

ABSTENTION REDUCES ERRORS DECISION ABSTAINING
N-VERSION GENETIC PROGRAMMING

 Abstract

Optimal fault masking N-Version Genetic
Programming (NVGP) is a technique for building
fault tolerant software via ensemble of
automatically generated modules in such a way as
to maximize their collective fault masking ability.
Decision Abstaining N-Version Genetic
Programming is NVGP that abstains from
decision-making, when there is no decisive vote
among the modules to make a decision. A special
course of action may be taken for an abstained
instance. We found that decision abstention
contributed to error reduction in our experimental
Escherichia coli DNA promoter sequence
classification problem. Though decision
abstention may reduce errors, high abstention rate
makes the system of little use. This paper
investigates the trade-off between abstention rate
and error reduction.

1 INTRODUCTION

This paper investigates the effect of an abstention threshold
on the trade-off between abstention rate and error
reduction, using an N-Version Genetic Programming
ensemble classifier [1].

An ensemble binary classifier makes a yes/no decision
based on votes from the participating ensemble member
classifiers. A decision abstention occurs, when there is no
decisive vote among the ensemble modules to make
decision. An unanimous vote is the most decisive (highest
ensemble confidence), while a tie vote is the least decisive
(lowest ensemble confidence). The abstention threshold is
set somewhere between these two extremes. If the vote
count of either “yes” or “no” does not reach to this
threshold, the ensemble abstains from decision-making.
The ensemble, thus, produces three outputs: yes, no, and
don’t know. A special course of action may be taken for an
abstained instance (such as classification by human
experts) [2]. Abstention reduces the number of errors,

potentially avoiding overfitting [2]. However, if the
ensemble classifier abstains too often, it is of little use. Our
experimental test problem is Escherichia coli DNA
promoter sequence classification. This problem has been
explored with artificial neural networks [3][4][5] and
genetic programming [6].

1.1 BRIEF INTRODUCTION OF N-VERSION
GENETIC PROGRAMMING (NVGP)

N-Version Genetic Programming (NVGP), which provides
an optimal fault masking ensemble of automatically
generated modules, is a new technique for building fault
tolerant software that significantly reduces errors when
applied to an E. coli promoter sequence classification
problem [1]. Genetic programming is used to provide a
large pool of candidate modules with sufficient diversity to
allow us to select an ensemble whose faults are nearly
uncorrelated. We find ensembles with a high degree of
fault masking by randomly sampling from this large pool
of modules. The ensembles that produce the expected error
rate are retained. The expected failure rate f for n
independent components, each of which fails with
probability p, where the composite system requires m
component faults in order to fail (initially derived for n-
modular redundant hardware systems [7]) is

For an N-version classifier system, such as ours, the i-th
individual fault rate pi is the ratio of misclassified examples
to the total number of training instances. In this case, f is
the failure rate of an ideal ensemble. If the fault rate is the
same for every pi, f is an area under a binomial probability
density function as shown in the above formula. The failure
rate of an ensemble is close to the theoretically optimal rate
f precisely when component failures are not correlated.
This is our criterion for selecting the qualified ensembles.
Explicit quantification of the module diversity with the
theoretical failure probability is a distinct feature of NVGP,
guaranteeing phenotypic diversity and the optimal
ensemble.

 Kosuke Imamura Robert B. Heckendorn Terence Soule James A. Foster

Initiative for Bioinformatics and Evolutionary STudies (IBEST),
Dept. of Computer Science,

University of Idaho, Moscow, ID 83844-1010
{kosuke,heckendo,tsoule,foster}@cs.uidaho.edu

. ()kknn

mk
pp

k

n
f −

=
−





= ∑)1(

N-version programming (NVP) was an early approach to
building fault tolerant software that adapted proven
hardware approaches to fault tolerance [8]. A fundamental
assumption of the NVP approach was that independent
programming efforts would reduce the probability that
similar errors will occur in two or more versions [9]. But
this assumption was questioned, because experiments
showed that modules developed for NVP tended to fail
under similar circumstances. For example, Knight and
Leveson rejected the hypothesis of the assumed
independence of faults by independently developed
programs [10]. However, this conclusion does not
invalidate NVP in general. Hatton showed that his 3-
version NVP system increased the reliability by a factor of
45. Though this is far less than the theoretical improvement
of a factor of 833.6, it is still a significant improvement in
system reliability [11].

