific to 
the particular paradigm).  For example, when a set of 
weights are discovered enabling a particular neuron in 
a neural network to perform some subtask, that 
learning process can be viewed as a process of 
defining a function (i.e., a function taking the values 
of the specific inputs to that neuron as arguments and 
returning an output signal, perhaps a zero or one).  
Note, however, that the function thus defined can be 
called only once from only one particular place within 
the neural network.  It is called only in the specific 
part of the neural net (i.e., the neuron) where it was 
created and it is called only with the original, fixed set 
of inputs to that specific neuron.  Note also that 
existing paradigms for neural networks do not provide 
a way to re-use the set of weights discovered in that 
part of the network in other parts of the network where 

a similar subtask must be performed on a different set 
of inputs.  The recent work of Gruau [1992] on 
recursive solutions to Boolean functions is a notable 
exception.   

9.3 Even-4-Parity Function 

Hierarchical automatic function definition can be 
implemented within the context of genetic 
programming by establishing a constrained syntactic 
structure [Koza 1992a, Chapter 19] for the individual 
S-expressions in the population in which each 
individual contains one or more function-defining 
branches and one or more "main" result-producing 
branches which may call the defined functions.   

The number of result-producing branches is 
determined by the nature of the problem.  Since 
Boolean parity functions return only a single Boolean 
value, there would be only one "main" result-
producing branch to the S-expression in the 
constrained syntactic structure required. 

We usually do not know a priori the optimal 
number of functions that will be useful for a given 
problem or the optimal number of arguments for each 
such function;  however, considerations of computer 
resources (time, virtual memory usage, CONSing, 
garbage collection, and memory fragmentation) 
necessitate that choices be made.  Additional computer 
resources are required for each additional function 
definition.  There is a considerable increase in the 
computer resources required to support the ever-larger 
S-expressions associated with each larger number of 
arguments.  There will usually be no advantage to 
having defined functions that take more arguments 
than there are terminals in the problem.  When 
Boolean functions are involved, there is no advantage 
to evolving one-argument function definitions (since 
the only four one-argument Boolean functions and 
either in our function set already or constant-valued 
functions).   

Thus, for the Boolean even-4-parity problem, it 
would seem reasonable to permit one two-argument 
function definition and one three-argument function 
definition within each S-expression.  Thus, each 
individual S-expression in the population would have 
three branches.  The first (leftmost) branch permits a 
two-argument function definition (defining a function 
called ADF0); the second (middle) branch permits a 
three-argument function definition (defining a function 
called ADF1); and the third (rightmost) branch is the 
result-producing branch.  The first two branches are 
function-defining branches which may or may not be 
called upon by the result-producing branch.   

Figure 32 shows an abstraction of the overall 
structure of an S-expression with two function-
defining branches and one result-producing branch.  
There are 11 "types" of points in each individual S-
expression in the population for this problem.  The 
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first eight types are an invariant part of each individual 
S-expression.    

The 11 types are as follows:  
(1) the root (which will always be the place-holding 

PROGN function),  
(2) the top point DEFUN of the function-defining 

branch for ADF0,  
(3) the name ADF0 of the function defined by this 

first function-defining branch,  
(4) the argument list (ARG0 ARG1) of ADF0,  
(5) the top point DEFUN of the function-defining 

branch for ADF1,  
(6) the name ADF1 of the function defined by this 

second function-defining branch,  
(7) the argument list (ARG0 ARG1 ARG2) of 

ADF1,  
(8) the top point VALUES of the result-producing 

branch for the individual S-expression as a 
whole,  

(9) the body of ADF0,  
(10) the body of ADF1, and  
(11) the body of the "main" result-producing branch.  

PROGN

Body of ADF0 
Function Definition

DEFUN

ADF0 (ARG0 ARG1)

Body of ADF1 
Function Definition

DEFUN

ADF1 (ARG0 ARG1 ARG2)

VALUES

Result-Producing 
Branch  

Figure 32  Abstraction of the overall structure of an S-
expression with two function-defining branches and the 
one result-producing branch. 

