
Poznan University of Technology

Institute of Computing Science

Algorithms for Test-Based Problems

Wojciech Jaśkowski

A dissertation submitted to

the Council of the Faculty of Computing and Information Science

in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Supervisor

Krzysztof Krawiec, PhD Dr Habil.

Poznań, Poland

2011

To my dearest wife Dobrosia

In loving memory of my father Piotr Jaśkowski

Acknowledgments

The work described here was carried out between October 2006 and May 2011 in the

Laboratory of Intelligent Decision Support Systems at the Faculty of Computing and

Information Science at Poznan University of Technology. Numerous people helped me

through this effort and I’d like to mention some of them here. Most of all, I deeply

thank my supervisor Krzysztof Krawiec for a lot of heart he put in guiding me. His

enthusiasm, inspiration, insightful remarks, and, last but not least, gentle motivation

were all invaluable. I will never forget the atmosphere of late-night hours spent together

online writing last-minute papers for some conferences. I would like also to express

my gratitude to my collaborators and friends Bartosz Wieloch and Marcin Szubert for

insightful discussions, cooperation and for what I have learned from them.

I gratefully acknowledge the grant #NN516188337 from the Polish Ministry of Sciences

I was awarded for the time period 09.2009–08.2011 and a scholarship from Sectoral

Operational Programme ’Human Resources Development’, Activity 8.2, co-financed by

the European Social Fund and the Government of Poland which I was awarded in 2009.

Finally, my deepest thanks, love, and affection go to my parents Ewa and Piotr, my

brother Maciej, and my wife Dobrosia. For their love, patience, and support I am forever

grateful.

Poznań, in May 2011

5

Abstract

Problems in which some elementary entities interact with each other are common in

computational intelligence. This scenario, typical for coevolving artificial-life agents,

learning strategies for games, and machine learning from examples, can be formalized as

a test-based problem and conveniently embedded in the common conceptual framework

of coevolution. In test-based problems candidate solutions are evaluated on a number of

test cases such as agents, opponents or examples. Although coevolutionary algorithms

proved successful in some applications, they also turned out to have hard to predict dy-

namics and fail to sustain progress during a run, thus being unable to obtain competitive

solutions for many test-based problems.

It has been recently shown that one of the reasons why coevolutionary algorithms

demonstrate such undesired behavior is the aggregation of results of interactions be-

tween individuals representing candidate solutions and tests, which typically leads to

characterizing the performance of an individual by a single scalar value. In order to

remedy this situation, in the thesis, we make an attempt to get around the problem of

aggregation using two methods.

First, we introduce Fitnessless Coevolution, a method for symmetrical test-based prob-

lems. Fitnessless Coevolution plays games between individuals to settle tournaments in

the selection phase and skips the typical phase of evaluation and the aggregation of re-

sults connected with it. The selection operator applies a single-elimination tournament

to a randomly drawn group of individuals, and the winner of the final round becomes the

result of selection. Therefore, Fitnessless Coevolution does not involve explicit fitness

measure and no aggregation of interaction results is required. We prove that, under

a condition of transitivity of the payoff matrix, the dynamics of Fitnessless Coevolution

is identical to that of the traditional evolutionary algorithm. The experimental results,

obtained on a diversified group of problems, demonstrate that Fitnessless Coevolution

is able to produce solutions that are equally good or better than solutions obtained us-

ing fitness-based one-population coevolution with different selection methods. In a case

study, we provide the complete record of methodology that let us evolve BrilliAnt, the

winner of the Ant Wars contest. We detail the coevolutionary setup that lead to Bril-

7

liAnt’s emergence, assess its direct and indirect human-competitiveness, and describe

the behavioral patterns observed in its strategy.

Second, we study the consequences of the fact that the problem of aggregation of

interaction results may be got around by regarding every test of a test-based problem

as a separate objective, and the whole problem as a multi-objective optimization task.

Research on reducing the number of objectives while preserving the relations between

candidate solutions and tests led to the notions of underlying objectives and internal

problem structure, which can be formalized as a coordinate system that spatially arranges

candidate solutions and tests. The coordinate system that spans the minimal number of

axes determines the so-called dimension of a problem and, being an inherent property of

every test-based problem, is of particular interest. We investigate in-depth the formalism

of coordinate system and its properties, relate them to the properties of partially ordered

sets, and design an exact algorithm for finding a minimal coordinate system. We also

prove that this problem is NP-hard and come up with a heuristic which is superior to the

best algorithm proposed so far. Finally, we apply the algorithms to several benchmark

problems to demonstrate that the dimension of a problem is typically much lower than

the number of tests. Our work suggest that for at least some classes of test-based

problems, the dimension of a problem may be proportional to the logarithm of number

of tests.

Based on the above-described theoretical results, we propose a novel coevolutionary

archive method founded on the concept of coordinate systems, called Coordinate System

Archive (COSA), and compare it to two state-of-the-art archive methods, IPCA and

LAPCA. Using two different objective performance measures, we find out that COSA is

superior to these methods on a class of artificial test-based problems.

8

Preface

Some research and portions of text presented in this dissertation appear in the following

publications:

• Chapter 3 Wojciech Jaśkowski, Bartosz Wieloch, and Krzysztof Krawiec. Fit-

nessless Coevolution. In Maarten Keijzer et al., editor, GECCO ’08: Proceedings

of the 10th annual conference on genetic and evolutionary computation, pages 355–

362, Atlanta, GA, USA, 2008. ACM [65].

• Chapter 4 Wojciech Jaśkowski, Krzysztof Krawiec, and Bartosz Wieloch. Win-

ning Ant Wars: evolving a human-competitive game strategy using fitnessless selec-

tion. In M. O’Neill et al., editor, Genetic Programming 11th European Conference,

EuroGP 2008, Proceedings, volume 4971 of LNCS, pages 13–24. Springer-Verlag,

2008 [64]

later extended as

Wojciech Jaśkowski, Krzysztof Krawiec, and Bartosz Wieloch. Evolving strat-

egy for a probabilistic game of imperfect information using genetic programming.

Genetic Programming and Evolvable Machines, 9(4):281–294, 2008 [63].

• Chapter 5 Wojciech Jaśkowski and Krzysztof Krawiec. How many dimensions in

co-optimization? In Genetic and Evolutionary Computation Conference, (in press),

Dublin, Ireland, 2011 [61]

and

Wojciech Jaśkowski and Krzysztof Krawiec. Formal analysis and algorithms for

extracting coordinate systems of games. In IEEE Symposium on Computational

Intelligence and Games, pages 201–208, Milano, Italy, 2009 [59]

• Chapter 6 Wojciech Jaśkowski and Krzysztof Krawiec. Coordinate system archive

for coevolution. In IEEE World Congress on Computational Intelligence, pages 1–

10, Barcelona, 2010 [60].

9

Contents

1. Introduction 15

1.1. Problem Setting and Motivation . 15

1.2. Aims and Scope . 17

2. Background 19

2.1. Mathematical Preliminaries . 19

2.2. Test-Based Problems . 21

2.2.1. Definition . 21

2.2.2. Extensions, Terminology and Assumptions 23

2.2.3. Non-Deterministic Test-Based Problems 24

2.2.4. Solution Concepts . 25

2.2.5. Examples of Test-Based Problems 27

2.3. Solving Test-Based Problems using Coevolutionary Algorithms 29

2.3.1. Coevolutionary Algorithms . 29

2.3.2. Applications of Coevolutionary Algorithms 30

2.3.3. Coevolutionary Pathologies . 31

2.3.4. Coevolutionary Archives . 32

2.4. Discussion . 33

3. Fitnessless Coevolution 35

3.1. Introduction . 35

3.2. Fitnessless Coevolution . 37

3.3. Equivalence to Evolutionary Algorithms 38

3.4. Experiments . 40

3.4.1. Tic-Tac-Toe . 41

3.4.2. Nim Game . 42

3.4.3. Rosenbrock . 44

3.4.4. Rastrigin . 44

3.5. Results . 45

11

Contents

3.6. Discussion and Conclusions . 48

4. Application of Fitnessless Coevolution 51

4.1. Introduction . 51

4.2. Genetic Programming and Game Strategies 52

4.3. Strategy Encoding . 53

4.4. The Experiment . 55

4.5. Analysis of BrilliAnt’s Strategy . 59

4.6. Conclusions . 62

5. Coordinate Systems for Test-Based Problems 65

5.1. Introduction . 65

5.2. Preliminaries . 67

5.3. Coordinate System . 68

5.4. Example . 71

5.5. Properties of Coordinate Systems . 73

5.6. Finite and Infinite Test-Based Problems 78

5.7. Hardness of the Problem . 79

5.8. Algorithms . 85

5.8.1. Simple Greedy Heuristic . 85

5.8.2. The Exact Algorithm . 87

5.8.3. Greedy Cover Heuristic . 89

5.9. Experiments and Results . 91

5.9.1. Compare-on-One . 91

5.9.2. Compare-on-All . 93

5.9.3. Dimension of Random Test-Based Problem 95

5.9.4. Estimating Problem Dimension 97

5.9.4.1. Problems . 97

5.9.4.2. Results . 98

5.9.4.3. Discussion . 99

5.10. Relation to Complete Evaluation Set . 101

5.11. Discussion and Conclusions . 102

6. Coordinate System Archive 105

6.1. Introduction . 105

6.2. Coordinate System Archive (COSA) . 105

6.2.1. Stabilizing the archives by PairSetCover 108

12

Contents

6.2.2. Finding the base axis set by FindBaseAxisSet 109

6.3. Experiments . 110

6.3.1. Iterated Pareto-Coevolutionary Archive (IPCA) 110

6.3.2. Layered Pareto-Coevolutionary Archive (LAPCA) 110

6.3.3. Objective Progress Measures . 111

6.3.4. Setup . 112

6.4. Results . 114

6.4.1. Compare-on-One . 114

6.4.2. Compare-on-All . 118

6.5. Discussion and Summary . 118

7. Conclusions 123

7.1. Summary . 123

7.2. Contribution . 123

7.3. Future Work . 125

A. Appendix 127

A.1. Ants Obtained with Fitnessless Coevolution 127

A.1.1. BrilliAnt . 127

A.1.2. ExpertAnt . 129

A.1.3. EvolAnt1 . 131

A.1.4. EvolAnt2 . 133

A.1.5. EvolAnt3 . 135

A.2. Designed Ants . 137

A.2.1. Utils . 137

A.2.2. HyperHumant . 137

A.2.3. SuperHumant . 140

A.2.4. SmartHumant . 143

Bibliography 144

13

1. Introduction

1.1. Problem Setting and Motivation

This work considers problems which originated in computational intelligence [38], a field

dedicated to problem solving, mostly by means of nature-inspired algorithms. Com-

putational intelligence has much in common with artificial intelligence. The difference

between the two has been pertinently expressed by Lucas [85, page 45]: “In AI research

the emphasis is on producing apparently intelligent behaviour using whatever techniques

are appropriate for a given problem. In computational intelligence research, the emphasis

is placed on intelligence being an emergent property”. The disciplines that are typically

associated with computational intelligence include, among others, artificial neural net-

works, evolutionary computation, multi-agent systems, and swarm intelligence.

A significant part of computational intelligence research is devoted to solving problems

in which some elementary entities interact with each other. Game-playing agents learn

by playing against opponent strategies. Machine learning algorithms generate hypothe-

ses and test them on examples. Evolutionary algorithms simulate the evolved designs

in various environmental conditions. What these scenarios have in common is the un-

derlying concept of an elementary interaction between a candidate solution (strategy,

hypothesis, design) and a test (opponent strategy, training example, environmental con-

ditions, respectively). In each of them, an interaction has an outcome, which can be

typically expressed by a scalar. Another feature they share is the fact that the number

of tests can be large or even infinite, which often rules out the possibility of confronting

candidate solutions with all tests. Therefore, an outcome of a single interaction provides

only limited information about the underlying phenomenon.

These characteristics clearly delineate a class of test-based problems [17]. To solving

a test-based problem one has to find the candidate solutions that are, in some sense,

superior to other candidate solutions with respect to the outcomes they receive when in-

teracting with tests. As determining the outcomes of interactions between all candidate

solutions and all tests is computationally intractable, a practical algorithm for solving

test-based problems has to decide which interactions are worth computing and which are

15

1. Introduction

not. Although there exist many algorithms tailored to specific forms of such problems,

e.g., statistical methods for machine learning or minimax tree search for game-playing,

competitive coevolutionary algorithms [4, 54, 119, 120] constitute the most generic frame-

work for solving test-based problems. The essence of coevolution is that the results of

interactions between candidate solutions and tests propel the search process in the space

of candidate solutions and the space of tests, and substitute for an objective, external

fitness measure found in traditional evolutionary algorithms. Thus, the driving force

of coevolutionary algorithms is the constant arms race between individuals playing the

roles of candidate solutions and individuals that represent tests. Apart from this differ-

ence, coevolutionary algorithms typically use neo-Darwinian mechanisms similar to the

ones used in evolutionary algorithms like mutation, crossover and selection.

Since competitive interaction is common in nature and mankind history, the elegance

of virtual arms race attracted many researchers to apply coevolutionary algorithms to

mathematical and engineering problems. As a result, coevolutionary methods have been

applied to many test-based problems such as design of sorting networks [54], learning

strategies for board and strategic games [121], or evolving rules for cellular automata

[70].

Despite initial enthusiasm in the field, coevolutionary algorithms turned out to have

hard to predict dynamics meant as the way in which they navigate a search space [68].

Analyzing, modeling, and understanding that dynamics turned out to be very hard

[116]. In particular, many coevolutionary algorithms applied to nontrivial problems

tend to fail to sustain progress during a run [96] and to converge towards solutions

that have desired properties (corresponding to basins of global optima in conventional

learning and optimization problems, where the objective fitness measure is known). This

raises justified questions about reasonable stopping criteria. Moreover, many undesired

patterns in coevolutionary algorithms’ runs have been observed. Consequently, in many

cases of test-based problems, coevolutionary algorithms have been unable to obtain high-

quality solutions.

It has been recently shown that one of the reasons why coevolutionary algorithms

often fail to succeed (and exhibit, so-called, pathologies described in this thesis) is the

aggregation of outcomes of interactions between individuals representing candidate solu-

tions and tests [15]. Such aggregation typically leads to characterizing the performance

of an individual during a run by a single scalar value. Thus, there is a need for new

methods in coevolutionary algorithms which would avoid aggregation. The quest for

such methods is the main motivation for the research described in this thesis.

16

1.2. Aims and Scope

1.2. Aims and Scope

In the context of discussion outlined in the previous section, the overall goal of this thesis

is to analyze test-based problems, their properties, and to design novel coevolutionary

methods that solve them while avoiding the problem of aggregation. It is emphasized that

the proposed methods should have strong theoretical foundations.

This goal should be satisfied by fulfilling the following objectives:

• To design a coevolutionary algorithm that does not aggregate results of interactions

during the evaluation phase.

• To theoretically analyze its dynamics with reference to traditional evolutionary

algorithms.

• To theoretically analyze the internal structure of test-based problem based on the

concept of Pareto-coevolution.

• To design an effective algorithm for extraction of internal structure from test-based

problems.

• To design an algorithm for test-based problems using the idea of internal structure

extraction.

• To experimentally verify the proposed concepts and algorithms on artificial prob-

lems of known internal structure as well as on real-world problems of unknown

internal structure.

The dissertation is organized as follows. Chapter 2 provides the preliminary mathe-

matical definitions, background information about test-based problems and coevolution,

and points out related work in those fields. In Chapter 3 we introduce Fitnessless

Coevolution, a novel method of comparative one-population coevolution, which avoids

aggregation into explicit fitness measure by using a single-elimination tournament to a

randomly drawn group of individuals. We prove that, under a condition of transitivity

of the payoff matrix, the dynamics of Fitnessless Coevolution is identical to that of the

traditional evolutionary algorithm. The experimental results, obtained on a diversified

group of problems, demonstrate that Fitnessless Coevolution is able to produce solu-

tions that are not worse than solutions obtained using other methods. This is theme

is continued in Chapter 4, where, in a case study, we apply Fitnessless Coevolution

to a certain game of imperfect information using genetic programming. We provide the

17

1. Introduction

complete record of the employed methodology as well as an in-depth evaluation of the

obtained solutions.

In Chapter 5 we move to more advanced topics and investigate the formalism of co-

ordinate system for test-based problems and its properties. We relate them to properties

of partially ordered sets, and design an exact algorithm for finding a minimal coordinate

system. We also prove that the problem of finding the minimal coordinate system for

a given problem is NP-hard and come up with a heuristic that is superior to the best

algorithm proposed so far. Finally, we apply the algorithms to three abstract problems

and demonstrate that the the number of axes in such minimal coordinate system called

the dimension of the problem is typically much lower than the number of tests and for

a random problem it seems to follow the logarithmic curve.

In Chapter 6, we propose a novel coevolutionary archive method, called Coordinate

System Archive (COSA) that is based on the concepts introduced in the Chapter 5.

In the experimental part, we compare COSA to two state-of-the-art archive methods,

IPCA and LAPCA, for two different problems.

Finally, Chapter 7 sums up the work and points to future directions of work.

18

2. Background

In this chapter, after defining the underlying mathematical concepts, we formalize the

notion of test-based problem and discuss its properties. We also review different solution

concepts, which implicitly characterize the ‘target’ for any algorithm that attempts to

solve a test-based problem. Then we introduce coevolutionary algorithms, review the

difficulties related to their design, and show how they relate to test-based problems.

2.1. Mathematical Preliminaries

In this thesis (particularly, in Chapters 5 and 6) we use some basic discrete mathematics

concepts concerning partially ordered sets, which we briefly introduce in this section.

The definitions below follow Trotter’s book [139] unless stated otherwise.

Definition 1. A preordered set is a pair (X,P), where X is a set and P is a reflexive

and transitive binary relation on X. Then P is a preorder on X.

Definition 2. A partially ordered set (poset for short) is a pair (X,P), where X is a

set and P is a reflexive, antisymmetric, and transitive binary relation on X. We call X

the ground set while P is a partial order on X.

We write x ≤ y in P when (x, y) ∈ P and x ≥ y in P when (y, x) ∈ P . The notations

x < y in P and y > x in P mean x ≤ y in P and x 6= y. When the context is obvious,

we will abbreviate x < y in P by just writing x < y.

Definition 3. For a poset (X,P), x, y ∈ X are comparable (x ⊥ y) when either x ≤ y

or x ≥ y; otherwise, x and y are incomparable (x ‖ y).

Definition 4. A poset (X,P) is called a chain if every pair of elements from X is

comparable. When (X,P) is a chain, we call P a linear order on X. Similarly, we call

a poset an antichain if every pair of distinct elements from X is incomparable. A chain

(respectively, antichain) (X ′, P ′) is a maximum chain (respectively, maximum antichain)

in (X,P), X ′ ⊆ X,P ′ ⊆ P , if no other chain (respectively, antichain) in (X,P) has more

elements than it.

19

2. Background

Definition 5. An element x ∈ X is called a maximal element (respectively, minimal

element) in (X,P), if there is no y ∈ X such that x < y (respectively, x > y). We

denote the set of all maximal elements of a poset (X,P) by max(X,P), and the set of

all minimal elements by min(X,P).

Definition 6. The width of a poset (X,P), denoted as width(X,P), is the number of

elements in its maximum antichain.

Theorem 7. (Dilworth theorem [36]) If (X,P) is a poset and width(X,P) = n, then

there exists a partition of X = C1 ∪C2 ∪ · · · ∪Cn, where Ci is a chain for i = 1, 2, . . . , n.

We call it minimum chain partition, as it comprises the smallest possible number of

chains.

Note that an important consequence of Dilworth theorem is that each Ci contains

exactly one element of the maximum antichain.

Definition 8. Given a poset (X,P), a linear extension of P is any superset of P that

is a linear order on X.

Definition 9. The dimension of a poset (X,P), denoted dim(X,P), is the smallest car-

dinal number1 t for which there exists a family R = {L1, L2, . . . , Lt} of linear extensions

of P so that P =
⋂R =

⋂t
i=1 Li.

Example 10. Consider a poset (X,P) with X = {a, b, c, d, e, f} and P = {(a, c), (a, d),

(b, d), (b, e), (c, f), (d, f), (a, f), (b, f)} ∪ {(x, x) : x ∈ X} shown below in the form of the

Hasse diagram.

c

f

a

d

b

e

In (X,P) some of the elements are comparable, e.g. a ≤ f , b ≤ e; others are incom-

parable, e.g., c ‖ d, a ‖ e, thus it is not a linear order. Examples of chains in (X,P) are

a < c and b < d < f . The latter is a maximum chain in (X,P). {a, e} is an example

of antichain, and {c, d, e} is a maximum antichain of this poset, thus width(X,P) = 3.

1Here we follow the original paper by [37], since [139] requires the dimension of a poset to be a positive
integer.

20

2.2. Test-Based Problems

The set of maximal elements consists of e and f , while a and b are the minimal ele-

ments of the poset. {a, c, f} ∪ {b, d} ∪ {e} is an example of a minimum chain partition.

L = a < c < b < d < e < f is an example of linear extension of P . dim(X,P) = 2,

because there exists a family of two linear extensions L1 and L2, such that P = L1∩L2,

namely L1 = a < c < b < d < f < e and L2 = b < e < a < d < c < f , and no smaller

family with this property exists.

2.2. Test-Based Problems

2.2.1. Definition

We formulate an optimization problem by defining its domain, i.e., a set of candidate

solutions and a function defined on the domain. In a classical optimization problem one

seeks an element from the domain which maximizes (or minimizes) a given objective

function. The function is usually a real one. Such a formulation allows for modeling and

solving many practical tasks.

However, there exist problems for which the objective function does not exist at all

or is itself so complex that computing it becomes impossible in practice. For example,

consider searching for a best strategy for the first player for the game of Go, which is

considered as one of the grand challenges in game related artificial intelligence [14, 11].

We could define the objective function of this game as the expected game result over

games with all possible second player strategies, assuming that they are equally probable.

Thus, in order to compute the objective function for a given candidate solution, one needs

to play games with all possible Go strategies. Unfortunately, even for very simple games,

the number of different strategies is huge. For example, the first player in the tic-tac-toe

game has around 3, 47×10162 different strategies (see Section 5.9.4 for details) and Go is

a much more complicated game than tic-tac-toe. For this reason, in practice, one is not

able to compute the value of objective function for any candidate solution (a first-player

strategy) for Go.

Problems for which the quality of a candidate solution is determined by its performance

when interacting with a (usually large) set of tests are recently most often called test-

based problems [17, 26, 29, 147, 60, 115]; other terms used in literature for similar types

of problems are: coevolutionary domain [43], competitive fitness environment [3, 87],

interactive domain [145, 115], adversarial problem [72], solution-test problem [54] or

game problem [120]. Although authors agree about the general nature of test-based

problems, they often do not define them formally. In this thesis we will use the following

formal definition.

21

2. Background

Definition 11. A test-based problem is a formal object G = (S, T,G,P,P+) that consists

of

• a set S of candidate solutions (a.k.a. candidates [17], learners [26], hosts [122] or

components [115]),

• a set T of tests (a.k.a. teachers, parasites),

• an interaction function G : S × T → O, where O is a totally ordered set2,

• a set of potential solutions P built from the set of candidate solutions, and

• a solution concept, which partitions the set of potential solutions P into solutions

P+ and non-solutions P−.

To illustrate the above definition, consider the game of chess. Assume that we are seeking

for the best strategy for the white player3, so set S consists of all white player strategies

while set T consists of all black player strategies. The interaction function G is then

interpreted as the actual game and G’s codomain O is an ordered set {lose < draw <

win}. In this case, the set of potential solutions P may be simply the set of candidate

solutions S, and one could search for a solution which maximizes games’ outcomes on

all tests from set T . Such a strategy exists and, as a result, P+ is non-empty at least.

Although the solution concept [40] univocally determines what solution one is seeking,

it says very little about the relationship between two potential solutions to the problem

to answer the question: none of two is the best, but which one is preffered? That is why,

in order to have more fine-grained information, one may exchange the solution concept

of the definition of the test-based problem to

• a preference relation � on P, where P1 � P2 is interpreted as ‘P1 not worse than

P2’ with P1, P2 ∈ P.

The relation � is a preorder and may be seen as a generalization of the solution concept.

Indeed, the set of its maximal elements may be equal to the set of solutions P+. There are

many possible ways to define preference relation. Let us give two examples of preference

relation for chess:
2While O, in general, may be a partially ordered set, we are not aware of any instances of class of such

problems, nor any research, in which O was only partially ordered.
3One may also look for just the best strategy for the game regardless of the color played; however, we

use this example in order to emphasize the different roles played: white player strategies for candidate
solutions and black player strategies for tests.

22

2.2. Test-Based Problems

1. Assign scores -1 to lose, 0 to draw, and 1 to win in order to define an objective

function f : S → R as the average score received over all possible tests (black

player strategies). Then we can define the preference relation in the following way:

s1 � s2 iff f(s1) ≤ f(s2). In this case, the preference relation determines the

complete ordering of solutions.

2. The scores assigned above may seem too arbitrary, thus here is an alternative:

s1 � s2 iff for every test t, s2 is not worse on t than s1. In this case, � is just

a preorder.

For a given pair of candidate solutions, s1 � s2 may be hold or not depending on which

definition is employed. Moreover, only in case of the first one, an objective function

exists inducing a total order; it is, however, infeasible to compute in practice.

The researcher is not required to define a preference relation for a given problem.

Referring to the terminology of optimization theory, problems with just the solution

concept defined are called co-search test-based problems; and when a preference relation

is given, we talk about co-optimization test-based problems [115].

2.2.2. Extensions, Terminology and Assumptions

For the purpose of this thesis, the definition of test-based problem given in this chapter

is sufficiently general. However, it is interesting to note that the definition may be also

elegantly generalized in two possible directions.

First, in Def. 11 we assumed that there are just two entities involved in an interaction.

Consider an abstract problem in which we have a set of candidate solutions S, a set of

tests T and a set of environments E, in which the interaction between candidate solutions

and tests takes place. In such a case, the interaction function G has the following form

G : S × T × E → O, where elements from S play the role of candidate solutions and

elements from T and E are two different types of tests. Representatives from both these

kinds are required for the interaction to take place. In general, any number of different

kind of test sets is possible.

Second, if more than one set of entities (e.g., sets X1 and X2) play the role of candidate

solutions, there are no tests, and the problem solution requires an assembly or a team

of elements to be evaluated, we call it a compositional problem.

Finally, we would like to point out that some co-optimization (or co-search) problems

are neither test-based nor compositional, however, to the best of our knowledge, no

research in this area has been conducted. For an in-depth study of the classification of

co-search and co-optimization problems, see [117, 115].

23

2. Background

Notice that when T = {t}, the test-based problem boils down to an a optimization

problem, for which the objective function f(s) = G(s, t).

When S = T , then such a problem will be called an symmetrical test-based problem.

In symmetrical test-based problems, there are still two roles: candidate solutions and

tests, but they are played by the same entities. The game of rock-paper-scissors is an

example of such problem. When a problem is not symmetrical, we call it a asymmetric

test-based problem [107].

Notice that in the perspective of game theory [49], G can be interpreted as a payoff

matrix, and S, T as sets of game strategies. Indeed, methods proposed in this thesis are

most intensively exploited in the context of games, thus, here a test-based problem is,

usually, a game and we will use game-related terminology. Let us emphasize, however,

that the actual interpretation of such terms like ‘win’ or ‘player’ depends on the context

of particular application and may be distant from the literal meanings of these words.

For simplicity, we assume that both S and T are finite (G is a finite test-based problem),

however, in Chapter 5 we will also raise the issue of test-based problems that are not

finite.

In this thesis, we restrict our attention to the case where the codomain of G is a finite

set, which is often the case in practice. In particular, in Chapter 3, we assume that the

codomain of G is an ordered set {lost < draw < win}. Starting from Chapter 5 we will

further restrict this set to a binary set {0 < 1}.

2.2.3. Non-Deterministic Test-Based Problems

Notice that Def. 11 assumes that the interaction between a candidate solution and a test

is a deterministic process. It is so, indeed, in many cases; however, it may also happen

that the result of the interaction is not deterministic. There are several methods to cope

with such a situation.

The first method may be applied if the result of the interaction is actually deter-

ministic, but the alleged randomness comes from a variable that we did not take into

consideration. For example, when we have an artificial world and two creatures compet-

ing for food, the interaction between the two creatures may depend on the environment

they were put into. In such a case, we may extend the interaction function to take the

environment into consideration by treating the environment as an entity playing another

test role. Then, the interaction function may have the form of G : S × T × E → O, as

we pointed out in the previous section.

When the process of interaction is random by nature, we may accept it and develop

an algorithm with this in mind, or sample the interaction result and pretend it is deter-

24

2.2. Test-Based Problems

ministic. We do the former in Chapter 3, and the latter in Chapter 4. In Chapters 5

and 6 we consider only deterministic test-based problems.

2.2.4. Solution Concepts

In the example of chess described in Section 2.2.1, we assumed that the set of potential

solutions P to the problem equals the set of candidate solutions S and, as a result,

the solutions to the problem (set P+) are elements of set S. However, this is not the

case for all problems. For example, instead of seeking for one candidate solution that

maximizes a given function, one may seek at the same time for all candidate solutions

that maximize it. Another example is when the preference relation induces only a partial

order on candidate solutions. In this case, the set of potential solutions P is a power set

of S.

Although a solution concept may be defined arbitrarily, it often useful to classify test-

based problems based on the type of solution concept they involve. Following [115],

below we review the common classes of solution concepts. For each solution concept we

also propose a natural preference relation for it. Although a co-search problem (with

a solution concept) we may generalize to a co-optimization problem (with a preference

relation) in many ways, some of preference relations seem to be, intuitively, better than

others. When no obvious choice exists, we comment on this fact accordingly.

Best Worst Case In Best Worst Case P = S, and the solution concept defines

a solution as a candidate solution which does best on the hardest test. Let v(s) =

mint∈T G(s, t), where s ∈ S; then the solution is concept is unambiguously determined

by defined the set P+ in the following way:

P+ = argmaxs∈Sv(s).

Analogously, we could define Worst Best Case. A natural preference relation � for

this scenario, which induces a total order, is defined as

s1 � s2 ⇐⇒ v(s1) ≤ v(s2),

where s1, s2 ∈ S.

Maximization of Expected Utility Similarly to the previous solution concept, also

here, P = S holds. In this solution concept, one seeks a candidate solution which

25

2. Background

maximizes the expected score against a randomly selected opponent. Thus

P+ = argmaxs∈SE[G(s, t)],

where E is the expectation operator and t is randomly drawn from T . A natural

preference relation for this solution concept induces a total order on solutions:

s1 � s2 ⇐⇒ E[G(s1, t)] ≤ E[G(s2, t)],

where s1, s2 ∈ S.

Pareto Optimal Set In the Pareto Optimal Set solution concept, every test is treated

as a separate objective and the whole problem as a multi-objective optimization task.

From the set P = 2S , we seek a Pareto-front

F =
{
s ∈ S | ∀s′∈S

(
∃t∈TG(s, t) ≤ G(s′, t) =⇒ G(s, t) = G(s′, t)

)}
.

The solution concept in this case contains just one solution: the Pareto-front, thus

P+ = {F} .

The preference relation between Pareto-fronts generalizing this solution concept may

be based on the dominance relation between them, e.g.,

F1 � F2 ⇐⇒ ∀t∈T (∃s1∈F1G(s1, t) =⇒ ∃s2∈F2G(s2, t)) ∧ |F1| ≤ |F2| ,

where F1, F2 ∈ P such that they exclusively consist of candidate solutions not strictly

dominated by any other.

The second operand of this definition is required, since, according to the definition,

the solution concept consists of the front containing all candidate solutions on the non-

dominated Pareto-front. Notice, that this preference relation is very strict and many

pairs of elements from P are incomparable, thus other preference relations are possible.

Pareto Optimal Equivalence Set This solution concept is similar to Pareto Optimal

Set, since here also P = 2S . It may happen that the Pareto-front consists of candidate

solutions that are indistinguishable according to the interaction results on the set of

tests. In Pareto Optimal Set, all such candidate solutions must be included in the

Pareto Optimal Set, while in the Pareto Optimal Equivalence Set only at least one such

26

2.2. Test-Based Problems

0 1 1 0 1 0 0 1 0

1 0 1 1

2r + 1

n

t

t+ 1

Figure 2.2.1.: A state transition in CA. Window by window the rule is applied to CA at
step t in order to obtain CA at step t+ 1.

candidate solution is required. If we further say that exactly one such candidate solution

in Pareto-front is accepted, then we will have another solution concept termed Pareto

Optimal Minimal Equivalence Set.

Simultaneous Maximization of All Outcomes In this scenario, again, P = S and

one seeks a candidate solution, which is best on all test cases, i.e.,

P+ =
{
s ∈ S | ∀t∈T∀s′∈S

(
G(s, t) ≤ G(s′, t) =⇒ G(s, t) = G(s′, t)

)}
.

For a given problem, the set of solutions P+ may be empty, thus it is unclear what

a preference relation generalizing this solution concept should look like, in general.

2.2.5. Examples of Test-Based Problems

Many practical problems may be modeled as test-based problems, including those which

traditionally were modeled as optimization problems. In the previous sections we ana-

lyzed on examples of games. Here, in order to show that games are not the only instances

of test-based problems, we gave several other examples.

Problem 12. Density Classification Task

The density classification task (a.k.a. majority problem) is a problem in cellular

automata (CA) research [48, 98]. Given a one-dimensional binary CA of size n, the

objective is to find a state transition rule that makes the CA converge from an initial

configuration (IC) to a required state within a given number of steps t. The required

state is all zeros if IC contains more zeros than ones, and all ones if IC contains more

ones than zeros (n is assumed to be odd to prevent ties, which would render the required

behavior undefined). Given a radius r, a rule determines the value of the ith bit of CA

state based on the states of bits [i− r, r+ i] (cyclic) and can be represented as a lookup

table with 22r+1 entries describing its behavior in all possible states. See Figure 2.2.1

for an illustration.

27

2. Background

We formulate this task as a test-based problem in the following way. The set of

candidate solutions S contains all 22
2r+1

possible rules, the set of tests T comprises all

possible 2n ICs, and the interaction function is defined as

G(s, t) =

1 if s correctly classifies t;

0 otherwise.

The original task formulates the goal as finding the rule that correctly classifies the

maximal number of ICs (Maximization of Expected Utility solution concept). Although

it has been proved that for sufficiently large n, the rule correctly classifying all ICs does

not exist [81], the maximal possible rule performance is unknown. For the most popular

settings, i.e., n = 149, r = 3 and t = 320, the best known rule has been found using

coevolutionary algorithms and has a success rate of 86.3% [69, 70].

Problem 13. Symbolic Regression

In the symbolic regression problem [95] one searches for a symbolic expression of

a function that fits best to a given set of points P . If modeled as a test-based problem,

the set of candidate solutions S consists of all functions of allowed form, while the set of

tests T may comprise all points from P (or all subsets of P). The value of the interaction

function G may be, for example, a square root error. Maximization of Expected Utility

is one candidate of a right solution concept for this problem.

Problem 14. Optimization of Algorithm Parameters

Let H be a heuristic, S a set of all vectors of parameters for an optimization problem

P and T a set of instances of problem P . What is the best, on average, vector of

parameters from S over all instances from set T?

Other examples of the test-based problem, considered in the past, include intertwined

spiral problem [67], neural network design [84] and sorting network design [54].

One may have noticed that all above defined problems involve the Maximization of

Expected Utility solution concept. Indeed, Maximization of Expected Utility is a wise

choice since a practitioner is usually looking for a solution in the form of one self-

contained entity (e.g., game strategy, algorithm, creature, function) instead of a solution

in a form of a large set of (e.g., non-dominated) entities. All research involving the

Pareto-based solution concepts we are aware of concern only theoretic results or results

on artificial problems. This may be caused by a practically infeasible size of the set of

Pareto non-dominated front, similarly to the one spotted in the class of many-objective

optimization problems [57].

28

2.3. Solving Test-Based Problems using Coevolutionary Algorithms

Having that in mind, Pareto dominance may also play a role in problems involving the

Maximization of Expected Utility solution concept, as all solution concepts introduced

here respect the Pareto dominance relation between candidate solutions, i.e., no Pareto

dominated candidate solution is ever element of the solution of the problem or itself the

solution of the problem. This opens doors for treating the Pareto dominance between

candidate solutions as a concept common to most of test-based problems, which is used

in the Pareto-coevolution line of research (also in Chapter 5).

2.3. Solving Test-Based Problems using Coevolutionary

Algorithms

2.3.1. Coevolutionary Algorithms

Coevolutionary algorithms are variants of evolutionary computation in which an indi-

vidual’s fitness depends on other individuals. An individual’s evaluation takes place in

the context of at least one other individual, and may be of cooperative or competitive

nature. In the former case, individuals share benefits of the fitness they have jointly

elaborated, and such algorithms are well suited for compositional problems, whereas in

the latter one, a gain for one individual means a loss for the other, which fits test-based

problems. Since in this thesis we concentrate on test-based problems, in the following,

by ‘coevolutionary algorithm’ we will mean its competitive form.

A coevolutionary algorithm is similar to evolutionary one [7] because both families of

methods maintain a number of individuals and use mechanisms that mimic the natural

evolution, that is, selection and variation operators such as mutation and crossover.

The driving force of coevolutionary algorithms is the continuous Darwinian arms race

taking place between (usually) two competing populations [104]. The difference between

coevolutionary and evolutionary methods lies in the evaluation phase, when the fitness

of individuals is assessed. Evolutionary algorithms that solve optimization problems

have access to the objective function of a problem, thus individuals’ fitness is directly

computed. In coevolutionary methods, individuals’ fitness is typically only estimated

by aggregating results of multiple interactions of individuals from one population with

individuals from the other. Thus, in coevolution, the interaction between individuals

substitutes the objective external fitness measure present in evolutionary algorithms.

Various methods of evaluation in coevolution will be presented in Chapter 3.

Coevolutionary algorithms are natural methods for solving test-based problems due to

several reasons. First, they do not require an objective fitness function, but only interac-

29

2. Background

tions between pairs of individuals. Second, they are naturally suited to involve multiple

populations, appropriately to the roles present in a test-based problem (candidate solu-

tions and tests). Finally, they are general. While specialized methods for some classes of

test-based problems exist (e.g., for machine learning and game-playing), coevolutionary

algorithms, as a general metaheuristics, may work for any test-based problem, provided

evolutionary operators involved are properly adapted to given individual representation.

2.3.2. Applications of Coevolutionary Algorithms

Coevolutionary algorithms have been applied to many disciplines and problems. First

experiments with coevolution-like self-learning methods were performed by Samuel in

1959 on the problem of learning strategies of the game of checkers [125]. However, the

discipline developed rapidly and grew in popularity much later, in early 1990s, after the

work by Axelrod on iterated prisoner’s dilemma [4], Hillis’es experiments on coevolving

sorting networks with number arrays to be sorted [54], and Sim’s work on coevolving

competing virtual creatures [129].

Probably the most popular applications of coevolutionary methods are games, which

is not surprising since they have always been a popular test-bed for artificial and com-

putational intelligence [85]. Reynolds’s experiments with coevolution for the game of

tag [119] is a classical example of such attempts. One of the most successful approaches

to games is Blondie 24, a master-level checker player coevolved without explicit encod-

ing of human game expertise by Chellapilla and Fogel [21, 45, 20]. Recently, Fogel and

colleagues used a similar method to coevolve a neural network chess player, Blondie 25,

which beat Pocket Fritz 2.0 demonstrating a performance rank of 2650 [46] and won

a game with Fritz 8.0 [47], one of the strongest chess programs. Some research shows

the potential of coevolutionary algorithms or hybridized coevolutionary algorithms for

Othello [22, 86, 136, 93, 94] or for a small-board version of Go [84, 123, 80]; how-

ever, particularly for the latter game, coevolutionary methods were unable to produce

a player exhibiting a master level of play. Coevolutionary algorithms were also applied

to non-deterministic games such as backgammon [114, 5, 130], Texas holdem poker [102],

Blackjack [19], and robotic soccer [89, 87]. Other game applications include the pong

game [100], nim [73], pursuit-evasion problems [97, 137], and real-time neuroevolution

in the NERO game [134].

Applications of coevolutionary algorithms are not limited to games. Paredis had co-

evolved neural network classifiers [110] with life-time learning, and then used a similar

technique to solve constraint satisfaction problems [109, 111]. Other interesting applica-

tions of coevolutionary algorithms include the traveling salesman problem [135], cellular

30

2.3. Solving Test-Based Problems using Coevolutionary Algorithms

automata density classification task [70, 105, 112], Boolean network design [131], in-

tertwined spirals problem [67], job shop scheduling [56, 52, 143], and protein sequence

classification [106]. Recently, the coevolutionary methods have been used in the domain

of multi-objective optimization [50].

2.3.3. Coevolutionary Pathologies

Coevolutionary algorithms exhibit complex, hard to understand dynamics [68, 116] and

are prone to coevolutionary pathologies, which hamper the progress of search process

and are a major challenge in coevolutionary algorithms design [42]. Examples of such

undesired phenomena include:

• Collusion possibility, noticed by Blair and Pollack [9] in competitive environments.

Collusion may be observed on the level of meta-game of learning [114] as a ten-

dency to converge to suboptimal equilibria. It has been demonstrated that while

in the competitive environment the most obvious way for a candidate solution to

increase its chance of survival is to improve its ability to perform certain task

(“performing”), there is another way called “infiltrating”. Infiltrators are good

at passing strategic attributes or genes to restrict the performers’ ability to per-

form their task by, for instance, guiding the search process towards a region of

a space where a local minimum is located. As a result, collusion can seriously stifle

coevolutionary learning.

• Red Queen effect (a.k.a. Red Queen dynamics or mediocre stable states) [112]

is related to collusion [16]. The test-based problems are inherently intransitive

[104, 27], thus it can happen that coevolving parties increase their fitness with

respect to each other, but in absolute terms they do not improve (see also cycling

[140]).

• Disengagement [18, 10] occurs when an arms race is no longer possible due to loss

of gradient. For example, it may happen that all maintained tests are solved by

all candidate solutions; in effect, tests could not effectively discriminate candidate

solutions, and the other way round.

• Forgetting [41] is an effect of other pathologies, such as those described above, and

it manifests itself by a fact that certain traits which are being acquired during the

coevolutionary search later disappear from population because of lack of selective

pressure on them.

31

2. Background

• Over-specialization or focusing [140] can be observed when a coevolutionary algo-

rithm tends to produce solutions that focus on some aspects of the problem while

ignoring the other ones. An example of this pathology can be a chess player who

demonstrates a master level of play at opening and middlegame but is novice at

endgame. Over-specialization can be caused by collusion.

Pathologies are detrimental for coevolutionary algorithms because they distract them

from the task the algorithms are supposed to perform.

2.3.4. Coevolutionary Archives

The goal of coevolutionary archives is to sustain progress during a coevolutionary run,

i.e., to counteract some of the coevolutionary pathologies. A typical archive is a (usually

limited in size, yet diversified) sample of well-performing individuals found so far. New

individuals submitted to the archive are forced to interact with its members, who may

be replaced when no more useful. Archives in coevolution may be seen as a counterpart

of elitism in standard evolution. Historically, one of the oldest and simplest archives

was Hall of Fame [120] that stores all the best-of-generation individuals encountered so

far. Modern examples of archives include DECA [32], EPCA [144], Nash Memory [44],

DELPHI [34], IPCA [26], and LAPCA [28]. The last two will be described in Sections

6.3.1 and 6.3.2.

If an archive is present, we may talk about generator-archive scheme [30] for solving

test-based problems by coevolutionary methods. The role of generator may be played

by any algorithm that is able to produce tests and candidate solutions, no matter what

are the internal principles it employs to perform this task.

A generator-archive scheme for coevolutionary algorithms solving a test-based prob-

lem is presented in Alg. 2.1. The listing consists of the initialization part (lines 2-4) and

the main loop (lines 5-13). In the loop, first the new candidate solutions and tests are

generated, typically via mutating or crossing over individuals from the current popula-

tions S′ and T ′ (lines 6 and 7). In lines 8 and 9 the current populations are temporarily

expanded with the new elements. After all individuals are submitted to the archive,

which usually accepts only some of them, both populations are subject to evaluation

and selection. Notice that the archive, apart from being updated in line 10, may also be

used in lines 6 and 7 in order to support generating new good individuals.

While most authors recently concentrate on the archive component of the generator-

archive scheme, we have to note that coevolutionary archive is not desired in all cases.

The problem is that adding a candidate solution or a test to an archive requires many

32

2.4. Discussion

Algorithm 2.1 Generator-archive scheme for solving test-based problems by coevolu-
tionary algorithms.

1: procedure Coevolution
2: S′, T ′ ← Initialize populations
3: Sarch ← ∅
4: Tarch ← ∅
5: while ¬stopped do
6: Snew ← GenerateNewSolutions(S′, Sarch)
7: Tnew ← GenerateNewTests(T ′, Tarch)
8: S′ ← S′ ∪ Snew
9: T ′ ← T ′ ∪ Tnew

10: Archive.Submit(S′, T ′) . Updates Sarch and Tarch
11: Evaluate(S′, T ′)
12: S′, T ′ ← Select(S′, T ′)
13: end while
14: end procedure

interactions (Hall of Fame archive is an exception here). In modern archives such as

DECA, IPCA, LAPCA or COSA, where the archive consists of a set of tests Tarch and

a set of candidate solutions Sarch, checking if a new test should be added to (accepted

by) the archive requires |Tarch| additional interactions, and checking if a new candidate

solution should be added to the achieve requires additional |Sarch| interactions. Thus,

adding new elements to the archive requires additional computational power and may

become costly with the growth of the archive. That is why some theoretical properties

of archives, which, e.g., guarantee progress towards a given solution concept, are often

traded for a reasonably small size of the archive (e.g., in MaxSolve). Because of this

trade-off, and despite the fact that some research shows that using archives is profitable

(e.g., [136]), using archives for practical applications may be disputable and conventional

non-archive coevolutionary algorithms may still be better or not worse at least [100].

2.4. Discussion

There is a clear intersection between test-based problems and optimization problems.

In particular, when the set of tests consists of only one element, the problem may be

handled with classical optimization techniques. From a practical perspective, we may,

informally, distinguish three categories of test-based problems according to the following

distinction:

1. The size of T is small. In such a case, there is no need to approach the problem

33

2. Background

with coevolutionary algorithms and, as no arms races could be achieved, no clear

benefits from using such methods are expected. The exact objective performance

of a solution can be calculated as an outcome of its interactions with all tests in

T , so such problems can be usually handled by evolutionary algorithms or any

other variant of heuristic search (not mentioning exact search methods like, e.g.,

branch-and-bound). Although some coevolutionary methods for classical function

optimization problems were proposed [126], motivation for them is disputable and

evidence that they may give any advances over optimization methods is uncon-

vincing.

2. The size of T is moderate. For some of problems in this category, coevolutionary

approaches may provide better results than optimization methods [111], however

it is still possible (i.e., computationally viable) to use (single- or multi-criteria)

optimization methods and to evaluate a candidate solution on all tests from T .

3. The size of T is large. For some problems in this category, it is still possi-

ble to use optimization methods by (randomly) sampling set T (e.g., in density

classification task), or using other more problem-specific methods (e.g., in games).

In general, however, this is the class of problems, in which the application of co-

evolutionary methods has the greatest potential [3].

We should emphasize, however, that the above classification should be taken with a grain

of salt, as its practical usage requires taking into account the actual cost of interaction

for a given problem. For problems with high cost of interaction (e.g., consisting in

simulating robots or players in a virtual environment), handling even a small number of

tests can be challenging, making the use of coevolutionary methods justified.

34

3. Fitnessless Coevolution

In this chapter, we present a one-population coevolutionary method for solving sym-

metrical test-based problems, called Fitnessless Coevolution. Fitnessless Coevolution

is an example of a conventional coevolutionary methods, which does not use archives

to sustain progress, thus it is prone to coevolutionary pathologies. On the other hand

Fitnessless Coevolution has one unique feature: under certain assumptions it behaves as

a standard evolutionary algorithm. As a result, it may sustain progress per se.

Fitnessless Coevolution assumes that the codomain of the interaction function G is

a set {lose < draw < win}. That is why, in this chapter, we will make use of game-

related terminology.

3.1. Introduction

In biology, coevolution typically refers to an interaction between two or more species. By

analogy, in evolutionary computation coevolution usually implies using multiple popula-

tions. The main reason for having more than one population is the inherent asymmetry

of most test-based problems, in which candidate solutions are fundamentally different

from tests (e.g., they use different representation). Thus, in general, in order to solve

a test-based problem, coevolution evolves at least two populations containing candidate

solutions and tests [15], respectively.

However, for symmetrical test-based problems, one may use one-population coevolu-

tion [91], in which, unless some archiving mechanism is used, the individuals in the

current population are the only data available to enforce the selection pressure on the

evolutionary process.

One of the most important decisions to make when designing a coevolutionary algo-

rithm is the choice of evaluation method. When no coevolutionary archive is present, the

evaluation must rely on the current population only. Several such evaluation methods

were designed. One of them is the round-robin tournament (a.k.a complete mixing [90])

that involves all the individuals from the population and defines fitness as the average

payoff of the played games. A round-robin tournament requires n(n − 1)/2 games to

35

3. Fitnessless Coevolution

be played in each generation, where n is the population size; therefore, it is computa-

tionally demanding even for a moderately sized population. As a remedy, Angeline and

Pollack [3] proposed the single-elimination tournament that requires only n− 1 games.

Starting from the entire population, the players/individuals are paired, play a game, and

the winners pass to the next round. The last round produces the final winner of the

tournament, and the fitness of each individual is the number of games it won. Finally,

the k-random opponents method [119] lets an individual play with k opponents drawn at

random from the current population and defines fitness as the average payoff of games

played, requiring kn games to be played per generation. This evaluation scheme was

applied, for instance, by Fogel to evolve neural nets that play checkers [45].

All the aforementioned methods follow the evaluation-selection-recombination mantra.

Games played in the evaluation phase determine individuals’ fitnesses that are subse-

quently used in the selection phase. Obvious as it seems, this scheme is essentially

redundant. Playing games is selective by nature, so why not use them directly for selec-

tion?

This observation led us to propose an approach called Fitnessless Coevolution. Fit-

nessless Coevolution uses game outcomes to settle tournaments in the selection phase,

skipping therefore the evaluation. Technically, we skip the evaluation and proceed di-

rectly to selection, which works like a single-elimination tournament played between k

individuals randomly drawn from the population. The winner of this tournament be-

comes the outcome of the selection process. The only factor that determines the winner

is the specific sequence of wins and losses, so that no explicit fitness measure is involved

in this process. As a result, Fitnessless Coevolution does not require any aggregation of

results of interaction into a scalar fitness value. This makes our approach significantly

different from most of the methods presented in literature. The only related contribu-

tion known to us is [138], where Tettamanzi describes competitive selection — a form of

stochastic binary tournament selection.

In the experimental part of this chapter, we demonstrate that, despite being concep-

tually simpler than standard fitness-based coevolution, Fitnessless Coevolution is able to

produce excellent players without an externally provided yardstick, like a human-made

strategy. We also present a theoretical result: provided the payoff matrix of the game

induces the same linear order of individuals as the fitness function, the dynamics of the

Fitnessless Coevolution is identical to that of a traditional evolutionary algorithm. This

makes it possible to study Fitnessless Coevolution using the same research apparatus as

for the standard evolutionary methods.

36

3.2. Fitnessless Coevolution

3.2. Fitnessless Coevolution

In the traditional evolutionary algorithm, all individuals are tested in the environment

and receive an objective fitness value during the evaluation phase. Afterwards, the

fitness values are used in the selection phase in order to breed the new generation.

In the single-population coevolutionary algorithm, there is no objective fitness function,

and individuals have to be compared (pairwise or in larger groups) to state which one

is better. Despite this fact, the scheme of a coevolutionary algorithm is similar to the

evolutionary one. Typically, an individual receives a numerical fitness value that is based

on the results of games played with some other individuals. Then, the selection procedure

follows, most commonly a tournament selection that takes into account only the ordering

of individuals’ fitnesses, not their specific values. Thus, the outcomes of the games

(relations per se) are converted into numerical fitness values which in turn determine

the relations between individuals in the selection process. In this light, assigning fitness

values to individuals seems redundant, because, in the end, only relations between them

matter. Nonetheless, this is the common proceeding used in past work [3, 108, 45],

except for the preliminary considerations in [138].

The redundancy of the explicit numerical fitness in one-population coevolution in-

spired us to get rid of it in an approach termed Fitnessless Coevolution. In fitnessless

coevolution, there is no explicit evaluation phase, and the selection pressure is imple-

mented in the fitnessless selection. Fitnessless selection may be considered a variant of

a single-elimination tournament applied to a randomly drawn set K of individuals of size

k, which is the only parameter of the method. The selection process advances in rounds.

In each round, individuals from K are paired, play a game, and the winners pass to the

next round (compare description of the single-elimination tournament in Section 3.1).

For odd-sized tournaments, the odd individual plays a game with one of the winners of

the round. In case of a game ending with a draw, the game winner is selected at random.

This process continues until the last round produces the final winner of the tournament,

which becomes also the result of selection. In particular, for k = 2, the winner of the

only game is selected. The fitnessless selection operator is applied n times to produce

the new population of size n, so the total number of games per generation amounts to

a reasonable (k − 1)n.

It should be emphasized that the term ‘fitnessless’ is not meant to suggest the absence

of selection pressure in Fitnessless Coevolution. The selection pressure emerges as a side-

effect of interactions between individuals, but is not expressed by explicit fitness function.

37

3. Fitnessless Coevolution

3.3. Equivalence to Evolutionary Algorithms

Fitnessless Coevolution, as any type of coevolution, makes investigation of the dynamics

of the evolutionary process difficult. Without an objective fitness, individuals stand on

each others shoulders rather than climb a single ‘Mount Improbable’. In particular,

notice that if the game is intransitive (beating a player P does not imply the ability

of beating all those beaten by P), the winner of fitnessless selection does not have to

be superior to all tournament participants. To cope with problems like that, Luke and

Wiegand [91] defined the conditions that a single-population coevolutionary algorithm

must fulfill to be dynamically equivalent to an evolutionary algorithm, i.e., to produce

the same run, including the same contents of all generations. In the following, we

first shortly summarize their work, then we determine when our Fitnessless Coevolution

approach is dynamically equivalent to evolutionary algorithm and comment on how our

result compare with Luke and Wiegand’s.

Following [91], we define the payoff matrix and utility.

Definition 15. G = [gij] is a payoff matrix, in which gij specifies the score awarded to

strategy #i when playing against strategy #j.

Definition 16. Assuming an infinite population size and complete mixing (i.e., each

individual is paired with every other individual in the population including itself), ag-

gregate subjective values for genotypes (their utility) can be obtained as follows:

−→u = G−→x ,

where ~x represents proportions of genotypes in an infinite population.

Definition 17. Given a linear transformation gij = αfi+βfj+γ, the internal subjective

utility u is linearly related to an objective function f , u ∼L f , if the transitive payoff

matrix G is produced using this transformation.

Luke and Wiegand proved the following theorem, which says when a single-population

coevolutionary algorithm exhibits evolutionary dynamics.

Theorem 18. A single-population coevolutionary algorithm under complete mixing and

the assumption that population sizes are infinite employing a non-parametric selection

method using the internal subjective utility −→u = Gx is dynamically equivalent to an evo-

lutionary algorithm with the same selection method, using the objective function f , if

u ∼L f as long as α > 0 [91].

38

3.3. Equivalence to Evolutionary Algorithms

In order to guarantee this dynamic equivalence, Luke and Wiegand had to make

several assumptions about the evolutionary algorithm and the payoff matrix G: infinite

populations, complete mixing, and u ∼L f . In the following, we prove that Fitnessless

Coevolution is equivalent to an evolutionary algorithm employing tournament selection

under the only condition that f has to induce the same linear order of individuals as the

payoff matrix G.

Theorem 19. A single-population coevolutionary algorithm employing fitnessless selec-

tion (i.e., Fitnessless Coevolution) is dynamically equivalent to an evolutionary algorithm

with tournament selection using the objective function f , if

∀i,jfi > fj ⇐⇒ gij > gji. (3.3.1)

Proof. We need to show that, given (3.3.1), for any set of individuals Q, each act of

selection out of S based on f in the evolutionary algorithm produces the same individual

as the fitnessless selection applied to the same set Q. Let us assume, without loss of

generality, that f is being maximized. As for an arithmetic objective function f ,

fi ≥ fj ∧ fj ≥ fk ⇒ fi ≥ fk,

it is easy to show that, under (3.3.1), a similar expression must be true for G:

gij ≥ gji ∧ gjk ≥ gkj ⇒ gik ≥ gki.

In the Fitnessless Coevolution, the outcome of selection is the winner of the last game

of a single-elimination tournament; let w be the index of that individual. The winner’s

important property is that it won or drew all games that it played in the tournament;

since the payoff matrix G is transitive, the winner is in fact superior to all individuals

in Q. Therefore, ∀i∈S gwi ≥ giw, and this, together with (3.3.1), implies that ∀i∈S fw ≥
fi. Thus, the winner of fitnessless selection has the maximal objective fitness among

the individuals in Q and would also win the tournament selection in the traditional

evolutionary algorithm. As a result, under (3.3.1), both selection methods produce the

same individual, and the course of both algorithms is identical.

The consequence of the above condition is following. If the payoff matrix A is tran-

sitive, there always exists an objective function f , so that the evolutionary algorithm

using f as a fitness function is dynamically equivalent to Fitnessless Coevolution using

G. Thus, we refer to condition (3.3.1) as to transitivity condition.

39

3. Fitnessless Coevolution

Note that Fitnessless Coevolution does not need to know f explicitly. To make it

behave as a standard evolutionary algorithm, it is enough to know that such objective f

exists. One can argue that if there exists such a function f that the transitivity condition

holds, it would be better to construct it explicitly, and run a traditional evolutionary

algorithm using f as a fitness function, instead of running the Fitnessless Coevolution.

One could even avoid the explicit function f and sort the entire population using the

game outcomes as a sorting criterion (comparator), and then apply a non-parametric

selection (like tournament selection) using that order. In both cases, however, fulfilling

condition (3.3.1) is the necessary prerequisite. As we will show in the following exper-

iment, Fitnessless Coevolution performs well even if it does not hold. Besides, even if

f exists, it may be hard to define it explicitly.

We also claim that, where possible, one should get rid of numerical fitness because of

Occam’s razor principle: if it is superfluous, why use it? Note also that numerical fitness

may be accidentally over-interpreted by attributing to it more meaning than it actually

has. For instance, one could evaluate individuals using a single-elimination tournament,

which produces fitness defined on an ordinal scale, and then apply a fitness-proportional

selection. As the fitness-proportional selection assumes that the fitness is defined on the

metric scale, its outcomes would be flawed.

3.4. Experiments

In order to assess the effectiveness of our Fitnessless Coevolution with fitnessless selec-

tion (FLS), we compared it to the fitness-based coevolution with two selection methods:

single-elimination tournament (SET) and k-random opponents (kRO). In total, we con-

sidered twelve setups (FLS, SET, and kRO for k = 1, ..., 10), called architectures in the

following.

We apply each architecture to four test-based problems. This includes two games: the

tic-tac-toe (a.k.a. noughts and crosses) and a variant of the Nim game. As demonstrated

in the following, both of them are intransitive so no objective fitness function exists that

linearly orders their strategies. Following [108], we also apply the architectures to stan-

dard optimization benchmarks of minimizing Rosenbrock and Rastrigin functions, by

casting them into symmetrical test-based problems. Of course, for this kind of task

the objective fitness exists by definition (it is the function value itself) and the game is

transitive. Normally, this kind of task is solved using an ordinary fitness-based evolu-

tionary algorithm, but casting this problem into the test-based problem domain serves

here the purpose of exploring the dynamics of the fitnessless one-population coevolution.

40

3.4. Experiments

A
1 2 3

*
B

3
2
1 *

C
1

2
3 *

Figure 3.4.1.: Three simple tic-tac-toe strategies that violate condition (3.3.1).

Otherwise, as shown below for tic-tac-toe and Nim, no such problem casting is needed

to apply the Fitnessless Coevolution to any two-player game.

Instead of designing our own genetic encoding, we followed the experimental setups

from [3] (tic-tac-toe) and [108] (the rest). All three reference architectures used tourna-

ment selection of size 2. Note that we did not limit the number of generations; rather

than that, each evolutionary run stops after reaching the total of 100,000 of interactions

(games played). It is a fair approach, as some selection methods need more interactions

per generation than the others, and time of an interaction is usually the core compo-

nent of computational cost. We performed 50 independent runs for each architecture to

obtain statistically significant results.

Our experiments were implemented with ECJ framework [88].

3.4.1. Tic-Tac-Toe

In this well-known game, two players take turns to mark the fields in a 3x3 grid with

two markers. The player who succeeds in placing three marks in line wins the game.

Tic-tac-toe does not fulfill the transitivity condition (3.3.1), which is easy to demon-

strate by an example. Let us consider a triple of trivial strategies A, B, C, shown in

Fig. 3.4.1. Each of them consists in placing the marks in locations and in an order

shown by the numbers when the grid cell is free, or placing the mark in the asterisk cell

if the numbered cell is already occupied by the opponent. Clearly, no matter who makes

the first move, strategy A beats B, as already its first move prevents B from having

three marks in the leftmost column. By the same principle, B wins with C. According

to transitivity condition, these two facts require the existence of fA, fB, fC such that

fA > fB and fB > fC . This, in turn, implies fA > fC . However, Fig. 3.4.1 clearly shows

that C beats A, which contradicts fA > fC . There is a cycle: none of these strategies

outperforms the two remaining ones and their utilities cannot be mapped onto an ordinal

(or numerical, in particular) scale.

Each individual-player in this experiment has the form of a single genetic programming

tree (GP, [75]), built using a function set of nine terminals and seven functions. The

terminals represent the nine positions on the board (pos00, pos01, ..., pos22). All func-

41

3. Fitnessless Coevolution

tions process and return board positions or a special value NIL. The binary function And

returns the second argument if neither argument is NIL, and NIL otherwise. Or returns

the first not-NIL argument or NIL value if both are NIL. If returns the value returned

by the second argument if the first (conditional) argument is not NIL, otherwise the

third argument. The Mine, Yours and Open operators test the state of a given field.

They take a board position as an argument and return it if it has an appropriate state,

otherwise they return NIL. The one-argument operator Play-at places player’s mark on

the position given by the argument if the field is empty and, importantly, stops the

processing of the GP tree. If the field is taken, Play-at returns its argument and the

processing continues.

As this function set does not guarantee making any move, we promote players which

make some moves. Player’s final score is, therefore, the number of moves made plus

an additional 5 points bonus for a draw or 20 points for winning. The player with more

points wins. As the game in its original form is not a symmetrical test-based problem,

we let the players play double-games. A double-game consists of a pair of games, each

starting with a different player. The player that wins both games in the double-game is

declared the winner, otherwise there is a draw.

This experiment used maximal tree depth of 15, population size 256, crossover prob-

ability of 0.9, and replication probability of 0.1.

Following [108], we determined the best-of-run solution by running the SET on all

best-of-generation1 individuals. After carrying out 50 independent runs, we got 50 rep-

resentative individuals from each architecture. To compare our twelve architectures, we

let all 12×50 = 600 representative individuals play a round-robin tournament. The final

evaluation of each individual was the average score against the other individuals in the

tournament. The mean of these evaluations was the final architecture’s score.

3.4.2. Nim Game

In general, the game of Nim involves several piles of stones. Following [108], we used

only one pile of 200 stones. Players take in turn one, two, or three stones. The player

who takes the last stone wins.

The Nim game individual is encoded as a linear genome of 199 bits (the 200th bit

is not needed because 200 stones is the initial state). The ith gene (bit) says whether

i stones in the pile is a desirable game state for the player (value 1) or not (value 0).

A player can take one, two, or three stones in its turn. It takes three stones if it leads

1In fitnessless approach appointing the best-of-generation individual is not obvious, so we simply choose
it randomly.

42

3.4. Experiments

Figure 3.4.2.: Three games played between three players A, B, and C demonstrate Nim’s
intransitivity. The bitstrings encode the strategies of the players. The
dotted line shows the advancement of the game when the upper player
makes the first move. The solid line shows the advancement of the game
when the lower player makes the first move. The upper players win in all
three cases, no matter who makes the first move, so none of the strategies
is better that the remaining two.

to a desirable game state (i.e., if the corresponding bit is 1). Then, it tests in the same

way taking two and one stone. If all considered states are not desirable, the player takes

three stones.

The outcome of the Nim game may depend on who moves first. For instance, let us

consider a simplified Nim starting with just 7 stones and two strategies encoded in the

way discussed above: A = 001000 (meaning three stones is a desirable state, while 1,

2, 4, 5, and 6 stones are not) and B = 001001 (only 3 and 6 stones are desirable). If

A moves first, it takes 3 stones (as all three considered genes are 0), then B takes 1 stone

(according to the third bit in its strategy), and finally A takes the last three stones and

wins. However, if B moves first, it takes only one stone (due to the rightmost ‘1’ in its

genotype), A takes three stones, thus B is left with three stones to be taken and wins.

Due to this property of Nim, in order to have a symmetrical test-based problem, we

make our individuals face each other in a double-game, similarly to tic-tac-toe.

Despite its simplicity, Nim is intransitive too. Let us consider three 9-stone Nim

strategies A = 00010010, B = 00001000, and C = 00000001 (as it turns out, nine

stones is the minimum number required to demonstrate intransitivity). The double-game

between A and B results in A’s win (see Fig. 3.4.2). Thus, according to condition (3.3.1),

A should have better fitness than B: fA > fB. As B beats C, also fB > fC should hold.

However, C wins against A, requiring fC > fA. No numerical (or even ordinal) fitness

can model the mutual relationships between A, B, and C.

Our experiments involved population size of 128, a 1-point crossover with probability

0.97, and mutation with probability 0.03. The architectures were compared in the same

way as in tic-tac-toe.

43

3. Fitnessless Coevolution

3.4.3. Rosenbrock

The Rosenbrock function has the following form for the N -dimensional case:

Rosenbrock(X) =

N−1∑
i=1

[
(1− xi)2 + 100

(
xi+1 − x2i

)2]
.

We converted the problem of minimizing this function to a competitive counterpart by

defining an interaction function

G(s, t) =
Rosenbrock(s)−Rosenbrock(t)

max(Rosenbrock)−min(Rosenbrock)
,

where max(Rosenbrock) and min(Rosenbrock) are the maximum and minimum values

of Rosenbrock function in the considered domain; G(s, t) determines the result of an

interaction (in the range [−1, 1]) between player s and its opponent t. In this symmetrical

test-based problem, G(s, t) = −G(t, s).

In this experiment, we used genomes of N = 100 real values between -5.12 and 5.12

(function domain), population size of 32, a 1-point crossover, and mutation of a single

gene with probability 0.005.

In the Rosenbrock problem, unlike in tic-tac-toe and Nim games, there exists an objec-

tive and external (i.e., not used during the evolution) individual’s fitness — the Rosen-

brock function itself. Therefore, as the best-of-run we chose the individual that maxi-

mizes the external fitness value, defined as

1− Rosenbrock(X)−min(Rosenbrock)

max(Rosenbrock)−min(Rosenbrock)
. (3.4.1)

For the same reason, in the Rosenbrock problem, to compare the architectures we also

used this external fitness. It should be emphasized, however, that the fitnessless run

has no access to the external fitness function, which is used only for the purpose of the

best-of-run selection and comparison of best-of-runs between particular runs.

3.4.4. Rastrigin

As the last problem, we considered minimizing the Rastrigin function, defined as:

Rastrigin(X) = A ·N +

N∑
i=1

[
x2i −A · cos(2πxi)

]
,

44

3.5. Results

Tic-tac-toe Nim Rosenbrock Rastrigin

FLS vs. kRO SET kRO SET kRO SET kRO SET

Noise < = > < = > < = > < = >

0% 2 8 = 10 < 10 > 10 >

30% 10 = 2 5 3 = 10 > 4 6 >

40% 4 6 > 3 6 1 = 6 4 > 6 1 3 >

Total 4 18 8 5 11 14 6 24 6 5 19

Table 3.1.: The outcomes of pairwise statistical comparison of FLS vs. kRO and SET
(significance level 0.01). Symbols <, =, and > denote respectively FLS being
worse, equally good, and better than the other method. For kRO, figures tell
how many times FLS was in particular relation to kRO.

where A = 10 and N = 100. The Rastrigin minimization problem was converted to

a test-based problem in the same way as the Rosenbrock function. Also, the setup of

the experiment and comparison between architectures was identical to Rosenbrock’s.

3.5. Results

Figures 3.5.1 and 3.5.2 compare the architectures of FLS, SET and kRO for k ranging

from 1 to 10. These charts present the average external fitness of the best-of-run

individuals from each architecture.

As we can see in Fig. 3.5.1a, FLS was not much better than the other architec-

tures at playing tic-tac-toe and slightly worse than SET at evolving the Nim player

(Fig. 3.5.1b). On the other hand, in problems that fulfill the transitivity condition

(Fig. 3.5.2a and 3.5.2b), the FLS architecture was clearly better than SET and kRO,

which is especially visible in case of Rastrigin function. More precisely, FLS is sta-

tistically better than kRO for all values of k on Nim, Rosenbrock, and Rastrigin; for

tic-tac-toe, it beats kRO for 8 out of 10 values of k (t-Student, p = 0.01). Also, FLS

is significantly better than SET on Rosenbrock and Rastrigin and worse on Nim; for

tic-tac-toe, the test is inconclusive. Table 3.1 summarizes the outcomes of the statistical

comparison of FLS to kRO and SET.

Following [90], we also tested how the noisy data influences evolution. We introduced

noise by reversing the game outcome (thus swapping players’ rewards) with a given

probability. For instance, adding 100% noise would aim at evolving the worst possible

player. Figures 3.5.1, 3.5.2, and Table 3.1 show the effect of adding 30% and 40% noise.

Note that the presence of noise renders all four problems intransitive.

45

3. Fitnessless Coevolution

F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

8

10

12

14

16

F
in

al
 R

ou
nd

−
R

ob
in

 S
co

re

(a) Tic-tac-toe with 0% noise

F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

−1.0

−0.5

0.0

0.5

1.0

F
in

al
 R

ou
nd

−
R

ob
in

 S
co

re

(b) Nim with 0% noise

F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

10

12

14

16

F
in

al
 R

ou
nd

−
R

ob
in

 S
co

re

(c) Tic-tac-toe with 30% noise

F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

−1.0

−0.5

0.0

0.5

1.0
F

in
al

 R
ou

nd
−

R
ob

in
 S

co
re

(d) Nim with 30% noise

F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

4

6

8

10

12

14

16

F
in

al
 R

ou
nd

−
R

ob
in

 S
co

re

(e) Tic Tac Toe with 40% noise

F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

−1.0

−0.5

0.0

0.5

1.0

F
in

al
 R

ou
nd

−
R

ob
in

 S
co

re

(f) Nim with 40% noise

Figure 3.5.1.: Results for tic-tac-toe and Nim.

46

3.5. Results

F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000
E

xt
er

na
l f

itn
es

s

(a) Rosenbrock with 0% noise

F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

0.90

0.92

0.94

0.96

0.98

E
xt

er
na

l f
itn

es
s

(b) Rastrigin with 0% noise

F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

0.988

0.990

0.992

0.994

0.996

0.998

E
xt

er
na

l f
itn

es
s

(c) Rosenbrock with 30% noise

F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

0.80

0.82

0.84

0.86

0.88

0.90
E

xt
er

na
l f

itn
es

s

(d) Rastrigin with 30% noise

F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

0.970

0.975

0.980

0.985

0.990

E
xt

er
na

l f
itn

es
s

(e) Rosenbrock with 40% noise

F
LS

S
E

T

1R
O

2R
O

3R
O

4R
O

5R
O

6R
O

7R
O

8R
O

9R
O

10
R

O

0.65

0.70

0.75

0.80

E
xt

er
na

l f
itn

es
s

(f) Rastrigin with 40% noise

Figure 3.5.2.: Results for Rosenbrock and Rastrigin.

47

3. Fitnessless Coevolution

It seems that FLS is less affected by noise than SET. In the hierarchical process of

SET, each distorted game impacts the subsequent rounds. Even the (objectively) best-

of-generation individual may be dropped behind due to noise. FLS turns out to be more

resistant to noise as the random reversal of game outcome influences only one selection

act.

In the overall picture, kRO shows the ability to attain the best resistance to noise

among all the considered architectures: it performs at least as well or better than FLS

and SET for some values of k, especially for the highest noise level considered (40%).

However, the optimal value of k varies across the noise levels and problems, and it is

difficult to determine the optimal k in advance. In general, higher values of k compensate

for the presence of noise, but also shorten the evolutionary run by increasing the required

number of games in each generation. FLS almost always offers a statistically equivalent

or better performance than kRO and thus may be considered as an attractive option.

3.6. Discussion and Conclusions

In this chapter we proposed Fitnessless Coevolution, a new one-population coevolu-

tionary method dedicated to solving symmetrical test-based problems. We proved that

an evolutionary process employing Fitnessless Coevolution is equivalent to the fitness-

based coevolution provided the fulfillment of transitivity condition (3.3.1).

The presented experimental results demonstrate that Fitnessless Coevolution is an

appealing alternative to single-elimination tournament and the k-random opponents

method, especially when the task fulfills the transitivity condition. Though this con-

straint is unlikely to hold for the majority of test-based problems, we hypothesize that the

effectiveness of Fitnessless Coevolution increases with the extent of transitivity (meant

as, e.g., the probability that transitivity holds for a pair of individuals randomly drawn

from a population). However, this phenomena may be more complex and depend, among

others, on the structure of transitivity as well, so this supposition requires verification

in a separate study.

The mechanism of Fitnessless Coevolution is elegant and simple in at least two ways:

in getting rid of the numerical fitness and in combining the evaluation and selection

phase. Despite this simplicity, it produces effective solutions and is immune to noise to

an extent that is comparable to kRO. The downside of the method is the extra effort

required to appoint the best-of-run individual.

One could argue that, no matter whether the objective function exists, does not exist,

or is difficult to define, there is always some way of estimating the numerical fitness, so

48

3.6. Discussion and Conclusions

there is no need to apply fitnessless approach. Indeed, SET and kRO are examples of such

ways. Note, however, how arbitrary they are; in particular, they have to assume a specific

way of ’translating’ the game outcome, usually defined only on an ordinal scale, into

a numerical value, and some method to aggregate such quantities into fitness. Fitnessless

selection, on the contrary, is conceptually simpler and requires few assumptions.

Another attractive property of Fitnessless Coevolution is its locality with respect to

the population. SET requires simultaneous access to all individuals in the population.

A single act of fitnessless selection, on the contrary, engages only a few individuals. This

may have positive impact on the performance in case of parallel implementation, and

may be nicely combined with other evolutionary techniques that involve locality, like the

island model or spatially distributed populations.

While this can hardly be acknowledged to be a real virtue from the scientific per-

spective, it is interesting to note that Fitnessless Coevolution is natural. Similarly to

biological evolution, the success of an individual depends here directly on its competition

with other individuals. Also, the fitness function used in a standard evolutionary algo-

rithm is essentially a mere technical means to impose selective pressure on the evolving

population, whereas its biological counterpart (fitness) is defined a posteriori as prob-

ability of survival. By eliminating the numerical fitness, we avoid subjectivity that its

definition is prone to.

In Chapter 4, we will demonstrate the ability of Fitnessless Coevolution to evolve

human-competitive players for a game with partially observable states.

49

4. Application of Fitnessless Coevolution

In Chapter 3 we introduced Fitnessless Coevolution algorithm for symmetrical test-

based problems and verified it experimentally on a set of simple test-based problems.

Here we extend the experimental study by providing a complete record of application

of Fitnessless Coevolution to a more sophisticated test-based problem: the game of

Ant Wars. We will demonstrate that, although Ant Wars are unlikely to fulfill the

requirement of transitivity condition (3.3.1), Fitnessless Coevolution allows to obtain

for this problem a very good strategy in absolute terms.

4.1. Introduction

The Ant Wars contest was organized as a part of the 2007 edition of Genetic and

Evolutionary Computation Conference (GECCO, London, July 7–12, 2007), the largest

international scientific event pertaining to evolutionary algorithms. The contest aimed

at evolving a controller for a virtual ant that collects food in a square toroidal grid envi-

ronment in the presence of a competing ant. In a sense, this game extends the Artificial

Ant problem [77], a popular genetic programming benchmark, into the framework of

a two-player game.

Ant Wars is a probabilistic two-person board game with imperfect information and

partial observability. The game starts with 15 pieces of food randomly distributed over an

11×11 toroidal board and two players, called Ant 1 and Ant 2, placed at predetermined

locations, (5, 2) for Ant 1 and (5, 8) for Ant 2. No piece of food can be located in the

ants’ starting cells. An ant’s field of view is limited to a square 5 × 5 neighborhood

centered at its current location. An ant receives the complete information about the

states (empty, food, enemy) of all cells within its field of view.

The game lasts for 35 turns per player. In each turn an ant moves into one of the

8 neighboring cells. Ant 1 moves first. Moving into an empty cell has no effect. If an ant

moves into a cell with food, it scores 1 point and the cell is emptied. Moving into the

cell occupied by the opponent kills it: no points are scored, but only the survivor can

go on collecting food until the end of the game. A game is won by the ant that reaches

51

4. Application of Fitnessless Coevolution

the higher score. In case of a tie, Ant 1 is the winner.

As the outcome of the game depends on spatial distribution of food pieces, the proper

choice of a better one of two players requires grouping multiple games into matches

played on different boards. A match consists of 2× k games played on k random boards

generated independently for each match. To provide for fair play, the contestants play

two games on the same board, in the first game taking roles of Ant 1 and Ant 2, and

then exchanging these roles. We refer to such a pair of games as a double-game. To win

a 2 × k-games match, an ant has to win k + 1 or more games. In the case of tie, the

total score determines the match outcome. If there is still a tie, a randomly selected

contestant wins.

The contest rules required an ant’s controller to be encoded as an ANSI-C function

Move(grid, row, column), where grid is a two-dimensional array representing the board

state, and (row, column) represents the ant’s position. The function indicates the ant’s

next move by returning the direction encoded as an integer from the interval [0, 7]. The

source code of the function was not allowed to exceed 5kB in length.

In this chapter, we tell the story of BrilliAnt, the Ant Wars winner. BrilliAnt has

been evolved through competitive one-population coevolution using genetic program-

ming and Fitnessless Coevolution described in Chapter 3. We assess BrilliAnt’s human-

competitiveness in both direct terms (playing against a human opponent) and indirect

terms (playing against a human-devised strategy), and analyze its behavioral patterns.

4.2. Genetic Programming and Game Strategies

Genetic programming (GP, [77]) is an evolutionary method of finding computer pro-

grams that perform a given task. It is known for human-competitive results in many

areas including, among others, electronic design [79], quantum algorithms [133], bioin-

formatics [78], and game-playing. As to the latter, Koza was the first who used it to

evolve strategies [76] for a simple discrete two-person game. Since then, it has been

demonstrated many times that the symbolic nature of GP is suitable for game strategy

learning. Past studies on the topic include both trivial games such as tic-tac-toe [3] or

Spoof [142], as well as more complicated and computationally-demanding games, like

poker [132]. Core Wars, a game in which two or more programs compete for the control

of a virtual computer, is a popular benchmark problem for evolutionary computation

and one of the best evolved players was created using GP [23]. Luke’s work [89, 87]

on evolving soccer softball team for RoboCup97 competition belongs to the most am-

bitious applications of GP to game playing since it involved a complicated environment

52

4.3. Strategy Encoding

and teamwork. Also some fundamental problems from game theory such as the pris-

oner’s dilemma have been approached with GP [24]. Recently, Sipper and his coworkers

demonstrated [130] human-competitive GP-based solutions in three areas: backgammon

[6], RoboCode (tank-fight simulator, [128]) and chess endgames [53].

4.3. Strategy Encoding

An ant’s field of view (FOV) contains 25 cells and occupies 20.7% of board area, so,

assuming an unbiased random distribution of food pieces, the expected number of visible

food pieces is 3.02 when the game begins. The probability of having n food pieces within

the FOV drops quickly as n increases; for instance, for n = 8 it amounts to less than 0.5%.

Thus, most of the food to be collected is usually beyond the FOV. Also, a reasonable

strategy should obviously take into account the rotational invariance and symmetry of

FOV; e.g., for two mirrored FOV states, an ant should behave in a mirrored way. These

facts let us conclude that the number of distinct and likely FOV states is relatively low,

and that a strategy based only on the observed FOV state cannot be competitive in the

long run. It seems reasonable to virtually extend the FOV by keeping track of the past

board states. Thus, we equip our ants with memory, implemented by three arrays that

are overlaid over the board:

• Food memory F , which keeps track of food locations observed in the past,

• Belief table B, which describes the ant’s belief in the current board state,

• Track table V , which stores the cells already visited by the ant.

After each move, we copy food locations from the ant’s FOV into F . Within the FOV,

old states of F are overridden by the new ones, while F cells outside the current FOV

remain intact. As the board state may change subject to the opponent’s actions and

make the memory state obsolete, we also simulate a memory decay in the belief table B.

Initially, the belief for all cells is set to 0. Belief for the cells within the FOV is always 1,

while outside the FOV it fades exponentially by 10% with each move. Table V , initially

filled with zeros, stores the ant’s ‘pheromone track’ by setting the visited elements to 1.

To represent our ants we use the tree-based strongly-typed genetic programming [101].

A GP tree is expected to evaluate the utility of the move in a particular direction:

the more attractive the move, the greater the tree’s output. To provide for rotational

invariance, we evaluate multiple orientations using the same tree. However, as the ants

are allowed to move both straight and diagonally, we store two trees in each individual,

53

4. Application of Fitnessless Coevolution

Table 4.1.: The terminals used by evolving strategies.

Terminal Interpretation

Const() An ephemeral random constant (ERC) for type F ([−1; 1])
ConstInt() An integer-valued ERC for type F (0..5)

Rect() An ERC for type A
TimeLeft() The number of moves remaining to the end of the game

Points() The number of food pieces collected so far by the ant
PointsLeft() Returns 15−Points()

one for handling the straight directions (N, E, S, W) and one to handle the diagonal

directions (NE, NW, SE, SW)1. Given a particular FOV state, we present it to the trees

by appropriately rotating the FOV, the remaining part of the board, and the memory, by

a multiple of 90 degrees, and querying both trees each time. Among the eight obtained

values, the maximum response indicates the most desired direction and determines the

ant’s next move; ties are resolved by preferring the earlier maximum.

We define three data types: float (F), boolean (B), and area (A). The area type repre-

sents a rectangle stored as a quadruple of numbers: dimensions and midpoint coordinates

(relative to ant’s current position, modulo board dimensions). To avoid considering ex-

ceedingly large areas, we constrain the sum of area dimensions to 6 by an appropriate

genotype-to-phenotype mapping. For instance, the dimensions encoded as (2, 5) in the

genotype are effectively mapped to (1, 4) during tree execution.

The GP function set and the terminals are presented in Tables 4.1 and 4.2. Note that

some functions calculate their return values not only from the actual state of the board,

but also from the food memory table F and the belief table B. For example, NFood(A)

returns the scalar product of table F (food pieces) and table B (belief), constrained to

area A.

It is worth emphasizing that all GP functions used here are straightforward. Even the

most complex of them boil down to counting matrix elements in designated rectangular

areas. Though one could easily come up with more sophisticated functions, this would

contradict the rules of the contest, which promote the evolved rather than the designed

intelligence.

1We considered using a single tree and mapping the diagonal board views into the straight ones;
however, this leads to significant topological distortions which could deteriorate the ant’s perception.

54

4.4. The Experiment

Table 4.2.: The non-terminals.

Non-terminal Interpretation

IsFood(A) Returns true iff A contains at least one piece of food.
IsEnemy(A) Returns true iff A contains the opponent.

And(B, B)
Or(B, B)

Not(B)

Logic functions

IsSmaller(F, F)
IsEqual(F, F)

Arithmetic comparators

Add(F, F)
Sub(F, F)
Mul(F, F)

Scalar arithmetics

If(B, F, F) The conditional statement
NFood(A) The number of food pieces in the area A

NEmpty(A) The number of empty cells in the area A
NVisited(A) The number of cells already visited in the area A
FoodHope() Returns the maximal number of food pieces that may be

reached by the ant within two moves (assuming the first
move is made straight ahead, and the next one in an
arbitrary direction)

4.4. The Experiment

To limit human intervention, our ants undergo competitive evaluation, i.e., face each

other, rather than an external selection pressure. To this aim, we used Fitnessless

Coevolution described in Chapter 3.

To make the initial decisions about the experimental setup and parameter settings,

we ran some preliminary experiments. As a result, we decided to set the run length

to around 1500 generations, and, in order to effectively utilize the two-core processor,

to employ the island model [141] with two populations, each of approximately 2000

individuals. In all experiments, we used probabilities of crossover, mutation, and ERC

mutation, equal to 0.8, 0.1, and 0.1, respectively. GP trees were initialized using ramped

half-and-half method and were not allowed to exceed the depth of 8. The experiment

was implemented in the ECJ [88] framework and for the remaining parameters we used

the ECJ’s defaults.

We rely on the default implementation of GP mutation and crossover available in

ECJ, while providing specialized ERC mutation operators for particular ERC nodes.

For Const() we perturb the ERC by a random, normally distributed value with mean

55

4. Application of Fitnessless Coevolution

0.0 and standard deviation 1/3. For ConstInt(), we perturb the ERC by a random,

uniformly distributed integer value from interval [−1; 1]. For Rect(), we perturb each

rectangle coordinate or dimension by a random, uniformly distributed integer value from

interval [−1; 1]. In all cases, we trim the resulting values to domain intervals.

To speed up the selection process and to meet the contest rules that required the

ant code to be provided in C programming language (ECJ is written in Java), in each

generation we serialize the entire population into one large text file, encoding each in-

dividual as a separate C function. The resulting file is then compiled and linked with

the game engine, also written in C. The resulting executable is subsequently launched

and carries out the selection, returning the identifiers of the selected individuals to ECJ.

The compilation overhead is reasonably small, and it is paid off by the speedup provided

by using C language. This approach allows us also to monitor the actual size of C code,

constrained by the contest rules to 5kB per individual.

The best ant emerged in an experiment with the population of 2250 individuals evolv-

ing for 1350 generations, using the fitnessless selection with tournament size k = 5 (thus

4 matches per single-elimination tournament), and with 2 × 6 games played in each

match. We named it BrilliAnt, submitted it to the Ant Wars competition, and won it.

BrilliAnt not only evolved, but was also selected in a completely autonomous way, by

running a round-robin tournament involving all 2250 individuals from the last generation

of the evolutionary run2. This process was computationally demanding: having only one

double-game per match, the total number of games needed was more than 5,000,000,

an equivalent of about 47 generations of evolution.

In order to determine BrilliAnt’s ability to play Ant Wars, we assessed its human-

competitiveness, which is a notion introduced by Koza [79] within Genetic Programing.

In experiments, we analyzed two variants of this notion: direct competitiveness, i.e.,

the performance of the evolved solution playing against a human, and indirect compet-

itiveness, meant as the performance of the evolved solution playing against a program

designed by a human. For the former purpose, we implemented a software simulator

that allows humans to play games against an evolved ant. Using this tool, an experi-

enced human player played 150 games against BrilliAnt, winning only 64 (43%) of them

and losing the remaining 86 games (57%). We also developed an online version of this

tool that allows everybody to play with BrilliAnt. At the time of writing, the collected

statistics confirm the above result: 514 games won by BrilliAnt vs. 188 won by humans,

and one draw. Even if we assume that inexperienced beginners account for a great part

of this statistics, these figures clearly indicate that the strategy elaborated by our ap-

2Selecting the best individual in a noisy environment is not a trivial task, see, e.g., [58]

56

4.4. The Experiment

Table 4.3.: The results of a round-robin tournament involving the evolved ants (in bold)
and humants (plain font). Maximum possible score is 21,000,000.

Player Matches won Games won Total score

ExpertAnt 6 760,669 10,598,317
HyperHumant 6 754,303 10,390,659

BrilliAnt 6 753,212 10,714,050
EvolAnt3 3 736,862 10,621,773

SuperHumant 3 725,269 10,130,664
EvolAnt2 3 721,856 10,433,165
EvolAnt1 1 699,320 10,355,044

SmartHumant 0 448,509 9,198,296

proach is challenging for humans. The reader is encouraged to visit the Web page [62]

and measure swords with BrilliAnt.