The next section reviews previous work on abstention and
ensemble methods.

2 PREVIOUS WORK
Different ensemble construction methods have been studied
in an effort to enhance accuracy. This section reviews
abstention, averaging, median selection, boosting, and
bagging. All methods exploit heterogeneity of ensemble
components in one way or another.

2.1 ABSTENTION

Freund, et al., showed the error bound of averaging
classifier with abstention [2]. The abstention threshold is
based on the log ratio of the weighted sum of positive
predictions and negative predictions. If the absolute value
of this log ratio is smaller than the threshold, the ensemble
classifier abstains from predicting. They identify the region
of abstention as the locations of potential overfitting. Their
theoretical work shows that the error of such predictor
cannot be worse than twice of the best individual.

2.2 AVERAGE AND MEDIAN

A simple averaging method gathers outputs from all
component modules and calculates their arithmetic
average. Imamura and Foster showed simple averaging
reduces error margins in path prediction [12] and function
approximation with evolved digital circuits [13]. Another
approach is weighted averaging, in which component
modules are assigned optimal weights for computing a
weighted average of the module outputs. Linearly optimal
combination of artificial neural networks takes this
approach [14][15]. Zang and Joung proposed Mixing
Genetic Programs (MGP). MGP chooses a pool of
individuals from a population and the master unit assigns
the voting weights to these individuals using an additive
weighting scheme [16]. The median value of the outputs is
then the ensemble output. Soule approximated the sine
function by taking the median of individuals, which were
evolved, with subset of the entire training set for
specialization [17]. Brameier and Banzhaf evolved teams

of predictors. The individuals are coevolved as a team as
opposed to post-evolutionary combination [18].

2.3 BOOSTING AND BAGGING

Boosting and bagging are methods that perturb the training
data by resampling to induce classifier diversity. The
AdaBoost algorithm trains a weak learner (slightly better
than random guessing) by iterating training while
increasing the weights of misclassified samples and
decreasing the weights of correctly classified ones [19].
The effect is that the weak learner focuses more and more
on the misclassified samples. The trained classifiers in each
successive round are weighted according to their
performance. The final decision is a weighted majority
vote. Bagging (Bootstrap aggregating) replicates training
subsets by sampling with replacement [20]. It then trains
classifiers separately on these subsets and builds an
ensemble by aggregating these individual classifiers. For
evolutionary computation, Iba applied Boosting and
Bagging to genetic programming and his experiment
validated their effectiveness and their potential for
controlling bloat [21]. Land used a boosting technique to
improve performance of Evolutionary Programming
derived neural network architectures in a breast cancer
diagnostic application [22]. However, both techniques have
limitations. Boosting is susceptible to noise, Bagging is not
any better than a simple ensemble in some cases, neither
Boosting nor Bagging is appropriate for data poor cases,
and bootstrap methods can have a large bias [19, 23, 24,
25, 26, 27].

2.4 CLASSIFICATION OF ENSEMBLES

Table 1 categorizes current ensemble methods in genetic
programming in terms of their sampling technique in
combination with the evolutionary approach. In cooperative
methods [17][28], speciation pressure (such as that caused
by crowding penalties [28]) plays a vital role in evolving
heterogeneous individuals, while in isolation methods there
is no interaction between individuals during evolution.
Resampling methods create different classifiers by using
different training sets (bagging) or varying weights of
training instances (boosting). Non-resampling methods
create different classifiers from the same training set with
or without explicit speciation pressure. NVGP and
Decision abstaining NVGP are non-resampling techniques
based on isolated evolution of diverse individuals.

 Table 1. Classification of ensemble creation methods.

Evolutionary Training set selection

Approach Resampling Non-resampling

Non-Isolation Boosting Crowding

Isolation Bagging NVGP

3 EXPERIMENT
This section briefly summarizes the NVGP computational
method (for detail description, see [1]) and presents the test
results. We first run NVGP then incorporate abstention
threshold to it. Our experimental problem is to classify
whether a given DNA sequence is an E. coli promoter,
using a decision abstaining NVGP. The data set is taken
from UCI ML repository [29]. It contains 53 E. coli DNA
promoter sequences and 53 non-promoter sequences of
length 68.

