Skip to main content

Ripple Crossover in Genetic Programming

  • Conference paper
  • First Online:
Book cover Genetic Programming (EuroGP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2038))

Included in the following conference series:

Abstract

This paper isolates and identifies the effects of the crossover operator used in Grammatical Evolution. This crossover operator has already been shown to be adept at combining useful building blocks and to outperform engineered crossover operators such as Homologous Crossover. This crossover operator, Ripple Crossover is described in terms of Genetic Programming and applied to two benchmark problems. Its performance is compared with that of traditional sub-tree crossover on populations employing the standard functions and terminal set, but also against populations of individuals that encode Context Free Grammars. Ripple crossover is more effective in exploring the search space of possible programs than sub-tree crossover. This is shown by examining the rate of premature convergence during the run. Ripple crossover produces populations whose fitness increases gradually over time, slower than, but to an eventual higher level than that of sub-tree crossover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frederic Gruau, On using syntactic constraints with genetic programming, Advances in Genetic Programming 2 (Peter J. Angeline and K.E. Kinnear, Jr., eds.), MIT Press, Cambridge, MA, USA, 1996, pp. 377–394.

    Google Scholar 

  2. Mike J. Keith and Martin C. Martin, Genetic programming in C++: Implementation issues, Advances in Genetic Programming (Kenneth E. Kinnear, Jr., ed.), MIT Press, 1994, pp. 285–310.

    Google Scholar 

  3. John R. Koza, Genetic programming: On the programming of computers by means of natural selection, MIT Press, Cambridge, MA, USA, 1992.

    MATH  Google Scholar 

  4. David J. Montana, Strongly typed genetic programming, Evolutionary Computation 3 (1995), no. 2, 199–230.

    Article  Google Scholar 

  5. Michael O’Neill and Conor Ryan, Grammatical evolution, IEEE Trans. Evolutionary Computation (2001).

    Google Scholar 

  6. Riccardo Poli, Is crossover a local search operator?, Position paper at the Workshop on Evolutionary Computation with Variable Size Representation at ICGA-97, 20 July 1997.

    Google Scholar 

  7. Conor Ryan, J.J. Collins, and Michael O’Neill, Grammatical evolution: Evolving programs for an arbitrary language, Proceedings of the First European Workshop on Genetic Programming (Paris) (Wolfgang Banzhaf, Riccardo Poli, Marc Schoenauer, and Terence C. Fogarty, eds.), LNCS, vol. 1391, Springer-Verlag, 14-15 April 1998, pp. 83–95.

    Google Scholar 

  8. Peter Alexander Whigham, Grammatical bias for evolutionary learning, Ph.D. thesis, School of Computer Science, University College, University of New South Wales, Australian Defence Force Academy, 14 October 1996.

    Google Scholar 

  9. Man Leung Wong and Kwong Sak Leung, Data mining using grammar based genetic programming and applications, Genetic Programming, vol. 3, Kluwer Academic Publishers, January 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keijzer, M., Ryan, C., O’Neill, M., Cattolico, M., Babovic, V. (2001). Ripple Crossover in Genetic Programming. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds) Genetic Programming. EuroGP 2001. Lecture Notes in Computer Science, vol 2038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45355-5_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45355-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41899-3

  • Online ISBN: 978-3-540-45355-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics