
A Sampling-Based Heuristic for Tree Search
Applied to Grammar Induction

Hugues Juill�e and Jordan B. Pollack
Computer Science Department

Brandeis University
Waltham, Massachusetts 02254-9110
fhugues, pollackg@cs.brandeis.edu

Abstract

In the �eld of Operation Research and Arti�-

cial Intelligence, several stochastic search algo-

rithms have been designed based on the theory

of global random search (Zhigljavsky 1991). Ba-

sically, those techniques iteratively sample the

search space with respect to a probability distri-

bution which is updated according to the result

of previous samples and some prede�ned strat-

egy. Genetic Algorithms (GAs) (Goldberg 1989)

or Greedy Randomized Adaptive Search Proce-

dures (GRASP) (Feo & Resende 1995) are two

particular instances of this paradigm. In this pa-

per, we present SAGE, a search algorithm based

on the same fundamental mechanisms as those

techniques. However, it addresses a class of prob-

lems for which it is di�cult to design transforma-

tion operators to perform local search because of

intrinsic constraints in the de�nition of the prob-

lem itself. For those problems, a procedural ap-

proach is the natural way to construct solutions,

resulting in a state space represented as a tree or a

DAG. The aim of this paper is to describe the un-

derlying heuristics used by SAGE to address prob-

lems belonging to that class. The performance of

SAGE is analyzed on the problem of grammar in-

duction and its successful application to problems

from the recent Abbadingo DFA learning compe-

tition is presented.

Introduction

The design of massively parallel search algorithms re-
quires the use of new strategies to take advantage of
highly distributed architectures. Some examples of such
algorithms are Genetic Algorithms (GAs) (Goldberg
1989), Genetic Programming (GP) (Koza 1992), Evo-
lutionary Programming (EP) (Fogel 1962) or Evolu-
tionary Strategies (ES) (B�ack, Ho�meister, & Schwe-
fel 1991) that have shown very good performance on
large scale problems (Hillis 1992; Koza et al. 1996).
Those algorithms admit an e�cient parallel implemen-
tation and, basically, sample the search space in order

Copyright c
 1998,American Association for Arti�cial Intel-

ligence (www.aaai.org). All rights reserved.

to gather information about the regularities in the dis-
tribution of solutions. Then, the search is focused by
keeping for the next stage the most promising states
according to an objective function. Those algorithms
are exploring the state space by applying search oper-
ators on a representation for states. Those operators
can perform a \recombination" for which a new state
is constructed by taking elements from two or more
selected states or a \mutation" which alters randomly
some elements of a selected state. As a consequence,
those search algorithms rely heavily on a local search
operator. They require the design of a representation
for the state space and the de�nition of a neighborhood
structure over this representation that presents regu-
larities that can be exploited. Problems for which so-
lutions are constructed using an imperative procedure,
i.e. each step of the construction depending strongly on
the previous steps, make di�cult to design a representa-
tion and operators which capture the constraints that
apply for the construction of valid solutions while at
the same time exhibiting an appropriate neighborhood
structure with respect to the search procedure. If the
representation and the operators can't capture the con-
struction constraints or if the neighborhood structure
doesn't present some regularities that can be exploited
by the search operators, the search becomes trapped
in poor local optima. Such undesirable property of
a representation is sometimes referred to as epistasis,
meaning that the degree of interdependency between
the components of the representation is very high and
makes the problem very deceptive with respect to the
search operators.

On the other hand, traditional arti�cial intelligence
backtracking search algorithms which are designed to
explore problem spaces would be appropriate to tackle
such problems. However, to face the problem of com-
binatorial explosion, some heuristics have to be used to
control the search. Such heuristics use problem-speci�c
knowledge that has been identi�ed for the problem at
hand. However, those heuristics don't use any infor-
mation about the distribution of solutions in the state
space unless this information has been provided explic-
itly in the de�nition of the evaluation function (Baum
1992). So far, very little work has been done to explore

the idea of using the distribution of solutions when such
an evaluation function is not known or di�cult to de-
sign.
Our goal was to design an algorithm for tree search