3.1 COMPUTING ENVIRONMENT

The cluster supercomputing facilities from the Initiative for
Bioinformatics and Evolutionary STudies (IBEST) is used
to implement distributed computation. This device uses
commodity computing parts to build substantial computing
power for considerably less money than traditional
supercomputers1. (http: //www.cs.uidaho.edu/
thecollective). This machine enabled experiments that
would normally run for a month to complete in half a day.

3.2 INPUT AND OUTPUT

We used 2-gram encoding for input [30]. The 2-gram
encoding counts the occurrences of two consecutive input
characters (nucleotides) in a sliding window. Since there
are four characters in DNA sequences (“a”, “c”, “g”, “t”),
we have 16 unique two-character strings to count. For
example, a sequence “caaag” will be encoded as {ca=1,
aa=2, ag=1}. The classifier clusters the positive instances
and places the negative instances outside the cluster. The
cluster is defined by the mean output value of postitve
instances ± 3*(standard deviation). If an output value from
a given sequence falls in the cluster, it is classified as a
promoter. Otherwise, it is classified as a non-promoter.

3.3 CLASSIFIER

3.3.1 Target Machine Architecture

Our classifier is a linear genome machine [31], which
mimics MIPS architecture [32]. There are two instruction
formats in this architecture: (Opcode r1,r2,r3) and
(Opcode r1,r2,data). The instructions are ADDI,
ADDR, MUL, DIV, MULI, DIVI, SIN, COS, LOG, EXP,
NOP, MOVE, LOAD, CJMP, and CJMPI. The length of an
individual program is restricted to a maximum of 80
instructions. Each evolving individual (a potential
component for our NVGP ensemble system) used sixteen
read-only registers for input data, which contained counts
for individual nucleotide 2-grams as described above, and
four read/write working registers.

1 The total cost of the machine is about US$44,000. Micron Technology
generously donated all of the memory for the machine.

3.3.2 Genetic Programming

We used 5 crossover methods. Methods (1) and (2) are
traditional one and two point crossover, respectively.
Method (3) is one point crossover with inversion applied to
each crossover segment. Methods (4) and (5) use four
random crossover points, with (5) being a single parent
recombination operator. Fitness is calculated by the
following correlation formula

where P and N are numbers of correctly identified positives
and negatives, and Pf and Nf are the numbers of falsely
identified positives and negatives [33]. Steady state is used
for population replacement. Evolution continues until an
individual of fitness 0.8 or above appears.

3.3.3 Evolution and Ensemble Testing

A common holdout test divides the dataset into 2 exclusive
sets, 2/3 for the training set and 1/3 for the test set [27].
Our training sets used a random sample of 35 (53*2/3)
positive and 35 negative examples, and used the remaining
examples for the test sets. We performed experiments for
10 different holdout sets. The evolution and ensemble
procedures are described below:

1. Create a training set and test set.

2. Evolve 40 isolated islands with 100 individuals each in
parallel. Add an individual whose fitness is 0.8 from
each island to a set B of single best versions.

3. Select N individuals by uniform-random sampling from
B for N=15, 31 to form an NVGP ensemble. See 3.4.1
for the sampling frequency.

4. Evaluate the performance of each ensemble. If the
ensemble is qualified, then retain it for a test set trial.
Goto 3. The ensemble is qualified if the difference
between the number of errors expected when versions
have independent faults and the number of errors
observed is small (less than one in our case).

3.4 EXPERIMENTAL RESULTS

The evolution and ensemble testing procedure described in
section 3.3 is repeated for 10 different holdout tests in an
attempt to reduce stochastic errors caused by sampling in
performance estimation. We first show the performance of
NVGP without abstention, then with abstention. We
assume the number of errors have a normal distribution,
since each test instance can be viewed as a Bernoulli trial
[27].

3.4.1 Performance of NVGP

There are 40×109 and 27×107 possible ensembles to be
formed respectively for 15 and 31 voter systems out of 40
candidate modules. Uniform random search sampled
approximately 40×103 and 27×103 ensembles for 15 and 31
voter ensembles respectively, from which we selected

))()()((ffff

ff

PPNPPNNN

NPPN
C

++++

−=

qualified ensembles for statistics. Table 2 shows the
numbers of qualified ensembles found for each test. For
example, we found 23199 qualified 15-voter ensembles out
of 40×103 samples for the test 1. Table 3 is the result of t-
test on the null hypothesis that average performance of the
ensembles and the single best versions is not significantly
different. Table 4 is the result of F-test on the null
hypothesis that standard error of the ensembles and the
single best versions is not significantly different. Table 5
shows error reduction percentage observed in ensembles
relative to the error rates of the single best versions in the
set B (see 3.3.3). It represents the average error reduction

achieved by NVGP over single modules produced by
genetic programming.