Syntactic rules of construction govern points of 
types 9, 10, and 11. 

For points of type 9, the body of ADF0 is a 
composition of functions from the given function set F 
and terminals from the terminal set A2 of two dummy 
variables, namely A2 = {ARG0, ARG1}.   

For the points of type 10, the body of ADF1 is a 
composition of functions from the original given 
function set F along with ADF0 and terminals from the 
set A3 of three dummy variables, namely A3 = 
{ARG0, ARG1, ARG2}.  Thus, the body of ADF1 is 
capable of calling upon ADF0. 

For the points of type 11, the body of the result-
producing branch is a composition of terminals (i.e., 
actual variables of the problem) from the terminal set 
T, namely T = {D0, D1, D2, D3}, as well as functions 
from the set F3.  F3 contains the four original 
functions from the function set F as well as the two-
argument function ADF0 defined by the first branch 
and the three-argument function ADF1 defined by the 
second branch.  That is, the function set  F3 is  

F3 = {AND, OR, NAND, NOR, ADF0, 
ADF1},  

taking two, two, two, two, two, and three arguments, 
respectively.  Thus, the result-producing branch is 
capable of calling the two defined functions ADF0 and 
ADF1. 

When the overall S-expression in figure 32 is 
evaluated, the PROGN evaluates each branch; however, 
the value(s) returned by the PROGN consists only of 
the value(s) returned by the VALUES function in the 
final result-producing branch.   

Note that one might consider including the 
terminals from the terminal set T (i.e., the actual 
variables of the problem) in the function-defining 
branches; however, we do not do so here.   

In what follows, genetic programming will be 
allowed to evolve two function definitions in the 
function-defining branches of each S-expression and 
then, at its discretion, to call one, two, or none of these 
defined functions in the result-producing branch.  We 
do not specify what functions will be defined in the 
two function-defining branches.  We do not specify 
whether the defined functions will actually be used (it 
being, of course, possible, as we have already seen to 
solve this problem without any function definition by 
evolving the correct program in the result-producing 
branch).  We do not favor one function-defining 
branch over the other.  We do not require that a 
function-defining branch use all of its available 
dummy variables.  The structure of all three branches 
is determined by the combined effect, over many 
generations, by the selective pressure exerted by the 
fitness measure and by the effects of the operations of 
Darwinian fitness proportionate reproduction and 
crossover.    

Since a constrained syntactic structure is involved, 
we must create the initial random generation so that 
every individual S-expression in the population has the 
syntactic structure specified by the syntactic rules of 
construction presented above.  Specifically, every 
individual S-expression must have the invariant 
structure represented by the eight points of types 1 
through 8.  Specifically, the bodies of ADF0 (type 9), 
ADF1 (type 10), and the result-producing branch (type 
11) must be composed of the functions and terminals 
specified by the above syntactic rules of construction.   

Moreover, since a constrained syntactic structure is 
involved, we must perform structure-preserving 
crossover so as to ensure the syntactic validity of all 
offspring as the run proceeds from generation to 
generation.  Structure-preserving crossover is 
implemented by first allowing the selection of the 
crossover point in the first parent to be any point from 
the body of ADF0 (type 9), ADF1 (type 10), or the 
result-producing branch (type 11).  However, once the 
crossover point in the first parent has been selected, 
the crossover point of the second parent must be of the 
same type (i.e., types 9, 10, or 11).  This restriction on 
the selection of the crossover point of the second 
parent assures syntactic validity of the offspring.   
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9.4 Even-4-Parity Function 

Each S-expression in the population for solving the 
even-4-parity function has one result-producing 
branch and two function-defining branches, each 
permitting the definition of one function of three 
dummy variables. 