that would be able to extract and exploit informa-
tion about the distribution of solutions and would ad-
mit an e�cient parallel implementation in order to ad-
dress large scale problems. The main idea for that al-
gorithm is to collect information about the distribu-
tion for the value of the leaves of the search tree cor-
responding to the alternatives under consideration by
performing a series of random sampling. Then, this
information is used to focus the search on the most
promising alternatives. This result is achieved by us-
ing a model of local competition between the elements
of the distributed model which allows the algorithm to
allocate more \resources" (i.e., processing elements) to
the most promising alternatives in a self-adaptive man-
ner. As described later in this paper, such a model
provides this algorithm with the advantage of allowing
a highly distributed implementation because of a loose
central control. Because of this architecture, we named
this algorithm Self-Adaptive Greedy Estimate (SAGE)
search procedure. So far, random sampling techniques
on search trees have been used essentially to pre-
dict the complexity of search algorithms (Knuth 1975;
Chen 1992), but never as a heuristic to control the
search. We believe our algorithm to be the �rst to ex-
ploit that knowledge.
This paper presents the application of this search al-

gorithm to the grammar induction problem. This ap-
plication originated from the Abbadingo DFA learn-
ing competition (Lang & Pearlmutter 1997) which took
place between March and November 1997. This com-
petition proposed a set of di�cult instances for the
problem of DFA learning as a challenge to the machine
learning community and to encourage the development
of new algorithms for grammar induction. The SAGE
search algorithm ended up as one of the two winners of
this competition. The second winner was an algorithm
that exploits a new evidence-driven heuristic �rst dis-
covered by Rod Price during the competition.
The paper is organized as follows: Section 2 presents

in details the SAGE search algorithm. Section 3 de-
scribes the work performed for the Abbadingo com-
petition. In the following section, an analysis com-
pares the performance of SAGE to the Trakhtenbrot-
Barzdin algorithm and to our own implementation of
the evidence-driven heuristic.

Presentation of SAGE

Principle

We consider the class of problems for which any feasible
solution can be generated by a construction procedure.
Hence, a search algorithm will proceed by making an
ordered sequence of decisions, each decision being se-
lected among a list of choices with respect to a partic-
ular strategy. At each iteration, the construction pro-

cedure determines this list of choices from the current
state of the partial solution. So, the construction pro-
cedure de�nes the search space as a tree. A solution is
a path from the root of that tree to a leaf and inter-
nal nodes represent partial solutions. Eventually, the
search space can be a directed acyclic graph (DAG) if
there are equivalent nodes in the tree.

There is a well-known AI algorithm for search in
DAGs and trees called Beam search. Beam search ex-
amines in parallel a number of nearly optimal alterna-
tives (the beam). This search algorithm progresses level
by level in the tree of states and it moves downward only
from the best w nodes at each level. Consequently, the
number of nodes explored remains manageable: if the
branching factor in the tree is at most b then there will
be at most wb nodes under consideration at any depth.
SAGE is similar to this algorithm in the sense that it
is a distributed model that implements multi-threaded
search. That is, SAGE is composed of a population of
processing elements. Each of them is playing the role
of an elementary search algorithm and is seen as one
alternative in the beam. In tree search algorithms, a
�tness (or score) is assigned to internal nodes in or-
der to determine which nodes will be explored further
and which nodes will be ignored. In the case of beam
search, heuristics are used to score the di�erent alter-
natives. However, this approach assumes the existence
of such an evaluation function to score nodes. The new
idea proposed by SAGE is to estimate the score of in-
ternal nodes by performing a random sampling from
this node. That is, a path is constructed incrementally
and randomly until a leaf (or valid solution) is reached.
Then, the score of this solution is directly computed
with respect to the problem objective function and it is
assigned to the initial node.

More precisely, SAGE is an iterative search procedure
for which each iteration is composed of two phases, a
construction phase and a competition phase. SAGE im-
plements a population of elementary randomized search
algorithms and ameta-level heuristic which controls the
search procedure by distributing the alternatives under
consideration among this population of processing el-
ements. For any iteration, all the alternatives repre-
sented in the population have the same depth in the
search tree. At the beginning of the search, this depth
is null and it increases with the number of iterations
according to a strategy implemented by the meta-level
heuristic. During each iteration, the following opera-
tions are performed:

� construction phase: each processing element calls the
construction procedure designed for the current prob-
lem. This procedure starts the construction from
the internal node which represents the alternative as-
signed to the calling processing element and there-
after makes each decision by randomly selecting one
choice from the list of choices available at each step.
Each random selection is performed with respect to
a uniform probability distribution.