Figure 1 presents the performance distribution intervals of
the single best versions and the corresponding N-voter
NVGP ensemble at a 90% limit. For each holdout test, we
present statistics for the single best versions, and for each
of the four NVGP ensembles (N=15, 31). For example, the
leftmost bar in holdout test 1 is the performance
distribution of the 40 single best versions, showing that the
best is estimated to be 20% error and the worst to be 48%,
with a mean of 34%. The middle bar is 15-voter and the
rightmost bar is 31-voter ensembles.

Table 2. The number of sampled qualified-ensembles

 test1 test2 test3 test4 test5 test6 test7 test8 test9 test10

15-voter 23199 29370 11596 8601 15973 4267 30455 32141 13171 17279

31-voter 19650 27205 9910 3197 13778 814 27340 27340 7672 23113

Table 3. The result of t-test, degree of freedom .≅ 40 for all the test cases.

 test1 test2 test3 test4 test5 test6 test7 test7 test9 test10

15-voter 11.07 9.10 3.27 8.67 9.67 10.21 8.80 6.06 6.64 5.46

31-voter 14.08 10.47 2.14 8.17 10.54 13.53 9.30 5.78 6.62 6.94

Table 4. The result of F test on error rate standard deviations

 test1 test2 test3 test4 test5 test6 test7 test7 test9 test10

15voter 3.15 4.10 4.98 3.53 4.01 2.22 2.71 4.37 7.22 3.76

31-voter 7.17 6.47 12.03 9.36 10.89 4.71 8.13 24.11 47.44 8.07

Table 5. Percentage error reduction of NVGP relative to set of best individual in isolation

 test1 test2 test3 test4 test5 test6 test7 test7 test9 test10

15-voter 44 33 14 31 40 31 37 22 25 24

31-voter 56 38 9 29 43 42 39 21 25 31

Figure 1. Error rate distribution intervals of the single best versions and the corresponding N-
voter NVGP ensemble at a 90% limit. Leftmost, middle, and rightmost bars are distribution of
single-version, 15-voter, and 31 voter system respectively.

 test1 test2 test3 test4 test5 test6 test7 test8 test9 test10

0

0.1

0.2

0.3

0.4

0.5

0.6

3.4.2 Behavior of Decision Abstaining NVGP

The abstention thresholds are incorporated into the NVGP
outputs of 3.4.1. The decision abstaining ensemble
requires abstention threshold, h, and needs ((N+1)/2 + h)
votes, either positive or negative, to make a decision,
where N (odd) is the number of vote participating
individuals. The voting scheme is a simple majority rule,
if h=0. Figure 2 and 3 are the plots of the abstention rates
and the error rates of 15 and 31 voter ensemble for the 10
holdout tests with respect to the abstention threshold, h.
Figure 4 represents the average abstention and error rates
from figure 2 and 3 for collective analysis. The error rate
is a decreasing function and the abstention rate is an
increasing function.

4 DISCUSSION

4.1 NVGP

Though a holdout test is commonly used to measure
performance of evolutionary algorithms, it is not reliable.
Kohavi argues that holdout testing does not provide a
good estimate of error rate [27]. Nonetheless, we repeated
the holdout test 10 times with different training/test sets
for somewhat fair statistics. In figure 1, the hold-out test 3
does not exhibit apparent superiority of NVGP as in the
test 1, though we reject the null hypothesis that average
performance of single best version and NVGP are not
significantly different at α=0.975. For all the other nine
test cases, we reject the hypothesis virtually at 100% and
conclude that NVGP is superior. NVGP error rates in all
ten tests are far below the theoretical bound shown by

Freund [2] even without abstention. Table 4 indicates that
performance fluctuation of NVGP is statistically
significantly smaller than single versions. Apparently, as
the ensemble size approaches to the pool size, the
performance fluctuation becomes smaller. If we combine
all the individuals in the pool, there is no performance
fluctuation. Therefore, a larger fluctuation may be
expected for NVGP if the component pool size is huge.
But, also true is that duplicate phenotypes start populating
the pool as the pool size becomes larger. In fact, our
experiment witnessed that an exhaustive search for an
optimal ensemble of 39 voters from the pool failed in
three out of the ten holdout tests. This possibly indicates
that the entropy of the pool may have reached a plateau
with the given training data and training method. If this is
the case, the small performance fluctuation for optimally
sized NVGP will still hold regardless of the pool size
increase. Further study is needed for an optimal size of
NVGP.