In one run of the even-4-parity function, the 
following 100%-correct solution containing 45 points 
(not counting the invariant points of types 1 through 8)  
with a perfect value of 16 for raw fitness appeared on 
generation 4:   
(PROGN (DEFUN ADF0 (ARG0 ARG1 ARG2) 

(NOR (NOR ARG2 ARG0) (AND ARG0 
ARG2))) 

 (DEFUN ADF1 (ARG0 ARG1 ARG2) 
(NAND (ADF0 ARG2 ARG2 ARG0) 
      (NAND (ADF0 ARG2 ARG1 ARG2) 
            (ADF0 (OR ARG2 ARG1) 
                  (NOR ARG0 ARG1) 
                  (ADF0 ARG1 ARG0 
                        ARG2))))) 

 (VALUES 
(ADF0 (ADF1 D1 D3 D0) 
      (NOR (OR D2 D3) (AND D3 D3)) 
      (ADF0 D3 D3 D2)))). 

The first branch of this best-of-run S-expression is 
a function definition establishing the defined function 
ADF0 as the two-argument exclusive-or (XOR) 
function.  The definition of ADF0 ignores one of the 
available dummy variables, namely ARG1.   

The second branch of the above S-expression calls 
upon the defined function ADF0 (i.e., XOR) to define 
ADF1.  This second branch appears to use all three 
available dummy variables; however, it reduces to the 
two-argument equivalence function EQV. 

The result-producing (i.e., third) branch of this S-
expression uses all four terminals and both ADF0 and 
ADF1 to solve the even-4-parity problem.  This branch 
reduces to 
(ADF0 (ADF1 D1 D0) (ADF0 D3 D2)). 

which is equivalent to 
(XOR (EQV D1 D0) (XOR D3 D2)).  

That is, genetic programming decomposed the 
even-4-parity problem into two different parity 
problems of lower order (i.e., XOR and EQV).   

Figure 33 shows the hierarchy (lattice) of function 
definitions used in this solution to the even-4-parity 
problem.  Note also that the second of the two 
functions in this decomposition (i.e., EQV) was 
defined in terms of the first (i.e., XOR).  

Even-4-Parity

ADF0

ADF1

 
Figure 33  Hierarchy (lattice) of function definitions. 

Note that we did not specify that the exclusive-or 
XOR function would be defined in ADF0, as opposed 
to, say, the equivalence function, the if-then function, 
or any other Boolean function.  Similarly, we did not 
specify what would be evolved in n ADF1.  Genetic 
programming created the two-argument defined 
functions ADF0 and ADF1 on its own to help solve 
this problem.  Having done this, genetic programming 
then used ADF0 and ADF1 in an appropriate way in 
the result-producing branch to solve the problem.  
Notice that the 45 points above are considerably fewer 
than the 149 points contained in the S-expression cited 
earlier for the even-4-parity problem.  

Figure 34 presents the performance curves based 
on 23 runs for the even-4-parity with hierarchical 
automatic function definition.  The cumulative 
probability of success P(M,i) is 91% by generation 10 
and 100% by generation 50.  The two numbers in the 
oval indicate that if this problem is run through to 
generation 10, processing a total of 88,000 individuals 
(i.e., 4,000 ∞ 11 generations ∞ 2 runs) is sufficient to 
yield a solution to this problem with 99% probability.   
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Figure 34  Performance curves for the even-4-parity 
problem show that it is sufficient to process 88,000 
individuals to yield a solution with hierarchical 
automatic function definition. 

9.5 Even 5-Parity Function 
In one run of the even-5-parity problem, the 

following 100%-correct solution containing 160 points 
with a perfect value of raw fitness of 64 emerged on 
generation 12: 
(PROGN (DEFUN ADF0 (ARG0 ARG1 ARG2 ARG3) 

(OR (OR (NOR (NOR ARG3 ARG1) (OR 
ARG1 ARG3)) (AND (NAND ARG1 ARG3) 
(NOR ARG1 ARG2))) (NAND (AND (OR 
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ARG1 ARG2) (NAND ARG1 ARG2)) (NAND 
ARG1 (AND (NOR ARG3 ARG1) ARG0))))) 

