
Genetic Programming as a Means for Programming Computers by
Natural Selection

JOHN R. KOZA
Computer Science Department, Stanford University,
Stanford, California 94305. Koza@CS.Stanford.Edu, 415-
941-0336

Many seemingly different problems in machine learning, artificial
intelligence, and symbolic processing can be viewed as requiring the
discovery of a computer program that produces some desired output for
particular inputs. When viewed in this way, the process of solving these
problems becomes equivalent to searching a space of possible computer
programs for a highly fit individual computer program. The recently
developed genetic programming paradigm described herein provides a
way to search the space of possible computer programs for a highly fit
individual computer program to solve (or approximately solve) a
surprising variety of different problems from different fields. In genetic
programming, populations of computer programs are genetically bred
using the Darwinian principle of survival of the fittest and using a genetic
crossover (sexual recombination) operator appropriate for genetically
mating computer programs. Genetic programming is illustrated via an
example of machine learning of the Boolean 11-multiplexer function,
symbolic regression of the econometric exchange equation from noisy
empirical data, the control problem of backing up a tractor-trailer truck,
the classification problem of distinguishing between two intertwined
spirals., and the robotics problem of controlling an autonomous mobile
robot to find a box in the middle of an irregular room and move the box to
the wall.
Hierarchical automatic function definition enables genetic programming
to define potentially useful functions automatically and dynamically
during a run – much as a human programmer writing a complex computer
program creates subroutines (procedures, functions) to perform groups of
steps which must be performed with different instantiations of the dummy
variables (formal parameters) in more than one place in the main program.
Hierarchical automatic function definition is illustrated via the machine
learning of the Boolean 11-parity function.

Keywords: Genetic programming, genetic algorithm, crossover,
hierarchical automatic function definition, symbolic regression, Boolean
11-multiplexer, econometric exchange equation, truck backer-upper,
intertwined spirals, box moving robot, Boolean 11-parity.

1. Introduction and Overview

Computer programs are among the most complex and
intricate structures created by man. Computer
programs are usually written line-by-line by applying
human knowledge and intelligence to the problem at
hand. Writing a computer program is usually difficult.

Indeed, one of the central questions in computer
science (attributed to Arthur Samuel in the 1950s) is

How can computers learn to solve
problems without being explicitly
programmed? In other words, how can
computers be made to do what is
needed to be done, without being told
exactly how to do it?

2 Koza

In the natural world, complex and intricate
structures do not arise via explicit design and
programming or from the application of human
intelligence. Instead, complex and successful organic
structures evolve over a period of time as the
consequence of Darwinian natural selection and the
creative effects of sexual recombination (genetic
crossover) and mutation. Complex structures evolve
in nature as a consequence of a fitness metric applied
by the problem environment because structures that
are more fit in grappling with their environment
survive and reproduce at a higher rate.

The question arises as to whether an analog of
natural selection and genetics can be applied to the
problem of creating a program that enables a computer
to solve a problem. That is, can complex computer
programs be created, not via human intelligence, but
by applying a fitness measure appropriate to the
problem environment?

Such a process of genetically breeding of computer
programs might start with a primordial ooze consisting
of a population of hundreds or thousands of randomly
created computer programs of various randomly
determined sizes and shapes. In such a process, each
program in the population would be observed as it
tries to grapple with its environment – that is, to solve
the problem at hand. A value would then be assigned
to each program reflecting how fit it is in solving the
problem at hand. We might then allow a program in
the population to survive to a later generation of the
process with a probability proportionate to its
observed fitness. Additionally, we might also select
pairs of programs from the population with a
probability proportionate to their observed fitness and
create new offspring by recombining subprograms
from them at random. We would apply the above
steps to the population of programs over a number of
generations.

Anyone who has ever written and debugged a
computer program and has experienced their brittle,
highly non-linear, and perversely unforgiving nature
will probably be understandably skeptical about the
proposition that the biologically motivated process
sketched above could possibly produce a useful
computer program. However, in this article, we will
present a number of examples from various fields
supporting the surprising and counter-intuitive notion
that computers can indeed by programmed by means
of natural selection. We will show, via examples, that
the recently developed genetic programming paradigm
provides a way to search the space of all possible
programs to find a function which solves, or
approximately solves, a problem.

2. Background on Genetic Algorithms and
Genetic Programming

John Holland's pioneering 1975 Adaptation in Natural
and Artificial Systems described how the evolutionary
process in nature can be applied to artificial systems
using the genetic algorithm operating on fixed length
character strings [Holland 1975]. Holland
demonstrated that a population of fixed length
character strings (each representing a proposed
solution to a problem) can be genetically bred using
the Darwinian operation of fitness proportionate
reproduction and the genetic operation of
recombination. The recombination operation
combines parts of two chromosome-like fixed length
character strings, each selected on the basis of their
fitness, to produce new offspring strings. Holland
established, among other things, that the genetic
algorithm is a near optimal approach to adaptation in
that it maximizes expected overall average payoff
when the adaptive process is viewed as a multi-armed
slot machine problem requiring an optimal allocation
of future trials given currently available information.
The genetic algorithm has proven successful at
searching nonlinear multidimensional spaces in order
to solve, or approximately solve, a wide variety of
problems [Goldberg 1989, Davis 1987, Davis 1991,
Davidor 1991, Michalewicz 1992]. Recent conference
proceedings provide an overview of current work in
the field [Schaffer 1989, Forrest 1990, Belew and
Booker 1991, Rawlins 1991, Meyer and Wilson 1991,
Schwefel et al. 1991, Langton et al. 1992, Whitley
1992].

Representation is a key issue in genetic algorithm
work because genetic algorithms directly manipulate a
coded chromosomal representation of the problem.
The representation scheme can therefore severely limit
the window by which the system observes its world.
On the other hand, the use of fixed length character
strings has permitted Holland and others to construct a
significant body of theory as to why genetic
algorithms work. Much of this theoretical analysis
depends on the mathematical tractability of the fixed
length character strings as compared with
mathematical structures that are more complex and
comparatively less susceptible to theoretical analysis.
The need for increasing the complexity of the
structures undergoing adaptation using the genetic
algorithm has been reflected by considerable work
over the years in that direction [Smith 1980, Cramer
1985, Holland 1986, Holland et al. 1986, Wilson
1987a, Wilson 1987b, Fujiki and Dickinson 1987,
Goldberg et al 1989].

For many problems in machine learning and
artificial intelligence, the most natural representation
for a solution is a computer program (i.e., a

Genetic Programming as a Means for Programming Computers by Natural Selection 3

hierarchical composition of primitive functions and
terminals) of indeterminate size and shape, as opposed
to character strings whose size has been determined in
advance. It is difficult, unnatural, and overly
restrictive to attempt to represent hierarchies of
dynamically varying size and shape with fixed length
character strings.

Genetic programming provides a way to find a
computer program of unspecified size and shape to
solve, or approximately solve, a problem. The book
Genetic Programming: On the Programming of
Computers by Means of Natural Selection [Koza
1992a] describes genetic programming in detail. A
videotape visualization of applications of genetic
programming can be found in the Genetic
Programming: The Movie [Koza and Rice 1992]. See
also Koza [1992b].

3. Overview of Genetic Programming

Genetic programming continues the trend of dealing
with the problem of representation in genetic
algorithms by increasing the complexity of the
structures undergoing adaptation. In particular, the
individuals in the population in genetic programming
are hierarchical compositions of primitive functions
and terminals appropriate to the particular problem
domain. The set of primitive functions used typically
includes arithmetic operations, mathematical
functions, conditional logical operations, and domain-
specific functions. The set of terminals used typically
includes inputs appropriate to the problem domain and
various numeric constants.

The compositions of primitive functions and
terminals described above correspond directly to the
computer programs found in programming languages
such as LISP (where they are called symbolic
expressions or S-expressions). An S-expression can
be represented as a rooted, point-labeled tree with
ordered branches in which the root and other internal
points of the tree are labeled with functions and in
which the external points of the tree are labeled with
terminals. In fact, these compositions correspond
directly to the parse tree that is internally created by
the compilers of most programming languages. Thus,
genetic programming views the search for a solution to
a problem as a search in the space of all possible
compositions of functions that can be recursively
composed of the available primitive functions and
terminals.

Of course, virtually any problem in artificial
intelligence, symbolic processing, and machine
learning can be viewed as requiring discovery of a
computer program that produces some desired output
for particular inputs. The process of solving these
problems can be reformulated as a search for a highly
fit individual computer program in the space of

possible computer programs. When viewed in this
way, the process of solving these problems becomes
equivalent to searching a space of possible computer
programs for the fittest individual computer program.
In particular, the search space is the space of all
possible computer programs composed of functions
and terminals appropriate to the problem domain.
Genetic programming provides a way to search for this
fittest individual computer program.

In genetic programming, populations of hundreds
or thousands of computer programs are genetically
bred. This breeding is done using the Darwinian
principle of survival and reproduction of the fittest
along with a genetic recombination (crossover)
operation appropriate for mating computer programs.
As will be seen, a computer program that solves (or
approximately solves) a given problem may emerge
from this combination of Darwinian natural selection
and genetic operations.

Genetic programming starts with an initial
population of randomly generated computer programs
composed of functions and terminals appropriate to
the problem domain. The functions may be standard
arithmetic operations, standard programming
operations, standard mathematical functions, logical
functions, or domain-specific functions. Depending
on the particular problem, the computer program may
be Boolean-valued, integer-valued, real-valued,
complex-valued, vector-valued, symbolic-valued, or
multiple-valued. The creation of this initial random
population is, in effect, a blind random search of the
search space of the problem.

Each individual computer program in the
population is measured in terms of how well it
performs in the particular problem environment. This
measure is called the fitness measure.

The nature of the fitness measure varies with the
problem. For many problems, fitness is naturally
measured by the error produced by the computer
program. The closer this error is to zero, the better the
computer program. If one is trying to find a good
randomizer, the fitness of a given computer program
might be measured via entropy. The higher the
entropy, the better the randomizer. If one is trying to
recognize patterns or classify examples, the fitness of a
particular program might be the number of examples
(instances) it handles correctly. The more examples
correctly handled, the better. In a problem of optimal
control, the fitness of a computer program may be the
amount of time or fuel or money required to bring the
system to a desired target state. The smaller the
amount of time or fuel or money, the better. For some
problems, fitness may consist of a combination of
factors such as correctness, parsimony, or efficiency.

Typically, each computer program in the
population is run over a number of different fitness
cases so that its fitness is measured as a sum or an
average over a variety of representative different
situations. These fitness cases sometimes represent a

4 Koza

sampling of different values of an independent
variable or a sampling of different initial conditions of
a system. For example, the fitness of an individual
computer program in the population may be measured
in terms of the sum of the squares of the differences
between the output produced by the program and the
correct answer to the problem. This sum may be taken
over a sampling of different inputs to the program.
The fitness cases may be chosen at random or may be
structured in some way.

The computer programs in generation 0 will have
exceedingly poor fitness. Nonetheless, some
individuals in the population will turn out to be
somewhat fitter than others. These differences in
performance are then exploited.

The Darwinian principle of reproduction and
survival of the fittest and the genetic operation of
sexual recombination (crossover) are used to create a
new offspring population of individual computer
programs from the current population of programs.

The reproduction operation involves selecting on
the basis of fitness (i.e., the fitter the program, the
more likely it is to be selected), a computer program
from the current population of programs, and allowing
it to survive by copying it into the new population.

The genetic process of sexual reproduction
between two parental computer programs is used to
create new offspring computer programs from two
parental programs selected on the basis of fitness. The
parental programs are typically of different sizes and
shapes. The offspring programs are composed of
subexpressions (subtrees, subprograms, subroutines,
building blocks) from their parents. These offspring
programs are typically of different sizes and shapes
than their parents.

Intuitively, if two computer programs are
somewhat effective in solving a problem, then some of
their parts probably have some merit. By recombining
randomly chosen parts of somewhat effective
programs, we may produce new computer programs
that are even fitter in solving the problem.

For example, consider the following computer
program (LISP symbolic expression):
(+ (* 0.234 Z) (- X 0.789)),

which we would ordinarily write as
0.234 Z + X – 0.789.

This program takes two inputs (X and Z) and produces
a floating point output. In the prefix notation used, the
multiplication function * is first applied to the
terminals 0.234 and Z to produce an intermediate
result. Then, the subtraction function – is applied to
the terminals X and 0.789 to produce a second
intermediate result. Finally, the addition function + is
applied to the two intermediate results to produce the
overall result.

Also, consider a second program:
(* (* Z Y) (+ Y (* 0.314 Z))),

which is equivalent to

ZY (Y + 0.314 Z).
In figure 1, these two programs are depicted as

rooted, point-labeled trees with ordered branches.
Internal points (i.e., nodes) of the tree correspond to
functions (i.e., operations) and external points (i.e.,
leaves, endpoints) correspond to terminals (i.e., input
data). The numbers beside the function and terminal
points of the tree appear for reference only.

0.234Z + X – 0.789

X 0.789

–

0.234 Z

*

+

ZY(Y + 0.314Z)

Z Y

*

0.314 Z

*Y

+

*
1 1

2 25 5

8 9

3 34 46 7 76

Figure 1 Two Parental computer programs.

The crossover operation creates new offspring by
exchanging sub-trees (i.e., sub-lists, subroutines,
subprocedures) between the two parents.

Assume that the points of both trees are numbered
in a depth-first way starting at the left. Suppose that
the point number 2 (out of 7 points of the first parent)
is randomly selected as the crossover point for the first
parent and that the point number 5 (out of 9 points of
the second parent) is randomly selected as the
crossover point of the second parent. The crossover
points in the trees above are therefore the * in the first
parent and the + in the second parent. The two
crossover fragments are the two sub-trees shown in
figure 2.

0.234 Z

*

0.234Z

0.314 Z

*Y

+

Y + 0.314Z
Figure 2 Two Crossover Fragments.

These two crossover fragments correspond to the
underlined sub-programs (sub-lists) in the two parental
computer programs. The two offspring resulting from
crossover are
(+ (+ Y (* 0.314 Z)) (- X 0.789))

and
(* (* Z Y) (* 0.234 Z)).

The two offspring are shown in figure 3.

Genetic Programming as a Means for Programming Computers by Natural Selection 5

X 0.789

–

+

0.314 Z

*Y

+

Y + 0.314Z + X – 0.789

Z Y

*

*

0.234 Z

*

0.234Z Y2

Figure 3 Two Offspring.

Thus, crossover creates new computer programs
using parts of existing parental programs. Because
entire sub-trees are swapped, this crossover operation
always produces syntactically and semantically valid
programs as offspring regardless of the choice of the
two crossover points. Because programs are selected
to participate in the crossover operation with a
probability proportional to fitness, crossover allocates
future trials to areas of the search space represented by
programs containing parts from promising programs.

After the operations of reproduction and crossover
are performed on the current population, the
population of offspring (i.e., the new generation)
replaces the old population (i.e., the old generation).

Each individual in the new population of computer
programs is then measured for fitness, and the process
is repeated over many generations.

At each stage of this highly parallel, locally
controlled, decentralized process, the state of the
process will consist only of the current population of
individuals. The force driving this process consists
only of the observed fitness of the individuals in the
current population in grappling with the problem
environment.

As will be seen, this algorithm will produce
populations of computer programs which, over many
generations, tend to exhibit increasing average fitness
in dealing with their environment. In addition, these
populations of computer programs can rapidly and
effectively adapt to changes in the environment.

Typically, the best individual that appeared in any
generation of a run (i.e., the best-so-far individual) is
designated as the result produced by genetic
programming.

The hierarchical character of the computer
programs that are produced is an important feature of
genetic programming. The results of genetic
programming are inherently hierarchical. In many
cases the results produced by genetic programming are
default hierarchies, prioritized hierarchies of tasks, or
hierarchies in which one behavior subsumes or
suppresses another.

The dynamic variability of the computer programs
that are developed along the way to a solution is also
an important feature of genetic programming. It
would be difficult and unnatural to try to specify or
restrict the size and shape of the eventual solution in

advance. Moreover, advance specification or
restriction of the size and shape of the solution to a
problem narrows the window by which the system
views the world and might well preclude finding the
solution to the problem at all.

Another important feature of genetic programming
is the absence or relatively minor role of preprocessing
of inputs and postprocessing of outputs. The inputs,
intermediate results, and outputs are typically
expressed directly in terms of the natural terminology
of the problem domain. The computer programs
produced by genetic programming consist of functions
that are natural for the problem domain.

Finally, the structures undergoing adaptation in
genetic programming are active. They are not passive
chromosomal encodings of the solution to the
problem. Instead, given a computer on which to run,
the structures in genetic programming are active
program structures that are capable of being executed
in their current form.

In summary, genetic programming breeds computer
programs to solve problems by executing the
following three steps:
(1) Generate an initial population of random

computer programs composed of the primitive
functions and terminals of the problem.

(2) Iteratively perform the following sub-steps until
the termination criterion for the run has been
satisfied:

(a) Execute each program in the population so
that a fitness measure indicating how well the
program solves the problem can be computed
for the program.

(b) Create a new population of programs by
selecting program(s) in the population with a
probability based on fitness (i.e., the fitter the
program, the more likely it is to be selected)
and then applying the following primary
operations:

(i) Reproduction: Copy an existing program
to the new population.

(ii) Crossover: Create two new offspring
programs for the new population by
genetically recombining randomly
chosen parts of two existing programs.

(3) The single best computer program in the
population produced during the run is designated
as the result of the run of genetic programming.
This result may be a solution (or approximate
solution) to the problem.

Figure 4 is a flowchart for genetic programming.
The index i refers to an individual in the population of
size M. The variable GEN is the number of the current
generation. The box labeled "Evaluate fitness of each
individual in the population" typically consumes the
vast majority of computer resources.

6 Koza

Select Two Individuals
Based on Fitness

Gen := 0

Create Initial
Random Population

No
Evaluate fitness of each
individual in population

Yes

No
Gen := Gen + 1

Yes Designate
Result

End

i = M?

