From: AAAI Technical Report FS-95-01. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Parallel Genetic Programming on Fine-Grained SIMD Architectures

Hugues Juillé and Jordan B. Pollack
Computer Science Department
Volen Center for Complex Systems
Brandeis University
Waltham, MA 02254-9110
<{hugues, pollack}@cs.brandeis.edu>

Abstract

As the field of Genetic Programming (GP) ma-
tures and its breadth of application increases,
the need for parallel implementations becomes
absolutely necessary. The transputer-based
system recently presented by Koza ([8]) is one
of the rare such parallel implementations. Un-
til today, no implementation has been proposed
for parallel GP using a SIMD architecture, ex-
cept for a data-parallel approach ([16]), al-
though others have exploited workstation farms
and pipelined supercomputers. One reason is
certainly the apparent difficulty of dealing with
the parallel evaluation of different S-expressions
when only a single instruction can be executed
at the same time on every processor. The aim
of this paper is to present such an implementa-
tion of parallel GP on a SIMD system, where
each processor can efficiently evaluate a differ-
ent S-expression. We have implemented this
approach on a MasPar MP-2 computer, and
will present some timing results. To the ex-
tent that SIMD machines, like the MasPar are
available to offer cost-effective cycles for scien-
tific experimentation, this is a useful approach.

1 Introduction

The idea of simulating a MIMD machine using a SIMD
architecture is not new ([11]). One of the original ideas
for the Connection Machine ([5]) was that it could simu-
late other parallel architectures. Indeed, in the extreme,
each processor on a SIMD architecture can simulate a
universal Turing machine (TM). With different turing
machine specifications stored in each local memory, each
processor would simply have its own tape, tape head,
state table and state pointer, and the simulation would
be performed by repeating the basic TM operations si-
multaneously. Of course, such a simulation would be
very inefficient, and difficult to program, but would have
the advantage of being really MIMD, where no SIMD
processor would be in idle state, until its simulated ma-
chine halts.

31

Now let us consider an alternative idea, that each SIMD
processor would simulate an individual stored program
computer using a simple instruction set. For each step
of the simulation, the SIMD system would sequentially
execute each possible instruction on the subset of pro-
cessors whose next instruction match it. For a typical
assembly language, even with a reduced instruction set,
most processors would be idle most of the time.

However, if the set of instructions implemented on the
virtual processor is very small, this approach can be
fruitful. In the case of Genetic Programming, the “in-
struction set” is composed of the specified set of func-
tions designed for the task. We will show below that with
a precompilation step, simply adding a push, a condi-
tional branching, an unconditional branching and a stop
instruction, we can get a very effective MIMD simulation
running.

This paper reports such an implementation of GP on a
MasPar MP-2 parallel computer. The configuration of
our system is composed of 4K processor elements (PEs).
This system has a peak performance of 17,000 Mips or
1,600 Mflops. In the maximal configuration, with 16K
PEs, the speed quadruples. As an example, using a pop-
ulation of 4096 members, we achieved more than 30 gen-
erations/minutes on the trigonometric identities prob-
lem, and up to 5 matches per second for each individual
for the co-evolution of Tic-Tac-Toe players.

Section 2 describes the implementation of the kernel of
our current GP; which deals with the evaluation of S-
expressions. Then, the implementation of different mod-
els for fitness evaluation and interactions among individ-
uals of the population are presented in section 3. Results
and performance are presented in section 4.

2 Description of the implementation

2.1 The Virtual Processor

The individual structures that undergo adaptation in GP
are represented by expression trees composed from a set
of primitive functions and a set of terminals (either vari-
ables or functions of no argument). Usually, the number
of functions is small, and the size of the expression trees

/\/

;1:111)

Program
—1L __ Isp
Registers
Variables A0
Al
A2
Constants .
A
Stack n

!
N

Figure 1: Memory mapping and registers of the virtual
Processor.

are restricted, in order to restrict the size of the search
space.