 (DEFUN ADF1 (ARG0 ARG1 ARG2 ARG3) 
(NAND (NAND (AND (NAND ARG1 ARG2) 
(ADF0 ARG0 ARG3 ARG0 ARG2)) (NOR 
(NAND ARG3 ARG1) (AND ARG1 ARG1))) 
(AND (ADF0 ARG0 (NAND ARG1 ARG2) 
(ADF0 ARG3 ARG0 ARG3 ARG0) (AND 
ARG1 ARG1)) (ADF0 (ADF0 ARG3 ARG2 
ARG3 ARG0) (ADF0 ARG0 ARG2 ARG2 
ARG1) (ADF0 ARG3 ARG3 ARG3 ARG0) 
(NOR ARG3 ARG0))))) 

 (VALUES 
(OR (OR (NOR (ADF0 D3 D1 D1 D3) (OR D0 
D1)) (NOR (NAND D1 D2) (OR (OR D3 D2) 
(NOR D4 D4)))) (ADF1 (ADF1 D4 D0 D4 D1) 
(OR (OR (NOR (OR (NAND D1 D0) (ADF1 
D1 D2 D3 D1)) (AND D4 D0)) D2) (NOR (OR 
(NAND D1 D0) (ADF1 D1 D2 D3 D1)) (AND 
D4 D0))) (NAND (ADF1 D1 D0 D0 D1) 
(NAND D0 D2)) (NAND (ADF1 D3 D4 D0 D0) 
(ADF0 D3 D1 D1 D3)))))). 

The first branch is equivalent to the four-argument 
Boolean rule 50,115, which is equivalent to  
(EQV ARG2 ARG1), 

and which is an even-2-parity function that ignores 
two of the four available dummy variables. 

The second branch is equivalent to the four-
argument Boolean rule 38,250, which is equivalent to 
(OR (AND (NOT ARG2) (XOR ARG3 ARG0)) 
    (AND ARG2       (XOR ARG3 (XOR ARG1 
                                   ARG0)))). 

Notice that this rule is not a parity function of any 
kind. 

The result-producing (i.e., third) branch calls on 
defined functions ADF0 and ADF1 and solves the 
problem.   

The even 5-parity problem can be similarly solved 
with 99% probability with genetic programming using 
hierarchical automatic function definition by 
processing a total of 144,000 individuals. 

9.6 Even 6- and 7-Parity Functions 

The even 6-, and 7-parity problems can be similarly 
solved with 99% probability with genetic 
programming using hierarchical automatic function 
definition by processing a total of 864,000, and 
1,440,000 individuals, respectively. 

9.7 Even 8-, 9-, and 10-Parity Functions 

The 8-, 9-, and 10-parity problems can be similarly 
solved using hierarchical automatic function 
definition.  Each problem was solved within the first 
four runs.  We did not perform sufficient additional 
runs to compute a performance curve for these higher 
order parity problems.    

For example, in one run of the even-8-parity 
function, the best-of-generation individual containing 
186 points and attaining a perfect value of raw fitness 
of 256 appeared in generation 24.  The first branch of 
this S-expression defined a four-argument defined 
function ADF0 (four-argument Boolean rule 10,280).  
The second branch of this S-expression defined a four-
argument defined function ADF1 (four-argument 
Boolean rule 26,214) which ignored two of its four 
arguments and is equivalent to  
(XOR D0 D1). 

In one run of the even-9-parity function, the best-
of-generation individual containing 224 points and 
attaining a perfect value of raw fitness of 512 appeared 
in generation 40.  The first branch of this S-expression 
defined a four-argument defined function ADF0 (four-
argument Boolean rule 1,872).  The second branch of 
this S-expression defined a four-argument defined 
function ADF1 (four-argument Boolean rule 27,030) 
which is equivalent to  the odd-4-parity function. 

In one run of the even-10-parity function, the best-
of-generation individual containing 200 points and 
attaining a perfect value of raw fitness of 1,024 
appeared in generation 40.  The first branch of this S-
expression defined a four-argument defined function 
ADF0 (four-argument Boolean rule 38,791).  The 
second branch of this S-expression defined a four-
argument defined function ADF1 (four-argument 
Boolean rule 23,205) which ignored one of its four 
arguments. This rule is equivalent to 
(EVEN-3-PARITY D3 D2 D0). 