To analyze BrilliAnt’s indirect competitiveness, we let it play against human-designed

strategies — humants. We manually implemented several humants of increasing sophis-

tication (SmartHumant, SuperHumant, and HyperHumant). HyperHumant, the best

humant we could develop, memorizes the states of board cells observed in the past,

plans 5 moves ahead, uses a probabilistic memory model, and implements several end-

game rules (e.g., when your score is 7, eat the food piece even if the opponent is next to

it).

Table 4.3 and Fig. 4.4.1 present the results of the round-robin tournament involv-

ing the three humants, BrilliAnt, and four other evolved ants (ExpertAnt, EvolAnt1,

EvolAnt2, EvolAnt3). Each pair of strategies played a match of 100, 000 double-games.

An arrow leading from a to b means that a turned out to be statistically better than b;

no arrow means no statistical advantage (at 0.01 level3). Note that one of the evolved in-

dividuals, ExpertAnt, won 50.12% of games against HyperHumant. As BrilliAnt turned

out to be worse than HyperHumant (loosing 52.02% of games), ExpertAnt could be con-

sidered a better pick for the Ant Wars contest. However, ExpertAnt has been selected by

explicitly testing all ants from the last generation against the manually designed Hyper-

Humant. BrilliAnt, on the contrary, evolved and was selected completely autonomously,

so it has been appointed as our contestant.

Programs in C implementing strategies of all players from Table 4.3 are presented in

Appendix on page 127. Notice that while human-designed strategies are easy to follow,

3We estimate the statistical significance of the outcome of a match from the tails of the binomial
distribution assuming the probability of success of 0.5 (the zero hypothesis is that both players win
the same number of games, i.e., 50,000 games in this context).

57

4. Application of Fitnessless Coevolution

SuperHumant

EvolAnt2

BrilliAnt

EvolAnt3

ExpertAnt

HyperHumant

Figure 4.4.1.: Graph showing relations between players. If player a is statistically better
than player b (p = 0.01), an arrow leads from a to b . If none of them is
better, no arrow is drawn. EvolAnt1 and SmartHumant were not showed
to improve graph’s readability.

58

4.5. Analysis of BrilliAnt’s Strategy

the evolved ones resemble programs processed by an obfuscator (see, e.g., expressions in

lines 28–29 and 32–33 of BrilliAnt). Apparently, coevolution does not care about code

readability.

4.5. Analysis of BrilliAnt’s Strategy

BrilliAnt’s genotype (a pair of GP trees) contains 237 nodes, and analysis of its code

would be hard. However, we are able to analyze its phenotype, meant as its behavior in

the course of game playing. BrilliAnt exhibits a surprisingly rich repertoire of behavioral

patterns, ranging from obvious to quite sophisticated ones. Faced with the FOV with two

corner areas occupied by food, BrilliAnt always selects the direction that gives a chance

for more food pieces. It reasonably handles the trade-off between food amount and food

proximity, measured using the chessboard (Chebyshev) distance (the minimal number

of moves required to reach a cell). For instance, given a group of two pieces of food

at distance 2 ((2, 2) for short), and a group of two pieces of food at distance 1, i.e.

(2, 1), BrilliAnt chooses the latter option, i.e., (2, 2) ≺ (2, 1). Similarly, (1, 1) ≺ (2, 2),

(3, 2) ≺ (2, 1), (3, 2) ≺ (3, 1), and (2, 2) ≺ (3, 2). If both food groups contain the same

number of food pieces but one of them is accompanied by the opponent, BrilliAnt chooses

the other group.

Food pieces sometimes happen to arrange into ‘trails’, similar to those found in the

Artificial Ant benchmarks [77]. BrilliAnt perfectly follows such paths as long as the

gaps between trail fragments are no longer than 2 cells (see Fig. 4.5.1a for an example).

However, when faced with a large isolated group of food pieces, it does not always

consume them in an optimal order, i.e., in a minimum number of moves.

If the FOV does not contain any food, BrilliAnt proceeds in the NW direction. How-

ever, as the board is toroidal, keeping moving in the same direction makes sense only to

a certain point, because it brings the player back to the starting point after 11 moves,

with a significant part of the board still unexplored. Apparently, evolution discovered

this fact: after 7 steps in the NW direction (i.e., when FOV starts to intersect with the

initial FOV), BrilliAnt changes its direction to SW, pursuing the following sequence:

7NW, 1SW, 1NW, 1SW, 6NW, 1SW, 1NW. A simple analysis reveals that 18 moves,

shown in Fig. 4.5.1b, provide the complete coverage of the board. This behavior seems

quite efficient, as the minimal number of moves that scan the entire board is 15. Note

also that this contains only diagonal moves. In the absence of any other incentives, this is

a locally optimal choice, as a diagonal move uncovers 9 board cells, while a non-diagonal

one uncovers only 5 of them.

59

4. Application of Fitnessless Coevolution

(a) (b)

Figure 4.5.1.: BrilliAnt’s behaviors when following a trail of food pieces (a), and in the
absence of food (b). Gray cell and large rectangle mark BrilliAnt’s starting
position and initial FOV, respectively.

Evolving this full-board scan is quite an achievement, as it manifests in the absence

of food, a situation that is almost impossible in Ant Wars, except for the highly unlikely

scenario of the opponent consuming all the food earlier. BrilliAnt exhibits variants of

this behavioral pattern also after some food pieces have been eaten and its FOV is empty.

BrilliAnt also makes reasonable use of its memory. When confronted with multiple

groups of food pieces, it chooses one of them and, after consuming it, returns to the

other group(s), unless it has spotted some other food in the meantime. This behavior is

demonstrated in Fig. 4.5.2a where BrilliAnt, faced with the initial board state with four

food pieces visible in the corners of FOV, follows an almost optimal trajectory. Note

that as soon as it makes the first NW move, three food pieces disappear from the FOV,

so memory is indispensable here. After completing this task, BrilliAnt proceeds to the

unexplored parts of the board.

BrilliAnt usually avoids the opponent, unless it comes together with food and no other

food pieces are in view. In such a case, it approaches the food, maintaining at least

distance 2 from the opponent. For an isolated food piece, this often ends in a deadlock:

the players hesitatingly walk in the direct neighborhood of the food piece, keeping safe

distance from each other. None of them can eat the piece, as the opponent immediately

kills such a daredevil. This behavior is shown in Fig. 4.5.2b, where BrilliAnt is the ant

60

4.5. Analysis of BrilliAnt’s Strategy

(a) (b)

Figure 4.5.2.: (a) BrilliAnt’s memory at work. (b) The deadlock situation and its reso-
lution.

with starting position marked by the gray cell, and the numbers reflect ants’ positions

in consecutive turns (BrilliAnt moves first). After making the first move, BrilliAnt spots

the opponent on the other ‘side’ of food, so it does not eat the piece but walks along it

(moves 2 and 3). In the meantime, the opponent behaves analogously. In the absence

of any other incentives, this behavior could last till the end of the game. However, as

soon as BrilliAnt spots another piece of food (after making move #3 in Fig. 4.5.2b), it

changes its mind and starts heading towards it, leaving the disputed food piece to the

opponent.

BrilliAnt also learned how to resolve such deadlocks. When the end of the game comes

close and the likelihood of finding more food becomes low, it may pay off to sacrifice

one’s life in exchange for food — there will be not much time left for the opponent to

gather more food. This in particular applies to the scenario when both players scored

7 and only the last food piece is left. This ‘kamikaze’ behavior also emerged in other

evolutionary runs. Figure 4.5.3b illustrates this behavior in terms of the death rate

statistic for one of the experiments. The ants from the several initial generations play

poorly and are likely to be killed by the opponent. With time, they learn how to avoid

the enemy and, usually at 200-300th generation, the best ants become perfect at escaping

that threat (see Fig. 4.5.3b). Then, around 400-500th generation, the ants discover the

benefit of the ‘kamikaze’ strategy, which results in a notable increase of death rate, but

pays off in terms of the winning frequency.

BrilliAnt is also able to correctly estimate its chances of reaching a piece of food

61

4. Application of Fitnessless Coevolution

0%

10%

20%

30%

40%

50%

60%

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ki
lle

d
pe

r
ga

m
e

generation

(a) Percent of deaths per game

0%

10%

20%

30%

40%

50%

60%

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

%
 o

f w
in

s

generation

(b) Winning frequency

Figure 4.5.3.: The dynamics of a typical evolutionary run. Each point corresponds to
the best-of-generation ant chosen on the basis of 2 × 250 games against
HyperHumant.

before the (visible) opponent, while taking into account the risk of being eaten (see

Fig. 4.6.1; in all scenarios shown here BrilliAnt, located at the center, moves first).

In Fig. 4.6.1a, BrilliAnt decides to approach the food because its first move effectively

repels the opponent. In Fig. 4.6.1b, on the contrary, BrilliAnt walks away as it has no

chance of reaching the food piece before the opponent (the shortest path traverses the cell

controlled by the opponent). The situation depicted in Fig. 4.6.1c gives equal chances

to both players to reach the food piece, so BrilliAnt approaches it, maintaining a safe

distance from the opponent. If the opponent moves analogously to the north, this may

end up in a deadlock described earlier. However, on the way to the food piece BrilliAnt

or the opponent may spot another food piece and walk away, so this behavior seems

reasonable. If there is a choice between an uncertain food piece and food piece that may

be reached at full safety, BrilliAnt chooses the latter option, as shown in Fig. 4.6.1d.

4.6. Conclusions

We described an application of Fitnessless Coevolution to a complex test-based prob-

lem. From the computational intelligence perspective, it is important to notice that

the coevolutionary process used relatively little domain knowledge to solve the prob-

lem. In particular, both the evolution and the selection of the best-of-run individual

are completely autonomous and do not involve any external (e.g., human-made) strate-

gies. The evolved players are human-competitive in both direct and indirect sense and

62

4.6. Conclusions

(a) (b) (c) (d)

Figure 4.6.1.: BrilliAnt’s behavior when faced with food and an opponent.

make reasonable choices based on the visible part of the board and memory state. In

particular, BrilliAnt’s traits include close-to-optimal board scanning in search of food,

collecting of previously seen and memorized food pieces, ability to cancel the previous

plans after discovering new food pieces, and rational estimation of chances of reaching

the food before the opponent does. Also, BrilliAnt’s strategy is dynamic, i.e., changing

with the stage of the game, as demonstrated by its ability of sacrifice in exchange of

food.

As we have shown, though unusual from the viewpoint of the core evolutionary com-

putation research, selection without fitness has much rationale. The traditional fitness

function is essentially a mere technical means to impose the selective pressure on the

evolving population. It is often the case that, for a particular problem, the definition

of fitness does not strictly conform to its biological counterpart, i.e., the a posteriori

probability of the genotype survival. By eliminating the need for an arbitrary numeric

fitness, we avoid the subjectivity that its definition is prone to.

In its pure form, Fitnessless Coevolution is a rather straightforward approach, so there

are many conceivable ways in which it could be extended. In particular, as opposed to

many modern coevolutionary algorithms, it lacks an archive, a form of memory that

helps the algorithm to maintain progress during search process. In the following chapter

we describe the concept of coordinate system for test based problems, a formal object

that, as we demonstrate later in Chapter 6, can be used to construct a specific form of

archive.

63

5. Coordinate Systems for Test-Based
Problems

In this chapter, we put emphasis on theoretical research of test-based problems. To

this aim, we exploit a concept of underlying structure of test-based problems in a form

of coordinate systems, a formalism based on the principle of Pareto-coevolution. Our

objective in this chapter is to better understand its properties and to prepare ground

for a new algorithm based on this concept, which will follow in Chapter 6.

5.1. Introduction

In test-based problems, the outcome of a single interaction is usually not enough to pro-

vide an informative gradient and effectively guide the search process. Thus, in a typical

coevolutionary algorithm multiple outcomes are aggregated, leading to an overall fitness

measure, like probability of winning or accuracy of classification. In this way, however,

the individual characteristics of particular candidate solutions and tests are inevitably

lost, and the performance measure is prone to compensation — two candidate solutions

with completely different outcomes of interactions with tests can obtain the same fitness.

The search algorithm has no insight into the actual, complex interactions taking place

between candidate solutions and tests.

0 1
0

1

t1

t2

s3

s2 s1

Figure 5.1.1.: Pareto coevolution. Each test (here t1 and t2) serves as a separate objec-
tive. Candidate solutions (here s1, s2 and s3) are embedded in the space
spanned by the objectives, i.e., placed according to their performance on
tests. For instance, candidate solution s3 solves test t1, but fails test t2.

65

5. Coordinate Systems for Test-Based Problems

The above-mentioned aggregation of interaction outcomes is one of the reasons for

which coevolutionary algorithms often suffer from coevolutionary pathologies (cf. Sec-

tion 2.3.3). In Pareto coevolution [43, 103] proposed to overcome these drawbacks,

aggregation of interaction outcomes has been abandoned in favor of using each test as

a separate objective. This transforms the test-based problem into a multi-objective

optimization problem and allows resorting to the well-defined concept of dominance —

candidate solution s1 is not worse than candidate solution s2 if and only if s1 performs at

least as good as s2 on all tests (see Fig. 5.1.1). And, as we pointed out in Section 2.2.4,

Pareto dominance is common ingredient of all solution concepts. This resembles the

process of converting a single-objective problem into a multi-objective, which is termed

multi-objectivization [74]. Unfortunately, in test-based problems the number of tests is

usually prohibitively large or even infinite: recall, for instance, the number of strategies

in tic-tac-toe. Therefore, also the dimension of search space in Pareto coevolution is

enormous.

It was observed however, that the number of objectives in Pareto coevolution can

often be reduced, since many test-based problems possess an internal structure. This

structure manifests itself by the fact that sometimes it is possible to determine a group

of tests that examine the same skill or aspect of solution performance, but with different

intensity. Instead of defining different objectives, such tests can be ordered with respect

to difficulty and placed on a common axis identified with a single new objective. Since

such an objective is not known a priori, but must be revealed during exploration of the

problem, it is referred to as an underlying objective, a term introduced by [34]. For

instance, the underlying objectives in chess could include skills of controlling the center

of the board, using knights, playing endgames, etc.

The above intuition about underlying objectives and internal structure of a problem

was first formalized in the notion of coordinate system by Bucci et al. [17]. An important

feature of coordinate system is that while compressing the initial set of objectives, it

preserves the relations between candidate solutions and tests. Each candidate solution

is embedded in the system and the outcome of its interaction with any test can be

determined given its position on all axes. As stated by [17], the structure space captures

essential information about a problem in an efficient manner.

Beyond the purely aesthetic appeal, the practical motivation for extracting the inter-

nal structure of a problem is twofold. First, there is evidence that such structure may

be exploited for the benefit of coevolutionary algorithms, for instance, by accelerating

convergence or guaranteeing progress, like in Dimension Extraction Coevolutionary Al-

gorithm [32]. Second, by knowing the internal structure and underlying objectives, we

66

5.2. Preliminaries

can learn important properties of the problem [33]. The answer to the question ‘what are

the underlying objectives of my problem’ can give valuable insight into problem prop-

erties and help choose a method to solve it. The presumably most important problem

property is its dimension, i.e., the number of underlying objectives. It is hypothesized

that problem dimension is highly correlated with its difficulty.

We concentrate on the computational aspects of extracting the problem structure and

try to answer the questions: how to extract the underlying objectives of a problem, and,

even more importantly, how to do it efficiently, so that the underlying objectives can

be updated during a coevolutionary run and exploited for the sake of improving search

convergence, without potentially outweighing these benefits with enormous computa-

tional overhead. To this aim, we elaborate on the particular type of coordinate system

defined in [17], formally introducing all the necessary concepts in Sections 5.2 and 5.3.

In Section 5.5, we identify important new properties of coordinate systems and point out

their relations to partially ordered sets. After proving the NP-hardness of the problem of

determining the size of the minimal coordinate system in Section 5.7, we provide exact

and approximate algorithms for building a minimal coordinate system (Section 5.8), and

use them in computational experiments in Section 5.9.

5.2. Preliminaries

In this chapter, we assume that the codomain of the interaction function G is a binary

set {0 < 1}. If G(s, t) = 1, we say that candidate solution s solves test t; if G(s, t) = 0,

we say that s fails test t. Where convenient, we will treat G as a relation and denote

the fact that a candidate solution s solves test t as G(s, t) and the fact that it fails test

t as ¬G(s, t).

Definition 20. Solutions failed set SF (t) ⊆ S is comprised of all candidate solutions

that fail the test t. Analogically, tests solved set TS(s) ⊆ T is comprised of all tests that

are solved by candidate solution s.

Notice also that t ∈ TS(s) ⇐⇒ s /∈ SF (t) for all s ∈ S, t ∈ T , since both sides hold

if and only if s solves t.

Definition 21. Test t1 is weakly dominated by test t2, written t1 ≤ t2, when SF (t1) ⊆
SF (t2) for t1, t2 ∈ T . Analogically, candidate solution s1 is weakly dominated by candi-

date solution s2, written s1 ≤ s2, when TS(s1) ⊆ TS(s2) for s1, s2 ∈ S.

For brevity we use the same symbol ≤ for both relations, as they are univocally

determined by the context. Since ≤ inherits transitivity and reflexivity from ⊆, it is

67

5. Coordinate Systems for Test-Based Problems

a preorder in both S and T . To make ≤ a partial order we need to assume that no two

elements of one set are indiscernible with respect to how they interact with the elements

of the other set, precisely: @t1, t2 ∈ T, t1 6= t2 : SF (t1) = SF (t2) and @s1, s2 ∈ S, s1 6=
s2 : TS(s1) = TS(s2). Under this assumption s1 = s2 ⇐⇒ TS(s1) = TS(s2) and,

analogically, t1 = t2 ⇐⇒ SF (t1) = SF (t2); thus (S,≤) and (T,≤) are posets, which

eases our further arguments. In case some indiscernible objects do exist (it can happen

in practice), we can merge them into one object without losing any important features

of G.

In this chapter, we will not refer to solution concepts, but only to the dominance

relation, which is, as we pointed out in Chapter 2, common for all solution concepts.

Therefore, we will abuse the notation of test-based problems by writing G = (G,S, T),

abstracting from any specific set of potential solutions P and the set of solutions P+,

defined by a solution concept.

5.3. Coordinate System

In the context of test-based problems, a coordinate system is a formal concept revealing

internal problem structure by enabling the candidate solutions and tests to be embedded

into a multidimensional space. Of particular interests are such definitions of coordinate

systems, in which the relations between candidate solutions and tests (≤) are reflected in

spatial arrangement of their locations in the coordinate system. Previous work suggests

that this formalism can help design better coevolutionary algorithms [32] and examining

properties of certain problems [33].

There is no unique definition of coordinate system for a test-based problem; currently

we are aware of two formulations: by Bucci et al. [17] and de Jong and Bucci [32], further

investigated in [33]. The difference between them lies in the way they define axes: the

former defines an axis as a sequence of tests ordered by the domination relation, whereas

the latter as a sequence of sets of candidate solutions ordered by the inclusion relation.

In this chapter we analyze the coordinate system introduced in [17], so in the following

by coordinate system we mean the one defined there. There are slight differences in our

formulation, which, however, do not affect any important properties of the coordinate

system. First, in our formulation, the positions of candidate solutions on an axis are

shifted one test to the left, which is more convenient. Second, Bucci et al. worked

with preordered sets, but we, as pointed out earlier, limit our discussion to posets. The

reason for this simplification is merely technical, since some mathematical concepts we

need were defined for posets and their extensions to preordered sets require additional

68

5.3. Coordinate System

effort (see, e.g., the dimension of the preordered set in chapter 4.2.1 of [15]). Our results

could be generalized to a situation where S and T are preordered sets, thus they are

applicable to any test-based problem, however, in this thesis, we stick with posets to

make our presentation more comprehensible.

For convenience, we introduce a formal element t0 such that G(s, t0) for all s ∈ S. Also,

we define an operator ‘overline’ that augments a set of tests with t0, i.e., X̄ = X ∪ {t0}.

Definition 22. The coordinate system C for a test-based problem G is a set of axes

(Ai)i∈I , where each axis Ai ⊆ T is linearly ordered by <. I is an index set and the size

of the coordinate system, denoted by |C|, is the cardinality of I.

We interpret an axis as an underlying objective of the problem. Tests on an axis are

ordered with respect to increasing difficulty (< relation), so that every candidate solution

can be positioned on it according to the results of its interaction with these tests. The

position of a candidate solution is precisely determined by the position function defined

below.

Definition 23. Position function pi :S → Āi is a function that assigns a test from Āi

to candidate solution s ∈ S in the following way:

pi(s) = max{t ∈ Āi|G(s, t)}, (5.3.1)

where the maximum is taken with respect to the relation <. The test pi(s) is the position

of s on the axis Āi.

To give additional insight into the above definition, we show an important property

of a coordinate system. Let pi(s) = t. From the definition of position function pi as the

maximal test t for which G(s, t), it follows immediately that ¬G(s, t1) for each t1 > t.

On the other hand, tests on the axis Ai are linearly ordered by the relation <, which

means that for each t1, t2 ∈ Ai, t1 < t2 when SF (t1) ⊂ SF (t2). Thus, according to the

definition of SF (t), G(s, t2) for each t2 < t. Consequently, if Ai = {t1 < t2 < · · · < tki}
is an axis and pi(s) = tj , we can picture s’s placement on Ai in the following way [17]:

G(s, t) 1 1 . . . 1 0 . . . 0

Āi t0 t1 . . . tj tj+1 . . . tki

As we can see, according to the position function, s is placed in such a way that for

each axis it solves all tests on its left and fails all on its right.

69

5. Coordinate Systems for Test-Based Problems

Definition 24. The coordinate system C is correct for a test-based problem G iff for all

s1, s2 ∈ S
s1 ≤ s2 ⇐⇒ ∀i∈Ipi(s1) ≤ pi(s2).

Basically, this definition means that all relations between candidate solutions in set S

have to be preserved by the coordinate system.

Notice also that in a correct coordinate system, s1 = s2 implies both ∀i∈Ipi(s1) ≤
pi(s2) and ∀i∈Ipi(s2) ≤ pi(s1), and consequently ∀i∈Ipi(s1) = pi(s2). The proof of the

converse implication is analogous. As a result, in the correct coordinate system for all

s1, s2 ∈ S we have

s1 = s2 ⇐⇒ ∀i∈Ipi(s1) = pi(s2),

which means that two different candidate solutions never occupy the same position.

Also

s1 < s2 ⇐⇒ ∀i∈Ipi(s1) ≤ pi(s2) ∧ ∃j∈Ipj(s1) < pj(s2)

and

s1‖s2 ⇐⇒ ∃i∈Ipi(s1) > pi(s2) ∧ ∃j∈Ipj(s1) < pj(s2).

Throughout this chapter, we will often ask about the relationship between two candi-

date solutions in a context of a test or some tests; thus the following two definitions will

prove useful.

Definition 25. Test t orders candidate solution s1 before candidate solution s2, written

s1 <t s2, if ¬G(s1, t) and G(s2, t). Similarly, s1 =t s2 when G(s1, t) = G(s2, t), and

s1 ≤t s2 when s1 <t s2 or s1 =t s2.

This definition above resembles the Ficici’s notion of distinctions [43]. Notice also

that s1 <t s2 implies s2 ≮t s1. Obviously, ∀t∈T s1 ≤t s2 ⇐⇒ s1 ≤ s2.
We will also write s1 ≤C s2 to denote that pi(s1) ≤ pi(s2) holds for all i ∈ I in C.

Similarly, we will use s1 <C s2, s1 =C s2 and s1‖Cs2.
The following simple proposition will allow us to rewrite the definition of correct

coordinate system in an elegant way.

Proposition 26. If C is a coordinate system, then for all s1, s2 ∈ S

s1 ≤C s2 ⇐⇒ ∀t∈⋃ Cs1 ≤t s2.

70

5.4. Example

Proof. (⇒) s1 ≤C s2 means ∀i∈Ipi(s1) ≤ pi(s2). Let t1 = pi(s1) and t2 = pi(s2); then

t1 ≤ t2. Def. (23) implies that

∀t≤t1G(s1, t) ∧ ∀t>t1¬G(s1, t),

and

∀t≤t2G(s2, t) ∧ ∀t>t2¬G(s2, t).

Consider three possible positions of t on axis Ai ∈ C:

1. t ≤ t1 ≤ t2: G(s1, t) ∧G(s2, t),

2. t1 ≤ t2 < t: ¬G(s1, t) ∧ ¬G(s2, t),

3. t1 < t ≤ t2 : ¬G(s1, t) ∧G(s2, t).

Thus, for any t ∈ ⋃ C, we have s1 ≤t s2.
(⇐) Suppose to the contrary that ∀t∈⋃ Cs1 ≤t s2 ∧ ¬(s1 ≤C s2). The right operand of

this conjunction implies ∃j∈Ipj(s1) > pj(s2). Let t1 = pj(s1) and t2 = pj(s2); thus t1 >

t2. According to the definition of the position function (Def. 23), G(s1, t1). Similarly

G(s2, t2), but we know that for any t > t2, ¬G(s2, t). Since t1 > t2, we have ¬G(s2, t1).

It follows that G(s1, t1)∧¬G(s2, t1), thus s1 >t1 s2; Since t1 ∈
⋃ C, this contradicts our

initial assumption that ∀t∈⋃ Cs1 ≤t s2.
The above proposition immediately leads to an alternative definition of correct coor-

dinate system, which is equivalent to Def. 22.

Definition 27. The coordinate system C is correct for a test-based problem G iff for all

s1, s2 ∈ S
s1 ≤ s2 ⇐⇒ ∀t∈⋃ Cs1 ≤t s2. (5.3.2)

Definition 28. A correct coordinate system C is a minimal coordinate system for G if

there does not exist any correct coordinate system for G with smaller size.

Definition 29. The dimension dim(G) of a test-based problem G is the size of a minimal

coordinate system for G.

5.4. Example

Let us consider an exemplary test-based problem from [33], i.e., the misère version of

game of Nim-1-3 with two piles of sticks: one containing a single stick and one containing

71

5. Coordinate Systems for Test-Based Problems

three sticks. The exact rules of this game are not important here, but an interested reader

is referenced to [33].

Table 5.1.: The payoff matrix for Nim-1-3. An empty cell means 0.

t1 t2 t3 t4 t5 t6 t7 t8 t9

s1 1 1 1 1 1 1
s2
s3 1 1 1 1 1 1 1 1 1
s4 1 1 1 1 1 1
s5 1 1 1
s6 1 1 1

The payoff matrix of Nim-1-3 is shown in Table 5.1. There are a total of 144 strategies,

but merging indiscernible strategies reduces the number of first player strategies to 6

(candidate solutions s1-s6) and second player strategies to 9 (tests t1-t9).

Figure 5.4.1 presents a minimal coordinate system for this game. We can see that the

initial set of nine tests was “compressed” to only two underlying objectives represented

by axes A1 = {t9 < t8 < t2}, A2 = {t4}. First, notice that tests on both axes are

placed according to the definition of coordinate system, that is in the order of increasing

difficulty (in A1, t9 is less difficult than t8 that is, in turn, less difficult than t2).

Second, the correctness of this coordinate system can be verified by checking whether

all relations between pairs of candidate solutions are preserved (see conditions in Defi-

nition 24 or 27). For instance, consider a pair (s1, s3): s1 < s3 and s1 is also dominated

by s3 in the 2D space; on the other hand, s1‖s6 (since s1 <t8 s6 and s6 <t4 s1) and

s1, s6 do not dominate each other also in the figure. Interestingly, only four tests out

of nine were required to construct a coordinate system preserving all relations between

candidate solutions from S.

Third, candidate solutions are placed in the example with accordance to the position

function. Thus, for example, s6 is placed so that it solves t9 and t8, but fails t4 and t2,

which is consistent with the relations in the original payoff matrix.

With a little effort, one could also check that in this example width(T,≤) = 3 and the

minimum partition of (T,≤) consists of the following chains: (t9, t3, t6), (t8, t2, t5), (t7, t1, t4).

Also, dim(S,≤) = 2, and dim(G) = 2

Now, let us consider removing t9 from the horizontal axis. The resulting formal object

is still a coordinate system, as the ordering of remaining tests, required by Def. 22,

remains intact. However, it is incorrect, because s1 shifts to the left and occupies the

same position as s5. This implies s1 = s5, which is inconsistent with the payoff matrix.

72

5.5. Properties of Coordinate Systems

This helps understand the importance of correctness: an incorrect coordinate system

does not reflect relations between candidate solutions and leads to essential information

loss.

t9 t8 t2

t4
s1

s2

s3

s4

s5

s6

Figure 5.4.1.: A minimal coordinate system for Nim-1-3

In the context of this example, it is also worth emphasizing that the concept of co-

ordinate system brings a new quality to test-based problems when compared to posets

(S,≤) or (T,≤). Thanks to the position function, the coordinate system explicitly in-

volves both candidate solutions and tests, while the poset describes the relations only

within one object category (e.g., candidate solutions), with the other one (here: tests)

hidden in relation ≤. By preserving all relations between candidate solutions and tests,

a correct coordinate system unequivocally determines the result of interaction between

every candidate solution and each test on any axis. This information cannot be restored

from posets (S,≤) and (T,≤).

Finally, notice that if we had another candidate solution indiscernible with, for in-

stance, s6 (S is a preordered set), its position would be the same as s6, and its existence

would not change the coordinate system for the test-based problem in question. On

the other hand, an additional test indiscernible with, for instance, t8 is not needed in

any axis and the coordinate system is correct without it. The latter will be further

generalized in Proposition 34.

5.5. Properties of Coordinate Systems

In this section, we prove several facts about the coordinate system defined above. This

will allow us to better understand this mathematical object, and, eventually, will help

to design algorithms constructing a coordinate system for a given test-based problem.

Let us first observe that the definition of correct coordinate system (Def. 24) does not

require all tests from set T to be used in the coordinate system.

Definition 30. Given a test-based problem G = (S, T,G), coordinate system C is com-

plete if
⋃ C = T .

73

5. Coordinate Systems for Test-Based Problems

As we have seen in Section 5.4, a correct system is not necessarily complete, however

the inverse statement holds.

Proposition 31. Every complete coordinate system is correct.

Proof. If C is a complete coordinate system, then the condition (5.3.2) in Definition 27

is fulfilled, because ∀t∈⋃ Cs1 ≤t s2 implies s1 ≤ s2, as
⋃ C = T . Therefore, by Definition

27, C is correct.

Since not all tests from T are required to construct a minimal coordinate system, then

it is natural to ask which tests are required and which are not. In the following we answer

this question by proving that a test u can be safely removed from a correct coordinate

system C if u orders only such pairs of candidate solutions that are also ordered by other

tests from C; and vice versa, u cannot be safely removed from C if it is the only test in

C that orders a pair of candidate solutions. This is precisely expressed in the following

theorem.

Theorem 32. Let C = (Ai)i∈I be a correct coordinate system. Let C′ be a coordinate

system resulting from removing a test u from some axis in C. C′ is a correct coordinate

system iff

∀s1,s2∈S
(
s1 <u s2 =⇒ ∃t∈⋃ C′s1 <t s2) . (5.5.1)

Proof. First, observe that C′ is a coordinate system since after removing u, all axes

remain linearly ordered.

(⇒) We will prove that if C′ is correct then (5.5.1) is satisfied. Suppose to the contrary

that C′ is correct and (5.5.1) is not satisfied. This means that ∃s1, s2 ∈ S such that

s1 <u s2 ∧ @t∈⋃ C′s1 <t s2. It follows from s1 <u s2 that s1 < s2 or s1 ‖ s2, thus s1 � s2.

On the other hand, it follows from @t∈⋃ C′s1 <t s2 that s1 ≥C′ s2; subsequently, since C′
is correct, s1 ≥ s2, which contradicts the earlier statement.

(⇐) Assume that (5.5.1) is satisfied. By contraposition, we have

∀s1,s2∈S
(
¬∃t∈⋃ C′s1 <t s2 =⇒ ¬s1 <u s2

)
,

which, after swapping s1 with s2, can be written as

∀s1,s2∈S
(
∀t∈⋃ C′s1 ≤t s2 =⇒ s1 ≤u s2

)
. (5.5.2)

Because C is correct, it follows from Definition 27 that for all s1, s2 ∈ S

s1 ≤ s2 ⇐⇒
(
∀t∈⋃ C′s1 ≤t s2) ∧ s1 ≤u s2.

74

5.5. Properties of Coordinate Systems

Whenever s1 ≤u s2 is true, it can be ignored in the above condition. Otherwise, by

(5.5.2), ∀t∈⋃ C′s1 ≤t s2 must be also false. Therefore, the above reduces to

s1 ≤ s2 ⇐⇒ ∀t∈⋃ C′s1 ≤t s2.
which, by Definition 27, implies that C′ is correct.

An obvious consequence of the above theorem is following.

Corollary 33. The coordinate system C is correct for test-based problem G = (S, T,G)

if and only if it preserves all relations between tests in T , i.e.,

∀s1,s2∈S
(
∃t1∈T s1 <t1 s2 =⇒ ∃t2∈⋃ Cs1 <t2 s2) . (5.5.3)

Let us consider a special case of Theorem 32 when u ∈ Aa and u ∈ Ab, a 6= b. If

we remove u from one axis in C, u will still remain in the other, thus u ∈ C′ and the

condition (5.5.1) will hold regardless of the existence of other tests. Thus, Theorem 32

implies the following proposition.

Proposition 34. Let C = (Ai)i∈I be a correct coordinate system. If a test t lies on two

different axes, i.e., t ∈ Aa and t ∈ Ab, a 6= b, we can remove it from one of the axes and

the coordinate system will remain correct.

A coordinate system that does not contain any test lying on two axes, will be called

non-redundant. Notice that removing any test from a coordinate system does not increase

its size, which leads to an obvious conclusion:

Corollary 35. For any test-based problem, there exists a minimal coordinate system

that is non-redundant. Thus, in order to find the dimension of G, it is enough to search

the space of correct non-redundant coordinate systems.

Another important observation is that the size of a minimal coordinate system C
is equal to the width of the partially ordered set consisting of all tests of C. This is

expressed formally as the following theorem

Theorem 36. Let C be a minimal coordinate system for G. Let U =
⋃ C. Then

dim(G) = width(U,≤). (5.5.4)

Proof. By definition of axis, each (Ai,≤), where Ai ∈ C, i ∈ I, is a chain. C is a minimal

coordinate system, so by Proposition 34, we can assume without loss of generality that

75

5. Coordinate Systems for Test-Based Problems

each test occurs in at most one axis in C. Hence, C is a chain partition of (U,≤).

According to Dilworth (Theorem 7), width(U,≤) is the number of chains in the minimum

chain partition of (U,≤), thus |C| is at least width(U,≤); therefore,

|C| = dim(G) ≥ width(U,≤). (5.5.5)

Now, let D = (Di)i=1...n be a minimum partition of (U,≤) into chains, hence, by

Def. 27, for all s1, s2 ∈ S

∀t∈⋃Ds1 ≤t s2 ⇐⇒ ∀t∈⋃ Cs1 ≤t s2 ⇐⇒ s1 ≤ s2,

because
⋃D = U =

⋃ C. Thus, again by Def. 27, D is a correct coordinate system

and, as its size is width(U,≤), we get

dim(G) ≤ width(U, ≤). (5.5.6)

Combining inequalities (5.5.5) and (5.5.6) finishes the proof.

Using the same reasoning as in the second part of the above proof, we could also show

the correctness of a similar statement concerning correct, but not necessarily minimal,

coordinate systems:

Proposition 37. Let C′ be a correct coordinate system for G and U ′ =
⋃ C′. Then

dim(G) ≤ width(U ′,≤). (5.5.7)

For a brief demonstration, consider the following example. Let G be a test-based

problem defined by the following matrix:

t1 t2 t3 t4 t5

s1 1 1 0 0 1

s2 1 0 1 0 0

s3 0 0 1 1 1

A minimal coordinate system for this test-based problem is C = ({t1 < t2} , {t3 < t4}),
hence dim(G) = width (

⋃ C) = 2. The coordinate system C′ = ({t1 < t2} , {t3 < t4} , {t5})
is also correct, but the poset built from all its positions, i.e., {t1 < t2; t3 < t4; t5}, has

width 3.

Notice that the width of a poset is monotonic regarding its ground set. Thus, we can

formulate an obvious remark.

76

5.5. Properties of Coordinate Systems

Remark 38. Given a poset (X,P), for any x ∈ X,

width(X \ {x} , P) ≤ width(X,P).

The above remark together with Theorem 36 lead. to the following statement.

Corollary 39. In order to determine the dimension of G = (S, T,G) it is enough to find

a poset of minimal width whose ground set is a minimal subset of T producing a correct

coordinate system.

It is interesting to determine the upper and lower bound for dim(G).

Theorem 40. For every test-based problem G = (S, T,G),

dim(S,≤) ≤ dim(G) ≤ width(T,≤). (5.5.8)

Proof. First we prove that dim(S,≤) ≤ dim(G). Let C = (A1, A2, . . . , An) be a minimal

coordinate system for G. We will construct a family R = (L1, L2 . . . , Ln) of linear orders

on S, such that
⋂R =≤, where ≤ is the weak dominance relation between elements of

S (see Def. 21). Let Li, a linear extension of ≤, be defined as

Li = {(s1, s2)|pi(s1) ≤ pi(s2)} .

Consider an ordered pair of candidate solutions (s1, s2) ∈ S × S that is an element

of
⋂R. By definition of R we have (s1, s2) ∈

⋂R ⇐⇒ ∀i(s1, s2) ∈ Li and the latter

is equivalent to ∀ipi(s1) ≤ pi(s2). Coordinate system C is correct, thus ∀ip(s1) ≤ p(s2)

if and only if s1 ≤ s2, which we can write as (s1, s2) ∈≤. Hence, (s1, s2) ∈
⋂R is

equivalent to (s1, s2) ∈≤ and we finally get
⋂R =≤. Therefore, since C is a minimal

coordinate system, it must hold that dim(S,≤) ≤ dim(G).

Next, we prove that dim(G) ≤ width(T,≤). Let C = (Ai)i∈I be a minimal coordinate

system for G. Let U =
⋃ C. Obviously, U ⊆ T , thus width(U,≤) ≤ width(T,≤). By

Theorem 36, dim(G) = width(U,≤), hence we have dim(G) ≤ width(T,≤).

Unfortunately, the problem of computing the lower bound dim(S,≤) is NP-hard [146]

and the question whether there exists any polynomial-time algorithm computing a rea-

sonable lower bound of dim(G) remains open. On the other hand, the problem of deter-

mining width(T,≤) is easy (see Section 5.8.2), but, as we will show, better approxima-

tions of the upper bound exist (cf. Section 5.8.3).

77

5. Coordinate Systems for Test-Based Problems

5.6. Finite and Infinite Test-Based Problems

Until now, we considered only finite test-based problems, i.e., test-based problems where

S and T were finite. Here we relax this restriction and consider how the notion of coordi-

nate system behaves when S and T are infinite1. Let us emphasize that this distinction

does not correlate with test-based problem complexity as perceived by humans: the

game of chess is finite, although the number of strategies for both players is very large.

On the other hand, the space of strategies in the conceptually trivial Numbers Games,

such as these considered in Section 5.9, may be infinite (uncountable, in this case).

According to the definition of position function in Section 23, a correct coordinate

system is well-defined as long as for each candidate solution in S, the max operator is

well-defined. For all countable test-based problems, max will work, but it may not work

for some uncountable test-based problems, when, for example, the set of tests solved

by a candidate solution does not have the maximal element. Thus, the definition of

coordinate system needs a generalization that will cope with such cases.

Bucci et al. [17] proved that every finite test-based problem has a dimension, thus, for

every finite S and T , there exists a minimal coordinate system. It is not entirely naive

to ask whether there exist highly-dimensional test-based problems. Could it possibly be

the case that dim(G) ≤ 16, for all test-based problems G? The following example settles

this issue.

Example 41. Consider a test-based problem G(n) = (S, T,G), defined in the following

way:
S = (si)i=1...n,

T = (tj)j=1...n,

G(si, tj) ⇐⇒ i = j.

Since all tests are mutually incomparable and each test orders a unique pair of candi-

date solutions, the dimension of G(n) is n.

Thus, for each n there exists a test-based problem of dimension n. Moreover, if we

consider the same example, but assume that S and T are infinite, the dimension of G
is not limited by any number, so it does not exist. We will denote such a situation as

dim(G) =∞.

We already know that when S and T are infinite, the test-based problem could have

no dimension, but are all infinite test-based problems dimensionless? In the following

example, we show that G can have a dimension even when S and T are infinite.
1Since we assumed that indiscernible elements do not exist in T and S, if a test-based problem is

infinite, both T and S have to be infinite; otherwise, both have to be finite.

78

5.7. Hardness of the Problem

Example 42. Consider an infinite test-based problem G(n) = (S, T,G), such that

S = (si),

T = (tj),

G(si, tj) ⇐⇒ i ≥ j.

The dimension of this test-based problem is 1, because all tests can be placed on one

axis A1 = (t1 < t2 < . . .). Then, p1(si) = ti.

Corollary 43. When a test-based problem is finite, it always has a dimension; when

a test-based problem is infinite, it may or may not have a dimension.

5.7. Hardness of the Problem

Dimension is an important property of a test-based problem, thus it is natural to ask

how hard it is to compute it for a given problem instance. Here we prove that this task

is NP-hard. To this aim, let us formally define the decision version of the Dimension

Problem.

Problem 44. (Dimension Problem) Given a test-based problem G = (S, T,G), where

S and T are finite and a positive integer n, does a correct coordinate system C for

test-based problem G of size n or less exist?

We will prove the NP-completeness of the above problem using the Set Covering

Problem as the reference problem.

Problem 45. (Set Covering Problem) Given a universe U = (ui), a family R = (Rj) of

subsets of U , a cover is a subfamily V ⊆ R of sets whose union is U . Given U and R
and an integer m, the question is whether there exists a cover of size m or less.

Denote the size of U by u and the size of R by r.

The Set Covering Problem is NP-complete, which was proved by Karp [71]. Here we

slightly narrow its domain by assuming that
⋃R = U and u > 2 and r > 2, calling

it Narrowed Set Covering Problem. The Narrowed Set Covering Problem is also NP-

complete. First, the limits on u and r do not ease the problem. Second, the answer to

the Set Covering Problem with
⋃R ⊂ U is no regardless of the value of m. It is trivial

to check whether
⋃R = U , thus this modification does not change the hardness of the

problem, either.

Theorem 46. The Dimension Problem is NP-complete.

79

5. Coordinate Systems for Test-Based Problems

Proof. Denote our decision problem by π1. Let Dπ denote the domain of problem π.

First, notice that, according to Def. 27, in order to check whether the answer for a certain

coordinate system C is yes, we need O(|S|2 |T |) operations. Clearly then π1 ∈ NP .

Second, we will show that π2 is reducible to π1 in a polynomial time, where π2 is the

Narrowed Set Covering Problem,

Given an instance I2 ∈ Dπ2 , we construct I1 ∈ Dπ1 in the following way:

1. n = m+ u+ r;

2. S = {s0} ∪A ∪B ∪ C ∪D, where

A = (ai)i=1...u, B = (bi)i=1...r, C = (ci)i=1...u, and D = (di)i=1...r are such sets that

|S| = 1 + 2r + 2u;

3. T = X ∪ Y ∪ Z, where

X = (xi)i=1...r, Y = (yi)i=1...u, and Z = (zi)i=1...r, are such sets that |T | = 2r + u;

4. G is defined as follows:

G(s0, yi)

G(ai, xj) ⇐⇒ ui ∈ Rj
(G(ai, yj) ⇐⇒ i 6= j) and (G(bi, zj) ⇐⇒ i 6= j)

(G(bi, xj) ⇐⇒ i = j) and (G(ci, yj) ⇐⇒ i = j) and (G(di, zj) ⇐⇒ i = j) .

It is easy to show that the construction of I1 is limited from above by a polynomial

function of the size of I2. The following observations (see Example 48) should help

comprehend the reasons for such design:

1. Notice that G(ai, xj) ⇐⇒ ui ∈ Rj means that A corresponds to U , X corresponds

to R and the payoff submatrix A×X describes the elements of R.