In our implementation, each PE simulates a virtual pro-
cessor. This virtual processor is a Stack Machine which
is composed of the following elements:

¢ a memory block where the program is stored,

e a memory block where constants and variables are
stored,

e a stack where intermediate results are stored.

e a set of registers: the Instruction Pointer (IP), the
Stack Pointer (SP) and general purpose registers:
Ag, Ay, ..., As.

Figure 1 presents the memory mapping and registers of
the virtual processor.

To be able to evaluate a GP expression, the following
instructions are supported by the abstract machine:

e one instruction for each primitive function of the
function set. At execution time, arguments for these
instructions are popped from the stack into regis-
ters, the function is computed, and the result is
pushed on the top of the stack.

S-expression:
(- 1 (* (* (SIN X) (SIN X)) 2))
Corresponding program:

PUSH
PUSH
SIN
PUSH
SIN
*

PUSH
*

ID_CONST_‘1’
ID_VAR_‘X’

ID_VAR_‘X’

ID_CONST_‘2’

STOP
Figure 2: An S-expression and its postfix program.

(IF (<X 1)1 (*X X))

Corresponding program:

PUSH ID_VAR_‘X?
PUSH ID_CONST_‘1’
<
IFGOTO Label_1
PUSH ID_CONST_*1?
GOTO Label_2
Label_1: PUSH ID_VAR_‘X?
PUSH ID_VAR_‘X’
*
Label_2: STOP

Figure 3: An S-expression and its postfix program. If
the test returns FALSE, the Instruction Pointer jumps
to Label_1 and the FElse statement is executed.

e a PUSH instruction which pushes on the top of the
stack the value of a terminal,

e 3 IFGOTO and a GOTO instruction which are necessary
for branching if conditional functions are used,

e a STOP instruction which indicates the end of the
program.

As we will argue in the next section, it is more effective
to precompile prefix GP expressions into an equivalent
postfix program which can be interpreted by the virtual
machine. This postfix program is generated by travers-
ing the tree representing the S-expression. Two program
examples resulting from such a precompilation are pro-
vided in figures 2 and 3. The IFGOTO instruction jumps
to the label if the result of the test is FALSE, otherwise,
the execution of the program continues with the next
instruction (the first instruction of the Then statement).

To reiterate, in our implementation, each parallel ele-
ment is running a different genetic program. The parallel
interpreter of the SIMD machine reads the current post-
fix instruction for each virtual processor and sequentially
multiplexes each instruction, z.e, all processors for which

the current instruction is a PUSH become active and the
instruction is performed; other processors are inactive
(idle state). Then, the same operation is performed for
each of the other instructions in the instruction set in
turn. Once a STOP instruction is executed for a proces-
sor, that processor becomes idle, leaving the result of
its evaluation on the top of the stack. When all pro-
cessors have reached their STOP instruction, the parallel
evaluation of the entire population is complete.

Perkis ([12])) has already shown that the stack-based
approach for Genetic Programming can be very effi-
cient. However, in his approach, recombination can gen-
erate incorrect programs in the sense that it is unknown
whether there are enough elements in the stack to satisfy
the arity of a function at execution time. A constraint
was 1mplemented to protect the stack from underflow.
In our implementation, since the postfix program is the
precompilation of a S-expression, it is always correct and
one doesn’t have to deal with stack underflow. More-
over, the stack is protected from overflow by restricting
the depth of S-expressions resulting from recombination,
as described in [8). :

2.2 Parallel Precompilator and Interpreter

For many GP problems the fitness of an expression is
computed by evaluating it across a variety of inputs.
For example, in curve-fitting, or decision tasks, or sorting
networks, the expression must be evaluted multiple times
on different data in order to be judged as to its fitness.
This leads to the idea of using a data-parallel approach
where the same expression is simply evaluated with dif-
ferent data in parallel ([16]). Another approach to take
advantage of this feature is to precompile S-expressions
from prefix to postfix. This operation can be executed
once, and then the postfix program is evaluated multiple
times, amortizing the small cost of the precompilation.

