Skip to main content
Log in

A hybrid \(\text{ M}5^\prime \)-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Recent years have seen various rapid prototyping (RP) processes such as fused deposition modelling (FDM) and three-dimensional printing being used for fabricating prototypes, leading to shorter product development times and less human intervention. The literature reveals that the properties of RP built parts such as surface roughness, strength, dimensional accuracy, build cost, etc are related to and can be improved by the appropriate settings of the input process parameters. Researchers have formulated physics-based models and applied empirical modelling techniques such as regression analysis and artificial neural network for the modelling of RP processes. Physics-based models require in-depth understanding of the processes which is a formidable task due to their complexity. The issue of improving trustworthiness of the prediction ability of empirical models on test (unseen) samples is paid little attention. In the present work, a hybrid M5\(^{\prime }\)-genetic programming (M5\(^{\prime }\)-GP) approach is proposed for empirical modelling of the FDM process with an attempt to resolve this issue of ensuring trustworthiness. This methodology is based on the error compensation achieved using a GP model in parallel with a M5\(^{\prime }\) model. The performance of the proposed hybrid model is compared to those of support vector regression (SVR) and adaptive neuro fuzzy inference system (ANFIS) model and it is found that the M5\(^{\prime }\)-GP model has the goodness of fit better than those of the SVR and ANFIS models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ahn, D., Kweon, J. H., Kwon, S., Song, J., & Lee, S. (2009). Representation of surface roughness in fused deposition modeling. Journal of Materials Processing Technology, 209, 5593–5600.

    Google Scholar 

  • Aijun, L., Zhuohui, Z., Daoming, W., & Jinyong, Y. (2010). Optimization method to fabrication orientation of parts in fused deposition modeling rapid prototyping. IEEE International Conference on Mechanic Automation and Control engineering (MACE) (pp. 416–419).

  • Anitha, R., Arunachalam, S., & Radhakrishnan, P. (2001). Critical parameters influencing the quality of prototypes in fused deposition modelling. Journal of Materials Processing Technology, 118, 385–388.

    Article  Google Scholar 

  • Azadeh, A., Saberi, M., Anvari, M., & Mohamadi, M. (2011). An integrated artificial neural network-genetic algorithm clustering ensemble for performance assessment of decision making units. Journal of Intelligent Manufacturing, 22, 229–245.

    Article  Google Scholar 

  • Basak, D., Pal, S., & Patranabis, D. C. (2007). Support vector regression. Neural Information Processing-Letters and Reviews, 11, 203–224.

    Google Scholar 

  • Baziar, M. H., Jafarian, Y., Shahnazari, H., Movhed, V., & Amin Tutunchian, M. (2011). Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: An evolutionary approach. Computers & Geosciences, 37(11), 1883–1893.

    Google Scholar 

  • Bernard, A., & Fischer, A. (2002). New trends in rapid product development. CIRP Annals-Manufacturing Technology, 51, 635–652.

    Article  Google Scholar 

  • Bhattacharya, B., & Solomatine, D. (2005). Neural networks and \(\text{ M}5^\prime \) model trees in modelling water level-discharge relationship. Neurocomputing, 63, 381–396.

    Article  Google Scholar 

  • Borges, C. E., Alonso, C. L., & Montana, J. L. (2010). Model selection in genetic programming. In Genetic and evolutionary computation conference (GECCO) (pp. 985–986). ACM.

  • Brezak, D., Majetic, D., Udiljak, T., & Kasac, J. (2012). Tool wear estimation using an analytic fuzzy classifier and support vector machines. Journal of Intelligent Manufacturing, 23, 797–809.

    Article  Google Scholar 

  • Buyukbingol, E., Sisman, A., Akyildiz, M., Alparslan, F. N., & Adejare, A. (2007). Adaptive neuro-fuzzy inference system (ANFIS): A new approach to predictive modeling in QSAR applications: A study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists. Bioorganic & Medicinal Chemistry, 15, 4265–4282.

    Article  Google Scholar 

  • Byun, H. S., & Lee, K. H. (2006). Determination of the optimal build direction for different rapid prototyping processes using multi-criterion decision making. Robotics and Computer-Integrated Manufacturing, 22, 69–80.

    Google Scholar 

  • Byvatov, E., & Schneider, G. (2003). Support vector machine applications in bioinformatics. Applied Bioinformatics, 2, 67–77.

    Google Scholar 

  • Campanelli, S., Cardano, G., Giannoccaro, R., Ludovico, A., and Bohez, E. (2007). Statistical analysis of the stereolithographic process to improve the accuracy. Computer-Aided Design, 39, 80–86.