9.8 Even-11-Parity Function 

In one run of the even-11-parity function, the 
following best-of-generation individual containing 220 
points and attaining a perfect value of raw fitness of 
2,048 appeared in generation 21: 
(PROGN (DEFUN ADF0 (ARG0 ARG1 ARG2 ARG3) 

(NAND (NOR (NAND (OR ARG2 ARG1) 
(NAND ARG1 ARG2)) (NOR (OR ARG1 
ARG0) (NAND ARG3 ARG1))) (NAND 
(NAND (NAND (NAND ARG1 ARG2) ARG1) 
(OR ARG3 ARG2)) (NOR (NAND ARG2 
ARG3) (OR ARG1 ARG3))))) 

 (DEFUN ADF1 (ARG0 ARG1 ARG2 ARG3) 
(ADF0 (NAND (OR ARG3 (OR ARG0 ARG0)) 
(AND (NOR ARG1 ARG1) (ADF0 ARG1 
ARG1 ARG3 ARG3))) (NAND (NAND (ADF0 
ARG2 ARG1 ARG0 ARG3) (ADF0 ARG2 
ARG3 ARG3 ARG2)) (ADF0 (NAND ARG3 
ARG0) (NOR ARG0 ARG1) (AND ARG3 
ARG3) (NAND ARG3 ARG0))) (ADF0 
(NAND (OR ARG0 ARG0) (ADF0 ARG3 
ARG1 ARG2 ARG0)) (ADF0 (NOR ARG0 
ARG0) (NAND ARG0 ARG3) (OR ARG3 
ARG2) (ADF0 ARG1 ARG3 ARG0 ARG0)) 
(NOR (ADF0 ARG2 ARG1 ARG2 ARG0) 
(NAND ARG3 ARG3)) (AND (AND ARG2 
ARG1) (NOR ARG1 ARG2))) (AND (NAND 
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(OR ARG3 ARG2) (NAND ARG3 ARG3)) (OR 
(NAND ARG3 ARG3) (AND ARG0 ARG0))))) 

 (VALUES 
(OR (ADF1 D1 D0 (ADF0 (ADF1 (OR (NAND 
D1 D7) D1) (ADF0 D1 D6 D2 D6) (ADF1 D6 
D6 D4 D7) (NAND D6 D4)) (ADF1 (ADF0 D9 
D3 D2 D6) (OR D10 D1) (ADF1 D3 D4 D6 D7) 
(ADF0 D10 D8 D9 D5)) (ADF0 (NOR D6 D9) 
(NAND D1 D10) (ADF0 D10 D5 D3 D5) (NOR 
D8 D2)) (OR D6 (NOR D1 D6))) D1) (NOR 
(NAND D1 D10) (ADF0 (OR (ADF0 D6 D2 D8 
D4) (OR D4 D7)) (NOR D10 D6) (NOR D1 D2) 
(ADF1 D3 D7 D7 D6)))))). 

The first branch of this S-expression defined the 
four-argument defined function ADF0 (four-argument 
Boolean rule 50,115) which ignored two of its four 
arguments.  ADF0 is equivalent to the even-2-parity 
function, namely 
(EQV ARG1 ARG2). 

The second branch defined a four-argument 
defined function ADF1 which is equivalent to the 
even-4-parity function. 

Substituting the definitions of the defined functions 
ADF0 and ADF1, the result-producing (i.e., third) 
branch becomes the program shown below.  
(OR (EVEN-4-PARITY 
      D1 
      D0 
      (EVEN-2-PARITY 
        (EVEN-4-PARITY 
          (EVEN-2-PARITY D3 D2) 
          (OR D10 D1) 
          (EVEN-4-PARITY D3 D4 D6 D7) 
          (EVEN-2-PARITY D8 D9)) 
      (EVEN-2-PARITY (NAND D1 D10) 
                     (EVEN-2-PARITY D5 D3))) 
      D1) 
    (NOR (NAND D1 D10) 
         (EVEN-2-PARITY (NOR D10 D6) 
                        (NOR D1 D2)))) 

which is equivalent to the target even-11-parity 
function.  Note that the even-2-parity function  (ADF0) 
appears six times in this solution and that the even-4-
parity function (ADF1) appears three times.  Note that 
this entire solution for the even-11-parity function 
contains only 220 points (compared to 347 points for 
the solution to the mere even-5-parity without 
hierarchical automatic function definition). 