� competition phase: the purpose of this phase is to
focus the search on most promising alternatives by
assigning more representatives to them. The details
of that phase are described below.

In summary, SAGE is a population-based model in
which each processing element is the representative of
one alternative for the current level of search in the
tree. Then, the search space is explored according to
the following strategy:

1. Initially, the search is restricted to the �rst level of the
tree and each processing element in the population
randomly selects one of the �rst-level nodes.

2. Each processing element scores its associated alter-
native by performing a random sampling. This is the
construction phase.

3. The competition phase is operated. It results in the
search focusing on most promising alternatives.

4. The meta-level heuristic determines whether the level
of search is increased by one or not. In the a�rma-
tive, each processing element selects uniformly ran-
domly one of the children of its associated node and
this node becomes the new alternative assigned to
the processing element.

5. The search stops if no new node can be explored (be-
cause the search reached the leaves of the tree); oth-
erwise it continues with step 2.

In the SAGE model, the level of search in the tree is
called the commitment degree since it corresponds to a
commitment to the �rst choices of the incremental con-
struction of the current best solution. The next three
sections describe the construction phase, the compe-
tition phase and the management of the commitment
degree.

Construction Phase

The construction procedure used during this phase
plays a very important role since it determines the dis-
tribution of solutions when sampling the search tree.
The design of this procedure allows some
exibility. In
particular, some problem-speci�c heuristics can be in-
troduced to drive the search in a particular direction,
the search space can be reduced by introducing some
constraints or the distribution of solutions can be mod-
i�ed by using some strategies. The multiple-sampling

technique is an example of such a strategy. This tech-
nique simply evaluates the score of an alternative by
taking the best out of n samples. In practice, n cannot
be too large since the computational resource required
increases linearly with its value. However, increasing n

can be an interesting alternative to a larger population
size since the amount of memory required to store the
members of the population can quickly become over-
whelming for complex problems.

Competition Phase

The SAGE search algorithm uses a population of geo-
graphically distributed processing elements. This archi-

tecture makes it amenable to an easy implementation
on several models of computer networks and parallel
machines. For the sake of simplicity, we will consider a
model in which the population of processing elements is
mapped on a wrap-around mesh (i.e. a torus). A pro-
cessing element is assigned to each node of the mesh. In
such a setup, the competition phase can be performed
by implementing a local competition among the pro-
cessing elements. Each processing element compares
the score of the alternative it represents to those in its
neighborhood. This neighborhood is composed of the
nodes in the mesh whose Manhattan distance from the
current node is lesser than a given value. If there is a
node with a higher score then the processing element
becomes a representative of the same alternative as that
neighbor. In case of a tie, one alternative is selected ran-
domly. So, if a given alternative for the current level
of search in the tree is more likely to lead to a high
score solution then more copies of that alternative will
be represented in the population of processing elements
as a result of this competition phase (therefore focusing
the beam).

Management of the Commitment Degree

Successive competition phases result in most promising
alternatives being represented by a larger and larger
number of processing elements. Ultimately, if one waits
until all the population agrees on the same alternative
before continuing the search on the next level, the beam
would be reduced to the exploration of a single alterna-
tive. On the contrary, if the level of search is increased
too frequently, the beam would become very wide, mak-
ing the search unreliable. Clearly, for the search to be
e�cient, a balance must be maintained between those
two extremes.
We experimented two di�erent strategies to control

the commitment degree. The �rst one simply increases
the commitment degree every n iterations. The draw-
back of this strategy is that n has to be chosen astutely
in order to maintain the right balance between explo-
ration and exploitation. This makes this strategy very
brittle. The second strategy performs a measure of the
state of the population called diversity measure which
is an estimate of the width of the beam. To compute
this measure, each processing element in the popula-
tion counts the number of neighbors that correspond
to a di�erent alternative than itself. Then, this num-
ber is summed over all the members of the population
and the result is the diversity measure. This measure
re
ects the degree of convergence of the population. If
only a few alternatives are represented in the popula-
tion then this measure is small because most of the pro-
cessing elements represent the same alternative as their
neighbors. On the other hand, if many alternatives are
explored the diversity measure is large. As the popu-
lation focus on most promising alternatives because of
the competition phase, the diversity measure decreases.
When this measure reaches an arbitrarily �xed thresh-
old (which is a parameter of the model), the meta-level