    Article  Google Scholar 

  • Carrascal, A., & Alberdi, A. (2010). Evolutionary industrial physical model generation. Hybrid Artificial Intelligence Systems, 6076, 327–334.

    Google Scholar 

  • Casalino, G., De Filippis, L., Ludovico, A., & Tricarico, L. (2002). An investigation of rapid prototyping of sand casting molds by selective laser sintering. Journal of Laser Applications, 14, 100–106.

    Article  Google Scholar 

  • Çaydas, U., & Ekici, S. (2012). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, 23, 639–650.

    Article  Google Scholar 

  • Chang, D. Y., & Huang, B. H. (2011). Studies on profile error and extruding aperture for the RP parts using the fused deposition modeling process. The International Journal of Advanced Manufacturing Technology, 53, 1027–1037.

    Article  Google Scholar 

  • Chatterjee, S., & Hadi, A. S. (2006). Regression analysis by example. New York: Wiley.

    Book  Google Scholar 

  • Cheng, R., Wu, X., & Zheng, J. (2010). Improving dimensional accuracy of SLS processed part using Taguchi method. Fourth International seminar on Modern cutting and Measurement engineering. Proceedings of the SPIE, 7997, 799715–799715-5.

    Article  Google Scholar 

  • Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2, 267–278.

    Google Scholar 

  • Choi, J. W., Quintana, R., & Wicker, R. B. (2011). Fabrication and characterization of embedded horizontal micro-channels using line-scan stereolithography. Rapid Prototyping Journal, 17, 351–361.

    Google Scholar 

  • Dixit, P. M., & Dixit, U. S. (2008). Modeling of metal forming and machining processes: By finite element and soft computing methods. Berlin: Springer.

    Google Scholar 

  • Duan, B., Cheung, W. L., & Wang, M. (2011). Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication, 3, 015001.

    Article  Google Scholar 

  • Equbal, A., Sood, A. K., & Mahapatra, S. (2011). Prediction of dimensional accuracy in fused deposition modelling: A fuzzy logic approach. International Journal of Productivity and Quality Management, 7, 22–43.

    Article  Google Scholar 

  • Erginel, N. (2010). Modeling and analysis of packing properties through a fuzzy inference system. Journal of Intelligent Manufacturing, 21, 869–874.

    Article  Google Scholar 

  • Etemad-Shahidi, A., & Mahjoobi, J. (2009). Comparison between \(\text{ M}5^\prime \)’ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Engineering, 36, 1175–1181.

    Article  Google Scholar 

  • Flores, J., & Graff, M. (2005). System identification using genetic programming and gene expression programming. Computer and Information Sciences-ISCIS, 3733(2005), 503–511.

    Google Scholar 

  • Gaitonde, V. N., & Karnik, S. R. (2012). Minimizing burr size in drilling using artificial neural network (ANN)-particle swarm optimization (PSO) approach. Journal of Intelligent Manufacturing, 23, 1783–1793.

    Article  Google Scholar 

  • Garg, A., & Tai, K. (2011). A hybrid genetic programming-artificial neural network approach for modeling of vibratory finishing process. In International Proceedings of Computer Science and Information Technology (IPCSIT) (vol. 18, pp. 14–19).

  • Garg, A., & Tai, K. (2012a). Comparison of regression analysis, artificial neural network and genetic programming in handling the multicollinearity problem. In Proceedings of 2012 international conference on modelling, identification & control (ICMIC 2012), Wuhan, China, 24–26 June 2012 (pp. 353–358), IEEE.

  • Garg, A., & Tai, K. (2012b). Review of genetic programming in modeling of machining processes. In Proceedings of 2012 international conference on modelling, identification & control (ICMIC 2012), Wuhan, China, 24–26 June 2012 (pp. 653–658). IEEE.

  • Gologlu, C., & Arslan, Y. (2009). Zigzag machining surface roughness modelling using evolutionary approach. Journal of Intelligent Manufacturing, 20, 203–210.

    Article  Google Scholar 

  • Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS technical report, 14.

  • Gupta, A. K. (2008). Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression. International Journal of Production Research, 48, 763–778.

    Article  Google Scholar 

  • Hearst, M. A., Dumais, S., Osman, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and Their Applications, 13, 18–28.

    Article  Google Scholar 

  • Hiden, H.G. (1998). Data-based modelling using genetic programming. PhD Thesis, Dept. Chemical and Process Engineering, University of Newcastle, UK.