2. In instance I1, all tests from T are mutually incomparable due to the ‘diagonal’

going through B, C, D and X, Y , Z; therefore any correct coordinate system C
for test-based problem G will have each of its axes contain exactly one test, thus

n = |C| = |⋃ C|.
3. Any correct coordinate system for test-based problem G has to contain all elements

from sets Y and Z, since they are indispensable to make some pairs from set S

covered (see Example 48). Notice that if the submatrix A×X contained only zeros,

then the coordinate system where
⋃ C = Y ∪ Z would be correct, since all pairs

from S would be ordered. On the other hand, thanks to the intricate construction

of the payoff matrix, the only pairs of elements of S which must be ordered with

80

5.7. Hardness of the Problem

elements of set X, are pairs of the form (s0, ai), i = 1 . . . u. This will be formally

shown later by analyzing all pairs of elements of S.

(I2 ⇒ I1) Suppose that for I2 ∈ Dπ2 the answer is yes. It means that there exists a

cover V ⊆ R of size m such that
⋃V = U . Under this assumption, consider a coordinate

system C such that ⋃
C = Y ∪ Z ∪ {xj ∈ X|Rj ∈ V} . (5.7.1)

We will show that C is correct and its size n = u + r + m, thereby proving that the

answer to I1 is also yes.

First, notice that |⋃ C| = u+ r +m. Thus n = |C| = |⋃ C| = u+ r +m.

Second, in order to show that C is correct, we will prove that condition (5.5.3) from

Corollary (33) is satisfied for all pairs of candidate solutions s1, s2 ∈ S. We rewrite the

condition below:

∃t1∈T s1 <t1 s2 =⇒ ∃t2∈⋃ Cs1 <t2 s2.
Let us consider all ordered pairs:

s0 <t ai does not hold for any t ∈ Y ∪ Z, but it holds for all t ∈ Q such that

Q = {xj |G(ai, xj)} = {xj |ui ∈ Rj}. From
⋃V = U it follows that

∀up∈U∃Rk∈Rup ∈ Rk ∧Rk ∈ V,

which in particular is true for our ui, thus we have

∃Rk∈Rui ∈ Rk ∧Rk ∈ V.

And since the set of tests X corresponds to the set R, we get

∃xk∈Xui ∈ Rk ∧Rk ∈ V.

The left operand of this conjunction implies that xk ∈ Q. On the other hand,

from the right operand, it follows that xk ∈
⋃ C (by (5.7.1)). Replacing the

symbol xk by t, we finally get

∃t∈Xt ∈ Q ∧ t ∈
⋃
C.

Therefore, if s0 <t ai then t ∈ ⋃ C, thus ∃t2∈⋃ Cs1 <t2 s2 and (5.5.3) is

satisfied.

81

5. Coordinate Systems for Test-Based Problems

s0 <t bi holds for t = xi, but it is also true for t ∈ {zk|k 6= i}, which is a non-empty

set for r > 1; and since Z ⊆ ⋃ C, (5.5.3) is satisfied.

s0 <t ci never holds, thus it can be ignored.

s0 <t di holds only for t = zi; and since Z ⊆ ⋃ C, (5.5.3) is satisfied.

ai <t s0 holds only for t = yi; and since Y ⊆ ⋃ C, (5.5.3) is satisfied.

ai <t aj can hold for t = xk for some k, but it is also true for t = yi; and since

Y ⊆ ⋃ C, (5.5.3) is satisfied.

ai <t bj can hold for t = xk for some k, but it is also true for t ∈ {zh|h 6= j}, which

is a non-empty set for r > 1; and since Z ⊆ ⋃ C, (5.5.3) is satisfied.

ai <t cj holds only for i = j and t = yi; and since Y ⊆ ⋃ C, (5.5.3) is satisfied.

ai <t dj holds only for t = zj ; and since Z ⊆ ⋃ C, (5.5.3) is satisfied.

bi <t s0 holds for all t ∈ Y ; and since Y ⊆ ⋃ C, (5.5.3) is satisfied.

bi <t aj can hold for t = xk for some k, but it is also true for t ∈ {yh|h 6= j}, which

is a non-empty set for u > 1; and since Y ⊆ ⋃ C, (5.5.3) is satisfied.

bi <t bj holds for t = xj , but it is also true for t = zi; and since Z ⊆ ⋃ C, (5.5.3) is

satisfied.

bi <t cj holds only for t = yj ; and since Y ⊆ ⋃ C, (5.5.3) is satisfied.

bi <t dj holds only for i = j and t = zi; and since Z ⊆ ⋃ C, (5.5.3) is satisfied.

ci <t s0 never holds, thus it can be ignored.

ci <t aj can hold for t = xk for some k, but it also holds for t ∈ {yh|h 6= i, h 6= j},
which is a non-empty set for u > 2; and since Y ⊆ ⋃ C, (5.5.3) is satisfied.

ci <t bj holds for t = xj , but it also holds for t ∈ {zk|k 6= i}, which is a non-empty

set for r > 1; and since Z ⊆ ⋃ C, (5.5.3) is satisfied.

ci <t cj holds only for t = yj ; and since Y ⊆ ⋃ C, (5.5.3) is satisfied.

ci <t dj holds only for t = zj ; and since Z ⊆ ⋃ C, (5.5.3) is satisfied.

di <t s0 holds for t ∈ Y ; and since Y ⊆ ⋃ C, (5.5.3) is satisfied.

82

5.7. Hardness of the Problem

di <t aj can hold for t = xk for some k, but it is also true for t ∈ {yh|h 6= j}, which

is a non-empty set for u > 1; and since Y ⊆ ⋃ C, (5.5.3) is satisfied.

di <t bj holds for t = xj , but it also holds for t ∈ {zh|h 6= i, h 6= j}, which is a

non-empty set for r > 2; and since Z ⊆ ⋃ C, (5.5.3) is satisfied.

di <t cj holds only for t = yj ; and since Y ⊆ ⋃ C, (5.5.3) is satisfied.

di <t dj holds only for t ∈ {zk|k 6= j}; and since Z ⊆ ⋃ C, (5.5.3) is satisfied.

It has been shown above that (5.5.3) is satisfied for all pairs of tests; therefore, according

to Corollary (33), C is correct, thus the answer for instance I1 is yes.

(I1 ⇒ I2) Suppose that for I1 ∈ Dπ1 the answer is yes. It means that there exists

a correct coordinate system C of size n for test-based problem G = (S, T,G). Consider

a cover V = {Rj ∈ R|xj ∈
⋃ C}, whose size is |V| = |{x ∈ X|x ∈ ⋃ C}|. In order to prove

that the answer to I2 is yes, we will show that
⋃V = U and |V| ≤ m, where m fulfills

the equation n = m+ r + u.

C is correct so the condition (5.5.3) is satisfied, i.e.,

∀s1,s2∈S
(
∃t1∈T s1 <t1 s2 =⇒ ∃t2∈⋃ Cs1 <t2 s2) .

In particular, it has to be true for a pair (s0, ai), where ai ∈ A; thus we get

∀ai∈A
(
∃t1∈T s0 <t1 ai =⇒ ∃t2∈⋃ Cs0 <t2 ai) .

Recall that s0 <t ai may hold only when t ∈ X, that is

∀ai∈A
(
∃xk∈Xs0 <xk ai =⇒ ∃xj∈⋃ Cs0 <xj ai

)
.

By definition, s0 <x ai means ¬G(s0, x) ∧ G(ai, x) and since the left operand of this

conjunction is true for all x ∈ X, the expression implies G(ai, x), thus

∀ai∈A
(
∃xk∈XG(ai, xk) =⇒ ∃xj∈⋃ CG(ai, xj)

)
.

Since G(ai, xj) ⇐⇒ ui ∈ Rj and the fact that the elements of A correspond to the

elements of U and the elements of X correspond to the elements of R, we can rewrite

the above as

∀ui∈U
(
∃Rk∈Rui ∈ Rk =⇒ ∃xj∈⋃ Cui ∈ Rj

)
.

83

5. Coordinate Systems for Test-Based Problems

In the Narrowed Set Covering Problem,
⋃R = U , so the left hand side of the impli-

cation always holds, thus

∀ui∈U∃xj∈⋃ Cui ∈ Rj .
From the definition of V, it follows that xj ∈

⋃ C ⇐⇒ Rj ∈ V so we finally have

∀ui∈U∃Rj∈Vui ∈ Rj ,

which is an equivalent to
⋃V = U .

Now, in order to compare the size of cover V with m, we will use the following fact.

Consider tests from sets Y and Z. Observe (cf. Example 48) that yi is the only test

for which b1 <yi ci, for i = 1 . . . u. Similarly, c1 <zi di for i = 1 . . . u and zi is the only

test for which c1 <zi di, for i = 1 . . . r. Thus, according to condition (5.5.3), since C is

correct,
⋃ C must contain all elements from Y and Z, i.e., Y ∪ Z ⊆ ⋃ C.

So, n = u+ r+ |{x ∈ X|x ∈ ⋃ C}|, which boils down to n = u+ r+ |V|; and since we

know that n = u+ r +m, we eventually have |V| = m.

Since
⋃V = U and |V | ≤ m, the answer to instance I2 is yes.

The Dimension Problem is NP-complete, thus:

Corollary 47. Finding a minimal coordinate system for a test-based problem is NP-

hard.

Example 48. This example shows the construction of test-based problem G. Let

U ={1, 2, 3, 4}, R = {R1, R2, R3}, R1 = {1, 2}, R2 = {1, 3}, R3 = {1, 3, 4}. Then

we can present the relation G of test-based problem G graphically (empty cells mean 0):

84

5.8. Algorithms

x1 x2 x3 y1 y2 y3 y4 z1 z2 z3

s0 1 1 1 1

a1 1 1 1 1 1 1

a2 1 1 1 1

a3 1 1 1 1 1

a4 1 1 1 1

b1 1 1 1

b2 1 1 1

b3 1 1 1

c1 1

c2 1

c3 1

c4 1

d1 1

d2 1

d3 1

Notice that most of the pairs to be ordered according to condition (5.5.3) from Corol-

lary 33 can be ordered by elements from either Y or Z, for instance, a2 <y2 a3, a4 <y4 s0
or b1 <z1 b2. The only pairs of elements of S that must be ordered by elements of set

X are pairs (s0, a1), (s0, a2), (s0, a3), and (s0, a4), which correspond to the universe U
of the set covering problem.

5.8. Algorithms

In this section, we show three algorithms that construct correct coordinate systems.

5.8.1. Simple Greedy Heuristic

The first algorithm (here called SimpleGreedy) for coordinate system extraction was

given in [17]. SimpleGreedy finds a correct coordinate system, but it does not guar-

antee finding a minimal one.

The pseudocode of SimpleGreedy is shown as Algorithm 5.1. In the first stage, the

algorithm removes from T the tests that are combinations of two other tests in the sense

of candidate solutions they fail (lines 2-7). In the second stage, it greedily finds an axis

to place a test on, ensuring that at every step the axes remain linearly ordered (line

12). To this aim, it first tries to place a test on an existing axis (lines 11-17); if this

85

5. Coordinate Systems for Test-Based Problems

Algorithm 5.1 SimpleGreedy heuristic for extracting a minimal coordinate system.

1: procedure SimpleGreedy(S, T,G)
2: U ← T
3: for distinct t, t1, t2 ∈ U do
4: if SF (t) = SF (t1) ∪ SF (t2) then
5: T ← T \ {t}
6: end if
7: end for
8: C ← ∅
9: for t ∈ T sorted ascendingly by |SF (t)| do

10: found← false
11: for Ai ∈ C do
12: if max((Ai,≤)) < t then
13: Ai ← Ai ∪ {t} . Add t to existing axis
14: found← true
15: break
16: end if
17: end for
18: if !found then
19: C ← C ∪ {{t}} . Create a new axis
20: end if
21: end for
22: return C
23: end procedure

is impossible, it creates a new axis (lines 18-20). Tests are considered in the ascending

order with respect to the number of candidate solutions they fail (line 9), so that the

“best-performing” tests are placed at the end. Note that the poset (Ai,≤) in line 12 is

a non-empty chain, so max(Ai,≤) contains exactly one test, which is being compared

with t.

In [17] there was no formal proof that SimpleGreedy is correct, so we provide it

here.

Proposition 49. For a given test-based problem G, SimpleGreedy algorithm produces

a correct coordinate system C.

Proof. Observe that skipping the first stage of Algorithm 5.1 results in a complete co-

ordinate system, which must be correct by Proposition 31. Thus, it is enough to show

that removing a test t such that SF (t) = SF (t1)∪SF (t2), where t, t1, t2 are distinct and

t, t1, t2 ∈
⋃ C, preserves the correctness of C. From SF (t) = SF (t1) ∪ SF (t2) it follows

86

5.8. Algorithms

that

s ∈ SF (t) =⇒ s ∈ SF (t1) ∨ s ∈ SF (t2) (5.8.1)

and

s /∈ SF (t) =⇒ s /∈ SF (t1) ∧ s /∈ SF (t2). (5.8.2)

Now, consider a pair s1, s2 ∈ S such that s1 <t s2; therefore s1 ∈ SF (t) and s2 /∈
SF (t). From the former, by (5.8.1) and without loss of generality, it follows that s1 ∈
SF (t1). On the other hand, the latter implies s2 /∈ SF (t1) (by (5.8.2)). Therefore,

¬G(s1, t1) and G(s2, t1), which implies s1 <t1 s2. Since t1 6= t, test t1 orders s1 before

s2. Thus, according to Theorem 32, we can safely remove t and C will remain correct.

To complete the proof, notice that the tests can be removed from C in a top-down

order, i.e., we remove test t1 from the coordinate system C only when there do not exist

any t2, t3 such that SF (t1) ∪ SF (t2) = SF (t3), where t1, t2, t3 are distinct elements of⋃ C; otherwise we remove t3 first. In this way we guarantee that all tests t such that

SF (t) = SF (t1) ∪ SF (t2), where t, t1, t2 are distinct elements of T , will be removed, as

it is the case in the algorithm.

SimpleGreedy is fast; its worst case time complexity is O(|T |3|S|), because of the

bottleneck in lines 3-7.

5.8.2. The Exact Algorithm

In the following we propose an exact algorithm (Exact for short) that constructs a mini-

mal coordinate system for a given test-based problem and thus determines its dimension.

As we have proved that, unless N = NP, there does not exist any exact, polynomial-time

algorithm, Exact has exponential time complexity. Despite this, we wanted it to be as

fast as possible, that is why we founded it on three results proved earlier in this chapter:

1. Corollary 35, which says that it is enough to consider the coordinate systems in

which every test appears on at most one axis. We use that result to initialize the

search in our algorithm.

2. Theorem 32, which determines which tests can be safely removed from T driving

our algorithm.

3. Corollary 39, which implies that the minimal coordinate system for G must be

among chain partitions of (L,≤), where L is such a subset of T producing a correct

coordinate system that we cannot safely remove any test from L.

87

5. Coordinate Systems for Test-Based Problems

Algorithm 5.2 Exact algorithm for extracting a minimal coordinate system.

1: procedure Exact(S, T,G)
2: U ← AllMinimalSubsets(T, T) . Find all minimal correct subsets of T
3: C ← ∞
4: for U ∈ U do . Find a poset of minimal width
5: C′ ← ChainPartition(U,≤)
6: if |C′| < |C| then
7: C ← C′
8: end if
9: end for

10: return C
11: end procedure

12: procedure AllMinimalSubsets(L,R)
13: U ← ∅
14: isLeaf ← true . Is L a leaf in the recursion tree?
15: for t ∈ R do . We visit every subset L of set T at most once. . .
16: R← R \ {t}
17: if CanBeRemoved(t, L) then taking into account correct subsets only
18: isLeaf ← false
19: L← L \ {t}
20: AllMinimalSubsets(L,R)
21: L← L ∪ {t}
22: end if
23: end for

. L, a Leaf in the recursion tree is a correct subset, but not necessarily a minimal
one, which we need still to check

24: if isLeaf and @t∈LCanBeRemoved(t, L) then
25: U ← U ∪ {L} . L is a minimal correct subset
26: end if
27: return U
28: end procedure
29:

30: procedure CanBeRemoved(u,Q)
31: return ∀s1,s2∈S

(
s1 <u s2 =⇒ ∃t∈Q\us1 <t s2

)
. Condition (5.5.1)

32: end procedure
33:

34: procedure ChainPartition(X,P)
35: return a minimal partition of poset (X,P) into chains.
36: end procedure

88

5.8. Algorithms

Exact is shown in Algorithm 5.2 and it works as follows. In the first stage (line 2),

the algorithm computes U , the family of all minimal correct subsets of T , i.e., such sets

T ′ ⊆ T that there exists such a correct coordinate system C that
⋃ C = T ′ and no

T ′′ ⊂ T ′ with this property exists. The procedure AllMinimalSubsets recursively

visits the subsets of T , and whenever it finds a minimal one, it appends it to U (line

25) and continues the search. Its recursion tree is consistent with subset inclusion, i.e.,

the recursive calls visit the subsets of the current set. Testing whether t can be removed

from L (procedure CanBeRemoved) relies on Theorem 32. By maintaining the set R

of tests not yet considered for removal at a given level of recurrence (lines 15-16), the

procedure never visits any subset of T twice. Recursion returns when no more tests can

be removed and some parts of the search tree are never considered. Note that reaching

a leaf of the recursion tree (detected using the isLeaf flag) does not guarantee that L

is a minimal correct subset: we still have to check individual elements of L for removal

(line 24). This method of visiting all subsets satisfying certain requirements is similar

to the one described by de la Banda et al. [35].

In the second stage, the algorithm computes a chain partition C for every element of

U , that is, the coordinate system (see the proof of Theorem 36), and returns the one

with a minimal number of axes |C|. Partitioning a poset (P,X), |X| = n into chains can

be solved in O(n3) [99, 39] using a max-flow computation on a bipartite network with

unit capacities. This result can be further improved to O(n5/2) with the algorithm by

Hopcroft and Karp [55] and to O(n5/2/
√

log n) by a method introduced by Alt et al. [2].

Recognizing if the number of chains is at most k is even faster: O(n2k2) [39].

As the first stage of the algorithm is exponential, we implemented ChainPartition

using the simplest O(n3) algorithm. As a consequence, the overall worst-case time

complexity of Exact algorithm is O(2|T ||T |4|S|). The consoling fact is that the elements

of U can be independently processed one by one, so it is not necessary to maintain all

of them simultaneously, which results in polynomial space complexity.

5.8.3. Greedy Cover Heuristic

The proof of NP-hardness given in Section 5.7 used the Set Covering Problem as a ref-

erence problem. This inspired us to adopt an algorithm designed for this well-known

problem, a classical greedy heuristic of polynomial complexity that has very good prop-

erties. Starting from an empty set V, in each step the heuristic adds to V such an element

from R that covers the maximal number of not yet covered elements from the universe

U . The procedure stops when all elements from universe U are covered. This heuristic

89

5. Coordinate Systems for Test-Based Problems

Algorithm 5.3 GreedyCover heuristic for extracting a minimal coordinate system.

1: procedure GreedyCover(S, T,G)
2: V ← ∅ . Working set of tests
3: N ← {(s1, s2)|s1, s2 ∈ S ∧ ∃t∈T s1 <t s2} . Set of pairs not yet ordered
4: while N 6= ∅ do . Are all pairs ordered by tests from V ?
5: u← argmaxt∈T\V |{(s1, s2) ∈ N|s1 <t s2}|
6: N ← N \ {(s1, s2) ∈ N|s1 <u s2}
7: V ← V ∪ {u}
8: end while
9: return ChainPartition(V,≤)

10: end procedure

was shown [66] to achieve an approximation ratio of

s∑
k=1

1

k
≤ ln s+ 1, (5.8.3)

where s is the size of the largest set in R. It was also proved [92, 118, 1] to be the best

possible polynomial-time approximation algorithm for this problem.

To solve Dimension Problem, we need to search for a set of tests that preserves the

relation for all pairs of candidate solutions, i.e., orders some pairs of candidate solutions.

Thus, it is easy to spot similarities between the Set Covering Problem and Dimension

Problem. This led us to designing the GreedyCover heuristic (Algorithm 5.3). The

algorithm first uses the classical heuristic for Set Covering Problem to construct a set

of tests V that order all pairs of candidate solutions from set S. Then it computes the

minimal chain partition on (V,≤).

The correctness of this heuristic results directly from Theorem 32 and the fact that

elements in a chain are ordered by < relation. Assuming that minimal chain partition is

computed using the simplest O(n3) algorithm (this can be improved, see discussion in

5.8.2), GreedyCover has a worst case polynomial time complexity ofO(|T |2|S|2+|T |3),
because the loop in line 4 executes maximally |T | times and the cost of line 5 isO(|T ||S|2).

Although the approximation ratio (if any) of GreedyCover is unknown, the fact

that the heuristic is based on an algorithm for which the approximation ratio is low,

makes us hypothesize that our algorithm will perform well in practice. This intuition

will be verified in the experiments in the following section.

90

5.9. Experiments and Results

5.9. Experiments and Results

5.9.1. Compare-on-One

The goal of the first experiment is to verify how the dimension computed by Exact

algorithm corresponds to the intrinsic properties of compare-on-one, a variant of the

abstract Numbers Game [140], proposed in [34] and widely used as a coevolutionary

benchmark [28, 25, 34, 26, 29, 32, 30, 17, 127].

Problem 50. Compare-on-one game

In this test-based problem, strategies are represented as non-negative real-number

vectors of length d, which we call here the a priori dimension of the game. The outcome

of the interaction between candidate solution s and test t depends only on the dimension

in which test t has the highest value. Formally, the index of this dimension is m =

arg maxi=1...d t[i], where t[i] denotes the i-th element of vector t. The interaction function

is defined as follows:

G(s, t) ⇐⇒ s[m] ≥ t[m].

The rules of a two-dimensional version of compare-on-one are visualized in Fig-

ure 5.9.1. Candidate solution s1 solves only tests from the shaded area.

x

y

s1

Figure 5.9.1.: A visualization of rules of two-dimensional compare-on-one (d = 2).
Each strategy (a candidate solution or a test) is represented as a point
in a 2D space. According to the game definition, a candidate solution s1
solves all tests from the gray area, thus it solves t1, but fails t2.

Despite its straightforward formulation, compare-on-one is a challenging problem

because it has been designed to induce over-specialization: a coevolving system of can-

didate solutions and tests can easily focus on some (or even a single one) underlying

objectives (here: axes of the multi-dimensional space), while ignoring the remaining

ones. To make steady progress on this problem, a coevolutionary algorithm has to care-

fully maintain the tests that support all underlying objectives from the very beginning

of the run.

91

5. Coordinate Systems for Test-Based Problems

0

1

2

3

4

co
m
p
u
te
d
d
im

en
si
on

0 10 20 30 40 50

problem size

d = 4

d = 3

d = 2

Figure 5.9.2.: The figure shows how the dimension for compare-on-one changes when
increasing the number of strategies involved. It may be observed that
the computed dimension converges to the a priori dimension of the game.
Here shown for d = 2, 3, 4. Grey vertical whiskers denote 95% confidence
intervals.

As compare-on-one is an artificial problem, we can objectively and precisely mea-

sure the progress of coevolution (e.g., by using the shaded area in Fig. 5.9.1), which is

usually troublesome for many other test-based problems and real games [31].

In order to check how, for a given d, the game dimension changes for growing S

and T , we randomly generated n = |T | test strategies and n = |S| candidate solution

strategies from a fixed [0.0, 10.0] interval and computed the dimension with Exact for

different values of problem size n. The results of this procedure for d = 2, 3, 4 are

shown in Fig. 5.9.2. Each data point represents the computed dimension averaged over

30 random samples with 95% confidence intervals. The plot clearly indicates that the

computed dimension of the game converges to the a priori dimension d of the game with

growing problem size n. Also, for this game, its dimension may be reliably estimated

already from a small number of interactions.

The above results lead to the question what the minimal coordinate system for this

game looks like. It is easy to notice that t[0, 1] is indiscernible from t[0.5, 1] with respect

to S, since only the highest value counts. In general, t[a1, . . . , am, . . . ad] is indiscernible

from t[b1, . . . , bm, . . . , bd], whenever am = bm and ∀i 6=mai ≤ am ∧ bi ≤ bm. Thus, the

subset of tests of the form t[0, . . . , am, . . . , 0], where am > 0, is sufficient to construct the

92

5.9. Experiments and Results

t[1, 0] t[2, 0] t[3, 0]

t[0, 1]

t[0, 2]

s1[2, 1]

Figure 5.9.3.: Minimal coordinate system for two-dimensional compare-on-one.

minimal coordinate system. The observation that t[0, . . . , am, . . . , 0] < t[0, . . . , bm, . . . , 0]

if and only if am < bm makes it possible to define a minimal correct coordinate system:

Ai = {[0, . . . , ai . . . , 0], ai ∈ R+} (5.9.1)

for i = 1 . . . d, and

pi(s[s1, . . . , si, . . . , sd]) = t[0, . . . , si, . . . , 0]. (5.9.2)

Thus, for this problem, the number of underlying objectives equals the a priori dimen-

sion of the game d.

Figure 5.9.3 shows the minimal coordinate system for d = 2, with the tests solved by

an exemplary candidate solution s1 marked by a gray line.

In most trials, the minimal coordinate system found by Exact was coherent with

the minimal coordinate system described above, so the algorithm correctly identified the

d underlying objectives of the game. Only when the number of candidate solutions and

tests n was small in proportion to d, Exact produced axes that did not correspond to

such objectives.

5.9.2. Compare-on-All

In the second experiment, we examine another abstract game, the compare-on-all

[34] (a.k.a. transitive [17]).

Problem 51. Compare-on-all

In compare-on-all, strategies are represented like in compare-on-one, but the

interaction function is defined as weak dominance relation:

G(s, t) ⇐⇒ ∀is[i] ≥ t[i].

The rules of compare-on-all are visualized in Figure 5.9.4.

93

5. Coordinate Systems for Test-Based Problems

a1

a2

s1

Figure 5.9.4.: A visualization of rules of two-dimensional compare-on-all (d = 2).
Both tests and candidate solutions are points in the d-dimensional space.
s1 solves all tests from the gray area.

The results (computed with Exact) for this problem for d = 2, 3, 4 are shown in

Fig. 5.9.5. Although the computed dimension grows much slower than the problem

size, this time the computed dimension clearly fails at approximating the a priori game

dimension d. Even worse, it does not seem to saturate with growing n. To some extent,

this result is similar to the results obtained by Bucci et al. in [17], who, using Simple-

Greedy heuristic and a variant of Population Pareto Hill Climber (P-PHC) algorithm

for generating candidate solutions and tests, found out that the computed dimension

was overestimating the a priori dimension, especially for large values of the latter one.

Our results demonstrate that even using an exact algorithm, it is hard to arrive at

the true dimension of this test-based problem. Let us also notice that in [17] the scale

of overestimation was much lower than in our experiment (e.g., for d = 10, the game

dimension was estimated to be only ca. 17). The two experiments are not easily com-

parable because of the way in which the candidate solutions and tests were generated in

[17] (P-PHC); however, taking into the consideration the fact that the true dimension

of compare-on-all equals its a priori dimension (see below), better estimates found

in [17] indicate that properties of generators are of crucial importance when designing

practical coevolutionary algorithms.

The minimal coordinate system for compare-on-all looks as the one for compare-

on-one. Also here we need only the tests of the form t[0, . . . , am, . . . , 0], where am > 0:

any test having more than one non-zero element can be discarded because its solu-

tions failed set can be constructed using the solutions failed sets of tests located on the

axes (cf. the proof of Proposition 49). Therefore, since also here t[0, . . . , am, . . . , 0] <

t[0, . . . , bm, . . . , 0] if and only if am < bm, and this relation cannot be modeled in a lower

number of axes, the minimal coordinate system is defined by (5.9.1) and (5.9.2) as for

compare-on-one, and has d dimensions.

94

5.9. Experiments and Results

0

5

10

15

20

co
m
p
u
te
d
d
im

en
si
on

0 10 20 30 40 50

problem size

d = 4

d = 3

d = 2

Figure 5.9.5.: The figure shows how the dimension for compare-on-all changes when
increasing the number of strategies involved. Notice that for d = 2, 3, 4,
the computed dimension does not converges to the a priori dimension of
the game. Grey vertical whiskers denote 95% confidence intervals.

5.9.3. Dimension of Random Test-Based Problem

The goal of the next experiment was twofold: first, to compare Bucci’s SimpleGreedy

[17] with our Exact and GreedyCover algorithms; second, to observe how the com-

puted dimension changes with the problem size. To this aim, we considered random

test-based problems of different sizes n = 2 . . . 200. A random test-based problem of size

n is given by a random payoff matrix n × n (n tests and n candidate solutions), with

each interaction outcome drawn independently at random with equal probability. The

dimension computed by the algorithms are shown in Fig. 5.9.6. Each data point repre-

sents the computed dimension averaged over 30 random matrices, with 95% confidence

intervals.

Figure 5.9.6 gives rise to several interesting observations. Exact performs clearly

much better than SimpleGreedy, which hardly does any compression. The gap be-

tween the algorithms grows rapidly with n, so that SimpleGreedy overestimates twice

the true dimension computed by Exact already for n = 25, and ten times for n = 200

(the latter case did not fit in the figure). The compression provided by Exact is im-

pressive, given that incomparability of almost all pairs of test becomes almost certain

for large random matrices, since the probability that a test weakly dominates another

95

5. Coordinate Systems for Test-Based Problems

0

5

10

15

20

25

co
m
p
u
te
d
d
im

en
si
on

0 50 100 150 200

problem size

SimpleGreedy

GreedyCover

Exact

y(x) = 4.5 ∗ ln(x)− 2.4

Figure 5.9.6.: Comparison of the dimension computed by three algorithms: Simple-
Greedy, Exact, GreedyCover on a random problem in the function
of the problem size. Clearly, SimpleGreedy is inferior to both Exact
and GreedyCover. On the other hand, GreedyCover, which is only a
heuristic, performs nearly as well as Exact. Grey vertical whiskers denote
95% confidence intervals.

96

5.9. Experiments and Results

test is
(
3
4

)n2. Note also that the logarithm-like shape of Exact curve suggests that

the compression could be even higher for larger n. On the other hand, Exact is obvi-

ously much slower than SimpleGreedy — that is why we could not produce results for

n > 34.

However, in contrast to SimpleGreedy, the GreedyCover heuristic seems to ap-

proximate the true problem dimension very well. For small instances (n ≤ 14), it is not

significantly worse than Exact. For larger instances, for which we have exact results,

it overestimates the test-based problem dimension only slightly.

Moreover, the dimension computed by GreedyCover seems to follow a logarithmic

curve, similarly to the actual problem dimension (as computed using Exact). Since the

result of GreedyCover is an upper bound of problem dimension, we may hypothesize

that, on average, the dimension of a test-based problem is bounded from above by

a logarithm of problem size. This result may indicate that the dimension of at least

some test-based problems is possible to handle and that the compression obtained by

extracting underlying objectives may be exponential with respect to the total number

of tests.

5.9.4. Estimating Problem Dimension

In order to verify how the above result generalizes over more complex test-based prob-

lems, we performed experiments similar to the one in Section 5.9.3 on two other problems:

tic-tac-toe and density classification task.

5.9.4.1. Problems

Tic-Tac-Toe has already been introduced in Chapter 3, but here we approach the

game in a different way. In contrast to the setup described in Chapter 3, we separate the

strategies for player X from strategies for player O. The former become the candidate

solutions and the latter should be identified with tests. As a result, the interaction

function involves one strategy of player X and one strategy of player O, and may end with

a win or defeat of player X or with a draw. Moreover, in order to meet the assumptions

made in this chapter about the interaction function’s codomain (G : S × T → {0, 1}),
we treat both a win and a draw of player X as passing a test (player’s O strategy) and

defeat as failing it.

In contrast to Genetic Programming encoding used in Chapter 3, which may bias the

search of strategy space, here we encode strategies directly [8] in order to be able to
2The probability of the event t1 ≤s1 t2 is 3

4
, because out of four possible cases, it does not occur only

when G(s, t1) = 1 and G(s, t2) = 0.

97

5. Coordinate Systems for Test-Based Problems

consider all possible strategies for this game. The direct encoding explicitly defines the

strategy’s move in each possible board state. Using little computational power, we may

check that tic-tac-toe has 765 different board states (not counting boards created by

rotation or reflection). 138 of them are final (3 boards finishing with a draw, 91 boards

with player X winning and 44 boards with player O winning), while in the remaining

627 boards moves are still possible. Among them, in 338 cases player X is to play and

in 289 cases it is player’s O turn. Thus, we encode player X with 338 genes and player

O with 289 genes. A gene corresponds to one board state and it encodes the move to

play in this state.

Tic-tac-toe is a simple problem easily solved by a minimax algorithm [124]. However

when we abstract from the fact that an interaction between a candidate solution and

a test involves only a few moves on a simple 3 × 3 board and we are just left with

the results of interactions between strategies, the number of possible strategies makes

tic-tac-toe a non-trivial task [8]. Assuming that two strategies are different when they

play differently in at least one board state, the total number of strategies for player

X (candidate solutions) is approximately 3.47 × 10162 and the number of strategies for

player O (tests) is approximately 2.82× 10142.

Density Classification Task has been described in Section 2.2.5 on page 27. Here,

we use an instance of density classification task in which the rule’s radius r = 3, the size

of cellular automata n = 59 and the number of time steps t = 100. Thus, in our problem,

there are 23
2r+1

= 2128 rules (candidate solutions) and 2n = 259 initial configurations

(tests).

5.9.4.2. Results

The number of strategies in both tic-tac-toe and density classification task is too high to

analyze the whole payoff matrix. That is why, we randomly and uniformly sampled the

strategies from the whole strategy space. Given the constraints on computer resources,

we were able to consider payoff matrices from 5×5 to 1885×1885 with step 5 for tic-tac-

toe and 10×10 to 4500×4500 with step 10 for density classification task. For each such

payoff matrix the number of underlying objectives was estimated by the GreedyCover

algorithm.

Figure 5.9.7 shows the results of this procedure for tic-tac-toe. Two standard trend

curves fit our data: a power function with equation y = 4.7x0.357 with the coefficient

of determination R2 = 0.86; and a logarithmic function y = 12.62ln(x) − 31.6 with

R2 = 0.93. The difference between the R2 values is small, so there is not enough

98

5.9. Experiments and Results

0

20

40

60

80

co
m
p
u
te
d
d
im

en
si
on

0 500 1000 1500

problem size

GreedyCover

y(x) = 12.6ln(x)− 31.6 (R2 = 0.93)

y(x) = 4.7x0.357 (R2 = 0.86)

Figure 5.9.7.: Dimension trend for of tic-tac-toe.

evidence to confidently claim that the logarithmic curve describes the dimension trend

better. Having said that, we have to recall that GreedyCover is a heuristic and as

such it overestimates the dimension (cf. Fig. 5.9.6 on page 96); moreover, the difference

between the problem dimension and its estimation by GreedyCover is likely to be

higher for bigger payoff matrices. Although this observation does not prove anything, it

is a plausible argument in favor of the logarithmic curve.

To model the trend more precisely, one should estimate dimensions for greater payoff

matrices, but this, despite polynomial complexity, is computationally demanding. It has

taken a week on a modern PC to run the algorithm for payoff matrices up to 1885×1885,

and the greater the matrix, the greater the computational cost; GreedyCover is also

memory demanding, thus the amount of data required to model the trend with greater

confidence is not expected to substantially increase in the predictable future, unless

a better algorithm than GreedyCover is designed.

The results for density classification task are presented in Fig 5.9.8. This time, the

data are best modeled by a linear function y(x) = 0.0074x− 0.57 with R2 = 0.87.

5.9.4.3. Discussion

When trying to estimate the dependency between the problem size and its dimension,

we got different results for different problems. For the random problem considered in

Section 5.9.3, the trend is clearly a logarithmic function. In Section 5.9.4, we found

99

5. Coordinate Systems for Test-Based Problems

0

10

20

30

40

50

co
m
p
u
te
d
d
im

en
si
on

0 1000 2000 3000 4000

problem size

GreedyCover

y(x) = 0.0074x− 0.57 (R2 = 0.87)

Figure 5.9.8.: Dimension trend for an instance of density classification task (r = 3, n =
129, t = 100).

that for tic-tac-toe, it may be a logarithmic or power function, while for our instance of

density classification task the trend is linear. We may, thus, conclude that the relation

between the dimension of a problem and its size is highly problem dependent.

Having the relation between the size of the problem sample and its dimension, we may

try to extrapolate the modeled trend to estimate the upper bound of the dimension of

a problem (i.e., technically, to substitute for n the actual problem size). For our instance

of density classification task, the dimension is approximately 0.0074×2129−0.57 u 5.04×
1036. Since for tic-tac-toe we are not able to unambiguously determine the trend function,

for this problem we may make claims only conditionally. If we assume that the power

function correctly determines the dimension trend, then extrapolating it to 3.47× 10162

strategies, the dimension is approximately 4.7 ×
(
3.47× 10162

)0.357 u 5.0 × 1058 , but

when we assume that the logarithmic function is the one which models the data better,

the dimension equals only 12.6ln(3.47 × 10162)) − 31.6 u 2038. If the latter is true,

then tic-tac-toe could be perceived as an easy problem when compared with density

classification task.

The table below summarizes the computed estimates. Although they should be treated

with caution, since the numbers are subject to substantial uncertainty resulting from

extrapolation, we may conclude that the compression rate obtained is significant for

both problems considered in this section.

100

5.10. Relation to Complete Evaluation Set

Tic-tac-toe
Density classification task

(r = 3, n = 129, t = 100)

Number of tests

(original objectives)
2.82× 10142 6.81× 1038

Number of

candidate solutions
3.47× 10162 3.40× 1038

Estimated upper bound

of the problem dimension

5.0× 1058 or

2038
5.04× 1036

5.10. Relation to Complete Evaluation Set

It is interesting to notice the relation between our findings in this chapter and the idea of

ideal evaluation introduced by de Jong and Pollack [34], which was based on a concept

of complete evaluation set. The complete evaluation set is defined as a subset of T that

preserves all relations between candidate solutions from S. Notice that the set of all tests⋃ C of a correct coordinate system C is a complete evaluation set, since the condition

(33) holds. By transforming the problem of determining the complete evaluation set to

the Set Covering Problem, it is easy to show that also the problem of determining the

minimal complete evaluation set is NP-hard.

The complete evaluation set is used in the coevolutionary algorithm Delphi intro-

duced in [34]. Although the authors state that Delphi does not need to compute the

minimal complete evaluation set, it is reasonable to hypothesize that approximating it

could lead to better performance of Delphi by decreasing the number of tests it has

to maintain. Employing a variant of GreedyCover that computes just the complete

evaluation set may thus be beneficial also for Delphi, opening the door to a practical

application of results obtained in this chapter.

Let us also point reader’s attention to the analogy between the above concepts and

those of the rough set theory [113]. The starting point in rough set theory is an in-

formation system, i.e., a table containing objects (corresponding to rows) described by

attributes (columns), where for each attribute an indiscernibility relation is also given.

A reduct is any subset of attributes that induces the same equivalence classes in the set

of objects as the set of all attributes. Thus, it plays a similar role there as the complete

evaluation set here, i.e., it preserves the structure present in the original data (infor-

mation system or test-based problem). It should not come as a surprise that finding

101

5. Coordinate Systems for Test-Based Problems

a minimal reduct is NP-complete. Obviously, the important difference is that standard

rough set theory does not involve dominance relation.

5.11. Discussion and Conclusions

Test-based problems form an important and surprisingly common class of optimization

problems which was not recognized as a separate branch of research until recently, and

can be conveniently modeled and studied within the framework of coevolution. They are

difficult by nature, and thus require a proper formal analysis that was the main aim of

this chapter. We concentrated on the notion of coordinate system, a concept introduced

in [17] that allows extracting the internal structure of test-based problems by means of

underlying objectives, which can be potentially exploited to maintain the progress of

search in coevolutionary algorithms.

A significant part of this chapter was devoted to revealing the properties of coordinate

systems. Apart from determining the lower and upper bounds for problem dimension,

we proved its equality to the width of the partially ordered set of tests. Moreover,

we formally identified the tests that are redundant and can be safely discarded when

constructing a coordinate system

These findings allowed us to answer the question about the complexity of the prob-

lem of extracting the minimal coordinate system. Despite the fact that the problem

turned out to be NP-hard, we demonstrated that the problem can be solved at low

computational cost by means of an appropriate heuristic. Our GreedyCover algo-

rithm is clearly superior to SimpleGreedy, the best algorithm proposed so far in terms

of approximating the true problem dimension, and similar to it in terms of computa-

tional complexity. Additionally, we carefully designed an exact algorithm which, though

exponential, may be used for problems of moderate size.

In the experimental part, we have shown that application of these algorithms leads to

significant compression of the objective space of test-based problems. We demonstrated

that, on average, the number of underlying objectives for an abstract random test-based

problem seems to be limited from above by a logarithm of the number of tests. This

result has been also verified on tic-tac-toe and an instance of density classification task.

Cautiously speaking, we could not rule out the possibility that the dimension of tic-tac-

toe is also bounded by a logarithm of the number of tests. For the considered instance

of density classification task, the number of underlying objectives grows linearly with

the number of tests; however, the small slope (0.0074) of the trend function makes the

number of underlying objectives still significantly lower than the number of tests. All

102

5.11. Discussion and Conclusions

in all, our results indicate that the dimension of some test-based problems, including

the well-known ones like tic-tac-toe or density classification task, is typically much lower

than that resulting from the original idea of Pareto-coevolution that treats every test as

a separate objective.

In multi-objective optimization, in general, the more objectives, the harder the prob-

lem [12]. If we assume that also for test-based problems, which may be interpreted in

a multi-objective manner, problem dimension is a yardstick of problem difficulty3, we

can conclude that some test-based problems, though still hard, are likely to be less dif-

ficult than previously thought. Hence, random sampling used extensively in Section 5.9

as a method estimating the dimension trend may be a tool of practical interest. In this

light, tic-tac-toe turns out to be much easier than our instance of density classification

task.

In case of some problems (here: compare-on-one game), we have shown that the

axes of extracted coordinate systems correctly identify the true underlying skills of the

game. On another problem, compare-on-all, we have demonstrated that sometimes,

even with an exact algorithm, the true dimension of a game may not be found if just

a random sample of tests and candidate solutions are provided. This indicates the impor-

tance of design of effective generators for tests and candidate solutions in coevolutionary

algorithms based on the idea of coordinate system.

This chapter focused on modeling the underlying structure of the problem; how to

effectively exploit it will be the theme of Chapter 6. Polynomial-time complexity and

good results provided by GreedyCover make it particularly appealing for coevolution-

ary algorithms, enabling to update the coordinate system online (i.e., during the run)

in a framework with a coevolutionary archive.

3A plausible argument for this assumption is the, now widely accepted, distinction of such problems
into multi-objective (number of objectives < 4) and many-objective (number of objectives ≥ 4) [57]

103

6. Coordinate System Archive

In this chapter, we propose a coevolutionary archive, called Coordinate System Archive

(COSA), which is based on the idea of extracting the underlying structure of test-based

problems using coordinate systems introduced in Chapter 5. COSA is designed to work

for asymmetric test-based problems. In this respect, on the one hand, it is more widely

applicable than Fitnessless Coevolution presented in Chapter 3, which was designed

for symmetrical test-based problems only. On the other hand, Fitness Coevolution has

been applied to a complex problem, but COSA is not mature enough to have practical

applicability yet. Instead, it should be treated as a proof-of-concept that the coordinate

system defined in Chapter 5 may be employed in coevolutionary algorithms for solving

test-based problems.

6.1. Introduction

The idea of extracting and using the underlying structure of test-based problems to

maintain the progress in coevolution was first applied in Dimension Extraction Coevolu-

tionary Algorithm (DECA) [32]. Here we propose another method based on this concept,

called Coordinate System Archive (COSA). Our method differs substantially from the

earlier attempt, since DECA uses a distinct definition of coordinate system (see Chapter

5) and exploits it in a different way.