Figure 35 shows the simplified version of the 
result-producing branch of this best-of-run individual 
for the even-11-parity problem.  As can be seen, the 
even-11-parity problem was decomposed into a 
composition of even-2-parity functions and even-4-
parity functions.   
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Figure 35  The best-of-run individual from generation 
21 of one run of the even-11-parity problem is a 
composition of even-2-parity and even-4-parity 
functions. 

We found the above solution to the even-11-parity 
problem on our first completed run.  The search space 
of 11-argument Boolean functions returning one value 
is of size 22,048 ˜ 10616.  The even-11-parity problem 
was solved by decomposing into parity functions of 
lower orders. 

9.9 Summary of Hierarchical Automatic Function 
Definition 

Thus, the problem of learning various higher order 
even-parity functions can be solved with the technique 
of hierarchical automatic function definition in the 
context of genetic programming.  Moreover, as can be 
seen in table 2, the technique of hierarchical automatic 
function definition facilitates the solution of these 
problems.  That is, when problems are decomposed 
into a hierarchy of function definitions and calls, many 
fewer individuals must be processed in order to yield a 
solution to the problem.  Moreover, the solutions 
discovered are comparatively smaller in terms of their 
structural complexity.    

Table 2  Number of individuals I(M,i,z) required to 
be processed to yield a solution to various even-parity 

problems with 99% probability – with and without 
hierarchical automatic function definition. 

Size of parity 
function 

Without hierarchical 
automatic function 

definition 

With hierarchical 
automatic function 

definition 
3 80,000  
4 1,276,000 88,000 
5  144,000 
6  864,000 
7  1,440,000 

Automatic function definition has also been applied 
to the problem of discovery of impulse response 
functions [Koza, Keane, and Rice 1993].   

10. Additional Examples of Genetic Programming 

Genetic programming can be applied in many 
additional problem domains, including the following:   
• evolution of a subsumption architecture for 

controlling a robot to follow walls or move boxes 
[Koza 1992d, Koza and Rice 1992b], 
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• discovering inverse kinematic equations to control 
the movement of a robot arm to a designated target 
point, 

• emergent behavior (e.g., discovering a computer 
program which, when executed by all the ants in an 
ant colony, enables the ants to locate food, pick it 
up, carry it to the nest, and drop pheromones along 
the way so as to recruit other ants into cooperative 
behavior), 

• symbolic integration, symbolic differentiation, and 
symbolic solution to general functional equations 
(including differential equations with initial 
conditions), 

• planning (e.g., navigating an artificial ant along a 
trail, developing a robotic action sequence that can 
stack an arbitrary initial configuration of blocks into 
a specified order), 

• generation of high entropy sequences of random 
numbers, 

• induction of decision trees for classification, 
• optimization problems (e.g., finding an optimal food 

foraging strategy for a lizard),  
• sequence induction (e.g., inducing a recursive 

computational procedure for generating sequences 
such as the Fibonacci sequence),  

• automatic programming of cellular automata, 
• finding minimax strategies for games (e.g., 

differential pursuer-evader games, discrete games in 
extensive form) by both evolution and co-evolution, 

• automatic programming (e.g., discovering a 
computational procedure for solving pairs of linear 
equations, solving quadratic equations for complex 
roots, and discovering trigonometric identities),  and 

• simultaneous architectural design and training of 
neural networks [Koza and Rice 1991].  
Additional information and examples can be found 

in Koza [1992a]. 

11. Conclusions 

We have shown that many seemingly different 
problems in machine learning and artificial 
intelligence can be viewed as requiring the discovery 
of a computer program that produces some desired 
output for particular inputs.  We have also shown that 
the recently developed genetic programming paradigm 
described herein provides a way to search for a highly 
fit individual computer program.  The technique of 
hierarchical automatic function definition can facilitate 
the solution of problems.  
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