  • Hinchliffe, M., Hiden, H., Mckay, B., Willis, M., Tham, M., & Barton, G. (1996). Modelling chemical process systems using a multi-gene genetic programming algorithm (pp. 28–31). Late breaking paper, GP’96. Stanford.

  • Hopkinson, N., Hague, R., & Dickens, P. (2006). Rapid manufacturing. New York: Wiley.

    Google Scholar 

  • Iba, H., & Sasaki, T. (1996). Using genetic programming to predict financial data. In IEEE Proceedings of congress on evolutionary computation (CEC) (vol. 1, pp. 244–251).

  • Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, and Cyber, 23, 665–685.

    Google Scholar 

  • Jeguirim, S. E. G., Dhouib, A. B., Sahnoun, M., Cheikhrouhou, M., Schacher, L., & Adolphe, D. (2011). The use of fuzzy logic and neural networks models for sensory properties prediction from process and structure parameters of knitted fabrics. Journal of Intelligent Manufacturing, 22, 873–884.

    Article  Google Scholar 

  • Katherasan, D., Elias, J. V., Sathiya, P., & Haq, A. N. (2012). Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. Journal of Intelligent Manufacturing, 23, 1–10.

    Article  Google Scholar 

  • Kecman, V. (2001). Learning and soft computing: Support vector machines, neural networks, and fuzzy logic models. Cambridge, MA: MIT press.

  • Kennard, R. W., & Stone, L. A. (1969). Computer aided design of experiments. Technometrics, 11, 137–148.

    Article  Google Scholar 

  • Kotanchek, M., Smits, G., & Vladislaveva, E. (2008). Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models. Genetic Programming Theory and Practice, V, 201–220.

  • Kovacic, M., Balic, J., & Brezocnik, M. (2004). Evolutionary approach for cutting forces prediction in milling. Journal of Materials Processing Technology, 155, 1647–1652.

    Article  Google Scholar 

  • Kovacic, M., & Brezocnik, M. (2003). Genetic programming approach for surface quality prediction. Tehnicki Vjesnik, 10, 19–24.

    Google Scholar 

  • Koza, J. R. (1994). Genetic programming II: Automatic discovery of reusable programs.

  • Kroh, M., Bonten, C., & Eyerer, P. (2011). Effects of process parameters on additive assisted laser sintering of polyetheretherketone. In Soceity of plastic engineers (SPE) annual technical conference (vol. 2, pp. 1806–1811).

  • Kruth, J. P., & Kumar, S. (2005). Statistical analysis of experimental parameters in selective laser sintering. Advanced Engineering Materials, 7, 750–755.

    Article  Google Scholar 

  • Kumagai, A., Liu, T. I., & Hozian, P. (2006). Control of shape memory alloy actuators with a neuro-fuzzy feedforward model element. Journal of Intelligent Manufacturing, 17, 45–56.

    Article  Google Scholar 

  • Kumar, G. P., & Regalla, S. P. (2012). Optimization of support material and build time in fused deposition modeling (FDM). Applied Mechanics and Materials, 110, 2245–2251.

    Google Scholar 

  • Kuschu, I. (2002). Genetic programming and evolutionary generalization. Evolutionary Computation, IEEE Transactions on, 6, 431–442.

  • Laeng, J., Khan, Z. A., & Khu, S. (2006). Optimizing flexible behaviour of bow prototype using Taguchi approach. Journal of Applied Sciences, 6, 622–630.

    Article  Google Scholar 

  • Lee, S., Park, W., Cho, H., Zhang, W., & Leu, M. (2001). A neural network approach to the modelling and analysis of stereolithography processes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215, 1719–1733.

    Article  Google Scholar 

  • Li, C. L., Fu, G. Y., & Guo, K. B. (2011). Study on forecast of forming temperature of ABS resign during fused deposition manufacturing by fuzzy comprehensive evaluation. Key Engineering Materials, 464, 264–267.

    Article  Google Scholar 

  • Li, T. S., Huang, C. L., & Wu, Z. Y. (2006). Data mining using genetic programming for construction of a semiconductor manufacturing yield rate prediction system. Journal of Intelligent Manufacturing, 17, 355–361.

    Article  Google Scholar 

  • Liu, W., Liu, Q., Ruan, F., Liang, Z., & Qiu, H. (2007). Springback prediction for sheet metal forming based on GA-ANN technology. Journal of Materials Processing Technology, 187, 227–231.