6.2. Coordinate System Archive (COSA)

COSA is a coevolutionary archive that may be used as a component in the generator-

archive scheme for solving test-based problems by coevolutionary methods (cf. Section

2.3.4 and Alg. 2.1 on page 33), and as such it can work with any generator. The idea

of our archive algorithm is based on the concept of underlying problem structure and

coordinate system described in Chapter 5. The archive extracts a coordinate system of

the test-based problem consisting of currently available candidate solutions and tests,

and uses it to retain the base axis set, containing one test from each axis of the extracted

105

6. Coordinate System Archive

Algorithm 6.1 Coordinate System Archive (COSA)

1: procedure Submit(Snew, Tnew)
2: Ttmp ← Tarch ∪ Tnew
3: Stmp ← Sarch ∪ Snew
4: Ttmp ← GetUnique(Ttmp, Stmp)
5: Stmp ← GetUnique(Stmp, Ttmp)
6: SPareto ← {s ∈ Stmp|∀s′∈Stmps

′ ≤Ttmp s}
7: Tbase ← FindBaseAxisSet(Ttmp, SPareto)
8: Sreq ← PairSetCover(SPareto, Stmp, Tbase)
9: Treq ← PairSetCover(Tbase, Ttmp, SPareto)

10: Sarch ← Sreq
11: Tarch ← Treq
12: end procedure
13:

14: procedure GetUnique(A,B)
15: U ← ∅
16: for a ∈ A do
17: I ← {e ∈ A|∀b∈BG(a, b) = G(e, b)}
18: U ← U ∪ oldest individual from I
19: A← A \ I
20: end for
21: return U
22: end procedure
23:

24: procedure PairSetCover(Amust, A,B)
25: A← A \Amust
26: N ← {(b1, b2)|b1, b2 ∈ B . Pairs to be ordered
27: ∧∃a∈Ab1 <a b2) ∧ @a∈Amustb1 <a b2)}
28: V ← Amust
29: while N 6= ∅ do . Are all pairs ordered?
30: u← argmaxa∈A\V |{(b1, b2) ∈ N|b1 <a b2}|
31: N ← N \ {(b1, b2) ∈ N|b1 <u b2}
32: V ← V ∪ {u}
33: end while
34: return V
35: end procedure

106

6.2. Coordinate System Archive (COSA)

Algorithm 6.2 A procedure that finds the tests that should be kept in the archive.

1: procedure FindBaseAxisSet(Ttmp, SPareto)
2: C ← ChainPartition(Ttmp,≤)
3: ndims = |C|
4: Slist ← SPareto sorted descendingly by min(GetPos(s, C))
5: for s ∈ Slist do
6: T ′ ← {t ∈ Ttmp|G(s, t)}
7: (A, found)← the greatest antichain in poset (T ′,≤)
8: if found then
9: return A

10: end if
11: end for
12: return Ttmp
13: end procedure
14:

15: procedure ChainPartition(X,P)
16: return minimal chain partition of poset (X,P)
17: end procedure
18:

19: procedure GetPos(s, C)
20: ndims ← |C|
21: P ← array[1 . . . ndims]
22: for i = 1 . . . ndims do
23: P [i]← |{c ∈ C[i]|G(s, c)}|
24: end for
25: return P
26: end procedure

107

6. Coordinate System Archive

coordinate system. The objective of the base axis set is to prevent the coevolution

from cycling due to inherent interactivity in a multi-objective search space of test-based

problems. Additionally, COSA maintains the Pareto set, consisting of non-dominated

candidate solutions, which represents best candidate solutions found so far. COSA does

not maintain unnecessary candidate solutions, thus if the problem is low-dimensional,

the base axis set remains small. As a result, COSA can better utilize given processor

time than algorithms that maintain many useless tests.

COSA maintains two separate archives, one for candidate solutions (Sarch) and one for

tests (Tarch). Each time new candidate solutions and tests (Snew, Tnew) are submitted

to it (line 10 of Alg. 2.1), COSA merges them with the archives into temporary sets

of individuals Stmp and Ttmp (see Alg. 6.1, lines 2-3). Ultimately, only some of those

individuals will be retained in the archives.

The algorithm first gets rid of any duplicates in both archives (lines 4-5): from every

equivalence class (group of individuals that are indiscernible in terms of the payoff ma-

trix) only the oldest one is retained. Preferring the older individuals prevents replacing

the objectively better individuals by the worse ones, which otherwise would be likely

due to the predominantly destructive character of mutation and crossover operators.

Then, in lines 6-7, COSA decides which individuals must be retained. For candidate

solutions, it is the Pareto set SPareto, consisting of candidate solutions that are Pareto

non-dominated with respect to Ttmp. For tests, it is the base axis set Tbase, consisting

of one test from each axis determined by the FindBaseAxisSet procedure that will be

described later. SPareto and Tbase are not sufficient to provide each other stability, i.e.,

to prevent changing the mutual relationship between individuals and, in consequence, to

prevent being removed during subsequent submissions. Therefore, COSA selects some

additional individuals and forms the supersets Sreq and Treq of, respectively, SPareto and

Tbase, which become the new archives at the end of the submission phase (lines 10 and

11). Sreq is a set of candidate solutions that preserves all relations between tests in

Tbase. Formally, if for a pair t1, t2 ∈ Tbase there exists s ∈ S such that t1 ≤s t2, then Sreq
must contain s′ such that t1 ≤s′ t2. Analogically, Treq is a set of tests that preserves all

relations between candidate solutions in SPareto.

6.2.1. Stabilizing the archives by PairSetCover

Both Sreq and Treq are computed by PairSetCover (Alg. 6.1), which is a greedy

heuristic working according to the same principle asGreedyCover described in Section

5.8.3. Similarly to GreedyCover, it may not produce the minimal set of required

elements. PairSetCover accepts generic arguments A and B. Amust is the set of

108

6.2. Coordinate System Archive (COSA)

individuals that have to be retained. N is the set of pairs that have to be ordered.

Notice that pairs of elements of B are already ordered by individuals from Amust and

are not included in N (line 27). Starting with the set V containing only individuals from

Amust, PairSetCover in each iteration (lines 30-32) extends it by such an element from

A that orders the maximal number of not yet ordered pairs from N . The procedure stops

when all pairs are ordered (N is empty).

6.2.2. Finding the base axis set by FindBaseAxisSet

The most important part of the archive algorithm is the FindBaseAxisSet procedure

(Alg. 6.2), which determines the base axis set. FindBaseAxisSet builds a coordinate

system using ChainPartition, which finds a minimal chain partition C of poset (T,≤)

(line 2). Similarly to the implementation used in Exact algorithm in the previous

chapter (Alg. 5.2), for ChainPartition we use the standard O(|X|3) method, which

computes the max-flow on a bipartite network with unit capacities. Each chain of C,
being linearly ordered by relation <, corresponds to one axis of the coordinate system,

thus C is a coordinate system (cf. Def. 22 on page 69). As we have shown in Corollary 39

on page 77, the coordinate system built in this way is a correct one (cf. Def. 24 on

page 69).

The size of the extracted coordinate system ndims (line 3) is a temporal estimation of

the true dimension of our problem. It may, but it does not have to be, the true dimension

of the test-based problem we are trying to solve, because (i) the extracted coordinate

system is not necessarily minimal, and (ii) we operate on a test-based problem that

involves samples of the sets of all possible candidate solutions and all possible tests.

Having the coordinate system C, we can easily determine the coordinates of each

candidate solution s in C by computing the number of tests that are solved by s on each

axis (procedure GetPos, lines 19-26). The position is represented by a vector of ndims
cardinal numbers (cf. Def. 23).

In lines 4-11, FindBaseAxisSet tries to find an antichain in (Ttmp,≤) with three

properties: (i) its size is ndims, (ii) it is the greatest antichain, and (iii) there ex-

ists a candidate solution that solves all its elements. Considering the first property,

according to the Dilworth theorem (Theorem 7), such antichain always exists, since

width (Ttmp,≤) = ndims.

Let us explain the second property. Let X be the set of all maximum antichains of

(Ttmp,≤) and P be a relation on X such that X1PX2 with X1, X2 ∈ X iff there exists

a bijection f : X1 → X2 such that x1 ≤ f(x1) for all x1 ∈ X1. Notice that the poset

(X ,P) has the maximum element, called here the greatest antichain of Ttmp, which is

109

6. Coordinate System Archive

computed by a polynomial-time algorithm in line 7.

The third property cannot be always fulfilled, since the maximum antichain of size

ndims, guaranteed to exist in (Ttmp,≤), does not necessarily exist in (T ′,≤), where

T ′ ⊆ Ttmp is a set of tests solved by a certain candidate solution s.

FindBaseAxisSet iterates over all candidate solutions from SPareto and returns the

first encountered antichain with the three properties described above (line 9); if such

antichain does not exist, it returns all tests from Ttmp. The candidate solutions from

SPareto are considered in the order of decreasing minimal coordinate, which identifies

the weakest element of a candidate solution. Thanks to that, the algorithm prefers the

search direction that treats all the underlying objectives equally, which is intended to

protect COSA from over-specialization.

6.3. Experiments

In order to validate COSA, we conducted an experiment in which we compared it with

two state-of-the-art coevolutionary archives IPCA and LAPCA, which use the concept

of Pareto domination but do not involve coordinate systems. As benchmark test-based

problem we used two number games: compare-on-one and compare-on-all.

6.3.1. Iterated Pareto-Coevolutionary Archive (IPCA)

IPCA is a coevolutionary archive proposed in [26] and further investigated in [30]. It

guarantees monotonic progress for the solution concept of Pareto-Optimal Set. This

guarantee, however, comes at a cost: its test archive may grow infinitely.

IPCA maintains a set of tests and a set of candidate solutions. A newly generated

candidate solution is accepted by the archive only if it is non-dominated with respect to

the tests maintained in the archive. When a candidate solution is accepted, a newly gen-

erated test that is required to keep it non-dominated is also accepted to the archive. The

candidate solutions in the archive that become dominated by newly accepted candidate

solutions are removed.

6.3.2. Layered Pareto-Coevolutionary Archive (LAPCA)

LAPCA [28] maintains a set of Pareto layers. For a given set of candidate solutions

and tests (S′ = Sarch ∪ Snew, T ′ = Tarch ∪ Tnew), the first Pareto layer consists of all

non-dominated candidate solutions. Each subsequent layer is obtained in a similar way,

after removing the candidate solutions from all previous layers. The solution archive

110

6.3. Experiments

consists of candidate solutions of first l layers, where l is a parameter of the method.

In theory, l makes it easy to trade-off the archive size (thus the computational power

required) and reliability of the archive. However, in general, it is unknown which value

of l is right for a particular problem.

LAPCA also maintains an archive Tarch of tests that separate the candidate solutions

stored by Sarch. For any two candidate solutions si, sj ∈ Sarch in layers i and j respec-

tively, where |i − j| ≤ 1, if there exists a test t ∈ T ′ that orders si before sj , then such

a test must also be retained in Tarch. (Notice that if i = j, si and sj are in the same

layer). Tests are processed in any order, and the first one that orders a not-yet-ordered

pair of candidate solutions is selected to Tarch.

6.3.3. Objective Progress Measures

compare-on-one and compare-on-all problems are defined in Sections 5.9.1 on

page 91 and 5.9.2 on page 93, respectively. Originally, those problems were defined as

open-ended, which means that the values of genes (variables) of strategies are not limited

from above and could increase infinitely. This raises problems with defining a reasonable

solution concept for such problems, because, intuitively, the best solution for such prob-

lems does not exist. Thus, here we limit the strategy space by a non-negative value m in

such a way that for any strategy x (candidate solution or test) x[i] ≤ m for i = 1 . . . d.

In order to objectively monitor the progress of algorithms on these problems, we

employ two performance measures: lowest dimension and expected utility.

A standard performance measure for these problems used by other authors (e.g., in

[34, 29, 144]) is the lowest dimension, which was designed to detect over-specialization

(cf. Section 5.9.1). For a given candidate solution s, it is defined as mini s[i], thus it

determines the ‘weakest point’ of the candidate solution.

Expected utility, on the other hand, takes into the account all ‘strong points’ of a

candidate solution s and it is defined as the probability that s solves a test. However,

as we do not want to assign any arbitrary value to m, we equal the expected utility

with the hypervolume of the polyhedron that contains all the tests solved by s. For

compare-on-one the hypervolume of such a polyhedron is given by

U(s) =
1

d

∑
i=1...d

s[i]d,

where d is the a priori dimension of the problem. The hypervolume is visualized in

Fig. 5.9.1 on page 91 (for d = 2) and in Fig. 6.3.1 (for d = 3).

111

6. Coordinate System Archive

Figure 6.3.1.: Visualization of compare-on-one for d = 3. A candidate solution s =
[0.5, 0.8, 0.2] solves all tests bounded by the polyhedron.

For compare-on-all the polyhedron is a hyperrectangle (for d = 2 cf. Fig. 5.9.4 on

page 94), thus for a given a priori dimension d, its hypervolume is given by

U(s) =
∏

i=1...d

s[i].

The performance measures we use here could be interpreted as objective functions,

based on which the preference relation for test-based problems could be easily con-

structed inducing a total order on potential solutions (here: candidate solutions). Notice

that both preference relations correspond to Maximization of Expected Utility solution

concept (cf. Section 2.2.4), which, in this case, consists of one element: the strategy

[m,m, . . . ,m].

6.3.4. Setup

In the experiment, we used the common generator-archive scheme for coevolution pre-

sented in Alg. 2.1 on page 33. The coevolutionary algorithm maintains n candidate

112

6.3. Experiments

solutions and n tests (here, n = 20) and works as follows. At the beginning, both pop-

ulations are initialized, with each gene drawn at random from the [0, 1] range (line 2 of

Alg. 2.1). Archives are initially empty (lines 3-4). Afterward, the algorithm iterates

over consecutive generations in a way that resembles an ordinary evolutionary algorithm

(cf. [51]). Each generation involves breeding of new candidate solutions and tests using

the generator (lines 6 and 7), evaluation (line 11), and selection (line 12). The following

paragraphs detail these stages.

The exploration of the search space is driven by a generator which is responsible for

providing genetic variation. Technically, the generator of candidate solutions (Gener-

ateNewSolutions in Alg. 2.1) and the generator of tests (GenerateNewTests) work in

the same way, producing n individuals (offspring) in the following way. First, a gen-

erator decides randomly (with equal probability) whether the parent of the generated

individual should come from the population or from the archive. Second, it mutates the

parent and returns it as a new individual. The difference between generating candidate

solutions and generating tests lies in handling the archive. The generator of tests uses

all tests from Tarch as potential parents, whereas the generator of candidate solutions

uses only the Pareto non-dominated candidate solutions from Sarch as potential parents

(this increases the pressure towards better candidate solutions).

Mutation randomly perturbs two genes of an individual (candidate solution or test).

Following [30], the mutation is uniform in interval [−0.2, 0.1], thus it is negatively biased:

it is more likely to decrease a gene than to increase it. Such asymmetry causes the

problem to be harder and bear more resemblance to real problems, where variation is

more likely to cause regress than progress [30]. Negative values of genes are clamped to

0.

For a similar reason our generators refrain from crossing over the parent strategies: for

the considered number games and the way the strategies are encoded, crossover could

easily produce very good candidate solutions and could alleviate to some extent the

intentionally built-in tendency to focusing, rendering the game too easy1.

The rationale behind mutating exactly two of vector elements is that such variation

simulates epistatic interactions between the elements of the strategy or, in other words,

a non-trivial genotype-phenotype mapping [28] — the offspring (generated strategy) dif-

fers from the parent on more than one dimension (skill). Mutating only one element

would imply one-to-one correspondence between genes (strategy elements) and game

skills, which would be simplistic and unrealistic from the real-world perspective. Thus,

1Consider, for example, two heavily over-specialized candidate solutions: [0,10] and [10,0] and a possible
product of crossing-over them: [10,10]

113

6. Coordinate System Archive

modifying two elements is the minimal non-trivial perturbation. This and other afore-

mentioned design choices make compare-on-one and compare-on-all, despite their

simplicity, a realistic and scalable approximation of practical test-based problems.

After updating Sarch and Tarch , the coevolutionary algorithm proceeds to the evalua-

tion phase, in which we use the round robin tournament: each candidate solution from S′

is given a fitness value computed as the number of tests it solves from T ′. Analogically,

the fitness of a test t from T ′ equals the number of candidate solutions from S′ that do

not solve t. This fitness determines the odds for an individual to pass the subsequent

selection, which is implemented as tournament [51] of size 2. The selection of candidate

solutions proceeds independently from the selection of tests.

The coevolutionary algorithm terminates when the total number of interactions (games

played) reaches 1, 000, 000. Note that the actual number of elapsed generations can

be, and usually is, different for particular algorithms and runs, because the number of

interactions depends on the size of the archive, which varies over time.

6.4. Results

6.4.1. Compare-on-One

Charts presented in Figs. 6.4.1 and 6.4.2 summarize the results of the conducted exper-

iment for compare-on-one for a priori dimensions d = 2, 3, and 5. LAPCA has been

run for l = 3, 5, 10 layers, to give it a chance of attaining good performance. The left

column of charts in Fig. 6.4.1 depicts the performance of the algorithm expressed by the

lowest dimension of the best candidate solution in the archive, and the right one — the

expected utility of the best candidate solution in the archive. In Fig. 6.4.2, all charts

visualize the sizes of archives, left-hand charts for candidate solutions, right-hand charts

for tests. All charts present the averages of 10 runs.

The superiority of COSA for this problem is evident and spans all considered prob-

lem instances and performance measures. In particular, COSA is able to make steady

progress in terms of the lowest dimension of the candidate solutions. The other algo-

rithms lag far behind, particularly for harder instances (larger d). LAPCA is quite good

for d = 2, and the best version of LAPCA seems to be the one with 5 layers (LAPCA-3

is initially better, but then slows down). For d = 2, LAPCA-10 is slow, but still faster

than IPCA. The things change for d = 3, when IPCA gets better than all LAPCAs. For

d = 5 no substantial progress in the lowest dimension is observed either for IPCA or

LAPCA. All in all, COSA copes with over-specialization better than the other considered

methods.

114

6.4. Results

0

10

20

30

P
er
fo
rm

a
n
ce

(l
ow

es
t
d
im

en
si
on

)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(a) d = 2

0

200

400

600

800

P
er
fo
rm

a
n
ce

(e
x
p
ec
te
d
u
ti
li
ty
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(b) d = 2

0

5

10

15

P
er
fo
rm

an
ce

(l
ow

es
t
d
im

en
si
on

)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(c) d = 3

0

1000

2000

3000

4000

P
er
fo
rm

an
ce

(e
x
p
ec
te
d
u
ti
li
ty
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(d) d = 3

0

1

2

3

4

P
er
fo
rm

an
ce

(l
ow

es
t
d
im

en
si
o
n
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(e) d = 5

0

5 · 103

1 · 104

1.5 · 104

P
er
fo
rm

an
ce

(e
x
p
ec
te
d
u
ti
li
ty
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(f) d = 5

Figure 6.4.1.: Results for d-dimensional compare-on-one (d = 2, 3, 5) for two per-
formance measures: lowest dimension (left column) and expected utility
(right column).

115

6. Coordinate System Archive

0

20

40

60

A
rc
h
iv
e
si
ze

(s
o
lu
ti
o
n
s)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(a) d = 2

0

50

100

150

A
rc
h
iv
e
si
ze

(t
es
ts
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(b) d = 2

0

100

200

300

400

A
rc
h
iv
e
si
ze

(s
ol
u
ti
on

s)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(c) d = 3

0

50

100

150

A
rc
h
iv
e
si
ze

(t
es
ts
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(d) d = 3

0

200

400

600

A
rc
h
iv
e
si
ze

(s
ol
u
ti
o
n
s)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(e) d = 5

0

50

100

150

A
rc
h
iv
e
si
ze

(t
es
ts
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(f) d = 5

Figure 6.4.2.: Archive sizes for d-dimensional compare-on-one (d = 2, 3, 5).

116

6.4. Results

Dimension COSA IPCA LAPCA-3 LAPCA-5 LAPCA-10

2 980.9±1.8 407.7±15.0 915.3±53.0 763.0±10.3 488.4±18.7
3 928.1±2.3 343.9±22.2 380.6±256.1 133.2±82.5 51.3±33.7
5 705.6±251.3 344.6±35.7 104.5±18.1 59.1±7.9 41.2±5.5

Table 6.1.: Average number of generations that the algorithms were able to process
during 1,000,000 interactions for compare-on-one.

The expected utility of the best evolved candidate solution also votes in favor of

COSA. The probability of a test being solved by the best candidate solution in the

archive is highest for COSA. The progress on this criterion looks polynomial for all

algorithms, because the hypervolume of the polyhedron defined in 6.3.3 for compare-

on-one depends on the dth power of the largest dimensions of a candidate solution. For

the same reason, the absolute values of this measure get much higher when increasing

the problem a priori dimension.

From the viewpoint of archive sizes, COSA is also among the leaders. For candidate

solutions, it is neck and neck with IPCA, and together they beat LAPCA. For d = 5,

COSA seems to noticeably subdue IPCA in the later phases of the search. Strikingly,

for d = 2 and 3 the number of candidate solutions stored in the COSA archive is low and

does not increase over time. For test archives, the differences between methods are even

more evident: this time, even IPCA is unable to keep pace with COSA, which is not

surprising as IPCA never discards any older tests, while COSA stores only one test per

dimension and a few additional tests to separate candidate solutions in the Pareto layer.

Our algorithm manages to maintain the lowest number of tests, which is usually only

a small fraction of the archives of other methods. Most importantly, COSA’s archive

sizes remain virtually constant over time and there is no reason to doubt in further

maintenance of this behavior. At the same time, other archives’ sizes keep growing and

do not seem to saturate, which at some stage may render them useless.

The fact that IPCA is better than LAPCA for d = 3 and that, in general, LAPCA

performs so poorly is surprising, since it contradicts the findings of earlier research [30],

where IPCA was found worse than LAPCA on the same problem. The charts in Fig.

6.4.2 suggest that the presumed reason for that is an excessive growth of LAPCA’s

archive, because the Pareto layers contain many non-dominated candidate solutions.

This, in turn, could be caused by the absence of crossover in our setup (de Jong [30]

used two-point crossover with 50% probability).

As mentioned earlier, the number of iterations processed by the coevolutionary loop

117

6. Coordinate System Archive

Dimension COSA IPCA LAPCA-3 LAPCA-5 LAPCA-10

2 756.4±44.2 420.0±23.4 902.9±33.4 770.8±25.6 506.8±31
3 361.5±280.3 360.2±21.1 393.4±146.2 304.5±107.7 139.5±99.6
5 170.2±208.9 333.9±39.5 105.2±32.7 60.2±13.5 31.7±50

Table 6.2.: Average number of generations that the algorithms were able to process
during 1,000,000 interactions for compare-on-all.

(Alg. 2.1) depends on the sizes of archives. We illustrate this dependency in Table 6.1,

where we report the average number of generations that each algorithm went through.

The presented numbers resonate with the charts: because COSA is able to maintain

small and approximately constant-sized archives, its run length measured in generations

is the highest and does not seem to be affected by the a priori dimension of the problem

d, which is not the case for LAPCA. This is critical, as the number of iterations is also

the number of generator invocations, which are the only source of variability for the

search process.

6.4.2. Compare-on-All

The results obtained for the compare-on-all problem are presented in Fig. 6.4.3.

Contrary to the results presented for compare-on-one, the figures show that COSA

performs worse than other methods on this problem. Virtually no progress is observed

for any performance measure and any of the examined value of d. Other archive methods

perform much better: LAPCA-3 and LAPCA-5 work best for the 2 and 3-dimensional

problems, but they lose in favor of IPCA for a 5-dimensional game.

Fig. 6.4.4 shows that COSA maintains a much larger archive than it was in case of

compare-on-one. The solution archive contains 10, 60 and 80 individuals for d = 2, 3

and 5, respectively, while it was always less than 10 for the compare-on-one problem.

This is reflected in the total number of generations that COSA was able to process during

1,000,000 interactions (see Table 6.2), which is much lower than it was for compare-

on-one (cf. Table 6.1).

6.5. Discussion and Summary

In this chapter we proposed Coordinate System Archive, a novel coevolutionary archive,

based on the concepts of underlying problem structure and coordinate systems. We

verified COSA on two popular benchmarks: compare-on-one and compare-on-all

118

6.5. Discussion and Summary

0

5

10

15

20

P
er
fo
rm

a
n
ce

(l
ow

es
t
d
im

en
si
on

)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(a) d = 2

0

100

200

300

P
er
fo
rm

a
n
ce

(e
x
p
ec
te
d
u
ti
li
ty
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(b) d = 2

0

1

2

3

4

P
er
fo
rm

an
ce

(l
ow

es
t
d
im

en
si
o
n
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(c) d = 3

0

20

40

60

80

P
er
fo
rm

an
ce

(e
x
p
ec
te
d
u
ti
li
ty
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(d) d = 3

0

0.5

1

1.5

P
er
fo
rm

an
ce

(l
ow

es
t
d
im

en
si
on

)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(e) d = 5

0

5

10

15

20

P
er
fo
rm

an
ce

(e
x
p
ec
te
d
u
ti
li
ty
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(f) d = 5

Figure 6.4.3.: Results for d-dimensional compare-on-all (d = 2, 3, 5) for two per-
formance measures: lowest dimension (left column) and expected utility
(right column).

119

6. Coordinate System Archive

0

20

40

60

A
rc
h
iv
e
si
ze

(s
o
lu
ti
o
n
s)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(a) d = 2

0

50

100

150

A
rc
h
iv
e
si
ze

(t
es
ts
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(b) d = 2

0

100

200

300

A
rc
h
iv
e
si
ze

(s
ol
u
ti
on

s)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(c) d = 3

0

50

100

150

200

A
rc
h
iv
e
si
ze

(t
es
ts
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(d) d = 3

0

100

200

300

400

A
rc
h
iv
e
si
ze

(s
ol
u
ti
o
n
s)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(e) d = 5

0

100

200

300

A
rc
h
iv
e
si
ze

(t
es
ts
)

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106

Number of interactions

COSA

IPCA

LAPCA-3

LAPCA-5

LAPCA-10

(f) d = 5

Figure 6.4.4.: Archive sizes for d-dimensional compare-on-All (d = 2, 3, 5).

120

6.5. Discussion and Summary

number games with two progress measures corresponding to two different solution con-

cepts. It is, generally, agreed that compare-on-one is a harder problem [34] than

compare-on-all. Thus, it may seem surprising at the first glance that COSA per-

forms the best on the former problem and the worst on the latter one. In order to

explain this phenomenon, we have to refer to results of Chapter 5. There, we have

demonstrated that algorithms for extracting the coordinate system defined by Bucci et

al. properly approximate the a priori dimension of compare-on-one (Sections 5.9.1)

but fail to find the a priori dimension of compare-on-all (Section 5.9.2). Since COSA

is based on the same definition of coordinate system, its results on these two problems

are understandable.

In this perspective, despite being an alternative for such methods as IPCA or LAPCA,

and a step towards practical methods effectively solving test-based problems, COSA has

serious drawbacks in being unable to succeed on compare-on-all. Future research

should make an attempt to answer the question whether real-world test-based problems

resemble rather compare-on-one or compare-on-all.

Moreover, COSA has not been tested on harder problems considered in Chapter 5:

density classification task and tic-tac-toe. As we have seen in Chapter 5, the former

problem has been found to have very large dimension, which grows linearly with respect

to the number of tests involved to estimate it, and COSA, by design, is not a good

method to cope with it. The dimension of tic-tac-toe, on the other hand, is reasonably

large (several thousand), which, however, still is too computationally demanding for

COSA. That is why the future work on COSA should answer the question how to

determine the most important axes in an extracted coordinate system. As a result, in

order to keep the archive small, only tests from those axes could be retained.

121

7. Conclusions

7.1. Summary

The class of test-based problems embraces tasks from many disciplines and fields. Com-

petitive coevolution is a general approach for solving such tasks. The aggregation step,

typically employed to compute individual’s fitness in the evaluation phase of coevolu-

tionary algorithm, makes the dynamics of search process complex and hard to predict.

The results gathered in this dissertation demonstrate not only that it is possible to avoid

such aggregation, but also that algorithms can be designed that perform well despite

bypassing the aggregation step.

Studying the dynamics of bio-inspired algorithms is interesting from the perspective of

artificial life discipline [82], which aims at imitating traditional biology and recreating the

biological phenomena withing computers. In contrast, computational intelligence puts

emphasis on utilizing computational principles observed in nature for solving problems.

As coevolution, in the form as we know it from nature, exhibits many behaviors that are

undesired from the viewpoint of problem solving, coevolutionary algorithms need to be

armed with some, not necessarily bio-inspired, mechanisms to turn them into effective

methods for learning or optimization. We hope that Fitnessless Coevolution and COSA

presented in this thesis, contribute to this research direction.

7.2. Contribution

The main contribution of this work might be summarized as follows:

• Introduction of Fitnessless Coevolution for symmetrical test-based problems. Fit-

nessless Coevolution due to its fitnessless selection is a novel coevolutionary algo-

rithm which does not use an explicit fitness measure. It was evaluated experimen-

tally on a set of simple problems, with the outcomes indicating that it is at least

as good as other, state-of-the-art methods in coevolution.

[Chapter 3]

123

7. Conclusions

• The proof that, under a condition of transitivity of the payoff matrix, Fitnessless

Coevolution is dynamically equivalent to the traditional evolutionary algorithm

using tournament selection. Luke and Wiegand showed that a single-population

coevolutionary algorithm is dynamically equivalent to an evolutionary algorithm

[91], but they did it under a different set of conditions and did not demonstrate

any practical algorithm meeting those conditions.

[Theorem 19 in Chapter 3]

• A case-study of an application of Fitnessless Coevolution to a game of imperfect

information. An exhaustive evaluation of the results obtained by Fitnessless Co-

evolution for the Ant Wars game and an in-depth analysis of interesting behavioral

patterns of the best obtained solution was provided.

[Chapter 4]

• An in-depth analysis of coordinate system for test-based problems. The formal

definition of coordinate system was provided by Bucci et al. [17], and here it was

analyzed in detail. This includes (Chapter 5):

– Proposing an alternative definition of the coordinate system, equivalent to

the original one.

[Definition 27]

– Proving several useful and interesting properties of coordinate systems.

[Theorem 32; Propositions 31 and 34; Corollaries 33, 35 and 39]

– Showing the link between dimension of a test-based problem and the width

of an underlying poset.

[Theorem 36; Proposition 37]

– Estimating the lower and upper bounds for the dimension of a test-based

problem.

[Theorem 40]

– Proving that finding the minimal coordinate system for a test-based problem

is NP-hard, which was earlier conjectured [15], but never shown formally.

[Theorem 46]

• Design, analysis and experimental evaluation of three algorithms for constructing

correct coordinate systems for test-based problems in Section 5.8. This includes:

– Proving that the SimpleGreedy algorithm proposed in [17] is correct.

[Proposition 49]

124

7.3. Future Work

– The first exact algorithm for finding the minimal coordinate system and a

GreedyCover heuristic. GreedyCover is as quick as SimpleGreedy,

but produces much better, near-optimal results.

[Algorithms 5.2 and 5.3]

• Demonstration that problem dimension is typically much lower than the number

of tests

[Section 5.9]

• Proposal of the COSA algorithm for test-based problems, which serves as a proof-

of-concept that the definition of the coordinate systems analyzed in Chapter 5 may

have practical applications. It was demonstrated that COSA performs well for

problems for which it is easy to approximate their a priori dimension (compare-

on-one) and does not perform well for others (compare-on-all).

[Chapter 6]

7.3. Future Work

The work presented in this thesis may be extended in many directions, some of which

have been already discussed in chapter summaries. Here we would like to add the

following interesting ideas:

• Fitnessless Coevolution proposed in Chapter 3 has been designed for symmetric

test-based problems only. The questions i) whether this method could be extended

to asymmetric test-based problems and ii) whether its theoretical properties will

hold after such a generalization, might be important to answer.

• Results of Chapter 5 indicate that, despite the fact that the set of tests can be

exchanged for a set of underlying objectives, the number of underlying objectives

in many test-based problems (the problem dimension) remains still large. High-

dimensional coordinate systems are impractical, thus methods of further reduction

of underlying objectives should be designed. One of the conceivable approaches is

as follows. The coordinate system described in Chapter 5 preserves all relations

between candidate solutions and tests. It seems that in order to have a tractable

number of underlying objectives, one can relax this strict restriction and trade-

off preserving all dominance relations for smaller number of axes in the coordinate

system of a problem. A similar problem (but on a smaller scale) manifests in many-

objective optimization [13], thus some methods from that field could be potentially

125

adapted.

Another possibility to reduce the number of underlying objectives is to relax the

strict dominance relation in favor of an approximate dominance measure such as ε-

dominance, proposed by Laumanns et al. [83], and to build the coordinate system

on top of it. However, a drawback of such an approach would be that, in contrast to

the proper dominance relation, any approximate dominance relation is, in general,

non-transitive.

• Coevolutionary algorithms are computationally demanding since the number of

interactions in each generation depends not on the total number of individuals

in all populations, but on the product of cardinalities of particular populations.

Thus, coupling coevolutionary methods with some less demanding algorithms such

as local search techniques or temporal difference learning might provide a well-

balanced trade-off between exploration and exploitation. The validity of this idea

has been already confirmed to some extent [136, 80].

126

A. Appendix

A.1. Ants Obtained with Fitnessless Coevolution

A.1.1. BrilliAnt

1 int ant_Move(int **grid , int my_row , int my_column){

2 #define FORYXN for (y=0;y<11;y++) for (x=0;x<11;x++)

3 #define FORYX1(y1,y2 ,x1,x2) for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++)

4 #define FORYX(y1 ,y2,x1,x2 ,w) { for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++)

if (G[(11+y)%11][(11+x)%11]==w) c+=H[(11+y)%11][(11+x)%11]; }

5 #define N(n,x1,y1,x2 ,y2,w) c=0; if (D==0) FORYX(y1,y2,x1,x2,w) else if (D==1)

FORYX(x1,x2 ,-(y2),-(y1),w) else if (D==2) FORYX(-(y2),-(y1) ,-(x2),-(x1),w)

else FORYX(-(x2),-(x1),y1 ,y2,w); f[n]=c;

6
7 #define FORYXV(y1,y2 ,x1,x2) { for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++) c

+=V[(11+y)%11][(11+x)%11]; }

8 #define B(n,x1,y1,x2 ,y2) c=0; if (D==0) FORYXV(y1,y2 ,x1,x2) else if (D==1) FORYXV(

x1,x2 ,-(y2) ,-(y1)) else if (D==2) FORYXV(-(y2),-(y1),-(x2) ,-(x1)) else FORYXV

(-(x2) ,-(x1),y1 ,y2); f[n]=c;

9
10 #define MAXF(y,x) if (G[(R+11+y)%11][(C+11+x)%11]==1 && H[(R+11+y)%11][(C+11+x)

%11]>s) s=H[(R+11+y)%11][(C+11+x)%11]

11 #define FOOD(y,x) (G[(R+11+y)%11][(C+11+x)%11]==1?H[(R+11+y)%11][(C+11+x)%11]:0)

12 #define RETF(a,b,x1,y1,x2 ,y2,x3,y3 ,x4,y4,x5 ,y5,x6 ,y6,x7,y7 ,x8,y8) if (D==a && d==b

) { MAXF(x1,y1);MAXF(x2 ,y2);MAXF(x3,y3);MAXF(x4 ,y4);MAXF(x5,y5);MAXF(x6,y6);

MAXF(x7 ,y7); s+=FOOD(x8,y8); } else

13 #define F s=0; RETF(0,0,0,-1,-1,-1,-2,-1,-2,0,-2,1,-1,1,0,1,-1,0) RETF

(0,1,0,-1,0,-2,-1,-2,-2,-2,-2,-1,-2,0,-1,0,-1,-1) RETF

(1,0,-1,0,-1,1,-1,2,0,2,1,2,1,1,1,0,0,1) RETF

(1,1,-1,0,-2,0,-2,1,-2,2,-1,2,0,2,0,1,-1,1) RETF

(2,0,0,1,1,1,2,1,2,0,2,-1,1,-1,0,-1,1,0) RETF

(2,1,0,1,0,2,1,2,2,2,2,1,2,0,1,0,1,1) RETF

(3,0,1,0,1,-1,1,-2,0,-2,-1,-2,-1,-1,-1,0,0,-1) RETF

(3,1,1,0,2,0,2,-1,2,-2,1,-2,0,-2,0,-1,1,-1);

14
15 static int T,P,G[11][11] ,V[11][11];

16 static float H[11][11];

17 register int x,y; int D,E,ret ,R,C,d;

18 float r,best ,s,c,f[37];

19 R=my_row;C=my_column;

20 for (x=0; x<11; ++x) for (y=0; y<x; ++y) { int t = grid[x][y]; grid[x][y] = grid[y

][x]; grid[y][x] = t; } /* hotfix due to the coordinates confusion */

127

A. Appendix

21 D = 0;

22 E = (grid[R][C]==10) ?100:10;

23 V[R][C]=1; FORYXN if (G[y][x]==1) H[y][x]*=0.9; else if (G[y][x]==E) G[y][x]=0;

FORYX1 (-2,2,-2,2) {G[(11+y)%11][(11+x)%11] = grid [(11+y)%11][(11+x)%11]; H

[(11+y)%11][(11+x)%11]=1;}

24 best =0;

25 ret=-1;

26 for (;D <4;++D) {

27 d=0;

28 F N(0,-1,-3,1,-2,E) N(1,-3,-2,0,0,E) N(2,-1,-1,0,1,E) N(3,0,-3,1,-1,1) N

(4,-1,-3,0,-2,1) N(5,-3,-4,0,-1,1) N(6,0,-1,1,1,E) N(7,-3,-3,0,-1,0) N

(8,0,-1,2,0,E) N(9,-1,-2,0,-1,1) N(10,-3,-3,1,-1,E) N(11,-3,-2,0,0,E) N

(12,-3,-2,0,0,E) N(13,-1,-1,0,1,E) N(14,-1,-1,1,0,E) N(15,-2,-3,-1,-2,1) N

(16,0,-1,4,2,E) N(17,-1,-3,1,-2,E) N(18,1,-3,5,-1,E) N(19,-1,0,0,1,1) N

(20,-1,-2,1,-1,E) N(21,-3,-2,-1,2,E) N(22,1,0,3,1,E) N(23,-3,-2,0,0,E) N

(24,-3,-4,-1,0,0) N(25,-3,-1,-1,0,0) N(26,-2,-3,0,-1,1) N(27,-2,-1,0,0,E) N

(28,-1,0,0,2,E) N(29,-3,-3,-1,-1,0) N(30,0,-3,1,-1,1) N(31,-1,-1,1,0,E) N

(32,-1,-1,1,0,E) N(33,-1,-2,0,-1,1) N(34,-1,-3,1,-1,E) N(35,0,-2,1,-1,1)

29 r=((!((f[0]) ||((f[1]) &&(f[2]))))?((f[3]) ?((s)*((f[4])?(f[5]) :(((s)+(s))+((35 -T)*(s

))))):(((((s)+(s))+((35-T)*(s))) -(15-P))+((f[6]) ?(((35 -T)*(s)) -(15-P)):(((5)

+(15-P))+(-f[7]))))):((P)+(((f[8]) &&(!(f[9])))?(((35 -T)+(35-T))*(35-T)):(2))))

+((((f[10]) &&((f[11]) &&(!(f[12]))))&&(((f[13]) ||((f[14]) ||(f[15])))&&(f[16])))

?(((f[17]) &&((f[18]) &&(f[19])))?(((!((15 -P)==(P)))||((f[20]) ||(f[21])))?(((f

[22]) &&(f[23]))?((s)+(-f[24])):((35 -T)+(-f[25]))):((s)+(s))):(((f[26]) &&(!(f

[27])))?((f[28]) ?((35 -T)*(s)):(((5) +(15-P))+(-f[29]))):(15-P))):(((f[30]) &&((f

[31]) ||((f[32]) ||(f[33]))))?((f[34])?(P):((f[35]) ?((35 -T)+((35-T)*(s))):(((5)

+(15-P))+(3)))):(-0.31385064)));

30 if (r > best || ret == -1) { best=r; ret = 2*D+1; }

31 d=1;

32 F N(0,-1,-1,1,0,E) N(1,-1,-1,1,0,E) N(2,-1,-1,1,0,E) N(3,-4,-4,1,0,1) N

(4,0,-4,1,-1,1) N(5,-1,-1,0,1,E) N(6,-1,-3,1,-2,E) N(7,-1,-3,1,-1,E) N

(8,0,-4,1,-1,1) N(9,-1,-1,0,1,E) N(10,-3,-2,0,0,E) N(11,-1,-1,0,1,E) N

(12,-3,-4,0,0,E) N(13,2,-5,5,-1,E) N(14,-1,-1,1,0,E) B(15,0,-6,5,-2) N

(16,-1,-1,1,0,E) N(17,-1,-1,1,0,0) N(18,-2,-1,3,0,E) N(19,-3,-3,1,-1,1) N

(20,-3,-4,0,0,E) N(21,-3,-3,0,-1,0) N(22,-2,-1,0,0,E) N(23,-1,-3,0,-2,1) N

(24,-3,-4,0,0,E) N(25,0,-1,2,0,E) N(26,-1,-3,1,-1,E) N(27,-1,-1,1,0,E) N

(28,-2,-1,0,0,E) N(29,-3,-2,0,0,E) N(30,0,-2,1,-1,1) N(31,-3,-3,0,-1,0) N

(32,-3,-2,0,0,E) N(33,-4,-2,-2,3,0) N(34,-4,-2,-2,1,0) N(35,3,-5,4,-1,1) N

(36,-3,-4,0,-1,1)

33 r=(((((!(f[0]))&&(f[1]))||(f[2]))||((f[3]) ||((f[4]) &&((f[5]) &&(f[6])))))?(((f[7])

||((f[8]) ||(f[9])))?(((f[10]) &&(f[11]))?((35-T)*(35-T)):(3)):(4))

:(-0.31385064))+(((f[12]) ?((!((f[13]) &&(f[14])))?(-f[15]) :((f[16]) ?(((5) +(15-P

))+(-f[17])):(15-P))):((((f[18]) ||(f[19]))&&(f[20]))?((P)+(15-P)):((35-T)+(-f

[21]))))+(((((f[22]) ||(f[23]))&&(f[24]))&&((f[25]) ||((f[26]) &&(f[27]))))?(((f

[28]) &&((f[29]) &&(f[30])))?(-f[31]) :(3)):((f[32]) ?(((-f[33])+(-f[34]))+(f[35])

):(((s)*((35-T)*(s)))+(((s)+(s))+(f[36]))))));

34 if (r > best) { best=r; ret = 2*D; }

35 }

36 ++T;

37 D=ret /2; N(0,ret%2-1,-1,ret%2-1,-1,1) if (f[0]) ++P;

38 return (8-ret)%8;

128

A.1. Ants Obtained with Fitnessless Coevolution

39 }

A.1.2. ExpertAnt

1 #define FORYXN for (y=0;y<11;y++) for (x=0;x<11;x++)

2 #define FORYX1(y1,y2 ,x1,x2) for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++)

3 #define FORYX(y1 ,y2,x1,x2) { for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++) if

(G[(11+y)%11][(11+x)%11]==w) c+=H[(11+y)%11][(11+x)%11]; }

4 static float N(int D, int R, int C, int G[11][11] , float H[11][11] , int x1 , int y1

, int x2, int y2 , int w) {

5 float c; register int y,x;

6 c=0;

7 if (D==0) FORYX(y1 ,y2,x1,x2) else if (D==1) FORYX(x1,x2 ,-(y2),-(y1)) else if (D

==2) FORYX(-(y2),-(y1),-(x2) ,-(x1)) else FORYX(-(x2),-(x1),y1,y2);

8 return c;

9 }

10
11 #define FORYXV(y1,y2 ,x1,x2) { for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++) c

+=G[(11+y)%11][(11+x)%11]; }

12 static float B(int D, int R, int C, int G[11][11] , int x1 , int y1, int x2, int y2)

{

13 int c; register int y,x;

14 c=0;

15 if (D==0) FORYXV(y1,y2 ,x1,x2) else if (D==1) FORYXV(x1 ,x2 ,-(y2) ,-(y1)) else if (D

==2) FORYXV(-(y2),-(y1) ,-(x2) ,-(x1)) else FORYXV(-(x2) ,-(x1),y1 ,y2);

16 return c;

17 }

18
19 #define MAXF(y,x) if (G[(R+11+y)%11][(C+11+x)%11]==1 && H[(R+11+y)%11][(C+11+x)