Select Genetic Operation
Probabalistically

i := i + 1

Termination
Criterion Satisfied?

i := 0

Pr

Perform
Crossover

Insert Two
Offspring
into New

Population

i := i + 1
Perform Reproduction

Copy into New
Population

Select One
Individual

Based on Fitness

Pc

Figure 4 Flowchart for genetic programming.

In the remainder of this article, we illustrate genetic
programming with several examples chosen to
illustrate various different categories of problems,
namely
• symbolic regression of a Boolean-valued function,
• symbolic regression of noisy numeric-valued

empirical data,
• a multidimensional control problem,
• a classification problem,
• a robotics problem, and
• a problem employing hierarchical automatic

function definition.

4. Symbolic Regression - 11-Multiplexer

The problem of symbolic function identification
(symbolic regression) requires developing a
composition of terminals and functions that can return
the correct value of the function after seeing a finite
sampling of combinations of the independent variable
associated with the correct value of the dependent
variable. The problem of machine learning of a

Boolean function is a special case of symbolic
regression in which the independent variables are
Boolean-valued, the functions being composed are
Boolean functions, and the dependent variable is
Boolean-valued.

The problem of learning the Boolean 11-
multiplexer function will serve to show the interplay in
genetic programming of
• the genetic variation inevitably created in the initial

random generation,
• the small improvements for some individuals in the

population via localized hill-climbing from
generation to generation,

• the way particular individuals become specialized
and able to correctly handle certain sub-cases of the
problem (case-splitting),

• the creative role of crossover in recombining
valuable parts of more fit parents,

• how the nurturing of a large population of
alternative solutions to the problem (rather than a
single point in the solution space) helps avoid false
peaks in the search for the solution to the problem,
and

• that it is not necessary to determine in advance the
size and shape of ultimate solution or the
intermediate results that may contribute to the
solution.
The input to the Boolean N-multiplexer function

consists of k address bits ai and 2k data bits di, where

N = k + 2k. That is, the input consists of the k+2k bits
ak-1, ... , a1, a0, d2k-1, ... , d1, d0.

The value of the Boolean multiplexer function is
the Boolean value (0 or 1) of the particular data bit
that is singled out by the k address bits of the
multiplexer. For example, for the Boolean 11-
multiplexer (where k = 3), if the three address bits
a2a1a0 are 110, the multiplexer singles out data bit
number 6 (i.e., d6) to be the output of the multiplexer.
Figure 5 shows a Boolean 11-multiplexer with an
input of 11001000000 and the corresponding output of
1.

a2
a1
a0

d7
d6
d5
d4
d3
d2
d1
d0

Output1

1
1
0

0
1
0
0
0
0
0
0

Figure 5 Boolean 11-multiplexer

Genetic Programming as a Means for Programming Computers by Natural Selection 7

There are five major steps in preparing to use genetic
programming, namely determining
(1) the set of terminals,
(2) the set of primitive functions,
(3) the fitness measure,
(4) the parameters for controlling the run, and
(5) the method for designating a result and the

criterion for terminating a run.
The first major step in preparing to use genetic

programming is the identification of the set of
terminals that will be available for constructing the
computer programs (S-expressions) that will try to
solve the problem. This choice is especially straight-
forward for this problem. The terminal set for this
problem consists of the 11 inputs to the Boolean 11-
multiplexer. Thus, the terminal set T for this problem
consists of

T = {A0, A1, A2, D0, D1, ... , D7}.
The second major step in preparing to use genetic

programming is the identification of a sufficient set of
primitive functions that will be available for
constructing the computer programs (S-expressions)
that solve the problem. Thus, the function set F for this
problem is

F = {AND, OR, NOT, IF}
taking 2, 2, 1, and 3 arguments, respectively.

The IF function is the Common LISP function that
performs the IF-THEN-ELSE operation. That is, the
IF function returns the results of evaluating its third
argument (the “else” clause) if its first argument is
NIL (False) and otherwise returns the results of
evaluating its second argument (the “then” clause).

The above function set F is known to be sufficient
to realize any Boolean function.

Since genetic programming operates on an initial
population of randomly generated compositions of the
available functions and terminals (and later performs
genetic operations, such as crossover, on these
individuals), each primitive function in the function set
should be well defined for any combination of
arguments from the range of values returned by every
primitive function that it may encounter and the value
of every terminal that it may encounter. The above
function set F of primitive functions satisfies the
closure property.

The search space for this problem is the set of all
LISP S-expressions that can be recursively composed
of the primitive functions from the function set F and
terminals from the terminal set T. Another way to
look at the search space is that the Boolean multiplexer
function with k+2k arguments is a particular one of
2k+2k possible Boolean functions of k+2k arguments.
For example, when k=3, then k+2k = 11 and this

search space is of size 2211
. That is, the search space

is of size 22048, which is approximately 10616.
The third major step in preparing to use genetic

programming is the identification of the fitness
measure for evaluating the goodness of an individual
S-expression in the population. Fitness is often
evaluated over a number of fitness cases – just as
computer programs are typically debugged by
examining their output over a number of test cases.
The set of fitness cases must be representative of the
problem as a whole. The reader may find it helpful to
think of these fitness cases as the “environment” in
which the genetic population of computer programs
must adapt. There are 211 = 2,048 possible
combinations of the 11 arguments
a0a1a2d0d1d2d3d4d5d6d7 along with the associated
correct value of the 11-multiplexer function. For this
particular problem, we use the entire set of 2,048
combinations of arguments as the fitness cases for
evaluating fitness (although we could, of course, use
sampling).

We begin by defining raw fitness in the simplest
way that comes to mind using the natural terminology
of the problem. The raw fitness of a LISP S-
expression in this problem is simply the number of
fitness cases (taken over all 2,048 fitness cases) where
the Boolean value returned by the S-expression for a
given combination of arguments is the correct Boolean
value. Thus, the raw fitness of an S-expression can
range over 2,049 different values between 0 and 2,048.
A raw fitness of 2,048 denotes a 100% correct
individual S-expression.

It is useful to define a fitness measure called
standardized fitness where a smaller value is better and
a zero value is best. Since a bigger value of raw
fitness is better for this problem, standardized fitness is
different from raw fitness for this problem. In
particular, standardized fitness equals the maximum
possible value of raw fitness rmax (i.e., 2,048) minus
the observed raw fitness. The standardized fitness can
also be viewed as the sum, taken over all 2,048 fitness
cases, of the Hamming distances (errors) between the
Boolean value returned by the S-expression for a
given combination of arguments and the correct
Boolean value. The Hamming distance is zero if the
Boolean value returned by the S-expression agrees
with the correct Boolean value and is one if it
disagrees. Thus, the sum of the Hamming distances is
equivalent to the number of mismatches.

The fourth major step in using genetic
programming is selecting the values of certain
parameters.

The two major parameters that are used to control
the process are the population size M and the
maximum number of generations Ngen to be run.
Ngen was 51 throughout this article. Our choice of
4,000 as the population size for this problem reflects

8 Koza

an estimate on our part as to the likely complexity of
this problem and the practical limitations of available
computer memory.

In addition, genetic programming is controlled by a
number of additional secondary parameters. Our
choice of values for the various secondary parameters
that control the runs of genetic programming are the
same default values as we have used on numerous
other problems [Koza 1992a]. Specifically, each new
generation is created from the preceding generation by
applying the fitness proportionate reproduction
operation to 10% of the population and by applying
the crossover operation to 90% of the population (with
both parents selected with a probability proportionate
to fitness). In selecting crossover points, 90% were
internal (function) points of the tree and 10% were
external (terminal) points of the tree. For the practical
reason of avoiding the expenditure of large amounts of
computer time on an occasional oversized programs,
the depth of initial random programs was limited to 6
and the depth of programs created by crossover was
limited to 17. The individuals in the initial random
generation were generated so as to obtain a wide
variety of different sizes and shapes among the S-
expressions. Fitness is "adjusted" to emphasize small
differences near zero. Spousal selection was also
fitness proportionate. Details of the selection of these
secondary parameters can be found in Koza [1992a].
We believe that sufficient information is provided
herein and in Koza [1992a] to allow replication of the
experimental results reported herein, within the limits
inherent in a probabilistic algorithm. Common LISP
software is listed in Koza [1992a] for genetic
programming.

Finally, the fifth major step in preparing to use
genetic programming is the selection of the criterion
for terminating a run and the selection of the method
for designating a result. In this problem we have a
way to recognize a solution when we find it. When
the raw fitness is 2,048 (i.e., the standardized fitness is
zero), we have a 100% correct solution to this
problem. Thus, we terminate a run after a specified
maximum number of generations Ngen (e.g., 51) or
earlier if we find an individual with a raw fitness of
2,048. For all the problems in this article, we will
terminate a given run either after 51 generations and
we designate the best single individual in the
population at the time of termination as the result of
genetic programming.

We now illustrate genetic programming by
discussing one particular run of the Boolean 11-
multiplexer in detail. The process begins with the
generation of the initial random population (i.e.,
generation 0).

Predictably, the initial random population includes
a variety of highly unfit individuals. Many individual
S-expressions in this initial random population are
merely constants, such as the contradictory (AND A0

(NOT A0)). Other individuals are passive and
merely pass an input through as the output, such as
(NOT (NOT A1)). Other individuals are
inefficient, such as (OR D7 D7). Some of these
initial random individuals base their decision on
precisely the wrong arguments, such as (IF D0 A0
A2). This individual uses the data bit D0 to decide
what output to take. Many of the initial random
individuals are partially blind in that they do not
incorporate all 11 arguments that are known to be
necessary to solve the problem. Some S-expressions
are just nonsense, such as
(IF (IF (IF D2 D2 D2) D2 D2) D2 D2).

Nonetheless, even in this highly unfit initial
random population, some individuals are somewhat
more fit than others. For this particular run, the
individuals in the initial random population had values
of standardized fitness ranging from 768 mismatches
(i.e., 1,280 matches) to 1,280 mismatches (i.e., 768
matches).

The worst individual in the population for the
initial random generation was
(OR (NOT A1) (NOT (IF (AND A2 A0) D7 D3))).

This individual had a standardized fitness of 1,280
(i.e., raw fitness of only 768).

As it happens, a total of 23 individuals out of the
4,000 in this initial random population tied with the
highest score of 1,280 matches on generation 0. One
of these 23 high scoring individuals was the S-expres-
sion
 (IF A0 D1 D2).

This individual scores 1,280 matches by scoring
512 matches for the one quarter (i.e., 512) of the 2,048
fitness cases for which A2 and A1 are both NIL and
by scoring an additional 768 matches on 50% of the
remaining three quarters (i.e., 1,536) of the fitness
cases.

This individual has obvious shortcomings.
Notably, it is partially blind in that it uses only 3 of the
11 necessary terminals of the problem. As a
consequence of this fact alone, this individual cannot
possibly be a correct solution to the problem. This
individual nonetheless does some things right. For
example, this individual uses one of the three address
bits (A0) as the basis for its action. It could easily
have done this wrong and used one of the eight data
bits. In addition, this individual uses only data bits (D1
and D2) as its output. It could have done this wrong
and used address bits. Moreover, if A0 (which is the
low order binary bit of the 3-bit address) is T (True),
this individual selects one of the three odd numbered
data bits (D1) as it output. Moreover, if A0 is NIL,
this individual selects one of the three even numbered
data bits (D2) as its output. In other words, this
individual correctly links the parity of the low order
address bit A0 with the parity of the data bit it selects
as its output. This individual is far from perfect, but it
is far from being without merit. It is more fit than
3,977 of the 4,000 individuals in the population.

Genetic Programming as a Means for Programming Computers by Natural Selection 9

The average standardized fitness for all 4,000
individuals in the population for generation 0 is 985.4.
This value of average standardized fitness for the
initial random population forms the baseline and
serves as a useful benchmark for monitoring later
improvements in the average standardized fitness of
the population.

The hits histogram is a useful monitoring tool
based on the auxiliary hits measure. This histogram
provides a way of viewing the population as a whole
for a particular generation. The horizontal axis of the
hits histogram is the number of hits (i.e., matches, for
this problem) and the vertical axis is the number of
individuals in the population scoring that number of
hits. Fifty different levels of fitness are represented in
the hits histogram for the population at generation 0 of
this problem. In order to make this histogram legible
for this problem, we have divided the horizontal axis
into buckets of size 64. For example, 1,553
individuals out of 4,000 (i.e., about 39%) had between
1,152 and 1215 matches (hits). This well-populated
range includes the mode of the distribution which
occurs at 1,152 matches (hits). There are 1490
individuals with 1,152 matches (hits). Figure 6 shows
the hits histogram of the population for generation 0 of
this run of this problem.

0 1024 2048
0

1000

2000

3000
11 Multiplexer — Generation 0

Hits

Fr
eq

ue
nc

y

Figure 6 Hits histogram for generation 0.

The Darwinian reproduction operation and the
genetic crossover operation are then applied to parents
selected from the current population with probabilities
proportionate to fitness to breed a new population.
When these operations are completed, the new
population (i.e., the new generation) replaces the old
population.

The initial random generation is an exercise in
blind random search. In going from generation 0 to
generation 1, genetic programming works with the
inevitable genetic variation existing in an initial
random population. The search is a parallel search of
the search space because there are 4,000 individual
points involved.

Although the vast majority of the new offspring are
again highly unfit, some of them tend to be somewhat
more fit than others. Moreover, over a period of time
and many generations, some of them tend to be
slightly more fit than those existing in the earlier
generation. In this run, the average standardized
fitness of the population immediately begins
improving (i.e., decreasing) from the baseline value of
985.4 for generation 0 to about 891.9 for generation 1.
We typically see this kind of generally improving
trend in average standardized fitness from generation

to generation. As it happens, in this particular run of
this particular problem, the average standardized
fitness improves (i.e., decreases) monotonically
between generation 2 and generation 9 and assumes
values of 845, 823, 763, 731, 651, 558, 459, and 382,
respectively. We usually see a generally improving
trend in average standardized fitness from generation
to generation, but not necessarily a monotonic
improvement.

In addition, we similarly usually see a generally
improving trend in the standardized fitness of the best
single individual in the population from generation to
generation. As it happens, in this particular run of this
particular problem, the standardized fitness of the best
single individual in the population improves (i.e.,
decreases) monotonically between generation 2 and
generation 9. In particular, it assumes values of 640,
576, 384, 384, 256, 256, 128, and 0 (i.e., a perfect
score), respectively.

On the other hand, the standardized fitness of the
worst single individual in the population fluctuates
considerably. For this particular run, the standardized
fitness of the worst individual starts at 1280, fluctuates
considerably between generations 1 and 9, and then
deteriorates (increases) to 1792 by generation 9.

Figure 7 shows the standardized fitness (i.e.,
mismatches) for generations 0 through 9 of this run for
the best single individual in the population, the worst
single individual in the population, and the average for
the population.

0 3 6 9
0

1024

2048

Worst of Gen.
Average
Best of Gen.

11 Multiplexer

Generation

St
an

da
rd

iz
ed

 F
itn

es
s

R
aw

 F
itn

es
s

2048

1024

0

Figure 7 Standardized fitness of worst-of-generation
individual, average standardized fitness of population,
and standardized fitness of best-of-generation
individual for generations 0 through 9.

In generation 1, the raw fitness for the best single
individual in the population rises to 1,408 matches
(i.e., standardized fitness of 640). Only one individual
in the population attained this high score of 1408 in
generation 1, namely
(IF A0 (IF A2 D7 D3) D0).

Note that this individual performs better than the best
individual from generation 0 for two reasons. First,
this individual considers two of the three address bits
(A0 and A2) in deciding which data bit to choose as
output, whereas the best individual in generation 0
considered only one of the three address bits (A0).

10 Koza

Second this best individual from generation 1
incorporates three of the eight data bits as its output,
whereas the best individual in generation 0 incorpo-
rated only two of the eight potential data bits as
output. Although still far from perfect, the best
individual from generation 1 is less blind and more
complex than the best individual of the previous
generation. This best-of-generation individual consists
of 7 points, whereas the best-of-generation individual
from generation 0 consisted of only 4 points. Note
that these 21 individuals are not just copies of the best-
of-generation individual from generation 1. Instead,
they represent a number of different programs with the
same fitness, but different structure and behavior.

In generation 2, the best raw fitness remained at
1,408; however, the number of individuals in the
population sharing this high score rose from 1 to 21.
The high point of the hits histogram advanced from
1,152 for generation 0 to 1,280 for generation 2. There
are 1,620 individuals with 1,280 hits.

In generation 3, one individual in the population
attained a new high score of 1,472 matches (i.e.,
standardized fitness of 576). This individual has 16
points and is
(IF A2 (IF A0 D7 D4)
 (AND (IF (IF A2 (NOT D5) A0) D3 D2) D2)).

Generation 3 shows further advances in fitness for the
population as a whole. The number of individuals
with 1,280 hits (the high point for generation 2) has
risen to 2,158 for generation 3. Moreover, the center
of gravity of the fitness histogram has shifted
significantly from left to right. In particular, the
number of individuals with 1,280 hits or better has
risen from 1,679 in generation 2 to 2,719 in generation
3.

In generations 4 and 5, the best single individual
has 1,664 hits. This score is attained by only one
individual in generation 4, but is attained by 13
individuals in generation 5. One of these 13
individuals is
(IF A0 (IF A2 D7 D3)
 (IF A2 D4 (IF A1 D2 (IF A2 D7 D0)))).

Note that this individual uses all three address bits
(A2, A1, and A0) in deciding upon the output. It also
uses five of the eight data bits. By generation 4, the
high point of the histogram has moved to 1,408 with
1,559 individuals.

In generation 6, four individuals attain a score of
1,792 hits. The high point of the histogram has moved
to 1,536 hits.

In generation 7, 70 individuals attain this score of
1,792 hits.