The tree traversal algorithm which is the main compo-
nent of precompilation can be performed efficiently in
parallel by simulating on each processor a similar ab-
stract stack machine. In memory, a S-expression is rep-
resented by the list of its atoms, without the parentheses.
As long as we use a fixed arity (number of arguments)
for each primitive, and the S-expressions are syntacti-
cally valid, this string contains enough information to
fully represent the given tree. In the current implemen-
tation, each atom is coded on 1 byte. The most signifi-
cant bit indicates whether the atom is an operator or a
terminal and the remaining 7 bits represent its ID. For
terminals (variables or constants), the ID is an index
in the variables/constants area of the memory mapping.
The preorder tree traversal is performed simply by read-
ing sequentially the list where the S-expression is stored.
Then, using a stack, the postfix program is generated by
the algorithm presented in figure 4.

In order to be readable, this algorithm doesn’t present
the processing of the IF operator. To process this op-
erator, another stack is required to store the location of

program precompile (in: s_ezpression,
out: post fiz_prog);

begin
do begin
(1) read next atom a of s_expression;
(2) if a is an operator then begin
(3 stack_item.op = q;
(4) stack_item.counter = 0;
(5) push(stack_item);
end
else begin
(6) output(postfix_prog, “PUSH”);
7) output(postfix_prog, a);
do begin
(8) pop(stack_item);
(9) stack.item.counter =
stack_item.counter + 1;
(10) if arity(stack-item.op) =
stack_item.counter then begin
(11) output(postfix_prog, stack_item.op);
end
else begin
(12) push(stack_item);
end;
(13) until (arity(stack_item.op) <>
stack_item.counter) or stack is empty;
end;
(14) wuntil stack is empty;
end;

Figure 4: Precompilator algorithm.

labels whose address calculation is delayed. When the
instruction at the top of the stack is a IF, the end of
the Then statement is tested in order to insert a GOTO
instruction and to jump after the FElse statement. The
label of the IFGOTO instruction is calculated at the end
of the Then statement and the label of the GOTO instruc-
tion is calculated at the end of the FElse statement. The
result is a program like the one presented in figure 3.

2.3 Principal Sources of Overhead

There are three main sources of overhead in our paral-
lel model for GP. The first one is intrinsic to the SIMD
architecture itself: different instructions cannot be exe-
cuted at the same time on different processors. In our
model, this overhead is directly related to the size of
the instruction set interpreted by the virtual processor,
which is a few instructions more than the primitive func-
tion set for a given task. The second source of overhead
comes from the range of S-expression sizes across the
population. The third one comes from duplicated op-
eration from one generation to the next one (e.g., the
re-evaluation of an unchanged individual with the same
test cases).

For the first source of overhead, due to the SIMD sim-
ulation, it is possible to use simultaneous table lookup

S-expression:
(AND (OR X Y) (NOT (XOR X Y)))

Corresponding program:

PUSH ID_VAR_‘X’
PUSH ID_VAR_‘Y’
TBL_LK_2D ID_TBL_OR
PUSH ID_VAR_‘X’
PUSH ID_VAR_‘Y’
TBL_LK_2D ID_TBL_XOR
TBL_LK_1D ID_TBL_NOT
TBL_LK_2D ID_TBL_AND
STOP

Figure 5: An S-expression and its postfix program, using
the table lookup feature.

operations to reduce the actual size of the instruction set.
For example, if the domain of the primitives for the prob-
lem is finite and small, e.g. bits or bytes, all arithmetic
and logical operations with the same arity can be per-
formed at the same time, without multiplexing. Figure 5
presents a program that evaluates a boolean expression
using several different functions (And, Or, XOR, ...) but
only 2 actual instructions: TBL_LK_1D and TBL_LK_2D,
which pop 1 and 2 arguments from the stack, respec-
tively, execute the table lookup in the table whose ID is
provided as a parameter, and push the result on the top
of the stack. Without the table lookup feature, many
more problem specific instructions would have been re-
quired. Besides simple boolean functions, we expect that
simultaneous table lookup will have applications in other
symbolic problems.