%11]>s) s=H[(R+11+y)%11][(C+11+x)%11]

20 #define FOOD(y,x) (G[(R+11+y)%11][(C+11+x)%11]==1?H[(R+11+y)%11][(C+11+x)%11]:0)

21 static float F(int D, int d, int R, int C, int G[11][11] , float H[11][11]) {

22 float s; s=0;

23 if (D==0 && d==0) { MAXF(0,-1);MAXF(-1,-1);MAXF(-2,-1);MAXF(-2,0);MAXF(-2,1);MAXF

(-1,1);MAXF (0,1); return s+FOOD(-1,0); }

24 if (D==0 && d==1) { MAXF(0,-1);MAXF(0,-2);MAXF(-1,-2);MAXF(-2,-2);MAXF(-2,-1);MAXF

(-2,0);MAXF(-1,0); return s+FOOD(-1,-1); }

25 if (D==1 && d==0) { MAXF(-1,0);MAXF(-1,1);MAXF(-1,2);MAXF (0,2);MAXF (1,2);MAXF (1,1)

;MAXF (1,0); return s+FOOD (0,1); }

26 if (D==1 && d==1) { MAXF(-1,0);MAXF(-2,0);MAXF(-2,1);MAXF(-2,2);MAXF(-1,2);MAXF

(0,2);MAXF (0,1); return s+FOOD(-1,1); }

27 if (D==2 && d==0) { MAXF (0,1);MAXF (1,1);MAXF (2,1);MAXF (2,0);MAXF(2,-1);MAXF(1,-1);

MAXF(0,-1); return s+FOOD (1,0); }

28 if (D==2 && d==1) { MAXF (0,1);MAXF (0,2);MAXF (1,2);MAXF (2,2);MAXF (2,1);MAXF (2,0);

MAXF (1,0); return s+FOOD (1,1); }

29 if (D==3 && d==0) { MAXF (1,0);MAXF(1,-1);MAXF(1,-2);MAXF(0,-2);MAXF(-1,-2);MAXF

(-1,-1);MAXF(-1,0); return s+FOOD(0,-1); }

30 { MAXF (1,0);MAXF (2,0);MAXF(2,-1);MAXF(2,-2);MAXF(1,-2);MAXF(0,-2);MAXF(0,-1);

return s+FOOD(1,-1); }

31 }

32

129

A. Appendix

33 int ant_Move(int **grid , int my_row , int my_column) {

34 static int T,P,G[11][11] ,V[11][11];

35 static float H[11][11];

36 register int x,y; int D,E,ret ,R,C,d;

37 float r,best;

38 R=my_row;C=my_column;

39 if (C == -1) { return 0; }

40 if (R == -1) { T=P=0; FORYXN { V[y][x]=G[y][x]=0;H[y][x]=0;} return -1; }

41 D = 0;

42 E = (grid[R][C]==10) ?100:10;

43 V[R][C]=1; FORYXN if (G[y][x]==1) H[y][x]*=0.9; else if (G[y][x]==E) G[y][x]=0;

FORYX1 (-2,2,-2,2) {G[(11+y)%11][(11+x)%11] = grid [(11+y)%11][(11+x)%11]; H

[(11+y)%11][(11+x)%11]=1;}

44 best =0;

45 ret=-1;

46 for (;D <4;++D) {

47 d=0;

48 r=((!((N(D,R,C,G,H,-1,-3,1,-2,E))||((N(D,R,C,G,H,-3,-2,0,0,E))&&((N(D,R,C,G,H

,-3,-2,0,0,E))&&(N(D,R,C,G,H,-1,-1,0,1,E))))))?(((N(D,R,C,G,H,0,-2,1,-1,1))

||((N(D,R,C,G,H,-1,-1,1,0,E))&&(!(N(D,R,C,G,H,-3,-3,0,-2,E)))))?((F(D,d,R,C,G,

H))*((N(D,R,C,G,H,-1,-3,0,-2,1))?(N(D,R,C,G,H,-3,-4,0,-1,1)):(((5) +(15-P))

+((35-T)*(F(D,d,R,C,G,H)))))):(((((F(D,d,R,C,G,H))+(F(D,d,R,C,G,H)))+((35 -T)*(

F(D,d,R,C,G,H)))) -(15-P))+(((4) ==(35-T))?((F(D,d,R,C,G,H)) -(15-P)):(((5) +(15-P

))+(N(D,R,C,G,H,-3,-4,0,-1,1)))))):((P)+(((N(D,R,C,G,H,0,-1,2,0,E))&&(!(N(D,R,

C,G,H,-1,-2,0,-1,1))))?(((35 -T)+(35-T))*(35-T)):(2))))+(((N(D,R,C,G,H

,-1,-1,1,0,E))&&(((N(D,R,C,G,H,-2,-3,0,-2,E))||((N(D,R,C,G,H,-1,-1,1,0,E))||(N

(D,R,C,G,H,-1,-2,0,-1,1))))&&(N(D,R,C,G,H,0,-1,4,2,E))))?((((N(D,R,C,G,H

,-1,-1,1,0,E))||(N(D,R,C,G,H,-1,-1,1,0,E)))&&(!((N(D,R,C,G,H,-4,-6,-1,-1,1))

==(15-P))))?(((N(D,R,C,G,H,-1,-1,1,0,E))||(N(D,R,C,G,H,-1,-1,0,0,1)))?(((N(D,R

,C,G,H,0,-1,2,0,E))&&(N(D,R,C,G,H,-3,-2,0,0,E)))?((N(D,R,C,G,H,-3,-4,0,-1,1))

+(-N(D,R,C,G,H,-4,-2,-2,1,0))):(N(D,R,C,G,H,-3,-2,-2,1,1))):((35 -T)*(F(D,d,R,C

,G,H)))):((((N(D,R,C,G,H,-1,-1,1,0,E))||(N(D,R,C,G,H,1,-3,2,-1,E)))&&((N(D,R,C

,G,H,-3,-2,0,0,E))&&(N(D,R,C,G,H,-1,-1,1,0,E))))?((N(D,R,C,G,H,-3,-2,0,0,E))

?(-N(D,R,C,G,H,-3,-3,0,-1,0)):((N(D,R,C,G,H,-3,-4,0,-1,1))+(-N(D,R,C,G,H

,-3,-3,0,-1,0)))):(15-P))):(((N(D,R,C,G,H,0,-3,1,-1,1))&&((N(D,R,C,G,H

,-1,-1,1,0,E))||((N(D,R,C,G,H,-1,-1,1,0,E))||(N(D,R,C,G,H,-1,-2,0,-1,1)))))?((

N(D,R,C,G,H,-1,-3,1,-1,E))?(P):((N(D,R,C,G,H,0,-2,1,-1,1))?((35-T)+((35 -T)*(F(

D,d,R,C,G,H)))):(((5) +(15-P))+(3)))):(-0.31385064)));

49 if (r > best || ret == -1) { best=r; ret = 2*D+1; }

50 d=1;

51 r=((((((N(D,R,C,G,H,0,-4,1,-1,1))||(N(D,R,C,G,H,-1,-2,0,-1,1)))&&(N(D,R,C,G,H

,-3,-2,0,0,E)))||((N(D,R,C,G,H,-1,-1,1,0,E))&&(N(D,R,C,G,H,-1,-4,4,0,E))))||((

N(D,R,C,G,H,-4,-4,1,0,1))||((N(D,R,C,G,H,-2,-1,0,0,E))&&(N(D,R,C,G,H

,-3,-2,0,0,E)))))?((((N(D,R,C,G,H,-1,-1,0,1,E))||(N(D,R,C,G,H,-2,-5,-1,-3,E)))

||((N(D,R,C,G,H,0,-4,1,-1,1))||(N(D,R,C,G,H,0,-4,1,-1,1))))?(((N(D,R,C,G,H

,-1,-1,1,0,E))&&((N(D,R,C,G,H,0,-4,1,-1,1))||(N(D,R,C,G,H,-3,-2,0,0,E))))

?((35-T)*(35-T)):(3)):(4)):(-0.31385064))+(((N(D,R,C,G,H,-3,-4,0,0,E))?((!((N(

D,R,C,G,H,-1,-4,0,-1,1))&&(N(D,R,C,G,H,1,-3,2,-1,E))))?(-B(D,R,C,V,0,-6,5,-2))

:((N(D,R,C,G,H,-1,-5,1,-1,1))?(((5) +(15-P))+(N(D,R,C,G,H,2,-5,5,-3,1)))

:(-0.6274291))):((N(D,R,C,G,H,-3,-4,0,0,E))?((35 -T)+(((35 -T)*(F(D,d,R,C,G,H)))

+((35-T)+(35-T)))):((35 -T)+(-N(D,R,C,G,H,-3,-3,0,-1,0)))))+(((N(D,R,C,G,H

130

A.1. Ants Obtained with Fitnessless Coevolution

,-2,-2,0,0,E))&&((N(D,R,C,G,H,-1,-1,1,0,E))||(N(D,R,C,G,H,-1,-1,1,0,E))))?((F(

D,d,R,C,G,H))*((N(D,R,C,G,H,-3,-2,0,0,E))?((N(D,R,C,G,H,-3,-2,0,0,E))?(P):((F(

D,d,R,C,G,H))+(F(D,d,R,C,G,H)))):(((35 -T)*(F(D,d,R,C,G,H)))+(F(D,d,R,C,G,H))))

):((N(D,R,C,G,H,-3,-2,0,0,E))?(((N(D,R,C,G,H,-3,-4,0,-1,1))+(-N(D,R,C,G,H

,-4,-2,-2,1,0)))+((N(D,R,C,G,H,-4,-5,-2,0,1))+(-N(D,R,C,G,H,-2,0,2,4,0)))):(((

F(D,d,R,C,G,H))*((35 -T)*(F(D,d,R,C,G,H))))+(((F(D,d,R,C,G,H))+(F(D,d,R,C,G,H))

)+(N(D,R,C,G,H,-3,-4,0,-1,1)))))));

52 if (r > best) { best=r; ret = 2*D; }

53 }

54 ++T;

55 D=ret /2; if (N(D,R,C,G,H,ret%2-1,-1,ret%2-1,-1,1)) ++P;

56 return ret;

57 }

A.1.3. EvolAnt1

1 #define FORYXN for (y=1;y<11;y++) for (x=0;x<11;x++)

2 #define FORYX1(y1,y2 ,x1,x2) for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++)

3 #define FORYX(y1 ,y2,x1,x2) { for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++) if

(G[(11+y)%11][(11+x)%11]==w) c+=H[(11+y)%11][(11+x)%11]; }

4 static float N(int D, int R, int C, int G[11][11] , float H[11][11] , int x1 , int y1

, int x2, int y2 , int w) {

5 float c; register int y,x;

6 c=0;

7 if (D==0) FORYX(y1 ,y2,x1,x2) else if (D==1) FORYX(x1,x2 ,-(y2),-(y1)) else if (D

==2) FORYX(-(y2),-(y1),-(x2) ,-(x1)) else FORYX(-(x2),-(x1),y1,y2);

8 return c;

9 }

10
11 #define FORYXV(y1,y2 ,x1,x2) { for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++) c

+=G[(11+y)%11][(11+x)%11]; }

12 static float B(int D, int R, int C, int G[11][11] , int x1 , int y1, int x2, int y2)

{

13 int c; register int y,x;

14 c=0;

15 if (D==0) FORYXV(y1,y2 ,x1,x2) else if (D==1) FORYXV(x1 ,x2 ,-(y2) ,-(y1)) else if (D

==2) FORYXV(-(y2),-(y1),-(x2) ,-(x1)) else FORYXV(-(x2) ,-(x1),y1 ,y2);

16 return c;

17 }

18
19 #define MAXF(y,x) if (G[(R+11+y)%11][(C+11+x)%11]==1 && H[(R+11+y)%11][(C+11+x)

%11]>s) s=H[(R+11+y)%11][(C+11+x)%11]

20 #define FOOD(y,x) (G[(R+11+y)%11][(C+11+x)%11]==1?H[(R+11+y)%11][(C+11+x)%11]:0)

21 static float F(int D, int d, int R, int C, int G[11][11] , float H[11][11]) {

22 float s; s=0;

23 if (D==0 && d==0) { MAXF(0,-1);MAXF(-1,-1);MAXF(-2,-1);MAXF(-2,0);MAXF(-2,1);MAXF

(-1,1);MAXF (0,1); return s+FOOD(-1,0); }

24 if (D==0 && d==1) { MAXF(0,-1);MAXF(0,-2);MAXF(-1,-2);MAXF(-2,-2);MAXF(-2,-1);MAXF

(-2,0);MAXF(-1,0); return s+FOOD(-1,-1); }

25 if (D==1 && d==0) { MAXF(-1,0);MAXF(-1,1);MAXF(-1,2);MAXF (0,2);MAXF (1,2);MAXF (1,1)

;MAXF (1,0); return s+FOOD (0,1); }

131

A. Appendix

26 if (D==1 && d==1) { MAXF(-1,0);MAXF(-2,0);MAXF(-2,1);MAXF(-2,2);MAXF(-1,2);MAXF

(0,2);MAXF (0,1); return s+FOOD(-1,1); }

27 if (D==2 && d==0) { MAXF (0,1);MAXF (1,1);MAXF (2,1);MAXF (2,0);MAXF(2,-1);MAXF(1,-1);

MAXF(0,-1); return s+FOOD (1,0); }

28 if (D==2 && d==1) { MAXF (0,1);MAXF (0,2);MAXF (1,2);MAXF (2,2);MAXF (2,1);MAXF (2,0);

MAXF (1,0); return s+FOOD (1,1); }

29 if (D==3 && d==0) { MAXF (1,0);MAXF(1,-1);MAXF(1,-2);MAXF(0,-2);MAXF(-1,-2);MAXF

(-1,-1);MAXF(-1,0); return s+FOOD(0,-1); }

30 { MAXF (1,0);MAXF (2,0);MAXF(2,-1);MAXF(2,-2);MAXF(1,-2);MAXF(0,-2);MAXF(0,-1);

return s+FOOD(1,-1); }

31 }

32
33 int ant_Move(int **grid , int my_row , int my_column) {

34 static int T,P,G[11][11] ,V[11][11];

35 static float H[11][11];

36 register int x,y; int D,E,ret ,R,C,d;

37 float r,best;

38 R=my_row;C=my_column;

39 if (C == -1) { return 0; }

40 if (R == -1) { T=P=0; FORYXN { V[y][x]=G[y][x]=0;H[y][x]=0;} return -1; }

41 D = 0;

42 E = (grid[R][C]==10) ?100:10;

43 V[R][C]=1; FORYXN if (G[y][x]==1) H[y][x]*=0.9; else if (G[y][x]==E) G[y][x]=0;

FORYX1 (-2,2,-2,2) {G[(11+y)%11][(11+x)%11] = grid [(11+y)%11][(11+x)%11]; H

[(11+y)%11][(11+x)%11]=1;}

44 best =0;

45 ret=-1;

46 for (;D <4;++D) {

47 d=0;

48 r=((!((N(D,R,C,G,H,-1,-3,1,-2,E))||(((N(D,R,C,G,H,1,-5,6,0,E))&&(N(D,R,C,G,H

,-1,-3,1,-2,E)))||(N(D,R,C,G,H,-1,-1,1,0,E)))))?((N(D,R,C,G,H,0,-3,1,-1,1))?((

F(D,d,R,C,G,H))*((N(D,R,C,G,H,-1,-4,0,-2,1))?(N(D,R,C,G,H,-3,-4,0,-1,1))

:(((35 -T)*(F(D,d,R,C,G,H)))+(F(D,d,R,C,G,H))))):((((35 -T)*(F(D,d,R,C,G,H)))

-(15-P))+((N(D,R,C,G,H,-1,-1,1,0,E))?(((35 -T)*(F(D,d,R,C,G,H)))+(F(D,d,R,C,G,H

))):(((5) +(15-P))+(-N(D,R,C,G,H,-3,-3,0,-1,0)))))):((-N(D,R,C,G,H,-2,-3,0,0,0)

)+(((N(D,R,C,G,H,0,-1,2,0,E))&&(!(N(D,R,C,G,H,1,-5,6,0,E))))?(((35 -T)+(35-T))

*(35-T)):(3))))+(((((!(N(D,R,C,G,H,-1,-1,1,0,E)))&&((N(D,R,C,G,H,-5,-1,-1,3,E)

)||(N(D,R,C,G,H,-4,-2,-1,2,E))))&&((N(D,R,C,G,H,-3,-4,2,0,1))||(N(D,R,C,G,H

,-1,-2,0,-1,1))))&&((N(D,R,C,G,H,-1,-1,1,0,E))&&(!(!(N(D,R,C,G,H,-1,-1,1,0,E))

))))?(((!(!(N(D,R,C,G,H,-1,-1,1,0,E))))&&((N(D,R,C,G,H,-1,-3,1,-2,E))&&(!(N(D,

R,C,G,H,0,-5,5,0,E)))))?((N(D,R,C,G,H,-3,-4,2,0,1))?(((F(D,d,R,C,G,H))+(-N(D,R

,C,G,H,2,-2,3,0,0)))+(35-T)):((N(D,R,C,G,H,1,-4,2,-3,E))?(35-T):(3))):((N(D,R,

C,G,H,0,1,1,3,E))?(F(D,d,R,C,G,H)):((F(D,d,R,C,G,H))*((35-T)+(-N(D,R,C,G,H

,-3,-3,0,-1,0)))))):(((N(D,R,C,G,H,0,-3,1,-1,1))&&((!(N(D,R,C,G,H

,-1,-2,0,-1,1)))||((N(D,R,C,G,H,-4,-3,-2,0,E))||(N(D,R,C,G,H,-1,-2,0,-1,1)))))

?((N(D,R,C,G,H,-1,-3,1,-1,E))?(4) :((N(D,R,C,G,H,-1,-2,0,-1,1))?((35-T)+((35-T)

*(F(D,d,R,C,G,H)))):((N(D,R,C,G,H,-3,-4,0,-1,1))+(3)))):(-0.31385064)));

49 if (r > best || ret == -1) { best=r; ret = 2*D+1; }

50 d=1;

51 r=((((!(N(D,R,C,G,H,-3,-2,0,0,E)))&&(N(D,R,C,G,H,-1,-1,1,0,E)))||((N(D,R,C,G,H

,-3,-4,2,0,1))||(N(D,R,C,G,H,-1,-2,0,-1,E))))?((((N(D,R,C,G,H,0,-2,1,-1,E))||(

132

A.1. Ants Obtained with Fitnessless Coevolution

N(D,R,C,G,H,0,-4,1,-1,1)))||((N(D,R,C,G,H,-1,-1,1,0,E))||(N(D,R,C,G,H

,1,-5,6,0,E))))?(((!(N(D,R,C,G,H,1,-1,4,0,E)))&&((N(D,R,C,G,H,-3,-2,0,0,E))&&(

N(D,R,C,G,H,-1,-1,1,0,E))))?((35-T)*(35-T)):(3)):(4)):(-0.31385064))+(((N(D,R,

C,G,H,-3,-4,0,0,E))?(((!(N(D,R,C,G,H,-4,-4,1,0,1)))||((35 -T)==(N(D,R,C,G,H

,-2,-4,1,1,1))))?((N(D,R,C,G,H,-1,-2,0,-1,1))?((35-T)+(3)):((N(D,R,C,G,H

,-3,-4,0,-1,1))+(3))):((0.98849344) -((F(D,d,R,C,G,H))+(F(D,d,R,C,G,H))))):(((N

(D,R,C,G,H,-1,-1,1,0,E))||(N(D,R,C,G,H,-1,-1,1,0,E)))?((N(D,R,C,G,H,-3,-2,0,0,

E))?((35-T)+(35-T)):((F(D,d,R,C,G,H))+(-N(D,R,C,G,H,2,-2,3,0,0)))):((35 -T)+(-N

(D,R,C,G,H,-3,-3,0,-1,0)))))+((N(D,R,C,G,H,-1,-1,1,0,E))?((N(D,R,C,G,H

,-1,-2,0,-1,1))?(((35 -T)*(F(D,d,R,C,G,H)))+(F(D,d,R,C,G,H))):(((5) +(15-P))+(4)

)):((N(D,R,C,G,H,-3,-2,0,0,E))?(-N(D,R,C,G,H,-2,-3,0,0,0)):(((F(D,d,R,C,G,H))

((35-T)(F(D,d,R,C,G,H))))+(((F(D,d,R,C,G,H))+(F(D,d,R,C,G,H)))+(N(D,R,C,G,H

,-3,-4,0,-1,1)))))));

52 if (r > best) { best=r; ret = 2*D; }

53 }

54 ++T;

55 D=ret /2; if (N(D,R,C,G,H,ret%2-1,-1,ret%2-1,-1,1)) ++P;

56 return ret;

57 }

A.1.4. EvolAnt2

1 #define FORYXN for (y=1;y<11;y++) for (x=0;x<11;x++)

2 #define FORYX1(y1,y2 ,x1,x2) for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++)

3 #define FORYX(y1 ,y2,x1,x2) { for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++) if

(G[(11+y)%11][(11+x)%11]==w) c+=H[(11+y)%11][(11+x)%11]; }

4 static float N(int D, int R, int C, int G[11][11] , float H[11][11] , int x1 , int y1

, int x2, int y2 , int w) {

5 float c; register int y,x;

6 c=0;

7 if (D==0) FORYX(y1 ,y2,x1,x2) else if (D==1) FORYX(x1,x2 ,-(y2),-(y1)) else if (D

==2) FORYX(-(y2),-(y1),-(x2) ,-(x1)) else FORYX(-(x2),-(x1),y1,y2);

8 return c;

9 }

10
11 #define FORYXV(y1,y2 ,x1,x2) { for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++) c

+=G[(11+y)%11][(11+x)%11]; }

12 static float B(int D, int R, int C, int G[11][11] , int x1 , int y1, int x2, int y2)

{

13 int c; register int y,x;

14 c=0;

15 if (D==0) FORYXV(y1,y2 ,x1,x2) else if (D==1) FORYXV(x1 ,x2 ,-(y2) ,-(y1)) else if (D

==2) FORYXV(-(y2),-(y1) ,-(x2) ,-(x1)) else FORYXV(-(x2) ,-(x1),y1 ,y2);

16 return c;

17 }

18
19 #define MAXF(y,x) if (G[(R+11+y)%11][(C+11+x)%11]==1 && H[(R+11+y)%11][(C+11+x)

%11]>s) s=H[(R+11+y)%11][(C+11+x)%11]

20 #define FOOD(y,x) (G[(R+11+y)%11][(C+11+x)%11]==1?H[(R+11+y)%11][(C+11+x)%11]:0)

21 static float F(int D, int d, int R, int C, int G[11][11] , float H[11][11]) {

22 float s; s=0;

133

A. Appendix

23 if (D==0 && d==0) { MAXF(0,-1);MAXF(-1,-1);MAXF(-2,-1);MAXF(-2,0);MAXF(-2,1);MAXF

(-1,1);MAXF (0,1); return s+FOOD(-1,0); }

24 if (D==0 && d==1) { MAXF(0,-1);MAXF(0,-2);MAXF(-1,-2);MAXF(-2,-2);MAXF(-2,-1);MAXF

(-2,0);MAXF(-1,0); return s+FOOD(-1,-1); }

25 if (D==1 && d==0) { MAXF(-1,0);MAXF(-1,1);MAXF(-1,2);MAXF (0,2);MAXF (1,2);MAXF (1,1)

;MAXF (1,0); return s+FOOD (0,1); }

26 if (D==1 && d==1) { MAXF(-1,0);MAXF(-2,0);MAXF(-2,1);MAXF(-2,2);MAXF(-1,2);MAXF

(0,2);MAXF (0,1); return s+FOOD(-1,1); }

27 if (D==2 && d==0) { MAXF (0,1);MAXF (1,1);MAXF (2,1);MAXF (2,0);MAXF(2,-1);MAXF(1,-1);

MAXF(0,-1); return s+FOOD (1,0); }

28 if (D==2 && d==1) { MAXF (0,1);MAXF (0,2);MAXF (1,2);MAXF (2,2);MAXF (2,1);MAXF (2,0);

MAXF (1,0); return s+FOOD (1,1); }

29 if (D==3 && d==0) { MAXF (1,0);MAXF(1,-1);MAXF(1,-2);MAXF(0,-2);MAXF(-1,-2);MAXF

(-1,-1);MAXF(-1,0); return s+FOOD(0,-1); }

30 { MAXF (1,0);MAXF (2,0);MAXF(2,-1);MAXF(2,-2);MAXF(1,-2);MAXF(0,-2);MAXF(0,-1);

return s+FOOD(1,-1); }

31 }

32
33 int ant_Move(int **grid , int my_row , int my_column) {

34 static int T,P,G[11][11] ,V[11][11];

35 static float H[11][11];

36 register int x,y; int D,E,ret ,R,C,d;

37 float r,best;

38 R=my_row;C=my_column;

39 if (C == -1) { return 0; }

40 if (R == -1) { T=P=0; FORYXN { V[y][x]=G[y][x]=0;H[y][x]=0;} return -1; }

41 D = 0;

42 E = (grid[R][C]==10) ?100:10;

43 V[R][C]=1; FORYXN if (G[y][x]==1) H[y][x]*=0.9; else if (G[y][x]==E) G[y][x]=0;

FORYX1 (-2,2,-2,2) {G[(11+y)%11][(11+x)%11] = grid [(11+y)%11][(11+x)%11]; H

[(11+y)%11][(11+x)%11]=1;}

44 best =0;

45 ret=-1;

46 for (;D <4;++D) {

47 d=0;

48 r=((!(N(D,R,C,G,H,-1,-6,2,-2,E)))?(((!(N(D,R,C,G,H,0,-2,1,0,E)))||(!(N(D,R,C,G,H

,-1,-1,0,0,E))))?((N(D,R,C,G,H,-4,-3,0,0,E))?(N(D,R,C,G,H,-2,-2,0,-1,1)):((N(D

,R,C,G,H,0,-1,1,1,1))*(N(D,R,C,G,H,0,-1,1,0,1)))):(((35 -T)*(15-P))+((N(D,R,C,G

,H,-1,-6,2,-2,E))?(N(D,R,C,G,H,-3,-1,1,0,1)):(N(D,R,C,G,H,-1,0,0,1,1)))))

:(((((F(D,d,R,C,G,H)) -(35-T))+(N(D,R,C,G,H,0,-1,1,0,1))) <((N(D,R,C,G,H

,-2,-1,0,0,E))?((35 -T)*(15-P)):(N(D,R,C,G,H,-2,-2,0,-1,1))))?((!(N(D,R,C,G,H

,-4,-3,0,0,E)))?((N(D,R,C,G,H,-1,-1,0,0,1))*(F(D,d,R,C,G,H))):((N(D,R,C,G,H

,-1,-1,1,1,1))*(F(D,d,R,C,G,H)))):((N(D,R,C,G,H,0,-1,1,0,1))*(15-P))))+((((2)

<(N(D,R,C,G,H,-1,-1,0,0,1)))?(((F(D,d,R,C,G,H)) -(35-T))+((N(D,R,C,G,H

,0,-1,1,1,1))*(15-P))):(((N(D,R,C,G,H,-1,-2,1,-1,E))?(P):(N(D,R,C,G,H

,0,-2,1,-1,1)))*(F(D,d,R,C,G,H))))+((F(D,d,R,C,G,H))*((N(D,R,C,G,H,-1,-2,1,-1,

E))?(((F(D,d,R,C,G,H)) -(35-T))+(N(D,R,C,G,H,-1,-1,0,0,1))):((N(D,R,C,G,H

,-1,-1,0,0,1))*(F(D,d,R,C,G,H))))));

49 if (r > best || ret == -1) { best=r; ret = 2*D+1; }

50 d=1;

134

A.1. Ants Obtained with Fitnessless Coevolution

51 r=((N(D,R,C,G,H,-1,-1,0,0,E))?((((15 -P)+(-N(D,R,C,G,H,0,1,2,4,0))) -(15-P))*((N(D,R

,C,G,H,-2,-2,0,-1,E))?((N(D,R,C,G,H,-1,-1,0,1,1))*(-N(D,R,C,G,H,0,1,2,4,0)))

:((15-P)+(N(D,R,C,G,H,2,-2,3,1,1))))):((!(N(D,R,C,G,H,-4,-3,0,0,E)))?(N(D,R,C,

G,H,-3,-3,-1,-1,1)):(((N(D,R,C,G,H,0,-1,1,0,1))+(N(D,R,C,G,H,-1,-1,0,0,1)))+((

F(D,d,R,C,G,H)) -(35-T)))))+((((35 -T)+((N(D,R,C,G,H,-2,0,-1,5,1))+((F(D,d,R,C,G

,H)) -(35-T))))==(35 -T))?(((N(D,R,C,G,H,-1,-1,0,0,1)) <((N(D,R,C,G,H

,-1,-1,0,0,1))*(N(D,R,C,G,H,-2,-1,0,0,1))))?(((-N(D,R,C,G,H,0,1,2,4,0)) -(35-T)

)+(N(D,R,C,G,H,-1,-1,0,0,1))):((!(N(D,R,C,G,H,-1,-2,1,-1,E)))?((F(D,d,R,C,G,H)

)+(N(D,R,C,G,H,-2,-3,-1,-1,1))):((N(D,R,C,G,H,-1,-1,0,0,1))*(N(D,R,C,G,H

,-1,-1,0,0,1))))):(((N(D,R,C,G,H,-1,-1,0,0,1))<(N(D,R,C,G,H,0,-2,1,-1,1)))

?(((15 -P)+((F(D,d,R,C,G,H))*(F(D,d,R,C,G,H)))) -(15-P)):((0.008753981) +((N(D,R,

C,G,H,-1,-1,1,0,1))*(F(D,d,R,C,G,H))))));

52 if (r > best) { best=r; ret = 2*D; }

53 }

54 ++T;

55 D=ret /2; if (N(D,R,C,G,H,ret%2-1,-1,ret%2-1,-1,1)) ++P;

56 return ret;

57 }

A.1.5. EvolAnt3

1 #define FORYXN for (y=0;y<11;y++) for (x=0;x<11;x++)

2 #define FORYX1(y1,y2 ,x1,x2) for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++)

3 #define FORYX(y1 ,y2,x1,x2) { for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++) if

(G[(11+y)%11][(11+x)%11]==w) c+=H[(11+y)%11][(11+x)%11]; }

4 static float N(int D, int R, int C, int G[11][11] , float H[11][11] , int x1 , int y1

, int x2, int y2 , int w) {

5 float c; register int y,x;

6 c=0;

7 if (D==0) FORYX(y1 ,y2,x1,x2) else if (D==1) FORYX(x1,x2 ,-(y2),-(y1)) else if (D

==2) FORYX(-(y2),-(y1),-(x2) ,-(x1)) else FORYX(-(x2),-(x1),y1,y2);

8 return c;

9 }

10
11 #define FORYXV(y1,y2 ,x1,x2) { for (y=y1+R;y<=y2+R;y++) for (x=x1+C;x<=x2+C;x++) c

+=G[(11+y)%11][(11+x)%11]; }

12 static float B(int D, int R, int C, int G[11][11] , int x1 , int y1, int x2, int y2)

{

13 int c; register int y,x;

14 c=0;

15 if (D==0) FORYXV(y1,y2 ,x1,x2) else if (D==1) FORYXV(x1 ,x2 ,-(y2) ,-(y1)) else if (D

==2) FORYXV(-(y2),-(y1),-(x2) ,-(x1)) else FORYXV(-(x2) ,-(x1),y1 ,y2);

16 return c;

17 }

18
19 #define MAXF(y,x) if (G[(R+11+y)%11][(C+11+x)%11]==1 && H[(R+11+y)%11][(C+11+x)

%11]>s) s=H[(R+11+y)%11][(C+11+x)%11]

20 #define FOOD(y,x) (G[(R+11+y)%11][(C+11+x)%11]==1?H[(R+11+y)%11][(C+11+x)%11]:0)

21 static float F(int D, int d, int R, int C, int G[11][11] , float H[11][11]) {

22 float s; s=0;

135

A. Appendix

23 if (D==0 && d==0) { MAXF(0,-1);MAXF(-1,-1);MAXF(-2,-1);MAXF(-2,0);MAXF(-2,1);MAXF

(-1,1);MAXF (0,1); return s+FOOD(-1,0); }

24 if (D==0 && d==1) { MAXF(0,-1);MAXF(0,-2);MAXF(-1,-2);MAXF(-2,-2);MAXF(-2,-1);MAXF

(-2,0);MAXF(-1,0); return s+FOOD(-1,-1); }

25 if (D==1 && d==0) { MAXF(-1,0);MAXF(-1,1);MAXF(-1,2);MAXF (0,2);MAXF (1,2);MAXF (1,1)

;MAXF (1,0); return s+FOOD (0,1); }

26 if (D==1 && d==1) { MAXF(-1,0);MAXF(-2,0);MAXF(-2,1);MAXF(-2,2);MAXF(-1,2);MAXF

(0,2);MAXF (0,1); return s+FOOD(-1,1); }

27 if (D==2 && d==0) { MAXF (0,1);MAXF (1,1);MAXF (2,1);MAXF (2,0);MAXF(2,-1);MAXF(1,-1);

MAXF(0,-1); return s+FOOD (1,0); }

28 if (D==2 && d==1) { MAXF (0,1);MAXF (0,2);MAXF (1,2);MAXF (2,2);MAXF (2,1);MAXF (2,0);

MAXF (1,0); return s+FOOD (1,1); }

29 if (D==3 && d==0) { MAXF (1,0);MAXF(1,-1);MAXF(1,-2);MAXF(0,-2);MAXF(-1,-2);MAXF

(-1,-1);MAXF(-1,0); return s+FOOD(0,-1); }

30 { MAXF (1,0);MAXF (2,0);MAXF(2,-1);MAXF(2,-2);MAXF(1,-2);MAXF(0,-2);MAXF(0,-1);

return s+FOOD(1,-1); }

31 }

32
33 int ant_Move(int **grid , int my_row , int my_column) {

34 static int T,P,G[11][11] ,V[11][11];

35 static float H[11][11];

36 register int x,y; int D,E,ret ,R,C,d;

37 float r,best;

38 R=my_row;C=my_column;

39 if (C == -1) { return 0; }

40 if (R == -1) { T=P=0; FORYXN { V[y][x]=G[y][x]=0;H[y][x]=0;} return -1; }

41 D = 0;

42 E = (grid[R][C]==10) ?100:10;

43 V[R][C]=1; FORYXN if (G[y][x]==1) H[y][x]*=0.9; else if (G[y][x]==E) G[y][x]=0;

FORYX1 (-2,2,-2,2) {G[(11+y)%11][(11+x)%11] = grid [(11+y)%11][(11+x)%11]; H

[(11+y)%11][(11+x)%11]=1;}

44 best =0;

45 ret=-1;

46 for (;D <4;++D) {

47 d=0;

48 r=(N(D,R,C,G,H,-1,-4,0,-1,1))+((!((!((!((1) ==(F(D,d,R,C,G,H))))||(((N(D,R,C,G,H

,-4,-1,1,2,1))||((-0.19937818) <(35-T)))||(N(D,R,C,G,H,0,-2,1,-1,1)))))||(N(D,R

,C,G,H,-1,-2,1,1,E))))?((((N(D,R,C,G,H,-4,-1,0,0,E))||(N(D,R,C,G,H,-3,-5,2,0,E

)))||((N(D,R,C,G,H,0,-1,1,0,1))&&(N(D,R,C,G,H,-2,-1,0,1,1))))?((N(D,R,C,G,H

,0,-2,3,-1,1))+((F(D,d,R,C,G,H))*(35-T))):(((N(D,R,C,G,H,0,-1,1,0,E))&&(N(D,R,

C,G,H,0,-1,1,0,1)))?(35-T):(N(D,R,C,G,H,-3,-3,-1,-1,1)))):((((N(D,R,C,G,H

,0,2,1,3,E))&&(N(D,R,C,G,H,-4,-1,0,0,E)))?(F(D,d,R,C,G,H)):(P))+(((N(D,R,C,G,H

,0,-1,1,0,E))&&(N(D,R,C,G,H,-4,-1,0,0,E)))?(35-T):(-0.7490231))));

49 if (r > best || ret == -1) { best=r; ret = 2*D+1; }

50 d=1;

51 r=(((((N(D,R,C,G,H,-4,-1,0,0,E))&&(N(D,R,C,G,H,-4,-1,0,0,E)))&&((N(D,R,C,G,H

,-1,-3,1,-1,E))&&(N(D,R,C,G,H,-3,-3,0,0,E))))?((F(D,d,R,C,G,H))*(35-T)):((N(D,

R,C,G,H,-3,-3,0,0,E))?(-N(D,R,C,G,H,-2,-4,3,1,0)):(F(D,d,R,C,G,H))))+((35 -T)

+((F(D,d,R,C,G,H))+(N(D,R,C,G,H,-1,-3,1,-1,1)))))+((-N(D,R,C,G,H,-1,-1,0,0,0))

+((((N(D,R,C,G,H,-4,-1,0,0,E))&&(N(D,R,C,G,H,-3,-3,0,0,E)))&&((N(D,R,C,G,H

,-4,-1,0,2,E))&&(N(D,R,C,G,H,-2,-3,-1,-1,E))))?(((N(D,R,C,G,H,-3,-2,2,-1,E))

136

A.2. Designed Ants

&&(N(D,R,C,G,H,1,-4,4,-2,E)))?(F(D,d,R,C,G,H)):(P)):(((N(D,R,C,G,H,-3,-5,2,0,E

))&&(N(D,R,C,G,H,-3,-5,2,0,E)))?(F(D,d,R,C,G,H)):(N(D,R,C,G,H,-3,-3,-1,-1,1)))

));

52 if (r > best) { best=r; ret = 2*D; }

53 }

54 ++T;

55 D=ret /2; if (N(D,R,C,G,H,ret%2-1,-1,ret%2-1,-1,1)) ++P;

56 return ret;

57 }

A.2. Designed Ants

A.2.1. Utils

1 const int DIRS [8][2]

2 = {{-1,-1},{-1,0},{-1,+1},{0,+1},{+1,+1},{+1,0},{+1,-1},{0,-1}};

3
4 int randint(int a, int b)

5 {

6 return rand()%(b-a+1)+a;

7 }

8 void swap(int* a, int* b)

9 {

10 int t = *a;

11 *a = *b;

12 *b = t;

13 }

14 void randarr(int* arr , int n)

15 {

16 int i;

17 for (i=0; i<n; ++i)

18 swap(&arr[i], &arr[randint(i,n-1)]);

19 }

A.2.2. HyperHumant

1 #include "utils.h"

2
3 int hiper_points;

4 int hiper_time;

5 int hiper_my_row;

6 int hiper_my_col;

7 int hiper_grid[GRID_SIZE][GRID_SIZE];

8 int hiper_seen[GRID_SIZE][GRID_SIZE];

9
10 static int randbestinertia(int dir , int* evals) {

11 int i,mx=evals [0]-1;

12 int diff = 10;

13 int best[8], nbests =0;

14 for (i=0; i<8; ++i) {

15 int ndiff = abs((dir -i+12) %8-4);

137

A. Appendix

16 if (evals[i]>mx || (evals[i]==mx && ndiff < diff)) {

17 diff = ndiff;

18 mx=evals[i];

19 best [0]=i;

20 nbests =1;

21 } else if (evals[i]==mx && ndiff==diff)

22 best[nbests ++]=i;

23 }

24 return best[rand()%nbests];

25 }

26 static int is_in_vicinity(int **grid , int row , int col , int val)

27 {

28 int d;

29 for (d=0; d<8; ++d) {

30 int nrow = row + DIRS[d][0];

31 int ncol = col + DIRS[d][1];

32 if (CELL(grid ,nrow ,ncol) == val)

33 return 1;

34 }

35 return 0;

36 }

37 static int DIST(int x1 , int x2)

38 {

39 int x = MOD(x1-x2,GRID_SIZE);

40 return MIN(x, GRID_SIZE - x);

41 }

42 static int dist(int x1 , int y1, int x2, int y2)

43 {

44 return MAX(DIST(x1,x2),DIST(y1 ,y2));

45 }

46 static int eval_exploration_dir(int **grid , int row , int col)

47 {

48 int best = 100000;

49 int i,j;

50 for (i=0; i<GRID_SIZE; ++i)

51 for (j=0; j<GRID_SIZE; ++j) if (CELL(hiper_grid ,i,j)== CELL_FOOD) {

52 int v;

53 v = dist(row , col , i, j) + 0.1*(hiper_time -CELL(hiper_seen ,i,j));

54 if (v < best) {

55 best = v;

56 }

57 }

58 return -best;

59 }

60 static int foodhope(int **grid , int row , int col , int time)

61 {

62 int ptsx [16];

63 int ptsy [16];

64 int vis [16];

65 int npts = 0;

66 int i,j;

138

A.2. Designed Ants

67 int timeleft = time;

68 int px = row;

69 int py = col;

70 int hope = 0;

71 for (i=-2; i<=2; ++i) for (j=-2; j<=2; ++j) {

72 int nx = hiper_my_row + i;

73 int ny = hiper_my_col + j;

74 if (CELL(grid ,nx,ny) == CELL_FOOD) {

75 ptsx[npts] = nx;

76 ptsy[npts] = ny;

77 vis[npts] = 0;

78 npts ++;

79 }

80 }

81 while (1) {

82 int best = -1;

83 int bestdist = 10000;

84 for (i=0; i<npts; ++i) if (!vis[i]) {

85 int d = dist(ptsx[i], ptsy[i], px, py);

86 if (d <= timeleft && d < bestdist) {

87 bestdist = d;

88 best = i;

89 }

90 }

91 if (best == -1)

92 break;

93 vis[best] = 1;

94 timeleft -= bestdist;

95 hope += timeleft*timeleft;

96 px = ptsx[best];

97 py = ptsy[best];

98 }

99 return hope;

100 }

101 static int evalfield(int **grid , int me, int row , int col)

102 {

103 int eval = 0;

104 int d;

105 /* Obvious end game rules */

106 if (CELL(grid ,row ,col) == CELL_FOOD) {

107 if (hiper_points == 7)

108 return 100000002;

109 if (hiper_time == 34)

110 return 100000001;

111 if (hiper_points == 6 && hiper_time >= 33)

112 return 100000000;

113 }

114 if (CELL(grid ,row ,col) == CELL_ENEMY(me))

115 return 10000000;

116 if (is_in_vicinity(grid , row , col , CELL_ENEMY(me)))

117 return -1000000000;

139

A. Appendix

118 eval = foodhope(grid , row , col , 3) *1000;

119 if (eval == 0) {

120 eval = eval_exploration_dir(grid , row , col);

121 }

122 return eval;

123 }

124 static void evalfields(int **grid , int row , int col , int* evals)

125 {

126 int me = CELL(grid , row , col);

127 int d;

128 for (d=0; d<8; ++d) {

129 int nrow = row + DIRS[d][0];

130 int ncol = col + DIRS[d][1];

131 evals[d] = evalfield(grid , me , nrow , ncol);

132 }

133 }

134 int ant_Move(int **grid , int my_row , int my_column)

135 {

136 static int dir;

137 int i,j;

138 int evals [8];

139 if (my_row ==-1) {

140 hiper_points = 0;

141 hiper_time = 0;

142 for (i=0; i<GRID_SIZE; ++i)

143 for (j=0; j<GRID_SIZE; ++j) {

144 hiper_grid[i][j] = 0;

145 hiper_seen[i][j] = -1000;

146 }

147 dir =0;

148 return -1;

149 }

150 hiper_my_row = my_row;

151 hiper_my_col = my_column;

152 for (i=-2; i<=2; ++i)

153 for (j=-2; j<=2; ++j) {

154 int nr = my_row + i;

155 int nc = my_column + j;

156 CELL(hiper_seen , nr , nc) = hiper_time;

157 CELL(hiper_grid , nr , nc) = (CELL(grid , nr, nc) == CELL_FOOD ?

CELL_FOOD : CELL_EMPTY);

158 }

159 evalfields(grid , my_row , my_column , evals);

160 dir = randbestinertia(dir , evals);

161 if (CELL(grid , my_row + DIRS[dir][0], my_column + DIRS[dir][1]) == CELL_FOOD)

162 hiper_points ++;

163 hiper_time ++;

164 return dir;

165 }

A.2.3. SuperHumant

140

A.2. Designed Ants

1 #include "utils.h"

2
3 int super_points;

4 int super_time;

5 int super_grid[GRID_SIZE][GRID_SIZE];

6 int super_seen[GRID_SIZE][GRID_SIZE];

7
8 static int randbestinertia(int dir , int* evals) {

9 int i,mx=evals [0]-1;

10 int diff = 10;

11 int best[8], nbests =0;

12 for (i=0; i<8; ++i) {

13 int ndiff = abs((dir -i+12) %8-4);

14 if (evals[i]>mx || (evals[i]==mx && ndiff < diff)) {

15 diff = ndiff;

16 mx=evals[i];

17 best [0]=i;

18 nbests =1;

19 } else if (evals[i]==mx && ndiff==diff)

20 best[nbests ++]=i;

21 }

22 return best[rand()%nbests];

23 }

24 static int is_in_vicinity(int **grid , int row , int col , int val)

25 {

26 int d;

27 for (d=0; d<8; ++d) {

28 int nrow = row + DIRS[d][0];

29 int ncol = col + DIRS[d][1];

30 if (CELL(grid ,nrow ,ncol) == val)

31 return 1;

32 }

33 return 0;

34 }

35 static int DIST(int x1 , int x2)

36 {

37 int x = MOD(x1-x2,GRID_SIZE);

38 return MIN(x, GRID_SIZE - x);

39 }

40 static int dist(int x1 , int y1, int x2, int y2)

41 {

42 return MAX(DIST(x1,x2),DIST(y1 ,y2));

43 }

44 static int eval_exploration_dir(int **grid , int row , int col)

45 {

46 int best = 100000;

47 int i,j;

48 for (i=0; i<GRID_SIZE; ++i)

49 for (j=0; j<GRID_SIZE; ++j) if (CELL(super_grid ,i,j)== CELL_FOOD) {

50 int v;

51 v = dist(row , col , i, j) + 0.1*(super_time -CELL(super_seen ,i,j));

141

A. Appendix

52 if (v < best) {

53 best = v;

54 }

55 }

56 return -best;

57 }

58 static int evalfield(int **grid , int me, int row , int col)

59 {

60 int eval = 0;

61 int d;

62 /* Obvious end game rules */

63 if (CELL(grid ,row ,col) == CELL_FOOD) {

64 if (super_points == 7)

65 return 10000;

66 if (super_time == 34)

67 return 10000;

68 if (super_points == 6 && super_time >= 33)

69 return 1000;

70 }

71 if (CELL(grid ,row ,col) == CELL_ENEMY(me))

72 return 100;

73 if (CELL(grid ,row ,col) == CELL_FOOD)

74 eval += 50;

75 for (d=0; d<8; ++d) {

76 int nrow = row + DIRS[d][0];

77 int ncol = col + DIRS[d][1];

78 if (CELL(grid ,nrow ,ncol) == CELL_ENEMY(me))

79 return -100;

80 if (CELL(grid ,nrow ,ncol) == CELL_FOOD)

81 eval += 8;

82 }

83 if (eval == 0) {

84 eval = eval_exploration_dir(grid , row , col);

85 }

86 return eval;

87 }

88 static void evalfields(int **grid , int row , int col , int* evals)

89 {

90 int me = CELL(grid , row , col);

91 int d;

92 for (d=0; d<8; ++d) {

93 int nrow = row + DIRS[d][0];

94 int ncol = col + DIRS[d][1];

95 evals[d] = evalfield(grid , me , nrow , ncol);

96 }

97 }

98 int ant_Move(int **grid , int my_row , int my_column)

99 {

100 static int dir;

101 int i,j;

102 int evals [8];

142

A.2. Designed Ants

103 if (my_row ==-1) {

104 super_points = 0;

105 super_time = 0;

106 for (i=0; i<GRID_SIZE; ++i)

107 for (j=0; j<GRID_SIZE; ++j) {

108 super_grid[i][j] = 0;

109 super_seen[i][j] = -1000;

110 }

111 dir =0;

112 return -1;

113 }

114 for (i=-2; i<=2; ++i)

115 for (j=-2; j<=2; ++j) {

116 int nr = my_row + i;

117 int nc = my_column + j;

118 CELL(super_seen , nr , nc) = super_time;

119 CELL(super_grid , nr , nc) = (CELL(grid , nr, nc) == CELL_FOOD ?

CELL_FOOD : CELL_EMPTY);

120 }

121 evalfields(grid , my_row , my_column , evals);

122 dir = randbestinertia(dir , evals);

123 if (CELL(grid , my_row + DIRS[dir][0], my_column + DIRS[dir][1]) == CELL_FOOD)

124 super_points ++;

125 super_time ++;

126 return dir;

127 }

A.2.4. SmartHumant

1 #include "utils.h"

2
3 static int randbest(int* evals) {

4 int i,mx=evals [0]-1;

5 int best[8], nbests =0;

6 for (i=0; i<8; ++i) {

7 if (evals[i]>mx) {

8 mx=evals[i];

9 best [0]=i;

10 nbests =1;

11 } else if (evals[i]==mx)

12 best[nbests ++]=i;

13 }

14 return best[rand()%nbests];

15 }

16 static int evalfield(int **grid , int me, int row , int col)

17 {

18 int eval = 0;

19 int d;

20 if (CELL(grid ,row ,col) == CELL_ENEMY(me))

21 return 100;

22 if (CELL(grid ,row ,col) == CELL_FOOD)

143

A. Appendix

23 eval += 6.0;

24 for (d=0; d<8; ++d) {

25 int nrow = row + DIRS[d][0];

26 int ncol = col + DIRS[d][1];

27 if (CELL(grid ,nrow ,ncol) == CELL_ENEMY(me))

28 return -100;

29 if (CELL(grid ,nrow ,ncol))

30 eval += 1;

31 }

32 return eval;

33 }

34 static void evalfields(int **grid , int row , int col , int* evals)

35 {

36 int me = CELL(grid , row , col);

37 int d;

38 for (d=0; d<8; ++d) {

39 int nrow = row + DIRS[d][0];

40 int ncol = col + DIRS[d][1];

41 evals[d] = evalfield(grid , me , nrow , ncol);

42 }

43 }

44 int ant_Move(int **grid , int my_row , int my_column)

45 {

46 int evals [8];

47 if (my_row <= -1)

48 return -1;

49 evalfields(grid , my_row , my_column , evals);

50 return randbest(evals);

51 }

144

Bibliography

[1] Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorithmic construction of sets

for k-restrictions. ACM Transactions on Algorithms (TALG), 2(2):177, 2006.