In generation 8, there are four best-of-generation
individuals. They all attain a score of 1,920 hits. The
mode (high point) of the histogram has moved to
1,664. 1,672 individuals share this value. Moreover,
an additional 887 individuals score 1,792.

In generation 9, one individual emerges with a
l00% perfect score of 2,048 hits. That individual is

(IF A0 (IF A2 (IF A1 D7 (IF A0 D5 D0))
 (IF A0 (IF A1 (IF A2 D7 D3) D1)
 D0))
 (IF A2 (IF A1 D6 D4)
 (IF A2 D4
 (IF A1 D2 (IF A2 D7 D0)))))

Figure 8 shows the 100% correct individual from
generation 9.

A2

D7A1

IF

IF

A0 D5 D0 IF

A2 D7 D3

A1 D1

IFA0 D0

IF

IF

A2 IF

A1 D6 D4

IF

D7 D0

D2A1

IFD4A2

IF

IFA0

IF

A2
Figure 8 100% correct individual from generation 9.

This 100% correct individual from generation 9 is a
hierarchical structure consisting of 37 points (i.e., 12
functions and 25 terminals).

Note that the size and shape of this solution
emerged from genetic programming. This particular
size and this particular hierarchical structure was not
specified in advance. Instead, it evolved as a result of
reproduction, crossover, and the relentless pressure of
fitness. In generation 0, the best single individual in
the population had 12 points. The number of points in
the best single individual in the population varied from
generation to generation. It was 4 in generation 0,
while it was 37 for generation 9.

This 100% correct individual can be simplified to
(IF A0 (IF A2 (IF A1 D7 D5) (IF A1 D3 D1))
 (IF A2 (IF A1 D6 D4) (IF A1 D2 D0))).

When so rewritten, it can be seen that this
individual correctly performs the 11-multiplexer
function by first examining address bits A0, A2, and
A1 and then choosing the appropriate one of the eight
possible data bits.

Figure 9 shows, side by side, the hits histograms
for generations 3, 5, 7, and 9 of this run. As one
progresses from generation to generation, note the left-
to-right “slinky” undulating movement of the center of
mass of the histogram and the high point of the his-
togram. This movement reflects the improvement of
the population as a whole as well as the best single
individual in the population. There is a single 100%
correct individual with 2,048 hits at generation 9;
however, because of the scale of the vertical axis of
this histogram, it is not visible in a population of size
4,000.

Genetic Programming as a Means for Programming Computers by Natural Selection 11

0 1024 2048
0

1000

2000

3000
11 Multiplexer — Generation 3

Hits

Fr
eq

ue
nc

y

0 1024 2048
0

1000

2000

3000
11 Multiplexer — Generation 5

Hits

Fr
eq

ue
nc

y

0 1024 2048
0

1000

2000

3000
11 Multiplexer — Generation 7

Hits

Fr
eq

ue
nc

y

0 1024 2048
0

1000

2000

3000
11 Multiplexer — Generation 9

Hits

Fr
eq

ue
nc

y

Figure 9 Hits histograms for generations 3, 5, 7, and 9
for the 11-multiplexer.

Further insight can be gained by studying the
genealogical audit trail consisting of a complete record
of the details of each genetic operation that is
performed at each generation. The creative role of
crossover and case-splitting is illustrated by an
examination of the genealogical audit trail for the
l00% correct individual emerging at generation 9.

The l00% correct individual emerging at generation
9 is the child resulting from the most common genetic
operation used in the process, namely crossover. The
first parent from generation 8 had rank location of 58
in the population (with a rank of 0 being the very best)
and scored 1,792 hits (out of 2,048). The second
parent from generation 8 had rank location 1 and
scored 1,920 hits. Note that it is entirely typical that
the individuals selected to participate in crossover
have relatively high rank locations in the population
since crossover is performed among individuals in a
mating pool created proportional to fitness.

The first parent from generation 8 (scoring 1,792)
was
(IF A0 (IF A2 D7 D3)
 (IF A2 (IF A1 D6 D4)
 (IF A2 D4
 (IF A1 D2 (IF A2 D7 D0)))))).

Figure 10 shows this first parent from generation 8
.

IF

A0 IF

A2 D7 D3 A2

IF

IF

A1 D6 D4

IF

D4 IF

A1 D2 IF

A2 D7 D0

A2

Figure 10 First parent (scoring 1,792 hits) from
generation 8 for 100% correct individual in generation
9.

Note that this first parent starts by examining
address bit A0. If A0 is T, the emboldened and under-
lined portion then examines address bit A2. It then,
partially blindly, makes the output equal D7 or D3
without even considering address bit A1. Moreover,
the emboldened and underlined portion of this
individual does not even contain data bits D1 and D5.

On the other hand, when A0 is NIL, this first
parent is 100% correct. In that event, it examines A2
and, if A2 is T, it then examines A1 and makes the
output equal to D6 or D4 according to whether A1 is T
or NIL. Moreover, if A2 is NIL, it twice retests A2
(unnecessarily, but harmlessly) and then correctly
makes the output equal to (IF A1 D2 D0). Note
that the 100% correct portion of this first parent,
namely, the sub-expression
(IF A2 (IF A1 D6 D4)
 (IF A2 D4 (IF A1 D2 (IF A2 D7 D0))))

is itself a 6-multiplexer.
This embedded 6-multiplexer tests A2 and A1 and

correctly selects amongst D6, D4, D2, and D0. This
fact becomes clearer if we simplify this sub-expression
by removing the two extraneous tests and removing
the D7 (which is unreachable). This sub-expression
simplifies to the following:
(IF A2 (IF A1 D6 D4)
 (IF A1 D2 D0))

In other words, this imperfect first parent handles
part of its environment correctly and part of its
environment incorrectly. In particular, this first parent
handles the even-numbered data bits correctly and is
partially correct in handling the odd-numbered data
bits.

The tree representing this first parent has 22 points.
The crossover point chosen at random at the end of
generation 8 was point 3 and corresponds to the
second occurrence of the function IF. That is, the
crossover fragment consists of the incorrect,
emboldened and underlined sub-expression
(IF A2 D7 D3).

The second parent from generation 8 (scoring
1,920 hits) was

12 Koza

(IF A0 (IF A0
 (IF A2 (IF A1 D7 (IF A0 D5 D0))
 (IF A0 (IF A1 (IF A2 D7
 D3)
 D1)
 D0))
 (IF A1 D6 D4))
 (IF A2 D4
 (IF A1 D2
 (IF A0 D7 (IF A2 D4 D0))))))

Figure 11 shows the second parent from generation
8.

IF

IF

A0 D5 D0

D7A1

IF

IF

A2 D7 D3

D1A1

IFA0 D0

IFA2

IF IF

A1 D6 D4

A0

IF

A2 D4 D0

D7A0

IFD2A1

IFD4A2

IFA0

IF

Figure 11 Second parent (scoring 1,920 hits) from
generation 8 for 100% correct individual in generation
9.

The tree representing this second parent has 40
points. The crossover point chosen at random for this
second parent was point 5. This point corresponds to
the third occurrence of the function IF. That is, the
crossover fragment consists of the emboldened and
underlined sub-expression of this second parent.

This sub-expression of this second parent 100%
correctly handles the case when A0 is T (i.e., the odd
numbered addresses). This sub-expression makes the
output equal to D7 when the address bits are 111; it
makes the output equal to D5 when the address bits are
101; it makes the output equal to D3 when the address
bits are 011; and it makes the output equal to D1 when
the address bits are 001.

Note that the 100% correct portion of this second
parent, namely, the sub-expression
(IF A2 (IF A1 D7 (IF A0 D5 D0))
 (IF A0 (IF A1 (IF A2 D7 D3) D1) D0))

is itself a 6-multiplexer.
This embedded 6-multiplexer in this second parent

tests A2 and A1 and correctly selects amongst D7, D5,
D3, and D1 (i.e., the odd numbered data bits). This
fact becomes clearer if we simplify this sub-expression
of this second parent to the following:
(IF A2 (IF A1 D7 D5)
 (IF A1 D3 D1)

In other words, this imperfect second parent
handles part of its environment correctly and part of its
environment incorrectly. This second parent does not
do very well when A0 is NIL (i.e., the even numbered
data bits). This second parent correctly handles the

odd-numbered data bits and incorrectly handles the
even-numbered data bits.

Even though neither parent is perfect, these two
imperfect parents contain complementary portions
which, when mated together, produce a 100% correct
offspring individual. In effect, the creative effect of
the crossover operation blends the two cases of the
implicitly “case-split” environment into a single 100%
correct solution.

Figure 12 shows this case splitting by showing the
100% correct offspring from generation 9 as two 6-
multiplexers:

A0

IF

6-Multiplexer from
second parent using
A2 and A1 to select
amongst D7, D5,

D3 and D1

6-Multiplexer from
first parent using

A2 and A1 to select
amongst D6, D4,

D2 and D0

Figure 12 Simplified 100% correct individual from
generation 9 shown as a hierarchy of two 6-
multiplexers.

Figure 13 also shows this simplified version of the
100% correct individual from generation 9.

IF

A1 D7 D5

IF

A1 D3 D1

A2 A2 IF

A1 D6 D4

IF

A1 D2 D0

IFIFA0

IF

Figure 13 Simplified 100% correct individual from
generation 9 shown as a hierarchy of two 6-
multiplexers.

Of course, not all crossovers between individuals
are useful and productive. In fact, a large fraction of
the individuals produced by the genetic operations are
useless. But the existence of a population of
alternative solutions to a problem provides the
ingredients with which genetic recombination
(crossover) can produce some improved individuals.
The relentless pressure of natural selection based on
fitness then causes these improved individuals to be
preserved and to proliferate. Moreover, genetic
variation and the existence of a population of
alternative solutions to a problem makes it unlikely
that the entire population will become trapped on local
maxima.

Interestingly, the same crossover that produced the
100% correct individual also produced a runt scoring
only 256 hits. In this particular crossover, the two
crossover fragments not used in the 100% correct
individual combined to produce an unusually unfit
individual. This is one of the reasons why there is

Genetic Programming as a Means for Programming Computers by Natural Selection 13

considerable variability from generation to generation
in the worst single individual in the population.

As one traces the ancestry of the 100% correct
individual created in generation 9 deeper back into the
genealogical audit tree (i.e., towards earlier
generations), one encounters parents scoring generally
fewer and fewer hits. That is, one encounters more S-
expressions that perform irrelevant, counterproductive,
partially blind, and incorrect work. But if we look at
the sequence of hits in the forward direction, we see
localized hill-climbing in the search space occurring in
parallel throughout the population as the creative
operation of crossover recombines complementary, co-
adapted portions of parents to produce improved
offspring.

The solution to the 11-multiplexer problem in this
run was a hierarchy consisting of two 6-multiplexers.
In a run where we applied genetic programming to the
simpler Boolean 6-multiplexer, we obtained the
following 100% correct solution
(IF (AND A0 A1) D3 (IF A0 D1 (IF Al D2 D0))).

This solution to the 6-multiplexer is also a
hierarchy. It is a hierarchy that correctly handles the
particular fitness cases where (AND A0 A1) is true
and then correctly handles the remaining cases where
(AND A0 A1) is false.

Default hierarchies often emerge from genetic
programming. A default hierarchy incorporates
partially correct sub-rules into a perfect overall
procedure by allowing the partially correct (default)
sub-rules to handle the majority of the environment
and by then dealing in a different way with certain
specific exceptional cases in the environment. The S-
expression above is also a default hierarchy in which
the output defaults to
(IF A0 D1 (IF Al D2 D0))

three quarters of the time. However, in the specific
exceptional fitness case where both address bits (A0
and A1) are both T, the output is the data bit D3.

Default hierarchies are considered desirable in
induction problems [Holland 1986, Holland et. al.
1986, Wilson 1988] because they are often
parsimonious and they are a human-like way of
dealing with situations.

5. Symbolic Regression - Empirical Data

An important problem area in virtually every area of
science is finding the relationship underlying
empirically observed values of the variables measuring
a system. In practice, the observed data may be noisy
and there may be no known way to express the
relationships involved in a precise way.

The learning of the Boolean multiplexer function is
an example of the general problem of symbolic
function identification (symbolic regression). In this

section, we discuss symbolic regression as applied to
real-valued functions over real-valued domains.

In conventional linear regression, one is given a set
of values of various independent variable(s) and the
corresponding values for the dependent variable(s).
The goal is to discover a set of numerical coefficients
for a linear combination of the independent variable(s)
which minimizes some measure of error (such as the
square root of the sum of the squares of the
differences) between the given values and computed
values of the dependent variable(s). Similarly, in
quadratic regression, the goal is to discover a set of
numerical coefficients for a quadratic expression
which similarly minimizes error.

Of course, it is left to the researcher to decide
whether to do a linear regression, quadratic regression,
a higher order polynomial regression, or whether to try
to fit the data points to some non-polynomial family of
functions (e.g., sines and cosines of various
periodicities, etc.). But, often, the issue is deciding
what type of function most appropriately fits the data,
not merely computing the numerical coefficients after
the type of function for the model has already been
chosen. In other words, the real problem is often both
the discovery of the correct functional form that fits
the data and the discovery of the appropriate numeric
coefficients that go with that functional form. We call
the problem of finding a function, in symbolic form,
that fits a given finite sample of data by the name
“symbolic regression.” It is “data to function”
regression.

The problem of discovering empirical relationships
from actual observed data is illustrated by the well-
known non-linear econometric exchange equation

P=
MV
Q .

This equation states the relationship between the gross
national product Q of an economy, the price level P,
the money supply M, and the velocity of money V.

Suppose that our goal is to find the econometric
model expressing the relationship between quarterly
values of the price level P and the quarterly values of
the three other quantities appearing in the equation.
That is, our goal is to rediscover the relationship

P=
MV
Q

from the actual observed noisy time series data.
Moreover, suppose that certain additional economic
data is also available which is irrelevant to this
relationship, but not preidentified as being irrelevant.
Many economists believe that inflation (which is the
change in the price level) can be controlled by the
central bank via adjustments in the money supply M.
Specifically, the "correct" exchange equation for the
United States in the postwar period is the non-linear
relationship

GD =
(1.6527 * M2)

GNP82

14 Koza

where 1.6527 is the actual long-term historic postwar
value of the M2 velocity of money in the United States
[Hallman et. al. 1989]. Interest rates are not a relevant
variable in this well-known relationship.

In particular, suppose we are given the 120 actual
quarterly values from 1959:1 (i.e., the first quarter of
1959) to 1988:4 of following four econometric time
series:
• Inflation or price level P (the dependent variable

here) is represented by the Gross National Product
Deflator (normalized to 1.0) for 1982
(conventionally called GD).

• The gross national product of the economy Q (one of
the independent variables) is represented by the
annual rate for the United States Gross National
Product in billions of 1982 dollars (conventionally
called GNP82).

• The money supply M (another of the independent
variables) is represented by the monthly values of
the seasonally adjusted money stock M2 in billions
of dollars, averaged for each quarter (conventionally
called M2).

• Interest rates (an independent variable that happens
to be irrelevant to the calculation here) are
represented by the monthly interest rate yields of 3-
month Treasury bills, averaged for each quarter
(conventionally called FYGM3).
The four time series used here were obtained from

the CITIBASE data base of machine-readable
econometric time series [Citibank 1989].

As a point of reference, the sum of the squared
errors between the actual gross national product
deflator GD from 1959:1 to 1988:4 and the fitted GD
series calculated from the above model over the entire
30-year period involving 120 quarters (1959:1 to
1988:4) is very small, namely 0.077193. The
correlation R2 was 0.993320.

These 120 combinations of the above three
independent variables (M2), and the associated value
of the dependent variables (GD, GNP82, and FYGM3)
are the set from which we will draw the fitness cases
that will be used to evaluate the fitness of any
proposed S-expression.

The goal is to find a function, in symbolic form,
that is a good fit or perfect fit to the numerical data
points. The solution to this problem of finding a
function in symbolic form that fits a given sample of
data can be viewed as a search for a mathematical
expression (S-expression) from a space of possible S-
expressions that can be composed from a set of
available functions and arguments.

The appearance of numeric constants (such as the
constant 1.6527 in the above correct equation) is
typical of relations among empirical data from the real
world. Thus, we must deal with the problem of
discovering coefficients and constant values while
doing symbolic regression.

Constants can be created in genetic programming
by adding an ephemeral random constant ← to the
terminal set. During the creation of generation 0,
whenever the ephemeral random constant ← is chosen
for an endpoint of the tree, a random number of an
appropriate type in a specified range is generated and
attached to the tree at that point. For example, in the
real-valued symbolic regression problem at hand, the
ephemeral random constants are of floating point type
and their range is between -1.000 and +1.000.

This random generation is done anew each time
when an ephemeral ← terminal is encountered, so that
the initial random population contains a variety of
different random constants of the specified type. Once
generated and inserted into the S-expressions of the
initial random population, these constants remain fixed
thereafter. However, after the initial random
generation, the numerous different random constants
will be moved around from tree to tree by the
crossover operation. In many instances, these
constants will be combined via the arithmetic
operations in the function set of the problem.

This “moving around” and "combining" of the
random constants is not at all haphazard, but, instead,
is driven by the overall goal of achieving ever better
levels of fitness. For example, a symbolic expression
that is a reasonably good fit to a target function may
become a better fit if a particular constant is, for
example, decreased slightly. A slight decrease can be
achieved in several different ways. For example, there
may be a multiplication by 0.90, a division by 1.10, a
subtraction of 0.08, or an addition of -0.004. If a
decrease of precisely 0.09 in a particular constant
would produce a perfect fit, a decrease of 0.07 will
usually fit better than a decrease of only 0.05. Thus,
the relentless pressure of the fitness function in the
natural selection process determines both the direction
and magnitude of the adjustments of the original
numerical constants. It is thus possible to genetically
evolve numeric constants as required to perform a
required symbolic regression on numeric data.