strategy considers that the width of the beam is small
enough and the search can continue on the next level
of the tree. The drawback of this strategy is that it
can take a long time for the diversity measure to reach
the given threshold if several alternatives lead to equiv-
alent solutions. In that case, a combination of the two
strategies o�ers a good compromise, the �rst strategy
preventing such deadlocks.

Discussion

As discussed previously, the performance of SAGE re-
lies heavily on the construction procedure. Indeed, the
construction procedure determines the distribution of
solutions when the search space is sampled. The un-
derlying heuristic exploited by SAGE at each iteration
is to focus the search on domains of the state space for
which sampled solutions are of better quality. Thus,
the assumption is that reliable information is collected
by the sampling procedure to control the search. If the
construction procedure is not compatible with this as-
sumption, the performance of the search is very poor.
In practice, a few tries are often required to discover an
appropriate procedure which results in a good perfor-
mance. As a rule of thumb, the construction procedure
should be designed so that early choices result in a reli-
able discrimination between poor domains of the search
space and domains that are worth being explored.

Induction of DFAs

Presentation

The aim of inductive inference is to discover an abstract
model which captures the underlying rules of a system
from the observation of its behavior and thus to become
able to give some prediction for the future behavior of
that system. In the �eld of grammar induction, ob-
servations are strings that are labeled \accepted" or
\rejected" and the goal is to determine the language
that generates those strings. (Angluin & Smith 1983)
present an excellent survey of the �eld, covering in par-
ticular the issue of computational complexity and de-
scribing some inference methods for inductive learning.
The application of the SAGE search algorithm to this

problem has been motivated by the Abbadingo compe-
tition organized by (Lang & Pearlmutter 1997). It is
a challenge proposed to the machine learning commu-
nity in which a set of increasingly di�cult DFA induc-
tion problems have been designed. Those problems are
supposed to be just beyond the current state of the art
for today's DFA learning algorithms and their di�culty
increases along two dimensions: the size of the under-
lying DFA and the sparsity of the training data. (Gold
1978) has shown that inferring a minimum �nite state
automaton compatible with given data consisting of a
�nite number of labeled strings is NP-complete. How-
ever, (Lang 1992) empirically found out that the aver-
age case is tractable. That is, randomly generated tar-
get DFAs are approximately learnable even from sparse

data when this training data is also generated at ran-
dom. One of the aims of the Abbadingo competition
is to estimate an empirical lower bound for the spar-
sity of the training data for which DFA learning is still
tractable. The competition has been setup as follows.
A set of DFAs of various size have been randomly gener-
ated. Then, a training set and a test set have been gen-
erated from each of those DFAs. Only the labeling for
the training sets have been released. Training sets are
composed of a number of strings which varies with the
size of the target DFA and the level of sparsity desired.
The goal of the competition is to discover a model for
the training data that has a predictive error rate smaller
than one percent on the test set. Since the labeling for
the test sets has not been released, the validity of a
model can be tested only by submitting a candidate la-
beling to an \Oracle" implemented on a server at the
University of New Mexico (Lang & Pearlmutter 1997)
which returns a \pass/fail" answer. Table 1 presents
the di�erent problems that compose this competition.
The size and the depth of the target DFA are provided
as a piece of information to estimate how close a DFA
hypothesis is from the target. The rule of the compe-
tition is that the �rst person to solve a problem owns
it. Because of the two dimensions for the evaluation of
the di�culty of problems (namely sparsity of training
data and size of target DFA), a partial order is de�ned
over problems resulting in the possibility of multiple
winners. This partial order is represented in table 2. In
this table, a given problem dominates all those that are
in the top-left square whose bottom-right corner corre-
sponds to the position of that problem. For instance,
problem 6 dominates problems 1, 2, 3, 4 and 5. At the
end, a winner is somebody who owns a problem which
is not dominated by any other solved problem. The dif-
ferent naming conventions for problems come from the
fact that problems R, S and T were added later in the
competition. Table 2 also describes which algorithm
was the �rst to solve each problem. In the competition,
SAGE �rst took the lead by solving problems 1, 2, 4
and 5. Then, the evidence-driven heuristic (EDH) was
discovered and defeated SAGE by solving problems 3,
R, 6 and S. However, SAGE later solved problem 7,
hereby becoming a co-winner. Problems 8, 9 and T
were not solved by the end of the competition.
In the next sections, two algorithms are presented