    Article  Google Scholar 

  • Mahesh, M., Fuh, J., Wong, Y., & Loh, H. (2005). Benchmarking for decision making in rapid prototyping systems. In IEEE International Conference on Automation Science and, Engineering (pp. 19–24).

  • Mansour, S., & Hague, R. (2003). Impact of rapid manufacturing on design for manufacture for injection moulding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217, 453–461.

    Article  Google Scholar 

  • May, R., Maier, H. R., & Dandy, G. C. (2010). Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Networks, 23, 283–294.

    Article  Google Scholar 

  • Monzon, M., Hernandez, P. M., Benitez, A. N., Marrero, M. D., & Fernandez, Á. (2009). Predictability of plastic parts behaviour made from rapid manufacturing. Tsinghua Science & Technology, 14, 100–107.

    Article  Google Scholar 

  • Munguia, J., Ciurana, J., & Riba, C. (2009). Neural-network-based model for build-time estimation in selective laser sintering. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223, 995–1002.

    Article  Google Scholar 

  • Pandey, P. M., Venkata Reddy, N., & Dhande, S. G. (2003). Improvement of surface finish by staircase machining in fused deposition modeling. Journal of materials processing technology, 132, 323–331.

    Article  Google Scholar 

  • Park, T. C., Kim, U. S., Kim, L. H., Jo, B. W., & Yeo, Y. K. (2010). Heat consumption forecasting using partial least squares, artificial neural network and support vector regression techniques in district heating systems. Korean Journal of Chemical Engineering, 27, 1063–1071.

    Article  Google Scholar 

  • Pearson, R. K., & Pottmann, M. (2000). Gray-box identification of block-oriented nonlinear models. Journal of Process Control, 10, 301–315.

    Article  Google Scholar 

  • Pelckmans, K., Suykens, J. A. K., Vangestel, T., DE Brabanter, J., Lukas, L., Hamers, B., et al. (2002). LS-SVMlab: A matlab/c toolbox for least squares support vector machines. Tutorial. Leuven: KULeuven-ESAT.

    Google Scholar 

  • Pham, D., & Gault, R. (1998). A comparison of rapid prototyping technologies. International Journal of Machine Tools and Manufacture, 38, 1257–1287.

    Article  Google Scholar 

  • Quinlan, J. R. (1992). Learning with continuous classes. In Proceedings of the fifth Australian joint conference on artificial intelligence (pp. 343–348). Singapore: World Scientific.

  • Quintana, R., Choi, J. W., Puebla, K., & Wicker, R. (2010). Effects of build orientation on tensile strength for stereolithography-manufactured ASTM D-638 type I specimens. The International Journal of Advanced Manufacturing Technology, 46, 201–215.

    Article  Google Scholar 

  • Reddy, T., Kumar, Y. R., & Rao, C. (2006). Determination of optimum process parameters using Taguchi’s approach to improve the quality of SLS parts. In Proceedings of the 17th IASTED international conference on Modelling and simulation. ACTA Press (pp. 228–233).

  • Rowland, J. (2003). Model selection methodology in supervised learning with evolutionary computation. Biosystems, 72, 187–196.

    Article  Google Scholar 

  • Salgado, D., & Alonso, F. (2007). An approach based on current and sound signals for in-process tool wear monitoring. International Journal of Machine Tools and Manufacture, 47, 2140–2152.

    Article  Google Scholar 

  • Salgado, D., Alonso, F., Cambero, I., & Marcelo, A. (2009). In-process surface roughness prediction system using cutting vibrations in turning. The International Journal of Advanced Manufacturing Technology, 43, 40–51.

    Article  Google Scholar 

  • Saptoro, A., Tade, M. O., & Vuthaluru, H. (2012). A modified Kennard-stone algorithm for optimal division of data for developing artificial neural network models. Chemical Product and Process Modeling, 7, 13.

    Article  Google Scholar 

  • Searson, D. P., Leahy, D. E., & Willis, M. J. (2010). GPTIPS: An open source genetic programming toolbox for multigene symbolic regression. In International multiconference of engineers and computer scientists 2010 (vol. 1, pp. 77–80).

  • Sharma, V. S., Sharma, S. K., & Sharma, A. K. (2008). Cutting tool wear estimation for turning. Journal of Intelligent Manufacturing, 19, 99–108.

    Article  Google Scholar 

  • Shen, X., Yao, J., Wang, Y., & Yang, J. (2004). Density prediction of selective laser sintering parts based on artificial neural network. In Advances in neural networks-ISNN 2004 (vol. 3174/2004, pp. 153–165).