For the second source, variance in program size, sev-
eral techniques apply. The simplest method involves
the management of a sub-population by each proces-
sor, with some form of load-balancing. We could also
implement a cutoff ([14]) where the largest and slow-
est population members are simply expunged. Finally,
we could use a “generation gap” or generational mixing,
where whenever, say, 50% of the population were idle,
we could apply reproduction to that subset of the pop-
ulation, crossed with its parents. We would continue to
evaluate the larger programs while beginning to evaluate
the new members.

The third source, duplication of effort, can be minimized
by using an appropriate strategy to manage the evolution
of the population, using ideas from steady-state GA’s
and caching fitness. Such a technique is proposed in
section 3.3 where the fitness is evaluated only for new
individuals.

2.4 Population Evolution

The previous sections presented the kernel of our par-
allel GP implementation. The main part is the parallel
evaluation of different S-expressions. The evolution of
the population is then managed according to the classi-

begin_in_parallel
/* Generate initial population*/
random_generate(s_expression);

do
precompile(s_expression, post fiz_prog);
evaluate_fitness(post fiz_prog);
selection();
recombination();
until stop condition is achieved;
end_in_parallel;

Figure 6: Population evolution.

cal GA framework sketched by the algorithm in figure
6.

In the current implementation, recombination opera-
tions are performed on S-expressions and not on the
postfix program. This explains why S-expressions are
precompiled at the beginning of each generation. We
are currently evaluating whether crossover can be fully
integrated with precompilation, so that we can cross over
on postfix programs with embedded conditional clauses.
One of the major problem is to deal effectively with label
updating.

3 Models for Fitness Evaluation,
Selection and Recombination

The MasPar MP-2 is a 2-dimensional wrap-around mesh
architecture. In our implementation, the population has
been modeled according to this architecture: an individ-
ual or a sub-population is assigned to each node of the
mesh and, therefore, has 4 neighbors. This architecture
allows us to implement different models for fitness eval-
uation, selection and recombination, using the kernel of
the parallel GP described in the previous sections.

In the next section, an approximation of the canonical
GP implemented around our architecture is presented.
Then, we will describe an example of co-evolution where
individuals fitness is the result of a tournament. Finally,
an example of an implementation involving local inter-
actions between sub-populations will be presented.

3.1 Implementation of Canonical GP

Taking fitness definition from [8], the raw fitness, the
standardized fitness and the adjusted fitness can be com-
puted independently by each processor. Then, the com-
putation of the normalized fitness requires a reduce step
to sum over all the individuals the adjusted fitness and
a broadcast step to provide the result of this global sum
to each processor. These two parallel operations require
O(log n) time, where n is the number of processors.

Using normalized fitness, we implemented both an asex-
ual and a sexual reproduction system, where each mem-
ber reproduces on average according to its fitness.

Given an asexual reproduction rate, say 0.2, 20% of the
individuals will replace themselves with an individual
selected using fitness-proportionate probability from a
specified local neighborhood. We chose this local neigh-
borhood, including self, of size Ny, = 15 x 15 = 225
as a compromise between getting a correct approxima-
tion of the roulette wheel method and the memory and
communication cost of the SIMD machine.

The sexual reproduction, or crossover operation for GP,
described in detail in [8], which involves cutting and
splicing between two S-expressions, is performed in the
following way in our implementation:

o the 80% of individuals which have not been asex-
ually replaced select two individuals in their local
neighborhood (including self), according to fitness-
proportionate probability (the same rule as for asex-
ual reproduction).

e Crossover is performed for these two parents.

e One of the two offsprings is arbitrarily chosen to
replace this individual.