to address this grammar induction problem. First, the
construction procedure to be used in the SAGE search
algorithm is described. Then, our own implementation
of an algorithm exploiting the evidence-driven heuristic
is presented.

Implementation for SAGE

The construction procedure makes use of the state
merging method described in (Trakhtenbrot & Barzdin
1973). It takes as input the pre�x tree acceptor con-
structed from the training data. Then, a �nite state
automaton is iteratively constructed, one transition at
a time. This method allows the design of a construction

Problem Target DFA Target DFA Strings in

name states depth training set

1 63 10 3478

2 138 12 10723

3 260 14 28413

R 499 16 87500

4 68 10 2499

5 130 12 7553

6 262 14 19834

S 506 16 60000

7 65 10 1521

8 125 12 4382

9 267 14 11255

T 519 16 32500

Table 1: Abbadingo data sets.

Training set density

dense sparse

Target small 1: SAGE 4: SAGE 7: SAGE

DFA 2: SAGE 5: SAGE 8: unsolved

size 3: EDH 6: EDH 9: unsolved

large R: EDH S: EDH T: unsolved

Table 2: Partial order over problems and status of each

problem.

Begin with a single state mapped to the root of the
pre�x tree

The list L of unprocessed states consists of that state
do

Pick randomly a state S from L
Compute the set T0 of valid transitions on \0" from

state S

Pick randomly a transition t0 from T0
if (t0 goes to an existing state) then

Merge corresponding nodes in the pre�x tree
else

Create a new state, map it to the corresponding
node in the pre�x tree and add it to L

endif

Compute the set T1 of valid transitions on \1" from
state S

Pick randomly a transition t1 from T1
if (t1 goes to an existing state) then

Merge corresponding nodes in the pre�x tree
else

Create a new state, map it to the corresponding
node in the pre�x tree and add it to L

endif

until (L is empty)
/* The output is a DFA consistent with the training
data */

Figure 1: Randomized construction procedure for DFA
learning used by SAGE.

procedure which satis�es the rule of thumb discussed
in the description of SAGE. Indeed, an incorrect merge
performed early in the construction of a DFA results in
the propagation of several incorrect constraints and has
much more e�ect on the following steps of the search
compared to an incorrect merge performed a few iter-
ations later. Therefore, the sampling technique gives
a good idea about which merges are more likely to be
correct, provided the training data is not too sparse.

The construction procedure begins with a single state
(the initial state of the DFA) which is attached to the
root of the pre�x tree. Then, at each step of the con-
struction, one of the states that has no outgoing transi-
tion is selected at random and the \0" and \1" transi-
tions are created for that state. Two cases are possible
when considering a new transition: either it goes to an
existing state or it goes to a newly created state. As the
hypothesis DFA is constructed, states are mapped with
nodes in the pre�x tree and transitions between states
are mapped with edges. When a new transition is cre-
ated going to an existing state, corresponding nodes in
the pre�x tree are merged. When two nodes in the pre-
�x tree are merged, the labels in the tree are updated
accordingly and the merging of more nodes can be re-
cursively triggered so that the pre�x tree re
ects the
union of the labeled string su�xes that are attached to
those nodes. Thus, as the DFA is constructed, the pre-
�x tree is collapsed into a graph which is an image of the
�nal DFA when the construction procedure is �nished.
This merging procedure provides the mechanism to test
whether a transition between two existing states is con-
sistent with the labeling and should be considered as a
potential choice in the construction procedure. Indeed,
if there is an inconsistency in the labeling when trying
to merge two nodes, this means that the corresponding
transition is not valid. The merging is then undone in
order to restore the state of the pre�x tree before the
operation was performed. The pseudo-code describing
this construction procedure is given in Figure 1.