[2] Helmut Alt, Norbert Blum, Kurt Mehlhorn, and Markus Paul. Computing a

maximum cardinality matching in a bipartite graph in time O(n1.5m/ log(n)). In-

formation Processing Letters, 37(4):237–240, 1991.

[3] Peter J. Angeline and Jordan B. Pollack. Competitive environments evolve bet-

ter solutions for complex tasks. In Stephanie Forrest, editor, Proceedings of the

5th International Conference on Genetic Algorithms, ICGA-93, pages 264–270,

University of Illinois at Urbana-Champaign, 17-21 July 1993. Morgan Kaufmann.

[4] Robert Axelrod. The evolution of strategies in the iterated prisoner’s dilemma. In

L. Davis, editor, Genetic Algorithms in Simulated Annealing, pages 32–41. Pitman,

London, 1987.

[5] Yaniv Azaria and Moshe Sipper. GP-gammon: Genetically programming backgam-

mon players. Genetic Programming and Evolvable Machines, 6(3):283–300, 2005.

[6] Yaniv Azaria and Moshe Sipper. GP-Gammon: Using genetic programming to

evolve backgammon players. In M. Keijzer, A. Tettamanzi, P. Collet, J. I. van

Hemert, and M. Tomassini, editors, Proceedings of the 8th European Conference

on Genetic Programming, volume 3447 of Lecture Notes in Computer Science,

pages 132–142, Lausanne, Switzerland, 2005. Springer.

[7] Thomas B

”ack, David B. Fogel, and Zbigniew Michalewicz, editors. Handbook of Evolution-

ary Computation. Oxford University Press, 1997.

[8] Anurag Bhatt, Pratul Varshney, and Kalyanmoy Deb. In search of no-loss strate-

gies for the game of tic-tac-toe using a customized genetic algorithm. In Maarten

Keijzer, Giuliano Antoniol, Clare Bates Congdon, Kalyanmoy Deb, Benjamin Do-

err, Nikolaus Hansen, John H. Holmes, Gregory S. Hornby, Daniel Howard, James

145

Bibliography

Kennedy, Sanjeev Kumar, Fernando G. Lobo, Julian Francis Miller, Jason Moore,

Frank Neumann, Martin Pelikan, Jordan Pollack, Kumara Sastry, Kenneth Stan-

ley, Adrian Stoica, El-Ghazali Talbi, and Ingo Wegener, editors, GECCO ’08:

Proceedings of the 10th annual conference on Genetic and evolutionary computa-

tion, pages 889–896, Atlanta, GA, USA, 12-16 July 2008. ACM.

[9] Alan D. Blair and Jordan B. Pollack. What makes a good co-evolutionary learning

environment. Australian Journal of Intelligent Information Processing Systems,

4(3/4):166–175, 1997.

[10] Josh C. Bongard and Hod Lipson. ’managed challenge’ alleviates disengagement

in co-evolutionary system identification. In GECCO ’05: Proceedings of the 2005

conference on Genetic and evolutionary computation, pages 531–538, New York,

NY, USA, 2005. ACM.

[11] Bruno Bouzy and Tristan Cazenave. Computer go: An AI oriented survey. Arti-

ficial Intelligence, 132(1):39–103, 2001.

[12] Dimo Brockhoff, Tobias Friedrich, Nils Hebbinghaus, Christian Klein, Frank Neu-

mann, and Eckart Zitzler. Do additional objectives make a problem harder? In

Proceedings of the 9th annual conference on Genetic and evolutionary computation,

pages 765–772. ACM, 2007.

[13] Dimo Brockhoff and Eckart Zitzler. Objective reduction in evolutionary mul-

tiobjective optimization: Theory and applications. Evolutionary Computation,

17(2):135–166, 2009.

[14] Bernd Brügmann. Monte Carlo Go. Unpublished technical report, 1993.

[15] Anthony Bucci. Emergent Geometric Organization and Informative Dimensions

in Coevolutionary Algorithms. PhD thesis, Michtom School of Computer Science,

Brandeis University, 2007.

[16] Anthony Bucci and Jordan B. Pollack. Order-theoretic analysis of coevolution

problems: Coevolutionary statics. In Proceedings of the GECCO-2002 Workshop

on Coevolution: Understanding Coevolution, pages 229–235, 2002.

[17] Anthony Bucci, Jordan B. Pollack, and Edwin de Jong. Automated extraction

of problem structure. In Kalyanmoy Deb et al., editor, Genetic and Evolutionary

Computation – GECCO-2004, Part I, volume 3102 of Lecture Notes in Computer

Science, pages 501–512, Seattle, WA, USA, 26-30 June 2004. Springer-Verlag.

146

Bibliography

[18] John Peter Cartlidge. Rules of Engagement: Competitive coevolutionary dynamics

in computational systems. PhD thesis, University of Leeds, 2004.

[19] James B. Caverlee. A genetic algorithm approach to discovering an optimal black-

jack strategy. In John R. Koza, editor, Genetic Algorithms and Genetic Program-

ming at Stanford 2000, pages 70–79. Stanford Bookstore, Stanford, California,

94305-3079 USA, June 2000.

[20] Kumar Chellapilla and David B. Fogel. Evolving neural networks to play checkers

without relying on expert knowledge. Neural Networks, IEEE Transactions on,

10(6):1382–1391, 1999.

[21] Kumar Chellapilla and David B. Fogel. Evolving an expert checkers playing pro-

gram without using human expertise. Evolutionary Computation, IEEE Transac-

tions on, 5(4):422–428, 2001.

[22] Siang Y. Chong, Mei K. Tan, and Jonathon D. White. Observing the evolution of

neural networks learning to play the game of othello. Evolutionary Computation,

IEEE Transactions on, 9(3):240 – 251, 2005.

[23] Fulvio Corno, Ernesto Sanchez, and Giovanni Squillero. On the evolution of core-

war warriors. In Proceedings of the 2004 IEEE Congress on Evolutionary Compu-

tation, pages 133–138, Portland, Oregon, 20-23 June 2004. IEEE Press.

[24] Robert De Caux. Using genetic programming to evolve strategies for the iterated

prisoner’s dilemma. Master’s thesis, University College, London, September 2001.

[25] Edvin D. de Jong and Jordan B. Pollack. Learning the ideal evaluation function. In

Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-

03, pages 274–285, Berlin, 2003, 2003. Springer.

[26] Edwin D. de Jong. The Incremental Pareto-Coevolution Archive. In Kalyan-

moy Deb et al., editor, Genetic and Evolutionary Computation–GECCO 2004.

Proceedings of the Genetic and Evolutionary Computation Conference. Part I,

pages 525–536, Seattle, Washington, USA, June 2004. Springer-Verlag, Lecture

Notes in Computer Science Vol. 3102.

[27] Edwin D. de Jong. Intransitivity in Coevolution. In Xin Yao et al., editor, Par-

allel Problem Solving from Nature - PPSN VIII, volume 3242 of Lecture Notes

in Computer Science (LNCS), pages 843–851, Birmingham, UK, September 2004.

Springer-Verlag (New York).

147

Bibliography

[28] Edwin D. de Jong. Towards a Bounded Pareto-Coevolution Archive. In Proceedings

of the 2004 IEEE Congress on Evolutionary Computation, volume 2, pages 2341–

2348, Portland, Oregon, USA, June 2004. IEEE Service Center.

[29] Edwin D. de Jong. The maxsolve algorithm for coevolution. In Hans-Georg Beyer

et al., editor, GECCO 2005: Proceedings of the 2005 conference on Genetic and

evolutionary computation, volume 1, pages 483–489, Washington DC, USA, 25-29

June 2005. ACM Press.

[30] Edwin D. de Jong. A Monotonic Archive for Pareto-Coevolution. Evolutionary

Computation, 15(1):61–93, Spring 2007.

[31] Edwin D. de Jong. Objective fitness correlation. In GECCO ’07: Proceedings of the

9th annual conference on Genetic and evolutionary computation, pages 440–447,

New York, NY, USA, 2007. ACM Press.

[32] Edwin D. de Jong and Anthony Bucci. DECA: dimension extracting coevolution-

ary algorithm. In Mike Cattolico et al., editor, GECCO 2006: Proceedings of the

8th annual conference on Genetic and evolutionary computation, pages 313–320,

Seattle, Washington, USA, 2006. ACM Press.

[33] Edwin D. de Jong and Anthony Bucci. Objective Set Compression. Test-Based

Problems and Multiobjective Optimization. In Joshua Knowles et al., editor, Mul-

tiobjective Problem Solving from Nature: From Concepts to Applications, pages

357–376. Springer, Berlin, 2008.

[34] Edwin D. de Jong and Jordan B. Pollack. Ideal Evaluation from Coevolution.

Evolutionary Computation, 12(2):159–192, Summer 2004.

[35] Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny. Finding all min-

imal unsatisfiable subsets. In PPDP ’03: Proceedings of the 5th ACM SIGPLAN

international conference on Principles and practice of declaritive programming,

pages 32–43, New York, NY, USA, 2003. ACM.

[36] Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals

of Mathematics, 51:161–166, 1950.

[37] Ben Dushnik and Edwin W. Miller. Partially ordered sets. American Journal of

Mathematics, 63(3):600–610, 1941.

[38] Andries P. Engelbrecht. Computational intelligence: an introduction. Wiley, 2007.

148

Bibliography

[39] Stefan Felsner, Vijay Raghavan, and Jeremy Spinrad. Recognition algorithms for

orders of small width and graphs of small Dilworth number. Order, 20(4):351–364,

2003.

[40] Sevan G. Ficici. Solution concepts in coevolutionary algorithms. PhD thesis,

Waltham, MA, USA, 2004. Adviser-Pollack, Jordan B.

[41] Sevan G. Ficici. Multiobjective Optimization and Coevolution. In Joshua Knowles,

David Corne, and Kalyanmoy Deb, editors, Multi-Objective Problem Solving from

Nature: From Concepts to Applications, pages 31–52. Springer, Berlin, 2008. ISBN

978-3-540-72963-1.

[42] Sevan G. Ficici and Jordan B. Pollack. Challenges in coevolutionary learning:

Arms-race dynamics, open-endedness, and mediocre stable states. In Proceedings

of the Sixth International Conference on Artificial Life, pages 238–247. MIT Press,

1998.

[43] Sevan G. Ficici and Jordan B. Pollack. Pareto optimality in coevolutionary learn-

ing. In Jozef Kelemen and Petr Sośik, editors, Advances in Artificial Life, 6th

European Conference, ECAL 2001, volume 2159 of Lecture Notes in Computer

Science, pages 316–325, Prague, Czech Republic, 2001. Springer.

[44] Sevan G. Ficici and Jordan B. Pollack. A game-theoretic memory mechanism for

coevolution. In E. Cantú-Paz et al., editor, Genetic and Evolutionary Computation

- GECCO 2003, volume 2723 of Lecture Notes in Computer Science, pages 286–

297, Chicago, IL, 2003. Springer.

[45] David B. Fogel. Blondie24: Playing at the Edge of AI. Morgan Kaufmann Pub-

lishers, September 2001.

[46] David B. Fogel, Timothy J. Hays, Sarah L. Hahn, and James Quon. Further

evolution of a self-learning chess program. In Proceedings of the IEEE Symposium

on Computational Intelligence and Games, IEEE, Piscataway, NJ. Citeseer, 2005.

[47] David B. Fogel, Timothy J. Hays, Sarah L. Hahn, and James Quon. The Blondie25

chess program competes against Fritz 8.0 and a human chess master. In Computa-

tional Intelligence and Games, 2006 IEEE Symposium on, pages 230–235. IEEE,

2006.

[48] P. Gach, GL Kurdyumov, and LA Levin. One-dimensional uniform arrays that

wash out finite islands. Problemy Peredachi Informatsii, 14(3):92–96, 1978.

149

Bibliography

[49] Robert Gibbons. A primer in game theory. FT Prentice Hall, 1992.

[50] Chi-Keong Goh and Kay Chen Tan. A competitive-cooperative coevolutionary

paradigm for dynamic multiobjective optimization. Evolutionary Computation,

IEEE Transactions on, 13(1):103–127, 2009.

[51] David E. Goldberg. Genetic algorithms in search, optimization, and machine learn-

ing. Addison-wesley, 1989.

[52] Jinwei Gu, Manzhan Gu, Cuiwen Cao, and Xingsheng Gu. A novel competi-

tive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling

problem. Computers and Operations Research, 37(5):927–937, 2010.

[53] Ami Hauptman and Moshe Sipper. Evolution of an efficient search algorithm for

the mate-in-N problem in chess. In Marc Ebner, Michael O’Neill, Anikó Ekárt,

Leonardo Vanneschi, and Anna Isabel Esparcia-Alcázar, editors, Proceedings of the

10th European Conference on Genetic Programming, volume 4445 of Lecture Notes

in Computer Science, pages 78–89, Valencia, Spain, 11 - 13 April 2007. Springer.

[54] W. Daniel Hillis. Co-evolving parasites improve simulated evolution as an opti-

mization procedure. In Christopher G. Langton, Charles Taylor, J. Doyne Farmer,

and Steen Rasmussen, editors, Artificial life II, volume 10 of Sante Fe Institute

Studies in the Sciences of Complexity, pages 313–324, Redwood City, Calif., 1992.

Addison-Wesley.

[55] John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for Maximum Match-

ings in Bipartite Graphs. SIAM Journal on Computing, 2:225, 1973.

[56] Philip Husbands and Frank Mill. Simulated co-evolution as the mechanism for

emergent planning and scheduling. In Proceedings of the Fourth International

Conference on Genetic Algorithms, pages 264–270. Morgan Kaufmann Publishers,

1991.

[57] Hisao Ishibuchi, Noritaka Tsukamoto, and Yusuke Nojima. Evolutionary many-

objective optimization: A short review. In Evolutionary Computation, 2008. CEC

2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on,

pages 2419–2426. IEEE, 2008.

[58] Wojciech Jaśkowski and Wojciech Kotlowski. On selecting the best individual in

noisy environments. In Maarten Keijzer, Giuliano Antoniol, Clare Bates Congdon,

150

Bibliography

Kalyanmoy Deb, Benjamin Doerr, Nikolaus Hansen, John H. Holmes, Gregory S.

Hornby, Daniel Howard, James Kennedy, Sanjeev Kumar, Fernando G. Lobo, Ju-

lian Francis Miller, Jason Moore, Frank Neumann, Martin Pelikan, Jordan Pollack,

Kumara Sastry, Kenneth Stanley, Adrian Stoica, El-Ghazali Talbi, and Ingo We-

gener, editors, GECCO ’08: Proceedings of the 10th annual conference on Genetic

and evolutionary computation, pages 961–968, Atlanta, GA, USA, jul 2008. ACM

Press.

[59] Wojciech Jaśkowski and Krzysztof Krawiec. Formal analysis and algorithms for

extracting coordinate systems of games. In IEEE Symposium on Computational

Intelligence and Games, pages 201–208, Milano, Italy, 2009.

[60] Wojciech Jaśkowski and Krzysztof Krawiec. Coordinate system archive for coevo-

lution. In Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 1–10,

Barcelona, 2010. IEEE.

[61] Wojciech Jaśkowski and Krzysztof Krawiec. How many dimensions in cooptimiza-

tion? In Proceedings of the 13th annual conference on Genetic and evolutionary

computation. Association of Computing Machinery (ACM), 2011 in press.

[62] Wojciech Jaśkowski, Krzysztof Krawiec, and Bartosz Wieloch. Antwars applet,

2007. (http://www.cs.put.poznan.pl/kkrawiec/antwars/).

[63] Wojciech Jaśkowski, Krzysztof Krawiec, and Bartosz Wieloch. Evolving strat-

egy for a probabilistic game of imperfect information using genetic programming.

Genetic Programming and Evolvable Machiness, 9(4):281–294, 2008.

[64] Wojciech Jaśkowski, Krzysztof Krawiec, and Bartosz Wieloch. Winning ant

wars: Evolving a human-competitive game strategy using fitnessless selection. In

M. O’Neill et al., editor, Genetic Programming 11th European Conference, EuroGP

2008, Proceedings, volume 4971 of Lecture Notes in Computer Science, pages 13–

24. Springer-Verlag, mar 2008.

[65] Wojciech Jaśkowski, Bartosz Wieloch, and Krzysztof Krawiec. Fitnessless coevolu-

tion. In Maarten Keijzer et al., editor, GECCO ’08: Proceedings of the 10th annual

conference on Genetic and evolutionary computation, pages 355–362, Atlanta, GA,

USA, jul 2008. ACM.

[66] David S. Johnson. Approximation algorithms for combinatorial problems. Journal

of Computer and System Sciences, 9:256–278, 1974.

151

Bibliography

[67] Hugues Juillé and Jordan B. Pollack. Co-evolving intertwined spirals. In Proceed-

ings of the Fifth Annual Conference on Evolutionary Programming, pages 461–468,

1996.

[68] Hugues Juillé and Jordan B. Pollack. Dynamics of co-evolutionary learning. In Pat-

tie Maes, Maja J. Mataric, Jean-Arcady Meyer, Jordan Pollack, and Stewart W.

Wilson, editors, Proceedings of the Fourth International Conference on Simulation

of Adaptive Behavior: From animals to animats 4, pages 526–534, Cape Code,

USA, 9-13 1996. MIT Press.

[69] Hugues Juillé and Jordan B. Pollack. Coevolutionary learning: a case study. In

In Proceedings of the 15th International Conference on Machine Learning, pages

251–259. Morgan Kaufmann, 1998.

[70] Hugues Juillé and Jordan B. Pollack. Coevolving the ”ideal” trainer: Application

to the discovery of cellular automata rules. In University of Wisconsin, pages

519–527. Morgan Kaufmann, 1998.

[71] Richard M. Karp. Reducibility Among Combinatorial Problems. Complexity of

computer computations: proceedings, page 85, 1972.

[72] Jae Y. Kim, Yeo K. Kim, and Yeongho Kim. Tournament competition and its

merits for coevolutionary algorithms. Journal of Heuristics, 9(3):249–268, 2003.

[73] Yeo K. Kim, Jae Y. Kim, and Yeongho Kim. A tournament-based competitive

coevolutionary algorithm. Applied Intelligence, 20(3):267–281, 2004.

[74] Joshua D. Knowles, Richard A. Watson, and David Corne. Reducing local optima

in single-objective problems by multi-objectivization. In EMO ’01: Proceedings of

the First International Conference on Evolutionary Multi-Criterion Optimization,

pages 269–283, London, UK, 2001. Springer-Verlag.

[75] John R. Koza. Genetic programming: A paradigm for genetically breeding pop-

ulations of computer programs to solve problems. Technical report, Computer

Science Department, Stanford University, 1990.

[76] John R. Koza. Genetic evolution and co-evolution of game strategies. In The

International Conference on Game Theory and Its Applications, Stony Brook, New

York, July 15 1992.

152

Bibliography

[77] John R. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[78] John R. Koza. Genetic programming III: darwinian invention and problem solving.

Morgan Kaufmann Pub, 1999.

[79] John R. Koza. Genetic programming IV: Routine human-competitive machine

intelligence. Kluwer Academic Pub, 2003.

[80] Krzysztof Krawiec, Wojciech Jaśkowski, and Marcin Szubert. Evolving small-

board go players using coevolutionary temporal difference learning with archive.

International Journal of Applied Mathematics and Computer Science, 2011 in

press.

[81] Mark Land and Richard K. Belew. No perfect two-state cellular automata for

density classification exists. Phys. Rev. Lett., 74(25):5148–5150, Jun 1995.

[82] Christopher G. Langton. Artificial life: An overview. The MIT Press, 1997.

[83] Marco Laumanns, Lothal Thiele, Kalyanmoy Deb, and Eckart Zitzler. Combining

convergence and diversity in evolutionary multiobjective optimization. Evolution-

ary computation, 10(3):263–282, 2002.

[84] Alex Lubberts and Risto Miikkulainen. Co-evolving a go-playing neural network.

In Richard K. Belew and Hugues Juillè, editors, Coevolution: Turning Adaptive

Algorithms upon Themselves, pages 14–19, San Francisco, California, USA, 7 July

2001.

[85] Simon M. Lucas. Computational intelligence and games: Challenges and oppor-

tunities. International Journal of Automation and Computing, 5(1):45–57, 2008.

[86] Simon M. Lucas and Thomas P. Runarsson. Temporal difference learning versus

co-evolution for acquiring othello position evaluation. In IEEE Symposium on

Computational Intelligence and Games, pages 52–59. IEEE, 2006.

[87] Sean Luke. Genetic programming produced competitive soccer softbot teams for

robocup97. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy

Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi

Iba, and Rick Riolo, editors, Genetic Programming 1998: Proceedings of the Third

Annual Conference, pages 214–222, University of Wisconsin, Madison, Wisconsin,

USA, 22-25 July 1998. Morgan Kaufmann.

153

Bibliography

[88] Sean Luke. ECJ 15: A Java evolutionary computation library.

http://cs.gmu.edu/∼eclab/projects/ecj/, 2006.

[89] Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and James Hendler.

Co-evolving soccer softbot team coordination with genetic programming. In Hi-

roaki Kitano, editor, Proceedings of the First International Workshop on RoboCup,

at the International Joint Conference on Artificial Intelligence, Lecture Notes in

Computer Science, pages 398–411, Nagoya, Japan, 1997. Springer.

[90] Sean Luke and R. Paul Wiegand. Guaranteeing coevolutionary objective measures.

In Kenneth A. de Jong, Riccardo Poli, and Jonathan E. Rowe, editors, Foundations

of Genetic Algorithms VII, pages 237–251, Torremolinos, Spain, 2002. Morgan

Kaufman.

[91] Sean Luke and R. Paul Wiegand. When coevolutionary algorithms exhibit evo-

lutionary dynamics. In 2002 Genetic and Evolutionary Computation Conference

Workshop Program, pages 236–241, 2002.

[92] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating mini-

mization problems. Journal of the ACM (JACM), 41(5):960–981, 1994.

[93] Edward P. Manning. Coevolution in a large search space using resource-limited

nash memory. In Proceedings of the 12th annual conference on Genetic and evo-

lutionary computation, pages 999–1006. ACM, 2010.

[94] Edward P. Manning. Using resource-limited nash memory to improve an othello

evaluation function. Computational Intelligence and AI in Games, IEEE Trans-

actions on, 2(1):40 –53, march 2010.

[95] Ben McKay, Mark J. Willis, and Geoffrey W. Barton. Using a tree structured

genetic algorithm to perform symbolic regression. In Genetic Algorithms in Engi-

neering Systems: Innovations and Applications, 1995. GALESIA. First Interna-

tional Conference on (Conf. Publ. No. 414), pages 487–492. IET, 1995.

[96] Thomas Miconi. Why coevolution doesn’t ”work”: Superiority and progress in

coevolution. In EuroGP, 2009.

[97] Geoffrey F. Miller and Dave Cliff. Protean behavior in dynamic games: arguments

for the co-evolution of pursuit-evasion tactics. In Proceedings of the third inter-

national conference on Simulation of adaptive behavior : from animals to animats

154

Bibliography

3: from animals to animats 3, pages 411–420, Cambridge, MA, USA, 1994. MIT

Press.

[98] Melanie Mitchell, James P. Crutchfield, and Peter T. Hraber. Evolving cellular

automata to perform computations: mechanisms and impediments. Physica D:

Nonlinear Phenomena, 75:361–391, 1994.

[99] Rolf H. Möhring. Algorithmic aspects of comparability graphs and interval graphs.

Graphs and Order: The Role of Graphs in the Theory of Ordered Sets and Its

Applications, pages 41–102, 1984.

[100] German A. Monroy, Kenneth O. Stanley, and Risto Miikkulainen. Coevolution of

neural networks using a layered pareto archive. In Maarten Keijzer, Mike Cat-

tolico, Dirk Arnold, Vladan Babovic, Christian Blum, Peter Bosman, Martin V.

Butz, Carlos Coello Coello, Dipankar Dasgupta, Sevan G. Ficici, James Foster, Ar-

turo Hernandez-Aguirre, Greg Hornby, Hod Lipson, Phil McMinn, Jason Moore,

Guenther Raidl, Franz Rothlauf, Conor Ryan, and Dirk Thierens, editors, GECCO

2006: Proceedings of the 8th annual conference on Genetic and evolutionary com-

putation, volume 1, pages 329–336, Seattle, Washington, USA, 8-12 July 2006.

ACM Press.

[101] David J. Montana. Strongly typed genetic programming. Evolutionary Computa-

tion, 3(2):199–230, 1995.

[102] Jason Noble. Finding robust Texas Holdem poker strategies using Pareto co-

evolution and deterministic crowding. In Proceedings of the 2002 International

Conference on Machine Learning and Applications (ICMLA’02), pages 233–239.

CSREA Press, 2002.

[103] Jason Noble and Richard A. Watson. Pareto coevolution: Using performance

against coevolved opponents in a game as dimensions for pareto selection. In

Lee Spector et al., editor, Proceedings of the Genetic and Evolutionary Computa-

tion Conference (GECCO-2001), pages 493–500, San Francisco, California, USA,

7-11 July 2001. Morgan Kaufmann.

[104] Stefano Nolfi and Dario Floreano. Coevolving Predator and Prey Robots: Do

”Arms Races” Arise in Artificial Evolution? Artificial Life, 4(4):311–335, 1998.

[105] Björn Olsson. Evaluation of a Simple Host-Parasite Genetic Algorithm. In Evo-

lutionary Programming VII: 7th International Conference, Ep98, San Diego, Cal-

ifornia, Usa, March 25-27, 1998: Proceedings, page 53. Springer, 1998.

155

Bibliography

[106] Björn Olsson. Algorithms for coevolution of solutions and fitness cases in asym-

metric problem domains. PhD thesis, University of Exeter, 1999.

[107] Björn Olsson. Co-evolutionary search in asymmetric spaces. Information Sciences,

133(3-4):103 – 125, 2001.

[108] Liviu Panait and Sean Luke. A comparison of two competitive fitness functions. In

GECCO ’02: Proceedings of the Genetic and Evolutionary Computation Confer-

ence, pages 503–511, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers

Inc.

[109] Jan Paredis. Co-evolutionary constraint satisfaction. In Yuval Davidor, Hans-Paul

Schwefel, and Reinhard Manner, editors, Parallel Problem Solving from Nature

PPSN III, volume 866 of Lecture Notes in Computer Science, pages 46–55. Springer

Berlin / Heidelberg, 1994.

[110] Jan Paredis. Steps toward co-evolutionary classification neural networks. In Arti-

ficial Life IV: Proc. 4th Int. Workshop on the Synthesis and Simulation of Living

Systems, pages 102–108. Cambridge, MA: MIT Press, 1994.

[111] Jan Paredis. Coevolutionary computation. Artificial Life, 2(4):355–375, 1995.

[112] Jan Paredis. Coevolving cellular automata: Be aware of the red queen. In Pro-

ceedings of the Seventh International Conference on Genetic Algorithms, pages

393–400, 1997.

[113] Zdzisław. Pawlak. Rough sets: Theoretical aspects of reasoning about data.

Springer, 1991.

[114] Jordan B. Pollack and Alan D. Blair. Co-evolution in the successful learning of

backgammon strategy. Machine Learning, 32(3):225–240, 1998.

[115] Elena Popovici, Anthony Bucci, R. Paul Wiegand, and Edwin D. de Jong. Hand-

book of Natural Computing, chapter Coevolutionary Principles. Springer-Verlag,

2011.

[116] Elena Popovici and Kenneth De Jong. Understanding competitive co-evolutionary

dynamics via fitness landscapes. In Artificial Multiagent Symposium. Part of the

2004 AAAI Fall Symposium on Artificial Intelligence, 2004.

156

Bibliography

[117] Elena Popovici and Kenneth De Jong. Monotonicity versus performance in co-

optimization. In FOGA ’09: Proceedings of the tenth ACM SIGEVO workshop

on Foundations of genetic algorithms, pages 151–170, New York, NY, USA, 2009.

ACM.

[118] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a

sub-constant error-probability PCP characterization of NP. In Proceedings of the

twenty-ninth annual ACM symposium on Theory of computing, pages 475–484.

ACM New York, NY, USA, 1997.

[119] Craig Reynolds. Competition, coevolution and the game of tag. In R. A. Brooks

and P. Maes, editors, Artificial Life IV, Proceedings of the fourth International

Workshop on the Synthesis and Simulation of Living Systems, pages 59–69, MIT,

Cambridge, MA, USA, 1994. MIT Press.

[120] Chrisotpher D. Rosin and Richard K. Belew. New methods for competitive coevo-

lution. Evolutionary Computation, 5(1):1–29, 1997.

[121] Christopher D. Rosin. Coevolutionary Search Among Adversaries. PhD thesis,

UNIVERSITY OF CALIFORNIA, SAN DIEGO, 1997.

[122] Christopher D. Rosin and Richard K. Belew. Methods for competitive co-evolution:

Finding opponents worth beating. In Larry J. Eshelman, editor, ICGA, pages 373–

381, San Francisco, CA, 1995. Morgan Kaufmann.

[123] Thomas P. Runarsson and Simon M. Lucas. Coevolution versus self-play temporal

difference learning for acquiring position evaluation in small-board go. Evolution-

ary Computation, IEEE Transactions on, 9(6):628 – 640, dec. 2005.

[124] S.J. Russell, P. Norvig, J.F. Canny, J.M. Malik, and D.D. Edwards. Artificial

intelligence: a modern approach, volume 74. Prentice hall Englewood Cliffs, NJ,

1995.

[125] Arthur L. Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3(3):211–229, 1959.

[126] Tatsuya Sato and Takaya Arita. Competitive co-evolutionary algorithms can solve

function optimization problems. Artificial Life and Robotics, 14:440–443, 2009.

10.1007/s10015-009-0721-y.

157

Bibliography

[127] Travis C. Service and Daniel R. Tauritz. Co-optimization algorithms. In GECCO

’08: Proceedings of the 10th annual conference on Genetic and evolutionary com-

putation, pages 387–388, New York, NY, USA, 2008. ACM.

[128] Yehonatan Shichel, Eran Ziserman, and Moshe Sipper. GP-robocode: Using ge-

netic programming to evolve robocode players. In Maarten Keijzer, Andrea Tet-

tamanzi, Pierre Collet, Jano I. van Hemert, and Marco Tomassini, editors, Pro-

ceedings of the 8th European Conference on Genetic Programming, volume 3447

of Lecture Notes in Computer Science, pages 143–154, Lausanne, Switzerland, 30

March - 1 April 2005. Springer.

[129] Karl Sims. Evolving 3D morphology and behavior by competition. Artificial Life,

1(4):353–372, 1994.

[130] Moshe Sipper. Attaining human-competitive game playing with genetic program-

ming. In Samira El Yacoubi, Bastien Chopard, and Stefania Bandini, editors,

Proceedings of the 7th International Conference on Cellular Automata, for Re-

search and Industry, ACRI, volume 4173 of Lecture Notes in Computer Science,

page 13, Perpignan, France, September 20-23 2006. Springer. Invited Lectures.

[131] Moshe Sipper and Eytan Ruppin. Co-evolving architectures for cellular machines.

Physica D: Nonlinear Phenomena, 99(4):428–441, 1997.

[132] Kevin C. Smilak. Finding the ultimate video poker player using genetic program-

ming. In John R. Koza, editor, Genetic Algorithms and Genetic Programming at

Stanford 1999, pages 209–217. Stanford Bookstore, Stanford, California, 94305-

3079 USA, 15 March 1999.

[133] Lee Spector and Herbert J. Bernstein. Communication capacities of some quantum

gates, discovered in part through genetic programming. In Proc. 6th Int. Conf.

Quantum Communication, Measurement, and Computing (QCMC), pages 500–

503, 2003.

[134] Kenneth O. Stanley, Bobby Bryant, and Risto Miikkulainen. Real-time neuroevo-

lution in the nero video game. Evolutionary Computation, IEEE Transactions on,

9(6):653–668, 2005.

[135] B.H. Sumida and W.D. Hamilton. Both Wrightian and ”parasite” peak shifts

enhance genetic algorithm performance in the travelling salesman problem. In Ray

158

Bibliography

Paton, editor, Computing with Biological Metaphors, pages 254–279. Chapman and

Hall, 1994.

[136] Marcin Szubert, Wojciech Jaśkowski, and Krzysztof Krawiec. Coevolutionary tem-

poral difference learning for othello. In IEEE Symposium on Computational Intel-

ligence and Games, pages 104–111, Milano, Italy, 2009.

[137] Joc Cing Tay, Cheun Hou Tng, and Chee Siong Chan. Environmental effects on the

coevolution of pursuit and evasion strategies. Genetic Programming and Evolvable

Machines, 9:5–37, 2008. Online First.

[138] Andrea G. B. Tettamanzi. Genetic programming without fitness. In John R.

Koza, editor, Late Breaking Papers at the Genetic Programming 1996 Conference

Stanford University July 28-31, 1996, pages 193–195, Stanford University, CA,

USA, 28–31 July 1996. Stanford Bookstore.

[139] William T. Trotter. Combinatorics and partially ordered sets: Dimension theory.

Johns Hopkins University Press, 1992.

[140] Richard A. Watson and Jordan B. Pollack. Coevolutionary dynamics in a minimal

substrate. In Lee Spector et al., editor, Proceedings of the Genetic and Evolu-

tionary Computation Conference (GECCO-2001), pages 702–709, San Francisco,

California, USA, 7-11 July 2001. Morgan Kaufmann.

[141] Darrell Whitley, Soraya Rana, and Robert B. Heckendorn. The island model

genetic algorithm: On separability, population size and convergence. Journal of

Computing and Information Technology, 7(1):33–47, 1999.

[142] Mark Wittkamp and Luigi Barone. Evolving adaptive play for the game of spoof

using genetic programming. In Sushil J. Louis and Graham Kendall, editors, Pro-

ceedings of the 2006 IEEE Symposium on Computational Intelligence and Games

(CIG06), pages 164–172, University of Nevada, Reno, campus in Reno/Lake

Tahoe, USA, 22 - 24 May 2006. IEEE.

[143] Yang Xiaomei, Zeng Jianchao, Liang Jiye, and Liang Jiahua. A genetic algorithm

for job shop scheduling problem using co-evolution and competition mechanism. In

Artificial Intelligence and Computational Intelligence (AICI), 2010 International

Conference on, volume 2, pages 133 –136, oct. 2010.

159

Bibliography

[144] Liping Yang, Houkuan Huang, and Xiaohong Yang. An efficient pareto-coevolution

archive. In Natural Computation, 2007. ICNC 2007. Third International Confer-

ence on, volume 4, pages 484–488, Aug. 2007.

[145] Liping Yang, Houkuan Huang, and Xiaohong Yang. A Simple Coevolution Archive

Based on Bidirectional Dimension Extraction. In 2009 International Conference

on Artificial Intelligence and Computational Intelligence, pages 596–600. IEEE,

2009.

[146] Mihalis Yannakakis. The complexity of the partial order dimension problem. SIAM

Journal on Algebraic and Discrete Methods, 3(3):351–358, 1982.

[147] Ting-Shuo Yo and Edwin D. de Jong. A comparison of evaluation methods in

coevolution. In Hod Lipson, editor, GECCO, pages 479–487. ACM, 2007.

160

Politechnika Poznańska

Instytut Informatyki

Algorytmy dla Problemów Opartych na
Testach

Wojciech Jaśkowski

Streszczenie rozprawy doktorskiej

Promotor

dr hab. inż. Krzysztof Krawiec

Poznań, 2011

1 Wstęp

1.1 Motywacja

Niniejsza praca wpisuje się w badania inteligencji obliczeniowej (ang. computational in-

telligence, [14]), dyscypliny zajmującej się rozwiązywaniem problemów za pomocą algo-

rytmów inspirowanych biologicznie. Problemy rozważane w inteligencji obliczeniowej są

podobne do tych będących przedmiotem dociekań w sztucznej inteligencji (ang. artificial

intelligence, [38]). Różnica pomiędzy tymi dwoma została celnie wyrażona przez Lucasa

[27, strona 45]: “In AI research the emphasis is on producing apparently intelligent beha-

viour using whatever technuiques are appropriate for a given problem. In computational

intelligence research, the emphasis is placed on intelligence being an emergent property”.

Inteligencja obliczeniowa zajmuje się między innymi środowiskami, w których pewne

elementarne obiekty wchodzą ze sobą w interakcje. Programy grające uczą się poprzez

rozgrywanie gier między sobą. Algorytmy uczenia maszynowego generują hipotezy i te-

stują je na przykładach uczących. Algorytmy ewolucyjne symulują wyewoluowane pro-

jekty w różnych środowiskach. Wspólną cechą tych scenariuszy jest koncepcja interakcji

pomiędzy kandydatem (ang. candidate, tu: strategia gracza, hipoteza, projekt) i testem

(odpowiednio: strategia przeciwnika, przykład uczący, środowisko). Wspólną cechą tych

problemów jest fakt, iż liczba testów, z którymi oddziałują rozwiązania może być bardzo

duża lub nawet, w niektórych przypadkach, nieskończona.

Problemy, których przykłady podano powyżej, można zaliczyć do klasy problemów

opartych na testach (ang. test-based problems, [8]). Istnieje wiele algorytmów zaprojek-

towanych dla konkretnych podklas problemów opartych na testach, np. metody staty-

stycznego uczenia się dla problemów uczenia maszynowego lub algorytmy minimaksowe

dla gier. Te metody korzystają jednak ze szczególnych, dodatkowych cech problemów,

nieujętych w definicji problemów opartych na testach. Ogólną metodą dla problemów

opartych na testach jest kompetetywny algorytm koewolucyjny (ang. competitive coevo-

lution [2, 20, 36, 37]), który naśladuje koewolucję gatunków występującą w przyrodzie.

Kompetytywny algorytm koewolucyjny wykorzystuje interakcje zachodzące pomiędzy

kandydatami i testami, aby wytworzyć
”
wyścig zbrojeń“ tych dwóch kategorii osobni-

3

1 Wstęp

ków. Algorytm koewolucyjny używa mechanizmów znanych z algorytmów ewolucyjnych

takich jak mutacja, krzyżowanie lub selekcja.