This last operation is different from the basic GP which
keeps both offsprings. However, our approach is more
SIMD oriented, yet doesn’t introduce any bias in the
search since the new offsprings are still produced accord-
ingly to the distribution of the fitness among individuals
of the population. Moreover, this slight difference can
be eliminated if each processor is in charge of a sub-
population of individuals. The time complexity of the
crossover and asexual reproduction system is O(Nioe)
and its space complexity is O(v/Nj,.) for each processor.
The crossover operation is performed on a string repre-
sentation of the S-expressions in parallel using another
variant of our stack machine.

This model has been tested on 2 problems from [8]. Re-
sults are presented in section 4.

3.2 Fitness Evaluation with Tournament

The aim of this implementation is to reproduce some ex-
periments of Angeline and Pollack ([4]). We have not yet
implemented modular subroutines. In their experiments,
a population of Tic-Tac-Toe (TTT) players co-evolved.
No “expert” player was used to evaluate the fitness of
the different individuals, but more and more effective
strategies appeared as a result of this competitive co-
evolution: each time an individual evolves a new move
that would defeat most of the individuals, the emer-
gence of new individuals that would be able to counter
this move is facilitated. Ultimately, one could expect
the emergence of a perfect player (a player that could
only win or draw). Such a result has been achieved by
Rosin and Belew ([13]), where TTT strategies were rep-
resented as a table lookup. However, the representation
of strategies as a S-expression is more general and at-
tractive. Unfortunately, the emergence of a “perfect” GP
player hasn’t been achieved yet.

o 1 2 3 4 5 6 7
60 o o o o o o o

Figure 7: Divide-and-conquer communication pattern.

To evaluate the fitness of each individual in the popula-
tion, a tournament has been organized in the following
way:

e First, we did not use single-elimination as in [4] be-
cause this is not an effective use of SIMD. In order
to keep using all the processors to refine our fitness
estimate, winners at a round will meet in the same
pool at the next round and losers will compete in
another pool.

e At the end of the tournament, each individual’s fit-
ness is calculated from its total number of wins and
draws across mastches.

For each round of the tournament, all the processors are
paired according to the divide-and-conquer communica-
tion pattern (such a pattern is presented in figure 7, in
the case of 8 processors) and perform the following op-
erations:

o the program of the other paired processor is copied
into their own memory,

e amatch is played for which the local program is the
first to move. As a result, each individual plays two
matches: it is the first to move for one of them and
it is the second to move for the other match.

e the result of the two matches is analyzed by one
processor from each pair: 2 points are assigned for
a win, 1 point for a draw and 0 for a defeat. The
program that gets the larger score is assigned to the
left processor and the second one is assigned to the
right one (randomly in case of draw). This way,
using divide and conquer, winners will meet each
other in the next round, and more information will
be gathered for strategy evaluation, while the same
log » number of tournament steps are performed.

At the end of the tournament, it is straightforward to
collect total score (or fitness) for each individual. Some
results of our experiments are presented in section 4.

Table 1: Results and time performance.

Problems:

Discovery of Trigonometric

Symbolic Integration

Identities (section 10.5 from [8])
(section 10.1 from [8])
Objective function cos(2z) cosz + 2z + 1
Number of runs 10
Number of 5 to 29 gen. 4 to 7 gen.
Generations (average: 17.5) (average: 5.6)

Execution time
(for one run)

7.24 to 50.13 seconds
(average: 30.48 sec.)

23.09 to 40.38 seconds
(average: 32.31 sec.)

Average execution
time for 1 generation

1.75 sec.

5.75 sec.

3.3 Population Evolution with Local
Interactions

The idea of this implementation is to study a model
of sub-populations that interact locally one with each
other, similar to the model presented by Ackley and
Littman in [1] and [2]. This model has also been tested
with the Tic-Tac-Toe problem.