The Evidence-Driven Heuristic

The state merging method implemented in (Trakhten-
brot & Barzdin 1973) considers a breadth-�rst order for
merging nodes, with the idea that a valid merge involv-
ing the largest sub-trees in the pre�x tree has a higher
probability of being correct than other merges. The
evidence-driven heuristic doesn't follow that intuition
and considers instead the number of labeled nodes that
are mapped over each other and match when merging
sub-trees in the pre�x tree. Di�erent control strate-
gies can be designed to explore the space of DFA con-
structions exploiting this heuristic. Our implementa-
tion maintains a list of valid destinations for each un-
decided transition for the current partial DFA and, as a
policy, always gives priority to \forced" creation of new
states over merge operations. The pseudo-code for this
algorithm is presented in �gure 2.

Begin with a single state mapped to the root of the
pre�x tree

The list S of states in the DFA consists of that state
The list T of unprocessed transitions consists of the

outgoing transitions from that state
For each t 2 T , compute:

. the subset Sdest(t) from S of valid destinations

. the merge count for each destination in Sdest(t)
do

Construct T0 = ft 2 T s:t: Sdest(t) = ;g
/* A new state is created if T0 is not empty */
if (T0 6= ;) then

Select t0 2 T0 outgoing from the shallowest node
(break ties at random)

Remove t0 from T
Create a new state S0 mapped to the destination

node for t0 in the pre�x tree
S S

S
S0

T T

S
foutgoing transitions from S0g

For each outgoing transition t0 from S0:
. compute Sdest(t0)
. evaluate merge count for each destination

in Sdest(t0)
For each transition t 2 T , add S0 to Sdest(t) if

S0 is a valid destination for t and compute
its merge count

else

/* Operate a merge */
Select t0 2 T with the highest merge count

(break ties at random)
Merge the destination node for t0 in the pre�x

tree with the destination node correspond-
ing to this highest merge count

Remove t0 from T
For each t 2 T , update Sdest(t) and the merge

counts
endif

until (T = ;)

Figure 2: Pseudo-code of our DFA construction algo-
rithm exploiting the evidence-driven heuristic.

Experimental Results

Results for Problems in the Competition.

In a �rst stage, we have been using a sequential im-
plementation of SAGE since small populations were
enough to solve the smallest instances of the Abbadingo
competition. Later, a network of workstations was used
to scale the population size and address the most di�-
cult problem instances in the competition. In particu-
lar, the solution to problems 5 and 7 involved around 16
workstations on average. This parallel implementation
uses a server that manages the population of partial
solutions and distributes the work load among several
clients. This architecture presents the advantage that
clients can be added or removed at any time.
SAGE has been able to solve problems 1, 2, 4, 5 and

7 from table 1. To solve problem 7, we proceeded in

two steps. First, the construction procedure described
previously has been extended with the evidence-driven
heuristic in order to prune the search tree. The con-
struction procedure switches to this heuristic when the
number of states in the current DFA has reached a given
size. Before that threshold size is reached, the con-
struction procedure remains unchanged. After about
10 runs, a DFA with 103 states has been discovered
very early. Then, in a second step, more experiments
were performed using the original construction proce-
dure but starting with the same �rst few choices as
those that had been made for the 103-state DFA. This
resulted in a DFA of size 65. This second step uses
SAGE for local search, starting from a good pre�x for
the DFA construction. The appropriate size for the pre-
�x has been determined experimentally. It is clear from
those experiments that the density for the training data
available for problem 7 is at the edge of what SAGE can
manage. This observation is con�rmed by the analysis
presented in the following section.
Table 3 presents the experimental setup along with

the results for some of the DFAs that passed the \Or-
acle" test. We decided to report in this table the value
for parameters that had been used when each problem
was solved for the �rst time. Experiments for prob-
lems 1, 2 and 4 have been performed on a Pentium PC
200MHz. For problems 5 and 7, a network of Pentium
PCs and SGI workstations has been used. Our im-
plementation of the evidence-driven heuristic can solve
all the problems in the �rst and the second column in
Table 2 except problem 5. Since this algorithm imple-
ments a greedy strategy, the time performance is much
better than for SAGE. In particular, it takes a few sec-
onds to solve problems 1 and 4 and about 8 minutes to
solve problem S on a Pentium PC 200MHz.