We first divide the 30-year, 120-quarter period into
a 20-year, 80-quarter in-sample period running from
1959:1 to 1978:4 and a 10-year, 40-quarter out-of-
sample period running from 1979:1 to 1988:4. This
allows us to use the first two-thirds of the data to
create the model and to then use the last third of the
data to test the model.

The first major step in using genetic programming
is to identify the set of terminals. The terminal set for
this problem is

T = {GNP82, FM2, FYGM3, ←}.
The terminals GNP82, FM2, and FYGM3 correspond
to the independent variables of the model and provide
access to the values of the time series. In effect, these
terminals are functions of the unstated, implicit time
variable which ranges over the various quarters.

Genetic Programming as a Means for Programming Computers by Natural Selection 15

The second major step in using genetic
programming is to identify a set of functions. The set
of functions chosen for this problem is

F = {+, -, *, %, EXP, RLOG}
taking 2, 2, 2, 2, 1, and 1 arguments, respectively.

It is necessary to ensure closure by protecting
against the possibility of division by zero and the
possibility of creating extremely large or small floating
point values. Accordingly, the protected division
function % ordinarily returns the quotient; however, if
division by zero is attempted, it returns 1.0. The one-
argument exponential function EXP ordinarily returns
the result of raising e to the power indicated by its one
argument. If the result of evaluating EXP or any of the
four arithmetic functions would be greater than 1010
or less than 10-10, then the nominal value 1010 or 10-
10, respectively, is returned. The protected logarithm
function RLOG returns 0 for an argument of 0 and
otherwise returns the logarithm of the absolute value
of the argument.

Notice that we are not told a priori whether the
unknown functional relationship between the given
observed data (the three independent variables) and
the target function (the dependent variable, GD) is
linear, polynomial, exponential, logarithmic,
nonlinear, or otherwise. The unknown functional
relationship could be any combination of the functions
in the function set. Notice also that we are also not
given the known constant value V for the velocity of
money. And, notice that we are not told that the 3-
month Treasury bill yields (FYGM3) contained in the
terminal set and the addition, subtraction, exponential,
and logarithm functions are all irrelevant to finding the
econometric model for the dependent variable GD of
this problem.

The third major step in using genetic programming
is identification of the fitness function for evaluating
how good a given computer program is at solving the
problem at hand.

The fitness of an S-expression is the sum, taken
over the 80 in-sample quarters, of squares of
differences between the value of the price level
produced by S-expression and the target value of the
price level given by the GD time series.

Population size was 500 here.
The initial random population (generation 0) was,

predictably, highly unfit. In one run, the sum of
squared errors between the single best S-expression in
the population and the actual GD time series was 1.55.
The correlation R2 was 0.49.

As before, after the initial random population was
created, each successive new generation in the
population was created by applying the operations of
fitness proportionate reproduction and genetic
recombination (crossover).

In generation 1, the sum of the squared errors for
the new best single individual in the population
improved to 0.50.

In generation 3, the sum of the squared errors for
the new best single individual in the population
improved to 0.05. This is approximately a 31-to-1
improvement over the initial random generation. The
value of R2 improved to 0.98. In addition, by
generation 3, the best single individual in the
population came within 1% of the actual GD time
series for 44 of the 80 in-sample points.

In generation 6, the sum of the squared errors for
the new best single individual in the population
improved to 0.027. This is approximately a 2-to-1
improvement over generation 3. The value of R2
improved to 0.99.

In generation 7, the sum of the squared errors for
the new best single individual in the population
improved to 0.013. This is approximately a 2-to-1
improvement over generation 6.

In generation 15, the sum of the squared errors for
the new best single individual in the population
improved to 0.011. This is an additional improvement
over generation 7 and represents approximately a 141-
to-1 improvement over generation 0. The correlation
R2 was 0.99.

In one run, the best single individual had a sum of
squared errors of only 0.009272 over the in-sample
period. Figure 14 graphically depicts this best-of-run
individual.

16 Koza

0.47

-0.005

0.832

%

%

%

GNP82

GNP82GNP82GNP82

-

+

*

-0.83

-0.126

%

%

GNP82

GNP82

FM2

FM2

FM2 -

-

+

+

+

*

-0.583-0.402

*

Figure 14 Best-of-run individual for exchange
equation problem.

This best-of-run individual is equivalent to

GD =
(1.634 * M2)

GNP82

Notice the sub-tree (* -0.402 0 -0.583) on the left
of this best-of-run individual. This sub-expression
evaluates to +0.234. The numeric constants -0.402 0
and -0.583 were created in generation 0 by the
constant creation process. These two constants are
combined into a new constant (+0.234), which, in
conjunction with other such constants, eventually
produces the overall 1.634 constant as the velocity of
money.

Although genetic programming has succeeded in
finding an expression that fits the given data rather
well, there is always a concern that a fitting technique
may be overfitting (i.e., memorizing) the data. If a
fitting technique overfits the data, the model produced
has no ability to generalize to new combinations of the
independent variables and therefore has little or no
predictive or explanatory value. We can validate the
model produced from the 80-quarter in-sample period
with the data from the 40-quarter out-of-sample
period.

Table 1 shows the sum of the squared errors and R2
for the entire 120-quarter period, the 80-quarter in-
sample period, and the 40-quarter out-of-sample
period.

Table 1 Comparison of in-sample and out-of-
sample periods

Data Range 1- 120 1 - 80 81 - 120

R2 0.993480 0.997949 0.990614

Sum of Squared Error 0.075388 0.009272 0.066116
Figure 15 shows both the gross national product

deflator GD from 1959:1 to 1988:4 and the fitted GD
series calculated from the above genetically produced
model for 1959:1 to 1988:4. The actual GD series is
shown as a line with dotted points. The fitted GD
series calculated from the above model is an ordinary
line.

1959 1969 1979 1989 DATE

E
C
I
R
P

0.25

0.45

0.65

0.85

1.05

1.25

E
C
I
R
P

Figure 15 Gross national product deflator and fitted
series computed from genetically produced model.

Figure 16 shows the residuals from the fitted GD
series calculated from the above genetically produced
model for 1959:1 to 1988:4.

1959 1969 1979 1989
-0.10

-0.05

0.00

0.05

0.10

DATE

L
A
U
D
I
S
E
R

Figure 16 Residuals between the gross national
product deflator and fitted series computed from
genetically produced model

We can further increase confidence that this
genetically evolved model is not overfitting the data
by dividing the same 30-year period into a different set
of in-sample and out-of-sample periods. When we
divide the 30-year, 120-quarter period into a 10-year,
40-quarter out-of-sample period running from 1959:1
to 1968:4 and a 20-year, 80-quarter in-sample period
running from 1969:1 to 1988:4, we obtain a virtually
identical model. See Koza [1992a].

6. Control – Truck Backer-Upper

Problems of optimal control involve a system that is
described by state variables. The future state of the
system is determined by the choice of certain control
variables. The objective in optimal control is to

Genetic Programming as a Means for Programming Computers by Natural Selection 17

choose the control variables so as to cause the system
to go to a specified target state with an optimal
(typically minimal) cost.

Anyone who has tried to back up a tractor-trailer
truck to a loading dock knows that it presents a
difficult problem of control. Nguyen and Widrow
[1990] successfully illustrated the capabilities of
neural networks by finding a controller for this multi-
dimensional control problem.

Problems of control can be viewed as requiring the
discovery of a computer program (i.e. controller,
control strategy) that takes the state variables of a
problem as its inputs and produces the values of the
control variable(s) as its outputs.

Genetic programming is well suited to difficult
control problems where no exact solution is known
and where an exact solution is not required. When
genetic programming solves a problem, it produces a
computer program that takes the state variables of the
system as input and produces the actions required to
solve the problem as output. The solution to a
problem produced by genetic programming is not just
a numerical solution applicable to a single specific
numerical combination of states, but, instead, comes in
the form of a general function (computer program) that
maps the state variables of the system into values of
the control variable(s). There is no need to specify the
exact size and shape of the computer program in
advance. The needed structure is evolved in response
to the selective pressures of Darwinian natural
selection and genetic sexual recombination.

The truck backer-upper problem is a four
dimensional control problem. Figure 17 shows a
loading dock and tractor-trailer. The loading dock is
the Y-axis. The trailer and tractor are connected at a
pivot point.

The state space of the system is four dimensional.
X is the horizontal position of the midpoint of the rear
of the trailer and Y is the vertical position of the
midpoint. The target point for the midpoint of the rear
of the trailer is (0,0). The angle θt (also called
TANG) is the angle of the trailer with respect to the
loading dock (measured, in radians, from the positive
X-axis with counterclockwise being positive). The
difference angle θd (also called DIFF) is the angle of
the tractor relative to the longitudinal axis of the trailer
(measured, in radians, from the longitudinal axis of the
trailer with counterclockwise being positive).

(0,0)

Lo
ad

in
g

D
oc

k

θ = DIFF

Co
nt

ro
l

u(
t)

θ = TANGt

θ c

x

y
Trailer

d

Pivot

Midpoint

Ca
b

Figure 17 In the truck backer-upper problem, the goal
is to bring the midpoint of the rear of the trailer to the
target point (0,0) on the loading dock. The control
variable is the steering angle u(t) for the tires of the
tractor (cab). The cab is connected to the trailer via
the pivot.

The truck backs up at a constant speed so that the
front wheels of the tractor (cab) move a fixed distance
backwards with each time step. Steering is
accomplished by changing the angle u (i.e. the control
variable) of the front tires of the tractor (cab) with
respect to the current orientation of the tractor.

The goal is to guide the midpoint of the rear of the
trailer so that it ends up at (or very close to) the target
point (0,0) on the loading dock while never allowing
the midpoint of the rear of the truck to touch the
loading dock. We want to find a control strategy
which specifies the change in angle u of the front tires
of the tractor (cab) in terms of the four state variables
of the system (namely, X, Y, TANG, and DIFF)

The equations of motion that govern the tractor-
trailer system are

 A = r cos u[t]
 B = A cos(θc[t] –θt[t])
 C = A sin(θc[t] – θt[t])
 x[t + 1] = x[t] – B cosθt
 y[t + 1] = y[t] – B sinθt
 θc[t + 1] = tan-1 Error!)
 θt[t + 1] = tan-1 Error!)
 θd[t] = θt[t] – θc[t]

In these equations, tan-1

x

y is the two argument

arctangent function (also called ATG here) delivering
an angle in the range -π to π. The length of the tractor
(i.e. cab) dc is 6 meters and the length of the trailer ds
is 14 meters. As in Nguyen and Widrow [1990], the
truck only moves backwards. The distance moved in
one time step is r. The angle θt is TANG. The angle of
the tractor relative to the X axis is θc.

The first major step in preparing to use genetic
programming is to identify the set of terminals. The
four state variables of the system (i.e. X, Y, TANG,
DIFF) can be viewed as inputs to the unknown
computer program which we want to find for
controlling the system. Thus, the terminal set T for
this problem is T = {X, Y, TANG, DIFF, ← }. When
the initial population of random individuals is created,
every occurrence of this ephemeral random constant in
an S-expression is replaced by a separately generated
random floating point number in the range between -
1.000 and +1.000.

The second major step in preparing to use genetic
programming is to identify a sufficient set of functions
to solve for the problem. We do not know the solution
to this problem. We have no assurance that a chosen
function set will be sufficient for the problem.
However, the function set F consisting of four
arithmetic operations, the two argument Arctangent
function ATG, and the conditional comparative
operator IFLTZ ("If Less than Zero") seems
reasonable. Thus, the function set for this problem is
F = {+, -, *, %, ATG, IFLTZ}. taking 2, 2, 2, 2, 2, and

18 Koza

3 arguments, respectively. The protected division
function % returns one when division by zero is
attempted, and, otherwise, returns the normal quotient.
The conditional branching operator IFLTZ ("If Less
than Zero") evaluates its third argument is its first
argument is less than zero and otherwise evaluates its
second argument. Since IFLTZ returns a floating
point value and % protects against division by zero,
there is closure among the functions of the function
set. The IFLTZ operator is implemented as a macro
[Koza 1992a].

In selecting this function set, we included the
Arctangent function ATG because we thought it might
be useful in computing angles from the various
distances involved in this problem and we included the
conditional comparative operator IFLTZ so that
actions could be made conditional on certain
conditions being satisfied. As it developed, ATG did
not appear in the best solution we found. It is, of
course, necessary to choose a function set and terminal
set that together are capable and sufficient to solve the
problem at hand. We had no assurance, in advance,
that this function set and terminal set would be
sufficient to solve this problem.

The third major step in preparing to use genetic
programming is the identification of the fitness
measure for evaluating how good a given computer
program is at solving the problem at hand. For this
problem, fitness is an error measure. Each program is
tested against a simulated environment consisting of
eight fitness cases, each consisting of a set of initial
conditions for X, Y, and TANG. X is either 20 or 40
meters. Y is either -50 or 50 meters. TANG is either -
π/2 or + π/2. As in Nguyen and Widrow [1990], the
difference angle DIFF is initially always zero (i.e. the
tractor and trailer are initially coaxial).

Time is measured in time steps of 0.02 seconds. A
total of 3000 time steps (i.e. 60 seconds) are allowed
for each fitness case The speed of the tractor-trailer is
0.2 meters per time step. Termination of a fitness case
occurs when (1) time runs out, (2) the trailer crashes
into the loading dock (i.e. X becomes zero), or (3) the
midpoint of the rear of the trailer comes close to the
target (0,0) point. A hit for this problem occurs when
the value of X is less than 0.1 meters, the absolute
value of Y is less than 0.42 meters, and the absolute
value of TANG is less than 0.12 radians (i.e. about 14
degrees).

Fitness is the sum, over the fitness cases, of the
sum of the squares of the differences, at the time of
termination of the fitness case, between the value of X
and the target value of X (i.e. 0), the difference
between the value of Y and the target value of Y (i.e.
0), and difference between the value of TANG and the
target value of TANG (i.e. 0).

A wrapper (output interface) is used to convert the
value returned by a given individual computer
program to a value appropriate to the problem domain.

In particular, if the program evaluates to a number
between -1.0 and +1.0, the tractor turns its wheels to
that particular angle (in radians) relative to the
longitudinal axis of the tractor and backs up for one
time step at a constant speed. Outside that range the
control variable saturates.

As in Nguyen and Widrow [1990], if a choice of
the control variable u would cause the absolute value
of difference DIFF to exceed 90 degrees, DIFF is
constrained to 90 degrees to prevent jack-knifing.

The population size is 1,000 here.
We will terminate a given run of this problem when

either (i) genetic programming produces a computer
program for which all eight fitness cases terminate
according to condition (3) above, or (ii) 51 generations
have been run.

In one run, the best single individual computer
program in the initial population of randomly created
individual programs was, as one would expect,
incapable of backing the tractor-trailer to the loading
dock for any of the eight initial conditions (fitness
cases) of the tractor-trailer truck. This best-of-
generation individual program had an enormous value
of fitness, namely 26,956. This S-expression has 19
points and is shown below:
(- (ATG (+ X Y) (ATG X Y)) (IFLTZ (- TANG X) (IFLTZ
Y TANG TANG) (* 0.3905 DIFF)))

However, even in generation 0, some individuals
are better than others.

In the next few generations, fitness began to
improve (i.e. drop) substantially. It dropped to 4790
for generations 1 and 2, 3131 in generation 3, and 228
for generations 4 and 5. Moreover, in addition to
coming closer to the loading dock, for generations 4
and 5, the best-of-generation individual was successful
in backing up the truck for one of the eight fitness
cases.

Fitness improved to 202 for generation 6. By
generation 11, fitness had improved to 38.9 and the
best-of-generation individual was successful for three
of the eight fitness cases. Between generations 14 and
21, fitness for the best-of-generation individual ranged
between 9.99 and 9.08 and the best-of-generation
individual was successful for five fitness cases.
Between generation 22 and 25, fitness for the best-of-
generation individual ranged between 8.52 and 8.47
and the best-of-generation individual was successful
for seven fitness cases. Of course, the vast majority of
individual computer programs in the population were
still ineffective in solving the problem (although
average performance is also improving).

In generation 26, the fitness of the best-of-
generation individual had improved to 7.41. This best-
of-generation control strategy was capable of backing
up the tractor-trailer to the loading dock for all eight
fitness cases. This computer program has 108 points
(i.e. functions and terminals) and is shown below.
(% (+ (+ (IFLTZ Y Y (+ (% (+ (+ (+ (+ (+ (IFLTZ DIFF Y
(% Y TANG)) (- DIFF X)) (+ (- -0.0728 Y) (% Y TANG)))

Genetic Programming as a Means for Programming Computers by Natural Selection 19

(- DIFF X)) (+ (- -0.0728 Y) (IFLTZ DIFF Y (% Y
TANG)))) (% Y TANG)) TANG) (- (% (% (+ (+ (IFLTZ Y
Y (% Y TANG)) (- TANG X)) (+ (- -0.0728 Y) (% Y
TANG))) TANG) TANG) X))) (- DIFF X)) (+ (+ (+ (+ (+
(IFLTZ DIFF Y (% Y TANG)) (- DIFF X)) (+ (- -0.0728
Y) (% Y TANG))) (- DIFF X)) (+ (- -0.0728 Y) (% Y
TANG))) (% Y TANG))) TANG)

As can be seen, this simplified function partitions
the space into two parts according to the sign of Y.

Note that this S-expression is probably not a time-
optimal solution, since it uses two different strategies
for handling two cases that could, in fact, be handled
in a symmetric way. Nonetheless, the S-expression
does the job and scores maximal fitness with the
distance-based fitness measure being used for this
problem (which does not specifically call for time
optimality).

Figure 18 shows the curved trajectory of the
midpoint of the back of the trailer for one of the four
fitness cases for which Y is negative for the best-of-run
individual from generation 26.

(0,0)

Lo
ad

in
g

D
oc

k

Truc
Star

Figure 18 Curved trajectory of the back of trailer for a
fitness cases for which Y is negative for the best-of-run
individual of the truck backer upper problem.

Figure 19 shows the almost linear trajectory of the
midpoint of the back of the trailer for one of the four
fitness cases for which Y is positive for the best-of-run
individual from generation 26.

(0,0)

Lo
ad

in
g

D
oc

k

Truck
Start

Figure 19 Almost linear trajectory of the back of
trailer for a fitness cases for which Y is positive for the
best-of-run individual of the truck backer upper
problem.

No mathematically exact solution to this problem is
known. The above control strategy is almost certainly
not the exact solution. However, this genetically
created control strategy works. It is an approximately
correct computer program that emerged from a
competitive genetic process that searches the space of
possible programs for a satisficing result.

Interestingly, on 89.6% of the time steps involved
in evaluating the above best-of-generation individual
from generation 26, the absolute value of the control
variable returned by this individual exceeded one (i.e.,
the genetically evolved solution chose to apply a bang-
bang force).

Note also that we did not pre-specify the size and
shape of the solution. We did not specify that the
solution would have 108 points. As we proceeded
from generation to generation, the size and shape of
the best-of-generation individuals changed as a result
of the selective pressure exerted by the fitness measure
and the genetic operations. For example, there were
only 19 points for the best-of-generation individual for
generation 0 (i.e. the initial random generation).

Note that the 108 point computer program from
generation 26 could easily be encoded into a controller
using ones preferred programming language.

On this particular run, we obtained a control
strategy satisfying the termination criterion of the
problem after processing 27,000 individuals (i.e. 1,000
individuals for an initial random generation and 26
additional generations). We have achieved similar
results in other runs of this problem.

The difficulty of this problem arises, of course,
from Nguyen and Widrow's choice of the four states
[Geva, Sitte, and Willshire, 1992].

Koza and Keane [1990a, 1990b] have applied
genetic programming to the cart centering and broom
balancing problems.

20 Koza

7. Classification – Intertwined Spirals

Learning problems often present themselves as
problems of classification. In classification problems,
the goal is to discern a pattern and to develop a
procedure capable of successfully performing the
classification. The procedure is typically developed
using a sample of data and is considered successful if
it learns to correctly classify both the original sample
and previously unseen points that are a reasonable
generalization of the original sample points. Learning
relationships that successfully discriminate among
instances associated with problem solving choices is
one approach to problem solving in artificial
intelligence.

Lang and Whitbrock [1989] used a neural network
to solve the challenging problem of distinguishing two
intertwined spirals. In their statement of the problem,
the two spirals coil around the origin three times in the
x-y-plane. The x-y-coordinates of 97 points from each
spiral are given. The problem involves learning to
classify each point as to which spiral it belongs.

Figures 20 and 21 show the two spirals. The 97
points of the first spiral are indicated by large or small
squares and the 97 points of the second spiral are
indicated by large or small circles. The first spiral
belongs to class +1 and the second spiral belongs to
class -1. The task as defined by Lang and Whitbrock
is limited to the 194 points in the three turns of these
two spirals and does not involve dealing with points
that would lie on a fourth or later turns of the
extensions of the same spirals. The difficulty of this
problem arises, of course, from Lang and Whitbrock's
choice of Cartesian coordinates (as opposed to, say,
polar coordinates).

The terminal set for this problem consists of the x
and y position of the 194 given points. In addition,
since we may need numerical constants in a computer
program capable of processing the 194 given points,
we include the ephemeral random floating point
constant ← in the terminal set. Thus, the terminal set
is T = {X, Y, ←}.

As to the function set for this problem, it seems
reasonable to try to write a computer program for
determining to which spiral a given point belongs in
terms of the four arithmetic operations, a conditional
comparative function for decision making, and the
trigonometric sine and cosine functions. Thus, the
function set for this problem is F = (+, -, *, %, IFLTE,
SIN, COS}, taking 2, 2, 2, 2, 4, 1, and 1 arguments,
respectively.

IFLTE (If-Less-Than-or-Equal) is a four-argument
conditional comparative operator that executes its third
argument if its first argument is less than its second
argument and, otherwise, executes the fourth (else)

argument. The IFLTE operator is implemented as a
macro [Koza 1992a].

Since the S-expressions in the population are
compositions of functions and terminals operating on
floating point numbers and since the S-expressions in
this problem must produce a binary output (+1 or -1)
to designate the class, a wrapper (output interface) is
required. This wrapper maps any positive value to
class +1 and maps any other value to class -1.

The fitness of an individual S-expression is
computed using fitness cases. The fitness cases are the
194 x-y coordinates of the given points belonging to
the spirals and the class (+1 or -1) associated with each
point. Raw fitness (hits) is the number of points (0 to
194) that are correctly classified.

The population size is 10,000 here. We will
terminate a given run when either (i) genetic
programming produces a computer program which
scores a raw fitness of 194, or (ii) 51 generations have
been run.

As one would expect, the individual S-expressions
in the initial population of randomly created computer
programs are highly unfit in solving the problem. In
one run, approximately 31% of the initial random
individuals in generation 0 correctly classified
precisely 50% of the points (i.e., 97 out of a possible
194 points). Some of these individuals, such as (* (*
X X) 0.502), scored 50% by virtue of always returning
a value with the same sign and therefore classifying all
the points as belonging to one spiral. Others, such as
(* X Y) scored 50% by virtue of dividing the space
into parts which contain exactly half of the points. In
addition, about 30% of the population scored between
88 and 96 hits while about 32% scored between 98
and 106 hits. The worst-of-generation individual from
generation 0 scored 71 hits while the best-of-
generation individual scored 128 hits.

The best-of-generation individual from generation
0 scored 128 hits out of a possible 194 hits and is
below:
(SIN (% Y 0.30400002))

In generation 1, a partially blind best-of-generation
individual works by classifying points into vertical
bands of varying width. Because it is particularly
effective near the X-axis, it does better than the best-
of-generation individual from generation 0.

Insert Fig. 20 here

Figure 20 Classification performed by best-of-
generation individual from generation 3.

For generation 3, the best-of-generation individual
contained 48 points, scored 139 hits, and incorporated
both X and Y. It is shown below:
(SIN (- (+ (IFLTE (* X -0.25699997) (* X X) (COS Y) (+
(SIN (COS X)) (+ (* 0.18500006 -0.33599997) (IFLTE Y
0.42000008 X -0.23399997)))) (SIN (SIN Y))) (+ (IFLTE

Genetic Programming as a Means for Programming Computers by Natural Selection 21

(% (COS X) (SIN -0.594)) (+ -0.553 Y) (% Y -0.30499995)
(+ Y X)) (COS (% X 0.5230001)))))

Figure 20 shows that the best-of-generation
individual from generation 3 does especially well near
the origin. The points of one spiral are indicated with
boxes and the points of the other spiral are indicated
with circles. Correctly classified points are indicated
by large boxes or circles.

Insert Fig. 20 here

Figure 21 Classification performed by best-of-
generation individual from generation 33.

On generation 33, the best-of-generation individual
scored 192 out of 194. It had 169 points. Figure 21
shows the classification performed by the best-of-
generation individual scoring 192 from generation 33.
There are now only two incorrectly classified points in
this figure. One is shown as a small circle in a region
in the upper left section of the figure which the S-
expression incorrectly classified as gray, instead of
white. The second is shown as a small square in the
lower right section of the figure which the S-
expression incorrectly classified as white, instead of
gray.

On generation 36, the following S-expression
containing 179 points and scoring 194 out of 194 hits
emerged:
(SIN (IFLTE (IFLTE (+ Y Y) (+ X Y) (- X Y) (+ Y Y)) (*
X X) (SIN (IFLTE (% Y Y) (% (SIN (SIN (% Y
0.30400002))) X) (% Y 0.30400002) (IFLTE (IFLTE (%
(SIN (% (% Y (+ X Y)) 0.30400002)) (+ X Y)) (% X -
0.10399997) (- X Y) (* (+ -0.12499994 -0.15999997) (- X
Y))) 0.30400002 (SIN (SIN (IFLTE (% (SIN (% (% Y
0.30400002) 0.30400002)) (+ X Y)) (% (SIN Y) Y) (SIN
(SIN (SIN (% (SIN X) (+ -0.12499994 -0.15999997))))) (%
(+ (+ X Y) (+ Y Y)) 0.30400002)))) (+ (+ X Y) (+ Y Y)))))
(SIN (IFLTE (IFLTE Y (+ X Y) (- X Y) (+ Y Y)) (* X X)
(SIN (IFLTE (% Y Y) (% (SIN (SIN (% Y 0.30400002)))
X) (% Y 0.30400002) (SIN (SIN (IFLTE (IFLTE (SIN (%
(SIN X) (+ -0.12499994 -0.15999997))) (% X -0.10399997)
(- X Y) (+ X Y)) (SIN (% (SIN X) (+ -0.12499994 -
0.15999997))) (SIN (SIN (% (SIN X) (+ -0.12499994 -
0.15999997)))) (+ (+ X Y) (+ Y Y))))))) (% Y
0.30400002)))))

Figure 22 shows the fitness histograms for five
different generations of the run. Each bar in the
histogram represents a range of ten levels of fitness
between 0 and 194. Note the undulating left-to-right
movement of the fitness of the population over the
generations.

0 100 190
0

2500

5000

7500
Spiral — Generation 0

Hits

Fr
eq

ue
nc

y

0 100 190
0

2500

5000

7500
Spiral — Generation 12

Hits

Fr
eq

ue
nc

y

0 100 190
0

2500

5000

7500
Spiral — Generation 36

Hits

Fr
eq

ue
nc

y

Figure 22 Fitness histograms for generations 0, 12,
and 36 of intertwined spirals problem.

If we retest the best-of-run individual from
generation 36 on the two intertwined spirals with
sample points chosen twice as dense, we find that 372
of the 388 points (i.e., 96%) are correctly classified.
And, if we retest with sample points that are ten times
more dense, we find that 1,818 of the 1,940 points
(i.e., 94%) are still correctly classified.

Note that we did not pre-specify the size and shape
of the solution to the problem. As we proceeded from
generation to generation, the size and shape of the
best-of-generation individuals changed. The structure
of the S-expression emerged as a result of the selective
pressure exerted by the fitness measure (i.e. number of
fitness cases correctly classified).

8. Robotics – Box Moving Robot

In the box moving problem, an autonomous mobile
robot must find a box located in the middle of an
irregularly shaped room and move it to the edge of the
room within a reasonable amount of time. Mahadevan
and Connell [1991] reported on using reinforcement
learning techniques in producing a program to control
an autonomous mobile robot to perform this task in the
style of the subsumption architecture [Brooks 1986,
Connell 1990, Mataric 1990].

The robot has 12 sonar sensors which report the
distance to the the nearest object (whether wall or box)
as a floating point number in feet. The twelve sonar
sensors (each covering 30°) together provide 360°
coverage around the robot.

The robot is able to move forward, turn right, and
turn left. After the robot finds the box, it can move the
box by pushing against it. However, this sub-task may
prove difficult because if the robot applies force not
coaxial with the center of gravity of the box, the box

22 Koza

will start to rotate. The robot will then lose contact
with the box and will probably then fail to push the
box to the wall in a reasonable amount of time.

The robot is considered successful if any part of the
box touches any wall within the allotted amount of
time.

The robot is capable of executing three primitive
motor functions, namely, moving forward by a
constant distance, turning right by 30°, and turning left
by 30°. The three primitive motor functions MF,
TR, and TL each take one time step (i.e., 1.0
seconds) to execute. All sonar distances are
dynamically recomputed after each execution of a
move or turn. The function TR (Turn Right) turns the
robot 30° to the right (i.e., clockwise). The function
TL (Turn Left) turns the robot 30° to the left (i.e.,
counter-clockwise). The function MF (Move
Forward) causes the robot to move 1.0 feet forward in
the direction it is currently facing in one time step. If
the robot applies its force orthogonally to the midpoint
of an edge of the box, it will move the box about 0.33
feet per time step.

The robot has a BUMP and a STUCK detector.
We used a 2.5 foot wide box. The north (top) wall and
west (left) wall of the irregularly shaped room are each
27.6 feet long.

The sonar sensors, the two binary sensors, and the
three primitive motor functions are not labeled,
ordered, or interpreted in any way. The robot does not
know a priori what the sensors mean nor what the
primitive motor functions do. Note that the robot does
not operate on a cellular grid; its state variables
assume a continuum of different values.

The first major step in preparing to use genetic
programming is to identify the set of terminals. We
include the 12 sonar sensors and the three primitive
motor functions (each taking no arguments) in the
terminal set. Thus, the terminal set T for this problem
is

T = {S00, S01, S02, S03, ... , S11, SS, (MF),
(TR), (TL)}.

The second major step in preparing to use genetic
programming is to identify a sufficient set of primitive
functions for the problem. The function set F consists
of

F = {IFBMP, IFSTK, IFLTE, PROGN2}.
The functions IFBMP and IFSTK are based on the

BUMP detector and the STUCK detector defined by
Mahadevan and Connell [1991]. Both of these
functions take two arguments and evaluate their first
argument if the detector is on and otherwise evaluates
their second argument.

The IFLTE (If-Less-Than-or-Equal) function is a
four-argument comparative branching operator that
executes its third argument if its first argument is less
than its second (i.e., then) argument and, otherwise,
executes the fourth (i.e., else) argument. The operator

IFLTE is implemented as a macro in LISP so that only
either the third or fourth argument is evaluated
depending on the outcome of the test involving the
first and second argument. Since the terminals in this
problem take on floating point values, this function is
used to compare values of the terminals. IFLTE
allows alternative actions to be executed based on
comparisons of observation from the robot's
environment. IFLTE allows, among other things, a
particular action to be executed if the robot's
environment is applicable and allows one action to
suppress another. It also allows for the computation of
the minimum of a subset of two or more sensors.
IFBMP and IFSTK are similarly defined as macros

The connective function PROGN2 taking two
arguments evaluates both of its arguments, in
sequence, and returns the value of its second
argument.

Although the main functionality of the moving and
turning functions lies in their side effects on the state
of the robot, it is necessary, in order to have closure of
the function set and terminal set, that these functions
return some numerical value. For Version 1 only, we
decided that each of the moving and turning functions
would return the minimum of the two distances
reported by the two sensors that look forward. Also,
for Version 1 only, we added one derived value,
namely the terminal SS (Shortest Sonar) which is the
minimum of the 12 sonar distances S0, S1, ... , S11, in
the terminal set T.

The third major step in preparing to use genetic
programming is the identification of the fitness
function for evaluating how good a given computer
program is at solving the problem at hand.

The fitness of an individual S-expression is
computed using fitness cases in which the robot starts
at various different positions in the room. The fitness
measure for this problem is the sum of the distances,
taken over four fitness cases, between the wall and the
point on the box that is closest to the nearest wall at
the time of termination of the fitness case.

A fitness case terminates upon execution of 350
time steps or when any part of the box touches a wall.
If, for example, the box remains at its starting position
for all four fitness cases, the fitness is 26.5 feet. If, for
all four fitness cases, the box ends up touching the
wall prior to timing out for all four fitness cases, the
raw fitness is zero (and minimal).

The population size is 500 here.

8.1 Version 1

Figure 23 shows the irregular room, the starting
position of the box, and the starting position of the
robot for the particular fitness case in which the robot
starts in the southeast part of the room. The raw
fitness of a majority of the individual S-expressions
from generation 0 is 26.5 (i.e., the sum, over the four

Genetic Programming as a Means for Programming Computers by Natural Selection 23

fitness cases, of the distances to the nearest wall) since
they cause the robot to stand still, to wander around
aimlessly without ever finding the box, or, in the case
of the individual program shown in the figure, to move
toward the box without reaching it.

Even in generation 0, some individuals are better
than others. Figure 24 shows the trajectory of the
best-of-generation individual from generation 0 from
one run. This individual containing 213 points finds
the box and moves it a short distance for one of the
four fitness cases, thereby scoring a raw fitness of
24.5.

Robot
Start

Box
Start

Robot
End

Figure 23 Typical random robot trajectory from
generation 0.

Robot
Start

Box
Start

Robot
End

Figure 24 Trajectory of the best-of-generation
individual for generation 0.

The Darwinian operation of fitness proportionate
reproduction and genetic crossover (sexual
recombination) is now applied to the population, and a
new population of S-expressions is produced. Fitness
progressively improved between generations 1 and 6.

In generation 7, the best-of-generation individual
succeeded in moving the box to the wall for one of the
four fitness cases (i.e., it scored one hit). Its fitness
was 21.52 and it had 59 points (i.e. functions and
terminals) in its program tree.

By generation 22, the fitness of the best-of-
generation individual improved to 17.55. Curiously,
this individual, unlike many earlier individuals, did not
succeed in actually moving the box to a wall for any of
the fitness cases.

By generation 35, the best-of-generation individual
had 259 points and a fitness of 10.77.

By generation 45 of the run, the best-of-generation
individual computer program was successful, for all
four fitness cases, in finding the box and pushing it to
the wall within the available amount of time. Its
fitness was zero. This best-of-run individual had 305
points.

Note that we did not pre-specify the size and shape
of the solution to the problem. As we proceeded from
generation to generation, the size and shape of the
best-of-generation individuals changed. The number
of points in the best-of-generation individual was 213
in generation 0, 59 in generation 7, 259 in generation
35, and 305 in generation 45. The structure of the S-
expression emerged as a result of the selective
pressure exerted by the fitness measure.

Figure 25shows the trajectory of the robot and the
box for the 305-point best-of-run individual from
generation 45 for the fitness case where the robot
starts in the southeast part of the room. For this fitness
case, the robot moves more or less directly toward the
box and then pushes the box almost flush to the wall.

Figure 26 shows the trajectory of the robot and the
box for the fitness case where the robot starts in the
northwest part of the room. Note that the robot clips
the southwest corner of the box and thereby causes it
to rotate in a counter clockwise direction until the box
is moving almost north and the robot is at the midpoint
of the south edge of the box.