In our experiments, each processor manages a sub-
population of 16 individuals. A table in which is stored
the result of the competition between all possible pairs of
individuals in the sub-population is maintained by each
processor. At each generation, 2 successive operations
are performed by each processor:

e a selection/reproduction round: 2 parents in the
sub-population are selected according to a fitness-
proportionate probability and are crossed. The re-
sulting offspring replaces one of the less fit individ-
uals (using an inverse fitness-proportionate proba-
bility rule).

¢ a migration round: an individual is selected uni-
formly randomly in each sub-population and all
those individuals migrate in the same direction to
one of the neighboring sub-population.

Therefore, only the results of matches against the 2 new
individuals have to be updated in the table.

4 Results and Performance

We performed our first experiments with a population
of 4096 individuals. Table 1 presents results and perfor-
mance on two problems from [8], using the same speci-
fications (except for the population size). We were able
to achieve the evaluation of about 2, 350 S-expressions in
1 second (on average) for the discovery of trigonometric
identities and the evaluation of about 710 S-expressions
in 1 second (on average) for the symbolic integration
problem.

We also reproduced experiments presented in [4] with
this same population size, using the model of “global

tournament” presented in section 3.2, or with a popu-
lation size of 64K, using the model of sub-populations
interacting locally described in section 3.3. In those ex-
periments, the size of S-expressions was limited either
to 256, 512 or 1024 atoms, and a maximal depth of 50.
Table 2 presents the execution time for one generation
in the case of the “global tournament” model, once the
size of the largest S-expressions reached the upper limit.
For this model, each individual plays 24 matches at each
generation, being the first player for half of them, and
the second for the other half. We were able to achieve
up to 8,192 games in one second (with a maximum of
256 atoms) on our 4K processors MasPar. This perfor-
mance has been achieved using the table look-up feature
presented in section 2.3.

In their experiments, Angeline and Pollack used a pop-
ulation of 1000 individuals and each run was about 200
generations. In our first experiments, we observed the
same results as Angeline and Pollack, still not achieving
a perfect player.

For the sub-population model, time performance and re-
sults are similar to the ones we got with the “global
tournament” model. For a very long run (more than
3,000 generations), the emergence of an individual that
cannot lose when playing first has eventually been ob-
served. This let us think that the emergence of a perfect
player using the GP approach and coevolution should
be possible. Rosin and Belew ([13]) managed to evolve
a perfect strategy for Tic-Tac-Toe after a simulated co-
evolution for which about 3 million games were played.
However, their genotype representation is such that only
legal moves can be considered. In the more general repre-
sentation proposed by Angeline and Pollack, individuals
have to learn the game rules, i.e., they have to evolve
a strategy that prevent them from playing in a position
which is already occupied (for example). As a result, the
size of the search space is considerably larger.

5 Conclusion

This paper described an implementation of parallel Ge-
netic Programming on a SIMD computer and showed its
efficiency on a few representative problems. Despite the

Table 2: Time performance for one generation for the
co-evolution of Tic-Tac-Toe players.

256

Maximum number 512 1024
of atoms
Execution time
for one generation
(on average)
Total number of
games per second

(on average)

6 sec. | 10 sec. | 18 sec.

8192 | 4915 2730

fact that there is overhead in multiplexing basic opera-
tions, and in precompiling prefix expressions to postfix
programs, we were able to achieve quite an efficient par-
allel GP engine.

The initial goal of this project was to exploit the huge
peak performance of our SIMD computer (17 Gips for
a 4K processor MP-2) for evolutionary learning research
applications. With 4k processors, even utilitizing 1/10th
of the capacity of this machine would be more produc-
tive than running over a small group of workstations. We
were surprised that our first experimental results showed
that this goal could be easily achieved at the condition
that the virtual processor’s instruction set can be kept
small, the performance being directly (linearly) related
to the size of this set. We have also seen that while
expression evaluation involves a lot of overhead, repro-
duction and crossover have effective massively parallel
models ([6; 7; 15]).