Procedure for Generation of Problems.

For the experimental analysis of our algorithms, we con-
structed a set of problem instances, using the same pro-
cedure as for the generation of Abbadingo challenges.

� Generation of target DFAs: To construct a random
DFA of nominal size n, a random digraph with 5

4
n

nodes is constructed, each vertex having two out-
going edges. Then, each node is labeled \accept"
or \reject" with equal probability, a starting node is
picked, nodes that can't be reached from that start-
ing node are discarded and, �nally, the Moore min-
imization algorithm is run. If the resulting DFA's
depth isn't b(2 log

2
n)�2c, the procedure is repeated.

This condition for the depth of DFAs corresponds to
the average case of the distribution. It is a design
constraint which allows the generation of a set of
problems whose relative complexity remains consis-
tent along the dimension of target size.

� Generation of training and testing sets: A training
set for a n-state target DFA is a set drawn without
replacement from a uniform distribution over the set
of all strings of length at most b(2 log

2
n) + 3c. The

Problem name 1 2 4

Population size 64 64 256 (+ best of

2 samples)

Neighborhood radius 1 1 1

for competition phase

Value of the threshold for

commitment degree increase 200 200 800

(radius neighborhood = 1)

Number of generations 200 1600 100

Results (size of DFA model) 63 states 150 states 71 states

Execution time 1 hour 40 hours 4 hours

(sequential) (sequential) (sequential)

Problem name 5 7 (step 1) 7 (step 2)

Population size 576 (+ best of 1024 4096

8 samples)

Neighborhood radius 1 1 1

for competition phase

Value of the threshold for

commitment degree increase 2400 2000 10000

(radius neighborhood = 1)

Number of generations 250 20 100

Results (size of DFA model) 131 states 103 states 65 states

Execution time 40 hours 2 hours 4 hours

(parallel) (parallel) (parallel)

Table 3: Experimental results for the SAGE search algorithm applied to problems 1, 2, 4, 5 and 7 of the Abbadingo
competition.

same procedure is used to construct the testing set
but strings already in the training set are excluded.

Comparative Performance Analysis.

In a comparative study, the performance of the three
approaches: Trakhtenbrot-Barzdin (T-B) algorithm,
evidence-driven heuristic and SAGE has been evaluated
against a set of random problem instances generated
using the procedure described in the previous section.
For each target DFA, the three algorithms were evalu-
ated across a range of density for the training data in
order to observe the evolution of each approach when
working with sparser data. For the �rst two algorithms,
1000 problems were used while only 100 problems were
used to evaluate SAGE because of the requirement in
computational resources. This comparison has been
performed for three values of the population size for
SAGE: 64, 256 and 1024 and for two values of the tar-
gets nominal size: 32 and 64 states (Figures 3 and 4
respectively).
In those experiments, the performance is the ratio of

problems for which the predictive ability of the model
constructed by the algorithm is at least 99% accurate.
This threshold is the same as the success criterion for
solving problems in the Abbadingo competition. Fig-
ures 3 and 4 show the dependence of SAGE on the
population size for its performance. Indeed, a larger
population results in a better reliability for the control
of the focus of the search because of a larger sample.

For the set of problems generated for the purpose of
this analysis, SAGE and the evidence-driven heuristic
clearly outperform the T-B algorithm. With a pop-
ulation size large enough, SAGE also exhibits a per-
formance consistently better than the evidence-driven
heuristic. However, it is di�cult to compare those two
approaches since SAGE is a general purpose search al-
gorithm while the other is a greedy algorithm using
a problem-speci�c heuristic. For this reason, SAGE
doesn't scale up as well as the evidence-driven heuris-
tic (or the T-B algorithm) for larger target DFAs. The
introduction of problem-speci�c heuristics in the con-
struction procedure becomes necessary for SAGE to ad-
dress this scaling issue.