Algorytmy koewolucyjne stosowano do problemów modelowanych jako problemy oparte

na testach takich jak projektowanie sieci neuronowych [22], uczenie się strategii dla gier

strategicznych [39] lub znajdowanie reguł dla automatów komórkowych [24].

Mimo entuzjazmu, z jakim początkowo spotkały się algorytmy koewolucyjne, szybko

okazało się, że metody te charakteryzują się trudną do przewidzenia dynamiką [23].

Ponadto, dla nietrywialnych problemów algorytmy koewolucyjne często nie są w stanie

utrzymywać monotonicznego wzrostu [29]. Pokazano także, iż algorytmy koewolucyjne

przejawiają wiele niepożądanych zachowań zwanych patologiami [23]. W konsekwencji,

w przypadku wielu problemów opartych na testach, algorytmy koewolucyjne nie generują

efektywnych rozwiązań.

Jednym z powodów takiego stanu rzeczy jest agregacja wyników interakcji pomiędzy

osobnikami reprezentującymi kandydatów i testy [7]. Agregacja taka zachodzi zwykle

podczas fazy oceny osobników, w której przyporządkowuje się im skalarną wartość in-

terpretowaną jako przystosowanie (ang. fitness). Istnieje więc potrzeba zaprojektowania

nowych mechanizmów dla algorytmów koewolucyjnych, które unikałyby agregacji. Jest

to jednocześnie motywacja dla badań opisanych w tej rozprawie.

1.2 Cel pracy

W kontekście powyżej nakreślonej problematyki, głównym celem pracy jest analiza pro-

blemów opartych na testach, ich cech, i zaprojektowanie nowych algorytmów koewolu-

cyjnych, unikających problemu związanego z agregacją wyników. Cele pośrednie pracy

obejmują następujące zagadnienia:

• Zaprojektowanie algorytmu koewolucyjnego, który nie wymaga agregacji wyników

interakcji pomiędzy osobnikami w fazie oceny.

• Teoretyczna analiza dynamiki tego algorytmu.

• Teoretyczna analiza wewnętrznej struktury problemów opartych na testach w opar-

ciu o koncepcję Pareto-koewolucji, która unika agregacji wyników, traktując pro-

blem oparty na testach jako zadanie optymalizacji wielokryterialnej.

• Zaprojektowanie efektywnego algorytmu ekstrakcji wewnętrznej struktury proble-

mów opartych na testach.

4

1.2 Cel pracy

• Zaprojektowanie koewolucyjnego algorytmu dla problemów opartych na testach,

wykorzystującego ekstrakcję wewnętrznej struktury problemu.

• Eksperymentalna weryfikacja zaproponowanych koncepcji i algorytmów na sztucz-

nych i rzeczywistych problemach.

5

2 Problemy oparte na testach

2.1 Definicja

W teorii optymalizacji problem optymalizacyjny definiuje się poprzez określenie jego

dziedziny oraz funkcji celu zdefiniowanej na jej elementach. Klasyczny problem opty-

malizacyjny polega na znalezieniu takiego elementu dziedziny, który maksymalizuje lub

minimalizuje zadaną funkcję celu. Takie sformułowanie problemu pozwala na modelowa-

nie wielu sytuacji praktycznych. Istnieją jednak problemy, w których poznanie wartości

funkcji celu w danym punkcie jest na tyle kosztowne obliczeniowo, że w praktyce nie-

możliwe do osiągnięcia. Przykładem jest szukanie najlepszej strategii gracza w grze

dwuosobowej, np. Go, która jest uznawana za jedno z największych wyzwań sztucznej

inteligencji [6, 5]. Funkcję celu można w tym przypadku zdefiniować jako maksymaliza-

cję wartości oczekiwanej wyniku gry po wszystkich możliwych strategiach przeciwnika,

występujących z równym prawdopodobieństwem. Obliczenie wartości funkcji celu dla

danej strategii gracza czarnego (potencjalne rozwiązanie) wymaga zatem rozegrania gier

ze wszystkimi możliwymi strategiami gracza białego (testy). Strategii tych jest jednak

tak dużo, że jest to w praktyce niemożliwe.

Problemy które charakteryzują się tym, iż jakość potencjalnego rozwiązania zależy od

wyników interakcji z elementami (zwykle dużego) zbioru testów nazywane są problemami

opartymi na testach [8]. Formalnie definiuje się je następująco:

Definicja 1. Problem oparty na testach jest obiektem H = (S, T,G,P,P+), składają-

cym się ze:

• zbioru kandydatów S (ang. candidates [8] or candidate solutions [21]),

• zbioru testów T ,

• funkcji interakcji G : S×T → O, gdzie O jest zbiorem całkowicie uporządkowanym,

• zbioru potencjalnych rozwiązań P zbudowanym na zbiorze kandydatów, oraz

7

2 Problemy oparte na testach

• pojęcia rozwiązania (ang. solution concept [15]), które rozdziela zbiór potencjal-

nych rozwiązań P na rozłączne podzbiory rozwiązań problemu P+ i elementów

niebędących rozwiązaniami problemu P−.

Aby zilustrować powyższą definicję rozważmy grę w szachy. Załóżmy, że szukamy naj-

lepszej strategii dla gracza białego, więc zbiór S zawiera wszystkie możliwe strategie

tego gracza, podczas gdy zbiór T zawiera wszystkie możliwe strategie gracza czarnego.

Funkcja interakcji G jest w tym przypadku interpretowana jako rozgrywka pomiędzy gra-

czami, a jej przeciwdziedziną jest uporządkowany zbiór {porażka < remis < wygrana}.
Zbiór potencjalnych rozwiązań P jest tożsamy ze zbiorem kandydatów S, a rozwiąza-

niami problemu należącymi do zbioru P+ są kandydaci maksymalizujący oczekiwany

wynik gry.

Mimo iż pojęcie rozwiązania jednoznacznie determinuje rozwiązanie którego szukamy,

to jeśli dwa potencjalne rozwiązania nie należą do zbioru P+, pojęcie rozwiązania nie

udziela odpowiedzi na pytanie: które z nich jest preferowane? Dlatego, pojęcie rozwią-

zania z powyższej definicji można zastąpić poprzez

• relację preferencji � na zbiorze P, gdzie P1 � P2 jest interpretowane jako P1 jest

nie gorsze niż P2, gdy P1, P2 ∈ P.

Relacja preferencji jest, w ogólności, preporządkiem i jest uogólnieniem pojęcia rozwią-

zania. W szczególnym przypadku, zbiór jej maksymalnych elementów może być równy

zbiorowi rozwiązań P+. Relacja preferencji uogólniająca pojęcie rozwiązania może być

zdefiniowana na wiele sposobów i zależy tylko i wyłącznie od preferencji decydenta. Gdy

problem oparty na testach występuje bez zdefiniowanej relacji preferencji, nazywamy go

problemem koprzeszukiwania (ang. co-search test-based problem), w przeciwnym wy-

padku mówimy o problemie kooptymalizacyjnym (ang. co-optimization test-based pro-

blem [34]).

2.2 Pojęcie rozwiązania

W przykładzie dotyczącym gry w szachy, opisanym w sekcji 2, założyliśmy, że zbiór

potencjalnych rozwiązań P jest identyczny ze zbiorem kandydatów S i, w konsekwencji,

rozwiązania problemu (elementy zbioru P+) są elementami zbioru S. Zaznaczmy jednak,

że nie musi tak być w ogólności. Na przykład, możemy wymagać, aby rozwiązanie

składało się ze wszystkich Pareto-niezdominowanych kandydatów.

Mimo iż pojęcie rozwiązania może być zdefiniowane dowolnie, warto jest zidentyfiko-

wać te pojęcia rozwiązania, które są często używane. Poniżej, za [34] podajemy dwa

8

2.3 Rozwiązywanie problemów opartych na testach za pomocą algorytmów koewolucyjnych

z nich:

Maksymalizacja Wartości Oczekiwanej W tym przypadku P = S i szukamy

kandydata, który maksymalizuje oczekiwany wynik interakcji, zatem

P+ = argmaxs∈SE[G(s, t)],

gdzie E jest operatorem wartości oczekiwanej, a t jest losowana ze zbioru T .

Zbiór Pareto Optymalny To pojęcie rozwiązania traktuje każdy test jako oddzielne

kryterium a cały problem oparty na testach jako optymalizację wielokryterialną. W zbio-

rze potencjalnych rozwiązań P = 2S szukamy frontu Pareto

F =
{
s ∈ S | ∀s′∈S

(
∃t∈TG(s, t) ≤ G(s′, t) =⇒ G(s, t) = G(s′, t)

)}
.

W tym przypadku zbiór rozwiązań zawiera jeden element: front Pareto, ergo

P+ = {F} .

2.3 Rozwiązywanie problemów opartych na testach za

pomocą algorytmów koewolucyjnych

2.3.1 Algorytmy koewolucyjne

Kompetytywne algorytmy koewolucyjne, podobnie jak algorytmy ewolucyjne [3], utrzy-

mują zbiór osobników, które są poddawane operatorom ewolucyjnym takim jak muta-

cja, krzyżowania i selekcja. Siłą napędową algorytmów koewolucyjnych jest ciągły wy-

ścig zbrojeń pomiędzy (zwykle) dwoma konkurującymi ze sobą populacjami osobników

[32]. Odpowiada to koewolucji między gatunkami obserwowanej w przyrodzie. Różnica

pomiędzy algorytmami koewolucyjnymi i ewolucyjnymi leży w fazie oceny osobników.

Algorytmy ewolucyjne, rozwiązujące problemy optymalizacyjne, mają dostęp do obiek-

tywnej funkcji celu, więc ocena przystosowania osobników jest obliczana bezpośrednio.

W algorytmach koewolucyjnych, osobniki oceniane są zwykle poprzez agregację wyników

wielokrotnych interakcji z osobnikami z przeciwnej populacji. W związku z tym w algo-

rytmach koewolucyjnych funkcja interakcji zastępuje obiektywną funkcję celu obecną w

algorytmach ewolucyjnych.

Algorytmy koewolucyjne są naturalną metodą rozwiązywania problemów opartych na

9

2 Problemy oparte na testach

testach z kilku powodów. Po pierwsze, nie wymagają dostępu do obiektywnej funkcji

celu, a jedynie do wyników interakcji pomiędzy osobnikami (funkcja interakcji). Po dru-

gie, utrzymują (zwykle) dwie populacje osobników, co odpowiada dwóm rolom obecnym

w problemach opartych na testach: kandydatom i testom. Po trzecie, są one generycz-

nymi metaheurystykami, które działają na wszystkich problemach opartych na testach,

jeśli tylko zdefiniuje się odpowiednie operatory genetyczne.

2.3.2 Patologie i archiwa

Algorytmy koewolucyjne przejawiają złożoną i trudną do zrozumienia dynamikę [23, 35],

w której zidentyfikowano tzw. patologie koewolucyjne (ang. coevolutionary pathologies)

utrudniające lub uniemożliwiające monotoniczny wzrost jakości rozwiązań w czasie dzia-

łania algorytmów [17]. Przykładami takich patologii są zmowa [4], efekt Czerwonej

Królowej [33], wpadanie w cykl (ang. cycling [40]), zapominanie [16] i nadmierna spe-

cjalizacja [40].

Celem archiwów koewolucyjnych jest podtrzymywanie monotonicznego wzrostu jakości

rozwiązań podczas działania algorytmów koewolucyjnych i, tym samym, przeciwdzia-

łanie patologiom. Typowe archiwum jest zbiorem wybranych, (zwykle) różnorodnych

osobników znalezionych przez algorytm do tej pory. Gdy nowe osobniki dodawane są do

archiwum, stare, jeśli już nie są przydatne, mogę zostać usunięte. Archiwa z założenia

pełnią rolę podobną do elityzmu w algorytmach ewolucyjnych. Przykłady archiwów ko-

ewolucyjnych obejmują metody Hall of Fame [37], DECA [12], EPCA [41], Nash Memory

[19], DELPHI [13], IPCA [9] i LAPCA [10].

Jeśli archiwum jest częścią algorytmu koewolucyjnego, możemy mówić o schemacie

generator-archiwum [11] dla rozwiązywania problemów opartych na testach. Rola gene-

ratora może być odgrywana przez każdy algorytm, który jest w stanie generować nowe

testy i nowych kandydatów, niezależnie od tego w jaki sposób będzie to robił (np. przez

mutację osobników z aktualnej populacji).

Schemat generator-archiwum jest przedstawiony jako Algorytm 2.1. Po inicjalizacji

początkowych populacji (linie 2-4) następuje główna pętla (linie 5-13). W pętli, gene-

rowane są kandydaci i testy (np. poprzez mutację i krzyżowanie osobników z aktualnej

populacji S′ i T ′, linie 6-7), a następnie wszystkie osobniki są zgłaszane do archiwum,

które zwykle akceptuje niektóre z nich, a inne odrzuca. Ostatecznie osobniki z obu

populacji poddawane są ocenie i selekcji. Zauważmy, że archiwum, oprócz tego że jest

uaktualniane (w linii 10), jest również używane (w liniach 6 i 7), aby potencjalnie do-

starczyć pożądanego materiału genetycznego dla generatora.

10

2.3 Rozwiązywanie problemów opartych na testach za pomocą algorytmów koewolucyjnych

Algorytm 2.1 Schemat generator-archiwum dla rozwiązywania problemów opartych na
testach.
1: procedure Coevolution
2: S′, T ′ ← Initialize populations
3: Sarch ← ∅
4: Tarch ← ∅
5: while ¬stopped do
6: Snew ← GenerateNewSolutions(S′, Sarch)
7: Tnew ← GenerateNewTests(T ′, Tarch)
8: S′ ← S′ ∪ Snew

9: T ′ ← T ′ ∪ Tnew

10: Archive.Submit(S′, T ′) . Updates Sarch and Tarch

11: Evaluate(S′, T ′)
12: S′, T ′ ← Select(S′, T ′)
13: end while
14: end procedure

11

3 Algorytm Fitnessless Coevolution

W tym rozdziale rozważamy symetryczne problemy oparte na testach, czyli takie, w któ-

rych zbiór testów jest identyczny ze zbiorem kandydatów (S = T). Dla takich problemów

można użyć koewolucji jednopopulacyjnej [28], w której utrzymywana jest tylko jedna

populacja i interakcje odbywają się pomiędzy jej osobnikami. Ze względu na to iż ten me-

chanizm jest głównie stosowany dla gier, w tym rozdziale używać będziemy terminologii

związanej z grami.

Jedna z najważniejszych decyzji przy projektowaniu algorytmu koewolucyjnego jest

wybór metody oceny przystosowania osobników w trakcie działania algorytmu. Za-

projektowano kilka takich metod. Jedną z nich jest system kołowy (ang. round-robin

tournament), w ramach którego każdy osobnik z populacji gra (interakcja) z każdym

innym, a ocena przystosowania osobnika jest sumą otrzymanych wyników interakcji.

Alternatywną metodą jest system pucharowy [1], w którym osobniki otrzymują ocenę

przystosowania równą liczbie gier, które w tym systemie wygrali. Jest również metoda

k-losowych osobników [36], która od każdego osobnika wymaga rozegrania gier z k losowo

dobranymi przeciwnikami.

Wszystkie te metody wpisują się w schemat ocena-selekcja-rekombinacja. Jednak prze-

cież rozgrywanie gier jest selektywne samo w sobie, warto więc postawić sobie pytanie:

dlaczego nie użyć wyniku gry, aby decydować bezpośrednio o selekcji? Ta obserwa-

cja doprowadziła nas do zdefiniowania algorytmu koewolucyjnego o nazwie Fitnessless

Coevolution, w której omijamy fazę oceny dzięki selekcji, która nie wymaga ocen przysto-

sowania osobników. Technicznie rzecz biorąc, w fazie selekcji używamy systemu pucharo-

wego, który polega na wielokrotnym rozgrywaniu potyczek dla (niewielkich) podzbiorów

k wylosowanych osobników. Osobnik, który wygrywa cały turniej jest wynikiem selekcji.

Selekcja jest stosowana n razy, aby wygenerować nowa populację o wielkości n.

W pracy zostało dowiedzione, iż pod warunkiem tranzytywności macierzy wypłat G,

algorytm Fitnessless Coevolution jest dynamicznie równoważny algorytmowi ewolucyj-

nemu używającemu selekcji turniejowej. Oznacza to że wychodząc od tej samej populacji

i zakładając identyczne wyniki losowań, populacje w kolejnych pokoleniach obu metod

składają się z identycznych osobników.

13

3 Algorytm Fitnessless Coevolution

W części eksperymentalnej porównaliśmy zaproponowany algorytm z systemem ko-

łowym, pucharowym oraz metodą k-losowych osobników na zestawie kilku problemów:

gra w kółko i krzyżyk, gra Nim, funkcje Rosenbrock oraz Rastrigin. Wyniki pokazały, iż

algorytm Fitnessless Coevolution jest na wszystkich problemach statystycznie nie gorszy

niż metody konkurencyjne, a na niektórych daje wyniki lepsze.

14

4 Zastosowanie Fitnessless Coevolution

W tym rozdziale stosujemy metodę zaproponowaną w rozdziale poprzednim do rze-

czywistego problemu gry Ant Wars, która była problemem konkursowym na konferen-

cji Genetic and Evolutionary Computation Conference (GECCO, Londyn, 7–12 lipca

2007), największej międzynarodowej konferencji obliczeń ewolucyjnych i genetycznych.

Konkurs polegał na wyewoluowaniu strategii dla wirtualnego agenta (mrówki), który

w obecności przeciwnika porusza się na toroidalnej planszy i zbiera z niej pokarm. Ant

Wars jest grą probabilistyczną, w której agenci mają tylko częściową informację o ak-

tualnym stanie gry. Strategia gracza jest zakodowana w postaci kontrolera będącego

programem w języku ANSI-C.

Uzyskane przez nas rozwiązanie o nazwie BrilliAnt zostało wyewoluowane za pomocą

algorytmu Fitnessless Coevolution oraz programowania genetycznego [25] z systemem

typów [30] i zostało uznane za najlepsze w konkursie.

Wyewoluowanie agenta dla tej gry wymagało zaprojektowania kodowania jego strate-

gii tak, aby uwzględniała ona nie tylko wiedzę agenta o aktualnym stanie gry, ale również

aby agent przy podejmowaniu decyzji mógł korzystać z wiedzy zebranej we wcześniej-

szych etapach rozgrywki.

Aby ocenić jakość wyewoluowanych rozwiązań zaimplementowaliśmy ręcznie kilka nie-

trywialnych strategii graczy w języku ANSI-C i przeprowadziliśmy turniej kołowy pomię-

dzy wszystkimi posiadanymi agentami. Wyniki konfrontacji agentów przedstawia tabela

4.1. Wynika z niej, iż najlepsze rozwiązanie jakim dysponujemy (ExpertAnt)1 zostało

osiągnięte za pomocą Fitnessless Coevolution i jest lepsze niż wszystkie rozwiązania

zaprojektowane ręcznie.

Przeprowadzono także analizę behawioralną uzyskanego rozwiązania. Wynika z niej,

iż BrilliAnt wyewoluował zaskakująco zaawansowane mechanizmy analizy planszy i po-

dejmowania decyzji, podobne do tych, które zaprojektowaliśmy ręcznie.

1ExpertAnt został wyewoluowany dopiero po zakończeniu konkursu.

15

4 Zastosowanie Fitnessless Coevolution

Tablica 4.1: Wyniki turnieju kołowego. Wyewoluowane rozwiązania zaznaczono pogru-
bioną czcionką.

Gracz Liczba wygranych gier

ExpertAnt 760,669
HyperHumant 754,303

BrilliAnt 753,212
EvolAnt3 736,862

SuperHumant 725,269
EvolAnt2 721,856
EvolAnt1 699,320

SmartHumant 448,509

16

5 Układ współrzędnych dla problemów
opartych na testach

Agregacja wyników interakcji jest jednym z powodów, dla których obserwujemy patologie

koewolucyjne. Mechanizmem, który pozwala uniknąć agregacji jest Pareto-koewolucja

(ang. Pareto coevolution) [18, 31], która traktuje każdy test jako osobne kryterium,

a cały problem jako zadanie optymalizacji wielokryterialnej. Pozwala to na zastosowanie

relacji Pareto dominacji — kandydat s1 jest nie gorszy niż kandydat s2 wtedy i tylko

wtedy, gdy na wszystkich testach osiąga wyniki co najmniej takie same jak s2 (Rys.

5.0.1). Niestety w problemach opartych na testach liczba testów jest zwykle bardzo duża

(np. w prostej grze w kółko i krzyżyk liczba strategii dla gracza grającego krzyżykami

jest rzędu 10162). Stąd wymiarowość takiej przestrzeni przeszukiwania jest ogromna.

Liczba kryteriów w Pareto koewolucji może jednak zostać zmniejszona, ponieważ wiele

problemów opartych na testach posiada wewnętrzną strukturę. Ta struktura objawia się

poprzez fakt istnienia grup testów, które oceniają ten sam aspekt (tą samą
”
zdolność“)

kandydata, ale z różną intensywnością. Zamiast więc konstruować dla każdego z tych

testów osobne kryterium, można umieścić wszystkie testy z takiej grupy, uporządkowane

pod względem trudności, na wspólnej osi współrzędnych, którą nazywamy ukrytym kry-

terium problemu (ang. underlying objective, [13]). Ukryte kryteria nie są znane a priori

i muszą być odkryte podczas eksploracji problemu. Formalnie wewnętrzną strukturę

problemu definiuje się w postaci układu współrzędnych [8], składającego się z wielu ta-

kich kryteriów. Istotną cechą układu współrzędnych jest fakt, iż poddając
”
kompresji“

oryginalne kryteria do zbioru ukrytych kryteriów, jednocześnie zachowuje się relacje do-

minacji pomiędzy kandydatami a testami. Celnie wyraził to Bucci i współpracownicy:

the structure space captures essential information about a problem in an efficient manner

[8].

W tym rozdziale zakładamy, że przeciwdziedzina funkcji interakcji jest zbiorem binar-

nym {0 < 1} i formalnie definiujemy układ współrzędnych. Następnie przeprowadzamy

szczegółową analizę właściwości układów współrzędnych dla problemów opartych na te-

stach, proponując między innymi równoważną definicję alternatywną. Ponadto pokazu-

17

5 Układ współrzędnych dla problemów opartych na testach

0 1
0

1

t1

t2

s3

s2 s1

Rysunek 5.0.1: Pareto koewolucja. Każdy test (tutaj: t1 i t2) traktowany jest jak osobne
kryterium. Kandydaci (tutaj: s1, s2 i s3) są zanurzeni w przestrzeni roz-
piętej przez kryteria (testy) i umieszczeni zgodnie z wynikami interakcji
z testami. Przykładowo, kandydat s3 rozwiązuje test t1, ale nie test t2.

jemy zależność pomiędzy wymiarowością problemu, rozumianą jako liczba osi w układzie

współrzędnych, oraz szerokością częściowo uporządkowanego zbioru testów. Wyprowa-

dzamy również również wzory na górne i dolne ograniczenie na wymiarowość problemu.

W części teoretycznej dowodzimy, że problem obliczenia wymiarowości problemu jest

NP-trudny.

Aby wyznaczyć minimalny układ współrzędnych dla problemu opartego na testach

(i tym samym jego wymiarowość) zaproponowaliśmy algorytm dokładny (Exact) oraz

efektywną heurystykę (GreedyCover). Algorytmy te zostały porównanie z algoryt-

mem SimpleGreedy podanym wcześniej przez Bucci’ego i współpracowników [8]. Eks-

perymenty obliczeniowe pokazały, iż algorytm GreedyCover przy podobnej złożoności

obliczeniowej daje znacznie lepsze wyniki niż SimpleGreedy. Wynik eksperymentu dla

losowego problemu przedstawia Rys. 5.0.2.

Ponadto, algorytm GreedyCover został zastosowany do dwóch gier numerycznych

(ang. numbers games, [40]): compare-on-one [13] i compare-on-all [8], których wy-

miarowość jest znana. Pokazaliśmy, że o ile dla compare-on-one algorytm poprawnie

znajduje wymiarowość problemu, to znacznie ją przeszacowuje dla problemu compare-

on-all.

Algorytm GreedyCover zastosowaliśmy również do problemu klasyfikacji gęstości

(ang. density classification task), oraz do gry w kółko i krzyżyk, aby estymować wy-

miarowość tych problemów. Wyniki eksperymentów obliczeniowych wskazują na fakt, iż

wymiarowość gry w kółko i krzyżyk jest mniejsza niż wymiarowość problemu klasyfika-

cji gęstości, mimo iż liczba testów w tym pierwszym znacznie przewyższa liczbę testów

w drugim.

18

0

5

10

15

20

25

co
m
p
u
te
d
d
im

en
si
on

0 50 100 150 200

problem size

SimpleGreedy

GreedyCover

Exact

y(x) = 4.5 ∗ ln(x)− 2.4

Rysunek 5.0.2: Porównanie trzech algorytmów: SimpleGreedy, Exact i GreedyCo-
ver na losowym problemie w funkcji wielkości problemu.

19

6 Algorytm Coordinate System Archive

W tym rozdziale wprowadzamy nowy algorytm archiwum koewolucyjnego o nazwie Co-

ordinate System Archive (COSA), który bazuje na idei ekstrakcji struktury problemu

za pomocą układów współrzędnych, wprowadzonych w rozdziale 5. COSA, przedsta-

wiony jako Alg. 6.1, może współpracować z dowolnym generatorem w ramach schematu

generator-archiwum. Algorytm w każdej iteracji wyznacza układ współrzędnych pro-

blemu złożonego z kandydatów i testów bieżącej populacji za pomocą algorytmu Gre-

edyCover. Archiwum przechowuje po jednym teście z każdej osi współrzędnych układu.

Dodatkowo, COSA utrzymuje zbiór Pareto, zawierający Pareto niezdominowanych kan-

dydatów, reprezentujący najlepsze potencjalne rozwiązanie problemu znalezione do tej

pory. Dzięki temu, jeśli rozwiązywany problem jest niskiej wymiarowości, liczba elemen-

tów przechowywanych przez archiwum jest mała. W rezultacie, COSA jest efektywna

obliczeniowo.

COSA została porównana z innymi archiwami koewolucyjnymi: Iterated ParetoCoevolutionary

Archive (IPCA) [9, 11] i Layered Pareto-Coevolutionary Archive (LAPCA) [10] na dwóch

sztucznych problemach: compare-on-one [13] i compare-on-all [8]. Do porównania

wydajności algorytmów użyte zostały dwie różne miary postępu. Wyniki eksperymen-

tów obliczeniowych pokazały, iż COSA jest znacznie lepsza niż pozostałe algorytmy na

problemie compare-on-one (w szczególności, na jego wielowymiarowej wersji). Z kolei

na problemie compare-on-all algorytm COSA jest gorszy niż IPCA i LAPCA. Wy-

nika to z charakterystyki algorytmu GreedyCover, który, jak pokazano w poprzednim

rozdziale, idealnie znajduje wymiarowość compare-on-one, ale znacznie przeszacowuje

wymiarowość dla problemu compare-on-all

21

6 Algorytm Coordinate System Archive

Algorytm 6.1 Coordinate System Archive (COSA)
1: procedure Submit(Snew, Tnew)
2: Ttmp ← Tarch ∪ Tnew

3: Stmp ← Sarch ∪ Snew

4: Ttmp ← GetUnique(Ttmp, Stmp)
5: Stmp ← GetUnique(Stmp, Ttmp)
6: SPareto ← {s ∈ Stmp|∀s′∈Stmps

′ ≤Ttmp s}
7: Tbase ← FindBaseAxisSet(Ttmp, SPareto)
8: Sreq ← PairSetCover(SPareto, Stmp, Tbase)
9: Treq ← PairSetCover(Tbase, Ttmp, SPareto)
10: Sarch ← Sreq

11: Tarch ← Treq

12: end procedure
13:

14: procedure GetUnique(A,B)
15: U ← ∅
16: for a ∈ A do
17: I ← {e ∈ A|∀b∈BG(a, b) = G(e, b)}
18: U ← U ∪ oldest individual from I
19: A← A \ I
20: end for
21: return U
22: end procedure
23:

24: procedure PairSetCover(Amust, A,B)
25: A← A \Amust

26: N ← {(b1, b2)|b1, b2 ∈ B . Pairs to be ordered
27: ∧∃a∈Ab1 <a b2) ∧ @a∈Amustb1 <a b2)}
28: V ← Amust

29: while N 6= ∅ do . Are all pairs ordered?
30: u← argmaxa∈A\V |{(b1, b2) ∈ N|b1 <a b2}|
31: N ← N \ {(b1, b2) ∈ N|b1 <u b2}
32: V ← V ∪ {u}
33: end while
34: return V
35: end procedure

22

Algorytm 6.2 Procedura znajdująca testy, które powinny być trzymane w archiwum.
1: procedure FindBaseAxisSet(Ttmp, SPareto)
2: C ← ChainPartition(Ttmp,≤)
3: ndims = |C|
4: Slist ← SPareto sorted descendingly by min(GetPos(s, C))
5: for s ∈ Slist do
6: T ′ ← {t ∈ Ttmp|G(s, t)}
7: (A, found)← the greatest antichain in poset (T ′,≤)
8: if found then
9: return A
10: end if
11: end for
12: return Ttmp

13: end procedure
14:

15: procedure ChainPartition(X,P)
16: return minimal chain partition of poset (X,P)
17: end procedure
18:

19: procedure GetPos(s, C)
20: ndims ← |C|
21: P ← array[1 . . . ndims]
22: for i = 1 . . . ndims do
23: P [i]← |{c ∈ C[i]|G(s, c)}|
24: end for
25: return P
26: end procedure

23

7 Podsumowanie

Klasa problemów opartych na testach obejmuje zadania pochodzące z wielu dyscyplin.

Koewolucja kompetytywna jest ogólną metodą rozwiązywania takich problemów. Agre-

gacja wyników interakcji podczas oceny przystosowania osobników jest wadą algorytmów

koewolucyjnych, która objawia się patologiami koewolucyjnymi. Patologie są interesują-

cymi fenomenami dla biologów i lub badaczy zajmujących się dziedziną sztucznego życia

[26], której celem jest imitowanie życia biologicznego przy pomocy komputerów. Z kolei

inteligencja obliczeniowa kładzie nacisk na użyteczność metod inspirowanych biologicz-

nie. Skoro więc koewolucja, w formie jaką znamy z przyrody, przejawia wiele zachowań

utrudniających otrzymywanie dobrych rozwiązań, uczynienie algorytmów koewolucyj-

nych efektywnymi wymaga ich ulepszenia poprzez wprowadzenie do nich dodatkowych

mechanizmów, nieznanych w naturze. Zaproponowane w tej pracy algorytmy Fitnessless

Coevolution i COSA są krokami w tym właśnie kierunku.

Podsumowując, najważniejsze wyniki pracy to:

• Wprowadzenie algorytmu Fitnessless Coevolution dla problemów opartych na te-

stach.

• Dowód twierdzenia mówiącego że, jeśli macierz wypłat jest tranzytywna, algorytm

Fitnessless Coevolution jest dynamicznie równoważny algorytmowi genetycznemu

używającemu selekcji turniejowej.

• Studium przypadku, w którym algorytm Fitnessless Coevolution zastosowano do

gry Ant Wars, kodując rozwiązania (strategie graczy) za pomocą programowania

genetycznego.

• Analiza układów współrzędnych dla problemów opartych na testach, obejmująca:

– Alternatywną definicję układu współrzędnych, równoważną definicji oryginal-

nej. [8]

– Dowód kilku interesujących właściwości układów współrzędnych.

– Dowód twierdzenia, iż problem szukania minimalnego układu współrzędnego

(tym samym wymiarowości problemu) jest NP-trudny.

25

7 Podsumowanie

• Zaprojektowanie i analiza trzech algorytmów konstruujących układ współrzędny

dla problemów opartych na testach, w tym zaprojektowanie algorytmu Greedy-

Cover, który jest lepszy niż najlepszy dotąd znany algorytmy SimpleGreedy.

• Pokazanie, iż wymiarowość problemu jest zazwyczaj znacznie mniejsza niż liczba

testów go charakteryzujących.

• Zaprojektowanie algorytmu archiwum koewolucyjnego COSA, który stanowi do-

wód na możliwość praktycznego wykorzystania koncepcji układów współrzędnych.

26

Bibliografia

[1] Peter J. Angeline and Jordan B. Pollack. Competitive environments evolve better

solutions for complex tasks. In Stephanie Forrest, editor, Proceedings of the 5th In-

ternational Conference on Genetic Algorithms, ICGA-93, pages 264–270, University

of Illinois at Urbana-Champaign, 17-21 July 1993. Morgan Kaufmann.

[2] Robert Axelrod. The evolution of strategies in the iterated prisoner’s dilemma. In

L. Davis, editor, Genetic Algorithms in Simulated Annealing, pages 32–41. Pitman,

London, 1987.

[3] Thomas B

↪ack, David B. Fogel, and Zbigniew Michalewicz, editors. Handbook of Evolutionary

Computation. Oxford University Press, 1997.

[4] Alan D. Blair and Jordan B. Pollack. What makes a good co-evolutionary learning

environment. Australian Journal of Intelligent Information Processing Systems,

4(3/4):166–175, 1997.

[5] Bruno Bouzy and Tristan Cazenave. Computer go: An AI oriented survey. Artificial

Intelligence, 132(1):39–103, 2001.

[6] Bernd Brügmann. Monte Carlo Go. Unpublished technical report, 1993.

[7] Anthony Bucci. Emergent Geometric Organization and Informative Dimensions

in Coevolutionary Algorithms. PhD thesis, Michtom School of Computer Science,

Brandeis University, 2007.

[8] Anthony Bucci, Jordan B. Pollack, and Edwin de Jong. Automated extraction

of problem structure. In Kalyanmoy Deb et al., editor, Genetic and Evolutionary

Computation – GECCO-2004, Part I, volume 3102 of Lecture Notes in Computer

Science, pages 501–512, Seattle, WA, USA, 26-30 June 2004. Springer-Verlag.

[9] Edwin D. de Jong. The Incremental Pareto-Coevolution Archive. In Kalyanmoy Deb

et al., editor, Genetic and Evolutionary Computation–GECCO 2004. Proceedings

27

Bibliografia

of the Genetic and Evolutionary Computation Conference. Part I, pages 525–536,

Seattle, Washington, USA, June 2004. Springer-Verlag, Lecture Notes in Computer

Science Vol. 3102.

[10] Edwin D. de Jong. Towards a Bounded Pareto-Coevolution Archive. In Proceedings

of the 2004 IEEE Congress on Evolutionary Computation, volume 2, pages 2341–

2348, Portland, Oregon, USA, June 2004. IEEE Service Center.

[11] Edwin D. de Jong. A Monotonic Archive for Pareto-Coevolution. Evolutionary

Computation, 15(1):61–93, Spring 2007.

[12] Edwin D. de Jong and Anthony Bucci. DECA: dimension extracting coevolutionary

algorithm. In Mike Cattolico et al., editor, GECCO 2006: Proceedings of the 8th

annual conference on Genetic and evolutionary computation, pages 313–320, Seattle,

Washington, USA, 2006. ACM Press.

[13] Edwin D. de Jong and Jordan B. Pollack. Ideal Evaluation from Coevolution.

Evolutionary Computation, 12(2):159–192, Summer 2004.

[14] Andries P. Engelbrecht. Computational intelligence: an introduction. Wiley, 2007.

[15] Sevan G. Ficici. Solution concepts in coevolutionary algorithms. PhD thesis, Wal-

tham, MA, USA, 2004. Adviser-Pollack, Jordan B.

[16] Sevan G. Ficici. Multiobjective Optimization and Coevolution. In Joshua Knowles,

David Corne, and Kalyanmoy Deb, editors, Multi-Objective Problem Solving from

Nature: From Concepts to Applications, pages 31–52. Springer, Berlin, 2008. ISBN

978-3-540-72963-1.

[17] Sevan G. Ficici and Jordan B. Pollack. Challenges in coevolutionary learning: Arms-

race dynamics, open-endedness, and mediocre stable states. In Proceedings of the

Sixth International Conference on Artificial Life, pages 238–247. MIT Press, 1998.

[18] Sevan G. Ficici and Jordan B. Pollack. Pareto optimality in coevolutionary learning.

In Jozef Kelemen and Petr Sośik, editors, Advances in Artificial Life, 6th European

Conference, ECAL 2001, volume 2159 of Lecture Notes in Computer Science, pages

316–325, Prague, Czech Republic, 2001. Springer.

[19] Sevan G. Ficici and Jordan B. Pollack. A game-theoretic memory mechanism for

coevolution. In E. Cantú-Paz et al., editor, Genetic and Evolutionary Computation

- GECCO 2003, volume 2723 of Lecture Notes in Computer Science, pages 286–297,

Chicago, IL, 2003. Springer.

28

Bibliografia

[20] W. Daniel Hillis. Co-evolving parasites improve simulated evolution as an optimi-

zation procedure. In Christopher G. Langton, Charles Taylor, J. Doyne Farmer,

and Steen Rasmussen, editors, Artificial life II, volume 10 of Sante Fe Institute

Studies in the Sciences of Complexity, pages 313–324, Redwood City, Calif., 1992.

Addison-Wesley.

[21] Wojciech Jaśkowski and Krzysztof Krawiec. Coordinate system archive for coevo-

lution. In Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 1–10,

Barcelona, 2010. IEEE.

[22] Hugues Juillé and Jordan B. Pollack. Co-evolving intertwined spirals. In Proceedings

of the Fifth Annual Conference on Evolutionary Programming, pages 461–468, 1996.

[23] Hugues Juillé and Jordan B. Pollack. Dynamics of co-evolutionary learning. In

Pattie Maes, Maja J. Mataric, Jean-Arcady Meyer, Jordan Pollack, and Stewart W.

Wilson, editors, Proceedings of the Fourth International Conference on Simulation

of Adaptive Behavior: From animals to animats 4, pages 526–534, Cape Code, USA,

9-13 1996. MIT Press.

[24] Hugues Juillé and Jordan B. Pollack. Coevolutionary learning: a case study. In

In Proceedings of the 15th International Conference on Machine Learning, pages

251–259. Morgan Kaufmann, 1998.

[25] John R. Koza. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[26] Christopher G. Langton. Artificial life: An overview. The MIT Press, 1997.

[27] Simon M. Lucas. Computational intelligence and games: Challenges and opportu-

nities. International Journal of Automation and Computing, 5(1):45–57, 2008.

[28] Sean Luke and R. Paul Wiegand. When coevolutionary algorithms exhibit evo-

lutionary dynamics. In 2002 Genetic and Evolutionary Computation Conference

Workshop Program, pages 236–241, 2002.

[29] Thomas Miconi. Why coevolution doesn’t ”work”: Superiority and progress in

coevolution. In EuroGP, 2009.

[30] David J. Montana. Strongly typed genetic programming. Evolutionary Computa-

tion, 3(2):199–230, 1995.

29

Bibliografia

[31] Jason Noble and Richard A. Watson. Pareto coevolution: Using performance aga-

inst coevolved opponents in a game as dimensions for pareto selection. In Lee Spec-

tor et al., editor, Proceedings of the Genetic and Evolutionary Computation Con-

ference (GECCO-2001), pages 493–500, San Francisco, California, USA, 7-11 July

2001. Morgan Kaufmann.

[32] Stefano Nolfi and Dario Floreano. Coevolving Predator and Prey Robots: Do ↪Arms

Races ↪Arise in Artificial Evolution? Artificial Life, 4(4):311–335, 1998.

[33] Jan Paredis. Coevolving cellular automata: Be aware of the red queen. In Proce-

edings of the Seventh International Conference on Genetic Algorithms, pages 393–

400, 1997.

[34] Elena Popovici, Anthony Bucci, R. Paul Wiegand, and Edwin D. de Jong. Handbook

of Natural Computing, chapter Coevolutionary Principles. Springer-Verlag, 2011.

[35] Elena Popovici and Kenneth De Jong. Understanding competitive co-evolutionary

dynamics via fitness landscapes. In Artificial Multiagent Symposium. Part of the

2004 AAAI Fall Symposium on Artificial Intelligence, 2004.

[36] Craig Reynolds. Competition, coevolution and the game of tag. In R. A. Brooks

and P. Maes, editors, Artificial Life IV, Proceedings of the fourth International

Workshop on the Synthesis and Simulation of Living Systems, pages 59–69, MIT,

Cambridge, MA, USA, 1994. MIT Press.

[37] Chrisotpher D. Rosin and Richard K. Belew. New methods for competitive coevo-

lution. Evolutionary Computation, 5(1):1–29, 1997.

[38] S.J. Russell, P. Norvig, J.F. Canny, J.M. Malik, and D.D. Edwards. Artificial

intelligence: a modern approach, volume 74. Prentice hall Englewood Cliffs, NJ,

1995.

[39] Marcin Szubert, Wojciech Jaśkowski, and Krzysztof Krawiec. Coevolutionary tem-

poral difference learning for othello. In IEEE Symposium on Computational Intel-

ligence and Games, pages 104–111, Milano, Italy, 2009.

[40] Richard A. Watson and Jordan B. Pollack. Coevolutionary dynamics in a minimal

substrate. In Lee Spector et al., editor, Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2001), pages 702–709, San Francisco, California,

USA, 7-11 July 2001. Morgan Kaufmann.

30

Bibliografia

[41] Liping Yang, Houkuan Huang, and Xiaohong Yang. An efficient pareto-coevolution

archive. In Natural Computation, 2007. ICNC 2007. Third International Conference

on, volume 4, pages 484–488, Aug. 2007.

31

	Introduction
	Problem Setting and Motivation
	Aims and Scope

	Background
	Mathematical Preliminaries
	Test-Based Problems
	Definition
	Extensions, Terminology and Assumptions
	Non-Deterministic Test-Based Problems
	Solution Concepts
	Examples of Test-Based Problems

	Solving Test-Based Problems using Coevolutionary Algorithms
	Coevolutionary Algorithms
	Applications of Coevolutionary Algorithms
	Coevolutionary Pathologies
	Coevolutionary Archives

	Discussion

	Fitnessless Coevolution
	Introduction
	Fitnessless Coevolution
	Equivalence to Evolutionary Algorithms
	Experiments
	Tic-Tac-Toe
	Nim Game
	Rosenbrock
	Rastrigin

	Results
	Discussion and Conclusions

	Application of Fitnessless Coevolution
	Introduction
	Genetic Programming and Game Strategies
	Strategy Encoding
	The Experiment
	Analysis of BrilliAnt's Strategy
	Conclusions

	Coordinate Systems for Test-Based Problems
	Introduction
	Preliminaries
	Coordinate System
	Example
	Properties of Coordinate Systems
	Finite and Infinite Test-Based Problems
	Hardness of the Problem
	Algorithms
	Simple Greedy Heuristic
	The Exact Algorithm
	Greedy Cover Heuristic

	Experiments and Results
	Compare-on-One
	Compare-on-All
	Dimension of Random Test-Based Problem
	Estimating Problem Dimension
	Problems
	Results
	Discussion

	Relation to Complete Evaluation Set
	Discussion and Conclusions

	Coordinate System Archive
	Introduction
	Coordinate System Archive (COSA)
	Stabilizing the archives by PairSetCover
	Finding the base axis set by FindBaseAxisSet

	Experiments
	Iterated Pareto-Coevolutionary Archive (IPCA)
	Layered Pareto-Coevolutionary Archive (LAPCA)
	Objective Progress Measures
	Setup

	Results
	Compare-on-One
	Compare-on-All

	Discussion and Summary

	Conclusions
	Summary
	Contribution
	Future Work

	Appendix
	Ants Obtained with Fitnessless Coevolution
	BrilliAnt
	ExpertAnt
	EvolAnt1
	EvolAnt2
	EvolAnt3

	Designed Ants
	Utils
	HyperHumant
	SuperHumant
	SmartHumant

	Bibliography
	Wstep
	Motywacja
	Cel pracy

	Problemy oparte na testach
	Definicja
	Pojecie rozwiazania
	Rozwiazywanie problemów opartych na testach za pomoca algorytmów koewolucyjnych
	Algorytmy koewolucyjne
	Patologie i archiwa

	Algorytm Fitnessless Coevolution
	Zastosowanie Fitnessless Coevolution
	Układ współrzednych dla problemów opartych na testach
	Algorytm Coordinate System Archive
	Podsumowanie