Figure 27 shows the trajectory of the robot and the
box for the fitness case where the robot starts in the
northeast part of the room. For this fitness case, the
robot's trajectory to reach the box is somewhat
inefficient. However, once the robot reaches the box,
the robot pushes the box more of less directly toward
the west wall.

Figure 28 shows the trajectory of the robot and the
box for the fitness case where the robot starts in the
southwest part of the room.

Robot
Start

Box
Start

Figure 25 Trajectory of the best-of-run individual
with the robot starting in the southeast.

Robot
Start

Box
Start

Figure 26 Trajectory of the best-of-run individual
 with the robot starting in the northwest .

Robot
Start

Box
Start

Figure 27 Trajectory of the best-of-run individual
with the robot starting in the northeast.

24 Koza

Box
Start

Robot
Start

Figure 28 Trajectory of the best-of-run individual
with the robot starting in the southwest.

8.2 Version 2

In the foregoing discussion of the box moving
problem, the solution was facilitated by the presence
of the sensor SS in the terminal set and the fact that the
functions MF, TL, and TR returned a numerical value
equal to the minimum of several designated sensors.
This is in fact the way we solved it the first time.

This problem can, however, also be solved without
the terminal SS being in the terminal set and with the
three functions each returning a constant value of zero.
We call these three new functions MF0, TL0, and TR0.
The new function set is F0 = {MF0, TR0, TL0, IFLTE,
PROGN2}. We raised the population size from 500 to
2,000 in the belief that version 2 of this problem
would be much more difficult to solve.

In our first (and only) run of version 2 of this
problem, an 100%-correct S-expression containing

207 points with a fitness of 0.0 emerged on generation
20:
(IFSTK (IFLTE (IFBMP (IFSTK (PROGN2 S02 S09)
(IFSTK S10 S07)) (IFBMP (IFSTK (IFLTE (MF0) (TR0)
S05 S09) (IFBMP S09 S08)) (IFSTK S07 S11))) (IFBMP
(IFBMP (PROGN2 S07 (TL0)) (PROGN2 (TL0) S03))
(IFBMP (PROGN2 (TL0) S03) (IFLTE S05 (TR0) (MF0)
S00))) (IFLTE (IFBMP S04 S00) (PROGN2 (IFLTE S08
S06 S07 S11) (IFLTE S07 S09 S10 S02)) (IFBMP (IFLTE
(TL0) S08 S07 S02) (IFLTE S10 S00 (MF0) S08)) (IFBMP
(PROGN2 S02 S09) (IFBMP S08 S02))) (IFSTK
(PROGN2 (PROGN2 S04 S06) (IFBMP (MF0) S03))
(PROGN2 (IFSTK S05 (MF0)) (IFBMP (IFLTE (TR0) S08
(IFBMP S07 S06) S02) (IFLTE S10 (IFBMP S10 S08)
(MF0) S08))))) (IFLTE (PROGN2 S04 S06) (PROGN2
(IFSTK (IFBMP (MF0) S09) (IFLTE S10 S03 S03 S06))
(IFSTK (IFSTK S05 S01) (IFBMP (MF0) S07))) (PROGN2
(IFLTE (IFSTK S01 (TR0)) (PROGN2 S06 (MF0)) (IFLTE
S05 S00 (MF0) S08) (PROGN2 S11 S09)) (IFBMP (MF0)
(IFSTK S05 (IFBMP (PROGN2 (IFSTK (PROGN2 S07
S04) (IFLTE S00 S07 S06 S07)) (PROGN2 S04 S06))
(IFSTK (IFSTK (IFBMP S00 (PROGN2 S06 S10)) (IFSTK
(MF0) S10)) (IFBMP (PROGN2 S08 S02) (IFSTK S09
S09))))))) (IFLTE (IFBMP (PROGN2 S11 S09) (IFBMP
S08 S11)) (PROGN2 (PROGN2 S06 S03) (IFBMP (IFBMP
S08 S02) (MF0))) (IFSTK (IFLTE (MF0) (TR0) S05 S09)
(IFBMP (PROGN2 (TL0) S02) S08)) (IFSTK (PROGN2
S02 S03) (PROGN2 S01 S04)))))

Figure 29 shows the hits histogram for generations
0, 15, and 20. Note the left-to-right undulating
movement of the center of mass of the histogram and
the high point of the histogram. This “slinky”
movement reflects the improvement of the population
as a whole.

Koza and Rice [1992b] compares genetic
programming with reinforcement learning in
connection with this problem.

We have also employed genetic programming to
evolve a computer program to control a wall
following robot using the subsumption architecture
[Koza 1992d] based on impressive work successfully
done by Mataric [1990] in programming an
autonomous mobile robot called TOTO.

9. Hierarchical Automatic Function Definition -
11-Parity Function

A key goal in machine learning and artificial
intelligence is to facilitate the solution of a problem
by automatically and dynamically decomposing the
problem into simpler subproblems.

When a human programmer writes a computer
program to solve a problem, he often creates a
subroutine (procedure, function) enabling a common
calculation to be performed without tediously
rewriting the code for that calculation. For example,
if a programmer needed to write a program for
Boolean parity functions of several different high
orders, he might find it convenient first to write a

0 1 2 3 4
0

1000

2000
Generation 0

Hits

Fr
eq

ue
nc

y

0 1 2 3 4
0

1000

2000
Generation 15

Hits

Fr
eq

ue
nc

y

0 1 2 3 4
0

1000

2000
Generation 20

Hits

Fr
eq

ue
nc

y

3

Figure 129 Hits histogram for generations 0, 15, and 20
for Version 2.

Genetic Programming as a Means for Programming Computers by Natural Selection 25

subroutine for some lower-order parity function. He
would call on the code for this low-order parity
function at different places and with different
combinations of arguments from his main program and
then combine the results in the main program to
produce the desired higher-order parity function.
Specifically, if a programmer were using the LISP
programming language, he might first write a function
definition for the odd-2-parity function xor
(exclusive-or) as follows:
(defun xor (arg0 arg1)
 (values (or (and arg0 (not arg1)) (and (not arg0) arg1)))).

This function definition (called a "defun" in
LISP) does four things. First, it assigns a name, xor,
to the function being defined thereby permitting
subsequent reference to it. Second, this function
definition identifies the argument list of the function
being defined, namely the list (arg0 arg1)
containing two dummy variables (formal parameters)
called arg0 and arg1. Third, this function definition
contains a body which performs the work of the
function. Fourth, this function definition identifies the
value to be returned by the function. In this example,
the single value to be returned is emphasized via an
explicit invocation of the values function. This
particular function definition has two dummy
arguments, returns only a single value, has no side
effects, and refers only to the two local dummy
variables (i.e., it does not refer to any of the actual
variables of the overall problem contained in the
"main" program). However, in general, defined
functions may have any number of arguments
(including no arguments), may return multiple values
(or no values), may or may not perform side effects,
and may or may not explicitly refer to the actual
(global) variables of the main program.

Once the function xor is defined, it may then be
repeatedly called with different instantiations of its
arguments from more than one place in the main
program. For example, if the programmer needed the
even-4-parity at some point in his main program, he
might write
(xor (xor d0 d1) (not (xor d2 d3))).

Function definitions exploit the underlying
regularities and symmetries of a problem by obviating
the need to tediously rewrite lines of essentially similar
code. A function definition is especially efficient
when it is repeatedly called with different
instantiations of its arguments. However, the
importance of function definition goes well beyond
efficiency. The process of defining and calling a
function, in effect, decomposes the problem into a
hierarchy of subproblems.

The ability to extract a reusable subroutine is
potentially very useful in many domains. Consider the
problem of discovery of a neural network to recognize
patterns presented as an array of pixels. Suppose the
solution of a pattern recognition problem requires
discovery of a particular feature (e.g., a line end)

within the 3 by 3 pixel region in the upper left corner
of an 8 by 8 array of pixels and also requires discovery
of that same feature within a 3 by 3 pixel region in the
lower left corner of the overall array. Existing neural
net paradigms can successfully discover the useful
feature among the nine pixels p11, p12, p13, p21, p22,
p23, p31, p32, p33 in the upper left corner of a 8 by 8
array of pixels and can independently rediscover the
same useful feature among the nine pixels p61, p62,
p63, p16, p71, p72, p73, p81, p82, p83 in the lower left
corner of the overall array. But existing neural net
paradigms do not provide a way to discover the
common feature just once, to generalize the feature so
that it is not rigidly expressed in terms of particular
pixels but is parameterized by its position, and to then
reuse the generalized feature detector to recognize
occurrences of the feature in different 3 by 3 pixel
regions within the array. That is, existing paradigms
do not provide a way to discover a function of nine
dummy variables just once and to call that function
twice (once with p11, ..., p33 as arguments and once
with p61, ..., p83 as arguments). Such an ability would
amount to discovering a nine-input subassembly of
neurons with appropriate weights, making a copy of
the entire subassembly, implanting the copy elsewhere
in the overall neural net, and then connecting nine
different pixels as inputs to the subassembly in its new
location in the overall neural net.

Hierarchical automatic function definition can be
implemented within the context of genetic
programming by establishing a constrained syntactic
structure for the individual S-expressions in the
population [Koza 1992a]. Each individual S-
expression in the population contains one (or more)
function-defining branches and one (or more) "main"
result-producing branches. The result-producing
branch may call the defined functions. One defined
function may hierarchically refer to another already-
defined function (and potentially even itself), although
such hierarchical or recursive references will not be
used in this article.

9.1 Learning the Even-Parity Function without
Hierarchical Automatic Function Definition

In order to establish the facilitating benefits of
hierarchical automatic function definition in genetic
programming, we first solve some benchmark
problems without using hierarchical automatic
function definition.

The Boolean even-parity function of k Boolean
arguments returns T (True) if an even number of its
arguments are T, and otherwise returns NIL (False).

In applying genetic programming to the even-parity
function of k arguments, the terminal set T consists of
the k Boolean arguments D0, D1, D2, ... involved in
the problem, so that

26 Koza

T = {D0, D1, D2, ...}.
The function set F for all the examples herein

consists of the following computationally complete set
of four two-argument primitive Boolean functions:

F = {AND, OR, NAND, NOR}.
The Boolean even-parity functions appear to be the

most difficult Boolean functions to find via a blind
random generative search of S-expressions using the
above function set F and the terminal set T. For
example, even though there are only 256 different
Boolean functions with three arguments and one
output, the Boolean even-3-parity function is so
difficult to find via a blind random generative search
that we did not encounter it at all after randomly
generating 10,000,000 S-expressions using this
function set F and terminal set T. In addition, the
even-parity function appears to be the most difficult to
learn using genetic programming using the function
set F and terminal set T above [Koza 1992a].

In applying genetic programming to the problem of
learning the Boolean even-parity function of k
arguments, the 2k combinations of the k Boolean
arguments constitute an exhaustive set of fitness cases
for learning this function. The standardized fitness of
an S-expression is the sum, over these 2k fitness cases,
of the Hamming distance (error) between the value
returned by the S-expression and the correct value of
the Boolean function. Standardized fitness ranges
between 0 and 2k; a value closer to zero is better. The
raw fitness is equal to the number of fitness cases for
which the S-expression is correct (i.e., 2k minus
standardized fitness); a higher value is better.

We first consider how genetic programming would
solve the problems of learning the even-3-parity
function (three-argument Boolean rule 105), the even-
4-parity function (four-argument Boolean rule
38,505), and the even-5-parity function (five-
argument Boolean rule 1,771,476,585). In identifying
these k-argument Boolean functions in this way, we
are employing a numbering scheme wherein the value
of the function for the 2k combinations of its k
Boolean arguments are concatenated into a 2k-bit
binary number and then converted to the equivalent
decimal number. For example, the 23 = 8 values of
the even-3-parity function are 0, 1, 1, 0, 1, 0, 0, and 1
(going from the fitness case consisting of three true
arguments to the fitness case consisting of three false
arguments). Since 011010012 = 10510, the even-3-
parity function is referred to as three-argument
Boolean rule 105.

The terminal set T for the even-3-parity problem
consists of

T = {D0, D1, D2}.
In one run of genetic programming using a

population size of 4,000 (the value of M used
consistently in this section, except as otherwise noted),

genetic programming discovered the following S-
expression containing 45 points (i.e., 22 functions and
23 terminals) with a perfect value of raw fitness of 8
(out of a possible value of 23 = 8) in generation 5:
(AND (OR (OR D0 (NOR D2 D1)) D2) (AND (NAND
(NOR (NOR D0 D2) (AND (AND D1 D1) D1)) (NAND
(OR (AND D0 D1) D2) D0)) (OR (NAND (AND D0 D2)
(OR (NOR D0 (OR D2 D0)) D1)) (NAND (NAND D1
(NAND D0 D1)) D2)))).

We then considered the even-4-parity function. In
one run, genetic programming discovered the
following S-expression containing 149 points with a
perfect value of raw fitness of 16 (out of 24 = 16) in
generation 24:
(AND (OR (OR (OR (NOR D0 (NOR D2 D1)) (NAND
(OR (NOR (AND D3 D0) D2) (NAND D0 (NOR D2 (AND
D1 (OR D3 D2))))) D3)) (AND (AND D1 D2) D0))
(NAND (NAND (NAND D3 (OR (NOR D0 (NOR (OR D3
D2) D2)) (NAND (AND (AND (AND D3 D2) D3) D2)
D3))) (NAND (OR (NAND (OR D0 (OR D0 D1)) (NAND
D0 D1)) D3) (NAND D1 D3))) D3)) (OR (OR (NOR (NOR
(AND (OR (NOR D3 D0) (NOR (NOR D3 (NAND (OR
(NAND D2 D2) D2) D2)) (AND D3 D2))) D1) (AND D3
D0)) (NOR D3 (OR D0 D2))) (NOR D1 (AND (OR (NOR
(AND D3 D3) D2) (NAND D0 (NOR D2 (AND D1 D0))))
(OR (OR D0 D3) (NOR D0 (NAND (OR (NAND D2 D2)
D2) D2)))))) (AND (AND D2 (NAND D1 (NAND (AND
D3 (NAND D1 D3)) (AND D1 D1)))) (OR D3 (OR D0
(OR D0 D1)))))).

Figure 30 presents two curves, called the
performance curves, relating to the even-3-parity
function over a series of runs. The curves are based
on 66 runs with a population size M of 4,000 and a
maximum number of generations to be run G of 51.

The rising curve in figure 30 shows, by generation,
the experimentally observed cumulative probability of
success, P(M,i), of solving the problem by generation i
(i.e., finding at least one S-expression in the
population which produces the correct value for all 23
= 8 fitness cases). As can be seen, the experimentally
observed value of the cumulative probability of
success, P(M,i), is 91% by generation 9 and 100% by
generation 21 over the 66 runs.

9 80,000

0 25 50
0

50

100

0

600,000

1,200,000

P(M,i)
I(M, i, z)

Even-3-Parity — M=4000

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

Figure 30 Performance curves for even-3-parity
function showing that it is sufficient to process 80,000
individuals to yield a solution with 99% probability
with genetic programming.

The second curve in figure 30 shows, by
generation, the number of individuals that must be
processed, I(M,i,z), to yield, with probability z, a
solution to the problem by generation i. I(M,i,z) is

Genetic Programming as a Means for Programming Computers by Natural Selection 27

derived from the experimentally observed values of
P(M,i). Specifically, I(M,i,z) is the product of the
population size M, the generation number i, and the
number of independent runs R(z) necessary to yield a
solution to the problem with probability z by
generation i. In turn, the number of runs R(z) is given
by

R(z) =

 log(1–z)

log(1–P(M,i)) ,

where the square brackets indicates the ceiling
function for rounding up to the next highest integer.
The probability z will be 99% herein.

As can be seen, the I(M,i,z) curve reaches a
minimum value at generation 9 (highlighted by the
light dotted vertical line). For a value of P(M,i) of
91%, the number of independent runs R(z) necessary
to yield a solution to the problem with a 99%
probability by generation i is 2. The two summary
numbers (i.e., 9 and 80,000) in the oval indicate that if
this problem is run through to generation 9 (the initial
random generation being counted as generation 0),
processing a total of 80,000 individuals (i.e., 4,000 ∞
10 generations ∞ 2 runs) is sufficient to yield a
solution to this problem with 99% probability. This
number 80,000 is a measure of the computational
effort necessary to yield a solution to this problem
with 99% probability.

Figure 31 shows similar performance curves for the
even-4-parity function based on 60 runs. The
experimentally observed cumulative probability of
success, P(M,i), is 35% by generation 28 and 45% by
generation 50. The I(M,i,z) curve reaches a minimum
value at generation 28. For a value of P(M,i) of 35%,
the number of runs R(z) is 11. The two numbers in the
oval indicate that if this problem is run through to
generation 28, processing a total of 1,276,000 (i.e.,
4,000 ∞ 29 generations ∞ 11 runs) individuals is
sufficient to yield a solution to this problem with 99%
probability.

28 1,276,000

0 25 50
0

25

50

0

10,000,000

20,000,000

P(M,i)
I(M, i, z)

Even-4-Parity — M=4000

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

Figure 31 Performance curves for even-4-parity
function showing that it is sufficient to process
1,276,000 individuals to yield a solution with 99%
probability with genetic programming.

Thus, according to this measure of computational
effort, the even-4-parity problem is about 16 times
harder to solve than the even-3-parity problem.

We are unable to directly extend this comparison of
the computational effort necessary to solve the even-
parity problem with increasing numbers of arguments

with our chosen population size of 4,000. When the
even-5-parity function was run with a population size
of 4,000 and each run arbitrarily stopped at our chosen
maximum number G = 51 of generations to be run, no
solution was found after 20 runs. (Solutions might
well have been found if we had continued the run, but
we did not do this). Even after increasing the
population size to 8,000 (with G = 51), we did not get
a solution until our eighth run. This solution
contained 347 points.