Conclusion

This paper presents SAGE, a new algorithm for search
in trees and directed graphs based on a random sam-
pling strategy to evaluate the score of internal nodes
and on the management of a population to adaptively
focus the search on most promising alternatives. This
stochastic algorithm admits a parallel implementation
on both �ne-grained and coarse grained distributed sys-
tems because of the loose central control.
The performance of SAGE has been analyzed on the

problem of DFA learning, inspired from the recent Ab-
badingo competition. Those experiments have shown
that for average size target DFAs (on the order of 64 to
128 states) SAGE compares favorably to the well-known

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

S
uc

ce
ss

 r
at

e

Size training set

Evidence driven heuristic
Trakhtenbrot-Barzdin algorithm

SAGE: population = 64
SAGE: population = 256

SAGE: population = 1024

Figure 3: Comparison of performance for target DFAs
of nominal size 32.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

S
uc

ce
ss

 r
at

e

Size training set

Evidence driven heuristic
Trakhtenbrot-Barzdin algorithm

SAGE: population = 64
SAGE: population = 256

SAGE: population = 1024

Figure 4: Comparison of performance for target DFAs
of nominal size 64.

Trakhtenbrot-Barzdin algorithmand to a new evidence-
driven heuristic. However, as the size of the target DFA
increases, SAGE doesn't scale up and requires a pro-
hibitive amount of computer resource. To search such
a large state space, the introduction of problem-speci�c
heuristics becomes necessary.
One important contribution of this paper is to pro-

vide some insights concerning the domain of stochastic
search algorithms. The general idea for search algo-
rithms is to exploit some information about the state
space. This information can be provided either explic-
itly (hand-coded knowledge) or extracted by performing
some form of statistical analysis. Then, this knowledge
is exploited to decide how to focus the search. How-
ever, the actual distribution of solutions in the search
space is a source of information that has rarely been
exploited in the context of tree exploration. We believe
that SAGE is a �rst example of a tree search algorithm
able to exploit this information e�ciently.

References

Angluin, D., and Smith, C. H. 1983. Inductive in-
ference: Theory and methods. Computing Surveys

15:237{269.

B�ack, T.; Ho�meister, F.; and Schwefel, H.-P. 1991.
A survey of evolution strategies. In Belew, R. K., and
Booker, L. B., eds., Proceedings of the Fourth Inter-

national Conference on Genetic Algorithms, 2{9. San
Mateo, California: Morgan Kaufmann.

Baum, E. B. 1992. On optimal game tree propagation
for imperfect players. In Proceedings of the Tenth Na-

tional Conference on Arti�cial Intelligence, 507{512.

Chen, P. C. 1992. Heuristic sampling: a method for
predicting the performance of tree searching programs.
SIAM Journal on Computing 21:295{315.

Feo, T. A., and Resende, M. G. 1995. Greedy ran-
domized adaptive search procedures. Journal of Global
Optimization 6:109{133.

Fogel, L. J. 1962. Autonomous automata. Industrial
Research 4:14{19.

Gold, E. M. 1978. Complexity of automaton iden-
ti�cation from given data. Information and Control
37:302{320.

Goldberg, D. E. 1989. Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-Wesley.

Hillis, W. D. 1992. Co-evolving parasites improve
simulated evolution as an optimization procedure. In
Langton, C., et al., eds., Arti�cial Life II, 313{324.
Addison Wesley.

Knuth, D. E. 1975. Estimating the e�ciency of back-
tracking programs. Math. Comp. 29:121{136.

Koza, J. R.; Bennett, F. H.; Andre, D.; and Keane,
M. A. 1996. Four problems for which a computer
program evolved by genetic programming is compet-
itive with human performance. In Proceedings of the

Third IEEE International Conference on Evolutionary

Computation, 1{10. IEEE Press.

Koza, J. R. 1992. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-

tion. MIT Press.

Lang, K. J., and Pearlmutter, B. A. 1997. Ab-
badingo one: Dfa learning competition. http://abba{
dingo.cs.unm.edu.

Lang, K. J. 1992. Random dfa's can be approximately
learned from sparse uniform examples. In Proceedings

of the Fifth Annual ACM Workshop on Computational
Learning Theory, 45{52.

Trakhtenbrot, B. A., and Barzdin, Y. M. 1973. Finite
Automata: Behavior and Synthesis. North Holland
Publishing Company.

Zhigljavsky, A. A. 1991. Theory of Global Random
Search. Kluwer academic. volume 65 of Mathematics
and Its Applications (Soviet Series).