  • Solomatine, D. P., & Siek, M. (2004). Flexible and optimal M5 model trees with applications to flow predictions. In Liong, Phoon, & Babovic (Eds.), Proceedings of the sixth international conference on hydroinformatics. Singapore: World Scientific.

  • Solomatine, D. P., & Xue, Y. (2004). M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China. Journal of Hydrologic Engineering, 9, 491– 501.

    Google Scholar 

  • Sood, A., Ohdar, R., & Mahapatra, S. (2010a). A hybrid ANN-BFOA approach for optimization of FDM process parameters. Swarm, Evolutionary, and Memetic Computing, 6466, 396–403.

    Article  Google Scholar 

  • Sood, A., Ohdar, R., & Mahapatra, S. (2010b). Parametric appraisal of fused deposition modelling process using the grey Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224, 135–145.

    Article  Google Scholar 

  • Sood, A. K., Equbal, A., Toppo, V., Ohdar, R., & Mahapatra, S. (2011a). An investigation on sliding wear of FDM built parts. CIRP Journal of Manufacturing Science and Technology, 1, 48–54.

    Google Scholar 

  • Sood, A. K., Ohdar, R., & Mahapatra, S. (2009). Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Materials & Design, 30, 4243–4252.

    Article  Google Scholar 

  • Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2011b). Experimental investigation and empirical modelling of FDM process for compressive strength improvement. Journal of Advanced Research, 3, 81–90.

    Article  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of system and its applications to modelling and control. IEEE Trans. Syst., Man, and Cyber, 15, 116–132.

    Article  Google Scholar 

  • Thrimurthuli, K., Pandey, P. M., & Venkata Reddy, N. (2004). Optimum part deposition orientation in fused deposition modeling. International Journal of Machine Tools and Manufacture, 44, 585–594.

    Article  Google Scholar 

  • Upcraft, S., & Fletcher, R. (2003). The rapid prototyping technologies. Assembly Automation, 23, 318–330.

    Article  Google Scholar 

  • Vapnik, V. (1995). The nature of statistical learning. New York: Springer.

  • Vosniakos, G., Maroulis, T., & Pantelis, D. (2007). A method for optimizing process parameters in layer-based rapid prototyping. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221, 1329–1340.

  • Wang, G., Wang, Y., Zhao, J., & Chen, G. (2012). Process optimization of the serial-parallel hybrid polishing machine tool based on artificial neural network and genetic algorithm. Journal of Intelligent Manufacturing, 23, 365–374.

    Google Scholar 

  • Wang, R. J., Li, J., Wang, F., & Li, X. (2009). ANN model for the prediction of density in selective laser sintering. International Journal of Manufacturing Research, 4, 362–373.

    Article  Google Scholar 

  • Wang, W., Cheah, C., Fuh, J., & Lu, L. (1996). Influence of process parameters on stereolithography part shrinkage. Materials & Design, 17, 205–213.

    Article  Google Scholar 

  • Wang, Y., & Witten, I. H. (1996). Induction of model trees for predicting continuous classes (Working paper 96/23). Hamilton, New Zealand: University of Waikato, Department of Computer Science

  • Wiedemann, B., & Jantzen, H. A. (1999). Strategies and applications for rapid product and process development in Daimler-Benz AG. Computers in Industry, 39, 11–25.

    Article  Google Scholar 

  • Willis, M., Hiden, H., Hinchliffe, M., Mckay, B., & Barton, G. W. (1997). Systems modelling using genetic programming. Computers & Chemical Engineering, 21, S1161–S1166.

    Article  Google Scholar 

  • Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (2nd ed.). Burlington, MA: Morgan Kaufmann.

  • Yan, X., & Gu, P. (1996). A review of rapid prototyping technologies and systems. Computer-Aided Design, 28, 307–318.

    Article  Google Scholar 

  • Zadeh, L. A. (1994). Fuzzy logic, neural networks, and soft computing. Communications of the ACM, 37, 77–84.

    Article  Google Scholar 

  • Zhang, Y., & Bhattacharyya, S. (2004). Genetic programming in classifying large-scale data: An ensemble method. Information Sciences, 163, 85–101.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Singapore Ministry of Education Academic Research Fund through research grant RG30/10, which the authors gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, A., Tai, K., Lee, C.H. et al. A hybrid \(\text{ M}5^\prime \)-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process. J Intell Manuf 25, 1349–1365 (2014). https://doi.org/10.1007/s10845-013-0734-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-013-0734-1

Keywords

Navigation