Notice that the structural complexity (i.e., the total
number of function points and terminal points in the S-
expression) of the solutions produced in these three
cited runs dramatically increased with an increasing
number of arguments (i.e. structural complexity was
45, 149, and 347, respectively, above for the 3-, 4-,
and 5-parity functions).

The population size of 4,000 is undoubtedly not
optimal for any particular parity problem and is
certainly not optimal for all sizes of parity problems.
Nonetheless, it is clear that learning the even-parity
functions with increasing numbers of arguments
requires dramatically increasing computational effort
and that the structural complexity of the solutions
become increasingly large.

9.2 Hierarchical Automatic Function Definition

The inevitable increase in computational effort and
structural complexity for solving parity problems of
order greater than four could be controlled if we could
discover the underlying regularities and symmetries of
this problem and then hierarchically decompose the
problem into more tractable sub-problems.
Specifically, we need to discover a function
parameterized by dummy variables that would be
helpful in decomposing and solving the problem.

If a human programmer were writing code for the
even-3-parity or even-4-parity functions, he would
probably choose to call upon either the odd-2-parity
function (also known as the exclusive-or function
XOR) or the even-2-parity function (also known as the
equivalence function EQV). If a human programmer
were writing code for the even-5-parity function and
parity functions with additional arguments, he would
probably also want to call upon either the even-3-
parity (three-argument Boolean rule 105) or the odd-3-
parity (three-argument Boolean rule 150). These
lower-order parity functions would greatly facilitate
writing code for the higher-order parity functions.
None of these low-order parity functions are, of
course, in our original set F of available primitive
Boolean functions.

The potentially helpful role of dynamically
evolving useful "building blocks" in genetic
programming has been recognized for some time
[Koza 1990]. However, when we talk about
"hierarchical automatic function definition" in this

28 Koza

article, we are not contemplating merely defining a
function in terms of a sub-expression composed of
particular fixed terminals (i.e., actual variables) of the
problem. Instead, we are contemplating defining
functions parameterized by dummy variables (formal
parameters). Specifically, if the exclusive-or function
XOR were being automatically defined during a run, it
would be a version of XOR parameterized by two
dummy variables (perhaps called ARG0 and ARG1),
not a mere call to XOR with particular fixed actual
variables of the problem (e.g., D0 and D1). When this
parameterized version of the XOR function is called,
its two dummy variables ARG0 and ARG1 would be
instantiated with two specific values, which would
either be the values of two terminals (i.e., actual
variables of the problem) or the values of two
expressions (each composed ultimately of terminals).
For example, the exclusive-or function XOR might be
called via (XOR D0 D1) on one occasion and via
(XOR D2 D3) on another occasion. On yet another
occasion, XOR might be called via
(XOR (AND D1 D2) (OR D0 D2)),

where the two arguments to XOR are the values
returned by the expressions (AND D1 D2) and (OR
D0 D2), respectively. Each of these expressions is
ultimately composed of the actual variables (i.e.,
terminals) of the problem.

Moreover, when we talk about "automatic" and
"dynamic" function definition, the goal is to
dynamically evolve a dual structure containing both
function-defining branches and result-producing (i.e.,
value-returning) branches by means of natural
selection and genetic operations. We expect that
genetic programming will dynamically evolve
potentially useful function definitions during the run
and also dynamically evolve an appropriate result-
producing "main" program that calls these
automatically defined functions.

Note that many existing paradigms for machine
learning and artificial intelligence do define functional
subunits automatically and dynamically during runs
(the specific terminology, of course, being specific to
the particular paradigm). For example, when a set of
weights are discovered enabling a particular neuron in
a neural network to perform some subtask, that
learning process can be viewed as a process of
defining a function (i.e., a function taking the values
of the specific inputs to that neuron as arguments and
returning an output signal, perhaps a zero or one).
Note, however, that the function thus defined can be
called only once from only one particular place within
the neural network. It is called only in the specific
part of the neural net (i.e., the neuron) where it was
created and it is called only with the original, fixed set
of inputs to that specific neuron. Note also that
existing paradigms for neural networks do not provide
a way to re-use the set of weights discovered in that
part of the network in other parts of the network where

a similar subtask must be performed on a different set
of inputs. The recent work of Gruau [1992] on
recursive solutions to Boolean functions is a notable
exception.

9.3 Even-4-Parity Function

Hierarchical automatic function definition can be
implemented within the context of genetic
programming by establishing a constrained syntactic
structure [Koza 1992a, Chapter 19] for the individual
S-expressions in the population in which each
individual contains one or more function-defining
branches and one or more "main" result-producing
branches which may call the defined functions.

The number of result-producing branches is
determined by the nature of the problem. Since
Boolean parity functions return only a single Boolean
value, there would be only one "main" result-
producing branch to the S-expression in the
constrained syntactic structure required.

We usually do not know a priori the optimal
number of functions that will be useful for a given
problem or the optimal number of arguments for each
such function; however, considerations of computer
resources (time, virtual memory usage, CONSing,
garbage collection, and memory fragmentation)
necessitate that choices be made. Additional computer
resources are required for each additional function
definition. There is a considerable increase in the
computer resources required to support the ever-larger
S-expressions associated with each larger number of
arguments. There will usually be no advantage to
having defined functions that take more arguments
than there are terminals in the problem. When
Boolean functions are involved, there is no advantage
to evolving one-argument function definitions (since
the only four one-argument Boolean functions and
either in our function set already or constant-valued
functions).

Thus, for the Boolean even-4-parity problem, it
would seem reasonable to permit one two-argument
function definition and one three-argument function
definition within each S-expression. Thus, each
individual S-expression in the population would have
three branches. The first (leftmost) branch permits a
two-argument function definition (defining a function
called ADF0); the second (middle) branch permits a
three-argument function definition (defining a function
called ADF1); and the third (rightmost) branch is the
result-producing branch. The first two branches are
function-defining branches which may or may not be
called upon by the result-producing branch.

Figure 32 shows an abstraction of the overall
structure of an S-expression with two function-
defining branches and one result-producing branch.
There are 11 "types" of points in each individual S-
expression in the population for this problem. The

Genetic Programming as a Means for Programming Computers by Natural Selection 29

first eight types are an invariant part of each individual
S-expression.

The 11 types are as follows:
(1) the root (which will always be the place-holding

PROGN function),
(2) the top point DEFUN of the function-defining

branch for ADF0,
(3) the name ADF0 of the function defined by this

first function-defining branch,
(4) the argument list (ARG0 ARG1) of ADF0,
(5) the top point DEFUN of the function-defining

branch for ADF1,
(6) the name ADF1 of the function defined by this

second function-defining branch,
(7) the argument list (ARG0 ARG1 ARG2) of

ADF1,
(8) the top point VALUES of the result-producing

branch for the individual S-expression as a
whole,

(9) the body of ADF0,
(10) the body of ADF1, and
(11) the body of the "main" result-producing branch.

PROGN

Body of ADF0
Function Definition

DEFUN

ADF0 (ARG0 ARG1)

Body of ADF1
Function Definition

DEFUN

ADF1 (ARG0 ARG1 ARG2)

VALUES

Result-Producing
Branch

Figure 32 Abstraction of the overall structure of an S-
expression with two function-defining branches and the
one result-producing branch.

Syntactic rules of construction govern points of
types 9, 10, and 11.

For points of type 9, the body of ADF0 is a
composition of functions from the given function set F
and terminals from the terminal set A2 of two dummy
variables, namely A2 = {ARG0, ARG1}.

For the points of type 10, the body of ADF1 is a
composition of functions from the original given
function set F along with ADF0 and terminals from the
set A3 of three dummy variables, namely A3 =
{ARG0, ARG1, ARG2}. Thus, the body of ADF1 is
capable of calling upon ADF0.

For the points of type 11, the body of the result-
producing branch is a composition of terminals (i.e.,
actual variables of the problem) from the terminal set
T, namely T = {D0, D1, D2, D3}, as well as functions
from the set F3. F3 contains the four original
functions from the function set F as well as the two-
argument function ADF0 defined by the first branch
and the three-argument function ADF1 defined by the
second branch. That is, the function set F3 is

F3 = {AND, OR, NAND, NOR, ADF0,
ADF1},

taking two, two, two, two, two, and three arguments,
respectively. Thus, the result-producing branch is
capable of calling the two defined functions ADF0 and
ADF1.

When the overall S-expression in figure 32 is
evaluated, the PROGN evaluates each branch; however,
the value(s) returned by the PROGN consists only of
the value(s) returned by the VALUES function in the
final result-producing branch.

Note that one might consider including the
terminals from the terminal set T (i.e., the actual
variables of the problem) in the function-defining
branches; however, we do not do so here.

In what follows, genetic programming will be
allowed to evolve two function definitions in the
function-defining branches of each S-expression and
then, at its discretion, to call one, two, or none of these
defined functions in the result-producing branch. We
do not specify what functions will be defined in the
two function-defining branches. We do not specify
whether the defined functions will actually be used (it
being, of course, possible, as we have already seen to
solve this problem without any function definition by
evolving the correct program in the result-producing
branch). We do not favor one function-defining
branch over the other. We do not require that a
function-defining branch use all of its available
dummy variables. The structure of all three branches
is determined by the combined effect, over many
generations, by the selective pressure exerted by the
fitness measure and by the effects of the operations of
Darwinian fitness proportionate reproduction and
crossover.

Since a constrained syntactic structure is involved,
we must create the initial random generation so that
every individual S-expression in the population has the
syntactic structure specified by the syntactic rules of
construction presented above. Specifically, every
individual S-expression must have the invariant
structure represented by the eight points of types 1
through 8. Specifically, the bodies of ADF0 (type 9),
ADF1 (type 10), and the result-producing branch (type
11) must be composed of the functions and terminals
specified by the above syntactic rules of construction.

Moreover, since a constrained syntactic structure is
involved, we must perform structure-preserving
crossover so as to ensure the syntactic validity of all
offspring as the run proceeds from generation to
generation. Structure-preserving crossover is
implemented by first allowing the selection of the
crossover point in the first parent to be any point from
the body of ADF0 (type 9), ADF1 (type 10), or the
result-producing branch (type 11). However, once the
crossover point in the first parent has been selected,
the crossover point of the second parent must be of the
same type (i.e., types 9, 10, or 11). This restriction on
the selection of the crossover point of the second
parent assures syntactic validity of the offspring.

30 Koza

9.4 Even-4-Parity Function

Each S-expression in the population for solving the
even-4-parity function has one result-producing
branch and two function-defining branches, each
permitting the definition of one function of three
dummy variables.

In one run of the even-4-parity function, the
following 100%-correct solution containing 45 points
(not counting the invariant points of types 1 through 8)
with a perfect value of 16 for raw fitness appeared on
generation 4:
(PROGN (DEFUN ADF0 (ARG0 ARG1 ARG2)

(NOR (NOR ARG2 ARG0) (AND ARG0
ARG2)))

 (DEFUN ADF1 (ARG0 ARG1 ARG2)
(NAND (ADF0 ARG2 ARG2 ARG0)
 (NAND (ADF0 ARG2 ARG1 ARG2)
 (ADF0 (OR ARG2 ARG1)
 (NOR ARG0 ARG1)
 (ADF0 ARG1 ARG0
 ARG2)))))

 (VALUES
(ADF0 (ADF1 D1 D3 D0)
 (NOR (OR D2 D3) (AND D3 D3))
 (ADF0 D3 D3 D2)))).

The first branch of this best-of-run S-expression is
a function definition establishing the defined function
ADF0 as the two-argument exclusive-or (XOR)
function. The definition of ADF0 ignores one of the
available dummy variables, namely ARG1.

The second branch of the above S-expression calls
upon the defined function ADF0 (i.e., XOR) to define
ADF1. This second branch appears to use all three
available dummy variables; however, it reduces to the
two-argument equivalence function EQV.

The result-producing (i.e., third) branch of this S-
expression uses all four terminals and both ADF0 and
ADF1 to solve the even-4-parity problem. This branch
reduces to
(ADF0 (ADF1 D1 D0) (ADF0 D3 D2)).

which is equivalent to
(XOR (EQV D1 D0) (XOR D3 D2)).

That is, genetic programming decomposed the
even-4-parity problem into two different parity
problems of lower order (i.e., XOR and EQV).

Figure 33 shows the hierarchy (lattice) of function
definitions used in this solution to the even-4-parity
problem. Note also that the second of the two
functions in this decomposition (i.e., EQV) was
defined in terms of the first (i.e., XOR).

Even-4-Parity

ADF0

ADF1

Figure 33 Hierarchy (lattice) of function definitions.

Note that we did not specify that the exclusive-or
XOR function would be defined in ADF0, as opposed
to, say, the equivalence function, the if-then function,
or any other Boolean function. Similarly, we did not
specify what would be evolved in n ADF1. Genetic
programming created the two-argument defined
functions ADF0 and ADF1 on its own to help solve
this problem. Having done this, genetic programming
then used ADF0 and ADF1 in an appropriate way in
the result-producing branch to solve the problem.
Notice that the 45 points above are considerably fewer
than the 149 points contained in the S-expression cited
earlier for the even-4-parity problem.

Figure 34 presents the performance curves based
on 23 runs for the even-4-parity with hierarchical
automatic function definition. The cumulative
probability of success P(M,i) is 91% by generation 10
and 100% by generation 50. The two numbers in the
oval indicate that if this problem is run through to
generation 10, processing a total of 88,000 individuals
(i.e., 4,000 ∞ 11 generations ∞ 2 runs) is sufficient to
yield a solution to this problem with 99% probability.

10 88,000

0 25 50
0

50

100

0

500,000

1,000,000

P(M,i)
I(M, i, z)

Even-4-Parity — M=4,000

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

Figure 34 Performance curves for the even-4-parity
problem show that it is sufficient to process 88,000
individuals to yield a solution with hierarchical
automatic function definition.

9.5 Even 5-Parity Function
In one run of the even-5-parity problem, the

following 100%-correct solution containing 160 points
with a perfect value of raw fitness of 64 emerged on
generation 12:
(PROGN (DEFUN ADF0 (ARG0 ARG1 ARG2 ARG3)

(OR (OR (NOR (NOR ARG3 ARG1) (OR
ARG1 ARG3)) (AND (NAND ARG1 ARG3)
(NOR ARG1 ARG2))) (NAND (AND (OR

Genetic Programming as a Means for Programming Computers by Natural Selection 31

ARG1 ARG2) (NAND ARG1 ARG2)) (NAND
ARG1 (AND (NOR ARG3 ARG1) ARG0)))))

 (DEFUN ADF1 (ARG0 ARG1 ARG2 ARG3)
(NAND (NAND (AND (NAND ARG1 ARG2)
(ADF0 ARG0 ARG3 ARG0 ARG2)) (NOR
(NAND ARG3 ARG1) (AND ARG1 ARG1)))
(AND (ADF0 ARG0 (NAND ARG1 ARG2)
(ADF0 ARG3 ARG0 ARG3 ARG0) (AND
ARG1 ARG1)) (ADF0 (ADF0 ARG3 ARG2
ARG3 ARG0) (ADF0 ARG0 ARG2 ARG2
ARG1) (ADF0 ARG3 ARG3 ARG3 ARG0)
(NOR ARG3 ARG0)))))

 (VALUES
(OR (OR (NOR (ADF0 D3 D1 D1 D3) (OR D0
D1)) (NOR (NAND D1 D2) (OR (OR D3 D2)
(NOR D4 D4)))) (ADF1 (ADF1 D4 D0 D4 D1)
(OR (OR (NOR (OR (NAND D1 D0) (ADF1
D1 D2 D3 D1)) (AND D4 D0)) D2) (NOR (OR
(NAND D1 D0) (ADF1 D1 D2 D3 D1)) (AND
D4 D0))) (NAND (ADF1 D1 D0 D0 D1)
(NAND D0 D2)) (NAND (ADF1 D3 D4 D0 D0)
(ADF0 D3 D1 D1 D3)))))).

The first branch is equivalent to the four-argument
Boolean rule 50,115, which is equivalent to
(EQV ARG2 ARG1),

and which is an even-2-parity function that ignores
two of the four available dummy variables.

The second branch is equivalent to the four-
argument Boolean rule 38,250, which is equivalent to
(OR (AND (NOT ARG2) (XOR ARG3 ARG0))
 (AND ARG2 (XOR ARG3 (XOR ARG1
 ARG0)))).

Notice that this rule is not a parity function of any
kind.

The result-producing (i.e., third) branch calls on
defined functions ADF0 and ADF1 and solves the
problem.

The even 5-parity problem can be similarly solved
with 99% probability with genetic programming using
hierarchical automatic function definition by
processing a total of 144,000 individuals.

9.6 Even 6- and 7-Parity Functions

The even 6-, and 7-parity problems can be similarly
solved with 99% probability with genetic
programming using hierarchical automatic function
definition by processing a total of 864,000, and
1,440,000 individuals, respectively.

9.7 Even 8-, 9-, and 10-Parity Functions

The 8-, 9-, and 10-parity problems can be similarly
solved using hierarchical automatic function
definition. Each problem was solved within the first
four runs. We did not perform sufficient additional
runs to compute a performance curve for these higher
order parity problems.

For example, in one run of the even-8-parity
function, the best-of-generation individual containing
186 points and attaining a perfect value of raw fitness
of 256 appeared in generation 24. The first branch of
this S-expression defined a four-argument defined
function ADF0 (four-argument Boolean rule 10,280).
The second branch of this S-expression defined a four-
argument defined function ADF1 (four-argument
Boolean rule 26,214) which ignored two of its four
arguments and is equivalent to
(XOR D0 D1).

In one run of the even-9-parity function, the best-
of-generation individual containing 224 points and
attaining a perfect value of raw fitness of 512 appeared
in generation 40. The first branch of this S-expression
defined a four-argument defined function ADF0 (four-
argument Boolean rule 1,872). The second branch of
this S-expression defined a four-argument defined
function ADF1 (four-argument Boolean rule 27,030)
which is equivalent to the odd-4-parity function.