This technique has also a few drawbacks: In particu-
lar, implementation of high-level features like modular
subprograms ([3; 9]) may require a great deal of effort.
Although, it is possible that a simple trick like a CALL
instruction and a return stack would also work.

We believe that this technique is very promising and even
more impressive results can be achieved for problems
in which the function set can be specified in the same
instruction set as our overall model. Indeed, in that case,
it may be possible to overlap execution of the primitive
functions using table look-up techniques.

There is still a lot of work to do, but we have shown
that our SIMD approach to massively parallel Genetic
Programming is both plausible and efficient.

References

[1] David H. Ackley and Michael L. Littman. A Case
for Lamarckian Evolution. In Artificial Life III, Ed.
Christopher G. Langton, Addison-Wesley, 1994.

[2] David H. Ackley and Michael L. Littman. Altruism
in the Evolution of Communication. In Artificial Life
IV, Brooks and Maes, Eds. MIT Press, 1994, pp. 40-
48.

(3] Peter J. Angeline and Jordan B. Pollack. The Evolu-
tionary Induction of Subroutines. In The Fourteenth

Annual Conference of the Cognitive Science Society,
Bloomington Indiana, 1992.

(4] Peter J. Angeline and Jordan B. Pollack. Competi-
tive Environments Evolve Better Solutions for Com-
plex Tasks. In The Fifth International Conference on
Genetic Algorithms, Morgan Kaufmann Publishers,
1993, pp. 264-270.

[5] W. Daniel Hillis and Guy L. Steele Jr. Data Parallel
Algorithms. In IEEE Computers, 29, pp.1170-1183,
1986.

[6] W. Daniel Hillis. Co-Evolving Parasites Improve
Simulated Evolution as an Optimization Procedure.
In Artificial Life II, Langton, et al, Eds. Addison
Wesley, 1992, pp. 313-324.

[7) David Jefferson, Robert Collins, Claus Cooper,
Michael Dyer, Margot Flowers, Richard Korf,
Charles Taylor, and Alan Wang. Evolution as a
Theme in Artificial Life: The Genesys/Tracker Sys-
tem. In Artificial Life I, Langton, et al, Eds. Addi-
son Wesley, 1992, pp. 549-578.

[8] John R. Koza. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion. MIT Press, 1992.

[9] John R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press, 1994.

[10] John R. Koza and David André. Parallel Genetic
Programming on a Network of Transputers. Techni-
cal report. Stanford University. 1995.

[11] Michael S. Littman and Christopher D. Metcalf. An
Exploration of Asynchronous Data-Parallelism. Per-
sonal communication. 1990.

[12] Timothy Perkis. Stack-Based Genetic Program-
ming. In Proceedings of the 1994 IEEE World
Congress on Computational Intelligence. IEEE Press.

[13] Christopher D. Rosin and Richard K. Belew. Meth-
ods for Competitive Co-evolution: Finding Oppo-
nents Worth Beating. In Proceedings of the Sizth In-
ternational Conference on Genetic Algorithms, 1995,
pp- 373-380.

[14] Karl Sims. Evolving 3D Morphology and Behavior
by Competition. In Artificial Life IV, Brooks and
Maes, Eds. MIT Press, 1994, pp. 28-39.

[15] Reiko Tanese. Distributed Genetic Algorithms. In
Proceedings of the Third International Conference on
Genetic Algorithms, 1989, pp. 434-439.

[16] Patrick Tufts. Parallel Case Evaluation for Genetic
Programming. In 1993 Lectures in Complex Systems,
Eds. L. Nadel and D. Stein, SFI Studies in the Sci-
ences of Complexity, Lec. Vol. VI, Addison-Wesley,
1995, pp.591-596.