In one run of the even-10-parity function, the best-
of-generation individual containing 200 points and
attaining a perfect value of raw fitness of 1,024
appeared in generation 40. The first branch of this S-
expression defined a four-argument defined function
ADF0 (four-argument Boolean rule 38,791). The
second branch of this S-expression defined a four-
argument defined function ADF1 (four-argument
Boolean rule 23,205) which ignored one of its four
arguments. This rule is equivalent to
(EVEN-3-PARITY D3 D2 D0).

9.8 Even-11-Parity Function

In one run of the even-11-parity function, the
following best-of-generation individual containing 220
points and attaining a perfect value of raw fitness of
2,048 appeared in generation 21:
(PROGN (DEFUN ADF0 (ARG0 ARG1 ARG2 ARG3)

(NAND (NOR (NAND (OR ARG2 ARG1)
(NAND ARG1 ARG2)) (NOR (OR ARG1
ARG0) (NAND ARG3 ARG1))) (NAND
(NAND (NAND (NAND ARG1 ARG2) ARG1)
(OR ARG3 ARG2)) (NOR (NAND ARG2
ARG3) (OR ARG1 ARG3)))))

 (DEFUN ADF1 (ARG0 ARG1 ARG2 ARG3)
(ADF0 (NAND (OR ARG3 (OR ARG0 ARG0))
(AND (NOR ARG1 ARG1) (ADF0 ARG1
ARG1 ARG3 ARG3))) (NAND (NAND (ADF0
ARG2 ARG1 ARG0 ARG3) (ADF0 ARG2
ARG3 ARG3 ARG2)) (ADF0 (NAND ARG3
ARG0) (NOR ARG0 ARG1) (AND ARG3
ARG3) (NAND ARG3 ARG0))) (ADF0
(NAND (OR ARG0 ARG0) (ADF0 ARG3
ARG1 ARG2 ARG0)) (ADF0 (NOR ARG0
ARG0) (NAND ARG0 ARG3) (OR ARG3
ARG2) (ADF0 ARG1 ARG3 ARG0 ARG0))
(NOR (ADF0 ARG2 ARG1 ARG2 ARG0)
(NAND ARG3 ARG3)) (AND (AND ARG2
ARG1) (NOR ARG1 ARG2))) (AND (NAND

32 Koza

(OR ARG3 ARG2) (NAND ARG3 ARG3)) (OR
(NAND ARG3 ARG3) (AND ARG0 ARG0)))))

 (VALUES
(OR (ADF1 D1 D0 (ADF0 (ADF1 (OR (NAND
D1 D7) D1) (ADF0 D1 D6 D2 D6) (ADF1 D6
D6 D4 D7) (NAND D6 D4)) (ADF1 (ADF0 D9
D3 D2 D6) (OR D10 D1) (ADF1 D3 D4 D6 D7)
(ADF0 D10 D8 D9 D5)) (ADF0 (NOR D6 D9)
(NAND D1 D10) (ADF0 D10 D5 D3 D5) (NOR
D8 D2)) (OR D6 (NOR D1 D6))) D1) (NOR
(NAND D1 D10) (ADF0 (OR (ADF0 D6 D2 D8
D4) (OR D4 D7)) (NOR D10 D6) (NOR D1 D2)
(ADF1 D3 D7 D7 D6)))))).

The first branch of this S-expression defined the
four-argument defined function ADF0 (four-argument
Boolean rule 50,115) which ignored two of its four
arguments. ADF0 is equivalent to the even-2-parity
function, namely
(EQV ARG1 ARG2).

The second branch defined a four-argument
defined function ADF1 which is equivalent to the
even-4-parity function.

Substituting the definitions of the defined functions
ADF0 and ADF1, the result-producing (i.e., third)
branch becomes the program shown below.
(OR (EVEN-4-PARITY
 D1
 D0
 (EVEN-2-PARITY
 (EVEN-4-PARITY
 (EVEN-2-PARITY D3 D2)
 (OR D10 D1)
 (EVEN-4-PARITY D3 D4 D6 D7)
 (EVEN-2-PARITY D8 D9))
 (EVEN-2-PARITY (NAND D1 D10)
 (EVEN-2-PARITY D5 D3)))
 D1)
 (NOR (NAND D1 D10)
 (EVEN-2-PARITY (NOR D10 D6)
 (NOR D1 D2))))

which is equivalent to the target even-11-parity
function. Note that the even-2-parity function (ADF0)
appears six times in this solution and that the even-4-
parity function (ADF1) appears three times. Note that
this entire solution for the even-11-parity function
contains only 220 points (compared to 347 points for
the solution to the mere even-5-parity without
hierarchical automatic function definition).

Figure 35 shows the simplified version of the
result-producing branch of this best-of-run individual
for the even-11-parity problem. As can be seen, the
even-11-parity problem was decomposed into a
composition of even-2-parity functions and even-4-
parity functions.

NOR

D1 D2

NOR

D10 D6

EVEN-2
-PARITYNAND

D1 D10

NOR

EVEN-2
-PARITY

D5 D3

NAND

D1 D10

EVEN-2
-PARITY

EVEN-2
-PARITY

D8 D9

EVEN-4
-PARITY

D3 D4 D6 D7

OR

D10 D1

EVEN-2
-PARITY

D3 D2

EVEN-4
-PARITY

EVEN-2
-PARITY D1D0D1

EVEN-4
-PARITY

OR

Figure 35 The best-of-run individual from generation
21 of one run of the even-11-parity problem is a
composition of even-2-parity and even-4-parity
functions.

We found the above solution to the even-11-parity
problem on our first completed run. The search space
of 11-argument Boolean functions returning one value
is of size 22,048 ˜ 10616. The even-11-parity problem
was solved by decomposing into parity functions of
lower orders.

9.9 Summary of Hierarchical Automatic Function
Definition

Thus, the problem of learning various higher order
even-parity functions can be solved with the technique
of hierarchical automatic function definition in the
context of genetic programming. Moreover, as can be
seen in table 2, the technique of hierarchical automatic
function definition facilitates the solution of these
problems. That is, when problems are decomposed
into a hierarchy of function definitions and calls, many
fewer individuals must be processed in order to yield a
solution to the problem. Moreover, the solutions
discovered are comparatively smaller in terms of their
structural complexity.

Table 2 Number of individuals I(M,i,z) required to
be processed to yield a solution to various even-parity

problems with 99% probability – with and without
hierarchical automatic function definition.

Size of parity
function

Without hierarchical
automatic function

definition

With hierarchical
automatic function

definition
3 80,000
4 1,276,000 88,000
5 144,000
6 864,000
7 1,440,000

Automatic function definition has also been applied
to the problem of discovery of impulse response
functions [Koza, Keane, and Rice 1993].

10. Additional Examples of Genetic Programming

Genetic programming can be applied in many
additional problem domains, including the following:
• evolution of a subsumption architecture for

controlling a robot to follow walls or move boxes
[Koza 1992d, Koza and Rice 1992b],

Genetic Programming as a Means for Programming Computers by Natural Selection 33

• discovering inverse kinematic equations to control
the movement of a robot arm to a designated target
point,

• emergent behavior (e.g., discovering a computer
program which, when executed by all the ants in an
ant colony, enables the ants to locate food, pick it
up, carry it to the nest, and drop pheromones along
the way so as to recruit other ants into cooperative
behavior),

• symbolic integration, symbolic differentiation, and
symbolic solution to general functional equations
(including differential equations with initial
conditions),

• planning (e.g., navigating an artificial ant along a
trail, developing a robotic action sequence that can
stack an arbitrary initial configuration of blocks into
a specified order),

• generation of high entropy sequences of random
numbers,

• induction of decision trees for classification,
• optimization problems (e.g., finding an optimal food

foraging strategy for a lizard),
• sequence induction (e.g., inducing a recursive

computational procedure for generating sequences
such as the Fibonacci sequence),

• automatic programming of cellular automata,
• finding minimax strategies for games (e.g.,

differential pursuer-evader games, discrete games in
extensive form) by both evolution and co-evolution,

• automatic programming (e.g., discovering a
computational procedure for solving pairs of linear
equations, solving quadratic equations for complex
roots, and discovering trigonometric identities), and

• simultaneous architectural design and training of
neural networks [Koza and Rice 1991].
Additional information and examples can be found

in Koza [1992a].

11. Conclusions

We have shown that many seemingly different
problems in machine learning and artificial
intelligence can be viewed as requiring the discovery
of a computer program that produces some desired
output for particular inputs. We have also shown that
the recently developed genetic programming paradigm
described herein provides a way to search for a highly
fit individual computer program. The technique of
hierarchical automatic function definition can facilitate
the solution of problems.

12. Acknowledgements

Christopher Jones prepared the figures for the
econometric problem. James P. Rice of the
Knowledge Systems Laboratory at Stanford University
created all the other figures in this article and did some
or all of the computer programming on a Texas
Instruments Explorer computer for various problems
in this article.

13. References
Belew, Richard and Booker, Lashon (editors)

Proceedings of the Fourth International
Conference on Genetic Algorithms. San Mateo, Ca:
Morgan Kaufmann Publishers Inc. 1991.

Brooks, Rodney. 1986. A robust layered control
system for a mobile robot. IEEE Journal of
Robotics and Automation. 2(1) March 1986.

Citibank. CITIBASE: Citibank Economic Database
(Machine Readable Magnetic Data File), 1946-
Present. New York: Citibank N.A. 1989.

Connell, Jonanthan. 1990. Minimalist Mobile Robotics.
Boston, MA: Academic Press 1990.

Cramer, Nichael Lynn. A representation for the
adaptive generation of simple sequential programs.
In Grefenstette, John J.(editor). Proceedings of an
International Conference on Genetic Algorithms
and Their Applications. Hillsdale, NJ: Lawrence
Erlbaum Associates l985.

Davidor, Yuval. Genetic Algorithms and Robotics.
Singapore: World Scientific 1991.

Davis, Lawrence (editor) Genetic Algorithms and
Simulated Annealing London: Pittman l987.

Davis, Lawrence. Handbook of Genetic Algorithms.
New York: Van Nostrand Reinhold 1991.

Forrest, Stephanie (editor). Emergent Computation:
Self-Organizing, Collective, and Cooperative
Computing Networks. Cambridge, MA: The MIT
Press 1990.

Fujiki, Cory and Dickinson, John. Using the genetic
algorithm to generate LISP source code to solve the
prisoner's dilemma. In Grefenstette, John J.(editor).
Genetic Algorithms and Their Applications:
Proceedings of the Second International
Conference on Genetic Algorithms. Hillsdale, NJ:
Lawrence Erlbaum Associates l987.

Geva, Shlomo, Sitte, Joaquin, and Willshire, Geoff. A
one neuron truck backer-upper. Proceedings of
IJCNN International Joint Conference on Neural
Networks. Piscataway, NJ: IEEE Press 1992.
Volume II. Pages 850-856.

34 Koza

Goldberg, David E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading,
MA: Addison-Wesley l989.

Goldberg, David E., Korb, Bradley, and Deb,
Kalyanmoy. Messy genetic algorithms: Motivation,
Analysis, and First Results. Complex Systems. 3(5)
October 1989. Pages 493-530.

Gruau, Frederic. Genetic synthesis of Boolean neural
networks with a cell rewriting developmental
process. In Schaffer, J. D. and Whitley, Darrell
(editors). Proceedings of the Workshop on
Combinations of Genetic Algorithms and Neural
Networks 1992. The IEEE Computer Society
Press. 1992.

Hallman, Jeffrey J., Porter, Richard D., Small, David
H. M2 per Unit of Potential GNP as an Anchor for
the Price Level. Washington, DC: Board of
Governors of the Federal Reserve System. Staff
Study 157, April 1989.

Holland, John H. Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan
Press 1975. Republished as Cambridge, MA: The
MIT Press 1992.

Holland, John H. Escaping brittleness: The
possibilities of general-purpose learning algorithms
applied to parallel rule-based systems. In
Michalski, Ryszard S., Carbonell, Jaime G. and
Mitchell, Tom M. Machine Learning: An Artificial
Intelligence Approach, Volume II. P. 593-623. Los
Altos, CA: Morgan Kaufmann l986.

Holland, John H, Holyoak, K.J., Nisbett, R.E., and
Thagard, P.A. Induction: Processes of Inference,
Learning, and Discovery. Cambridge, MA: MIT
Press l986.

Koza, John R. Genetic Programming: A Paradigm for
Genetically Breeding Populations of Computer
Programs to Solve Problems. Stanford University
Computer Science Department technical report
STAN-CS-90-1314. June 1990. 1990.

Koza, John R. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press 1992.
1992a.

Koza, John R. Genetic programming: Genetically
breeding populations of computer programs to
solve problems. In Soucek, Branko and the IRIS
Group (editors). Dynamic, Genetic, and Chaotic
Programming. New York: John Wiley 1992.
1992b.

Koza, John R. Hierarchical automatic function
definition in genetic programming. In Whitley,
Darrell (editor). Proceedings of Workshop on the
Foundations of Genetic Algorithms and Classifier
Systems, Vail, Colorado 1992. San Mateo, CA:
Morgan Kaufmann Publishers Inc. 1992. 1992c.

Koza, John R. Evolution of subsumption using genetic
programming. In Bourgine, Paul and Varela,
Francisco (editors). Proceedings of European

Conference on Artificial Life, Paris, December
1991. Cambridge, MA: MIT Press 1992d.

Koza, John R., and Keane, Martin A. Cart centering
and broom balancing by genetically breeding
populations of control strategy programs. In
Proceedings of International Joint Conference on
Neural Networks, Washington, January 15-19,
1990. Volume I, Pages 198-201. Hillsdale, NJ:
Lawrence Erlbaum 1990. 1990a.

Koza, John R., and Keane, Martin A. Genetic
breeding of non-linear optimal control strategies
for broom balancing. In Proceedings of the Ninth
International Conference on Analysis and
Optimization of Systems. Antibes, France, June,
1990. Pages 47-56. Berlin: Springer-Verlag, 1990.
1990b.

Koza, John R. and Rice, James P. Genetic generation
of both the weights and architecture for a neural
network. In Proceedings of International Joint
Conference on Neural Networks, Seattle, July
1991. IEEE Press. Volume II, Pages 397-404.
1991.

Koza, John R. and Rice, James P. Genetic
Programming: The Movie. Cambridge, MA: The
MIT Press 1992a.

Koza, John R., and Rice, James P. Automatic
programming of robots using genetic programming.
In Proceedings of Tenth National Conference on
Artificial Intelligence. Menlo Park, CA: AAAI
Press / The MIT Press 1992. Pages 194-201.
1992b.

Koza, John R., Martin A. Keane, and Rice, James P.
Performance improvement of machine learning via
automatic discovery of facilitating functions as
applied to a problem of symbolic system
identification. In ICNN-93 Proceedings---GET
FINAL REFERENCE---. 1993.

Lang, Kevin J. and Witbrock, Michael J. Learning to
tell two spirals apart. Proceedings of the 1988
Connectionist Models Summer School. San Mateo,
CA: Morgan Kaufmann 1989. Pages 52-59.

Langton, Christopher, Taylor, Charles, Farmer, J.
Doyne, and Rasmussen, Steen (editors). Artificial
Life II, SFI Studies in the Sciences of Complexity.
Volume X. Redwood City, CA: Addison-Wesley
1992.

Mahadevan, Sridhar and Connell, Jonanthan. 1991.
Automatic programming of behavior-based robots
using reinforcement learning. In Proceedings of
Ninth National Conference on Artificial
Intelligence. 768-773. Volume 2. Menlo Park, CA:
AAAI Press / MIT Press 1991.

Mataric, Maja J. 1990. A Distributed Model for Mobile
Robot Environment-Learning and Navigation. MIT
Artificial Intelligence Lab report AI-TR-1228. May
1990.

Meyer, Jean-Arcady and Wilson, Stewart W. From
Animals to Animats: Proceedings of the First
International Conference on Simulation of

Genetic Programming as a Means for Programming Computers by Natural Selection 35

Adaptive Behavior. Paris. September 24-28, 1990.
Cambridge, MA: MIT Press 1991.

Nguyen, Derrick and Widrow, Bernard. The truck
backer-upper: An example of self-learning in
neural networks. In Miller, W. Thomas III, Sutton,
Richard S., and Werbos, Paul J. (editors). Neural
Networks for Control. Cambridge, MA: MIT Press
1990.

Rawlins, Gregory (editor). Proceedings of Workshop
on the Foundations of Genetic Algorithms and
Classifier Systems. Bloomington, Indiana. July 15-
18, 1990. San Mateo, CA: Morgan Kaufmann
1991.

Samuel, Arthur L. Some studies in machine learning
using the game of checkers. IBM Journal of
Research and Development, 3(3): 210–229. July
1959.

Schaffer, J. D. (editor). Proceedings of the Third
International Conference on Genetic Algorithms.
San Mateo, CA: Morgan Kaufmann Publishers Inc.
1989.

Schwefel, Hans-Paul and Maenner, Reinhard (editors).
Parallel Problem Solving from Nature. Berlin:
Springer-Verlag. 1991. Pages 124-128. 1991b.

Smith, Steven F. A Learning System Based on Genetic
Adaptive Algorithms. PhD dissertation. Pittsburgh,
PA University of Pittsburgh 1980.

Whitley, Darrell (editor). Proceedings of Workshop on
the Foundations of Genetic Algorithms and
Classifier Systems, Vail, Colorado 1992. San
Mateo, CA: Morgan Kaufmann Publishers Inc.
1992.

Wilson, Stewart. W. Classifier Systems and the animat
problem. Machine Learning, 3(2), 199-228, 1987a.

Wilson, Stewart. W. Hierarchical credit allocation in a
classifier system. Proceedings of the Tenth
International Joint Conference on Artificial
Intelligence. San Mateo, CA: Morgan Kaufmann,
217-220, 1987b.

Wilson, Stewart W. Bid competition and specificity
reconsidered. Journal of Complex Systems. 2(6),
705-723, 1988.