Notice that a single best individual has a chance to
become practically a random classifier (error rate above
0.4) roughly 10%-20% of the time on unseen data.
Unfortunately, we have no way of knowing which
individual would become a random classifier beforehand,
because they all have the same fitness (0.8) on the
training set. This is the risk we must bear with a single
best classifier. Fluctuation in performance is the very
reason why we compared the distributions, and why
NVGP has superior performance.

4.2 ABSTENTION

Figure 4 shows (see dashed lines) that the decision
abstaining NVGP achieved a near zero error rate, at high

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7
abstention threshold

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15
abstention threshold

er
ro

r/
ab

st
en

tio
n

Figure 2. abstention rate and error
rate for 15 voter system

Figure 3. abstention rate and error
rate for 31 voter system

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15

abstention
rate

error rate

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7

Figure 4. average abstention and error rates from figure 2 and 3.

error rate

abstention

cost of abstention rate, approximately 80%, for both 15-
voter and 31-voter ensembles. Abstention rates 29% of
15-voter and 28% of 31-voter ensembles give 50% error
reduction over NVGP alone (no abstention). Whether
these abstention rates are acceptable for error reduction
depends on how critical it is to have wrong predictions.

The abstention rates and the error rates are monotonic
with respect to the abstention thresholds, and the trade-off
between abstention and error reduction can be estimated
almost linearly. Consequently, there is no analytically
measurable peak gain by abstention. Subjective judgment
must be used to set the abstention threshold. The
following formula may be used to numerically measure
the effect of abstention: Q= Ea + ρN, where Ea is the
number of errors with abstention, N is the number of
don’t know outputs, and 0�ρ��� ,I ρ=1, then don’t know is
as bad as wrong prediction and counted as an error. On
the other extreme, if ρ=0, it is as good as correct
prediction. The larger the ρ value is the more penalties for
don’t know outputs.

Let the number of errors of NVGP alone (no abstention)
be Ez. If Q � (z, then we are unconditionally better off
with abstention. For example, setting ρ=0.5 (half way
between correct and incorrect prediction), we obtain Q
values for 31-voter ensembles as shown in Table 6. The Q
values are fairly close to Ez when the threshold is 1, which
gives 3.2% error reduction (Figure 4 data). In other
words, threshold = 1 is a break-even point for the trade-
off between abstention and error reduction for ρ=0.5. For
safety critical applications, such as medical diagnostics, a
smaller ρ value would be appropriate for the trade-off
analysis. That is to say, do not penalize heavily when an
ensemble is trying to avoid a random guess. It may well
be the case where the training set was inappropriate for
particular instances.

4.3 POST-EVOLUTIONARY COMBINATION

Post-evolutionary combination is thought to be
computationally inefficient, because many runs are
required to obtain a sufficient number of individuals [18].
However, inexpensive cluster computing alleviates this
problem (see section 3.1). Not only can the post-
evolutionary search for the optimal NVGP ensemble be
performed in parallel, but also the search may no longer
need to be continued after an optimal ensemble is found.

5 CONCLUSION AND FUTURE
RESEARCH

We showed the experimental classification result by
NVGP, which significantly improved accuracy and
reduced the performance fluctuation. Then, we
incorporated decision abstention to it. Abstention in effect
avoids random guesses when the ensemble confidence is
low, i.e., votes are too close to call. It is a viable method
to reduce errors. The trade-off between abstention and
error reduction is subjective. The abstention threshold
value depends on how critical an application is.

It is important to curve the abstention rate increase. We
plan to embed the individual confidence to enhance the
ensemble confidence. The individual confidence, in our
case, can be measured by the distance of an instance from
the cluster center. The further the distance, the lower the
confidence. The ensemble confidence in prediction is
measured by the level of disagreement among the voters.

Acknowledgments

This work is supported by the Initiative for
Bioinformatics and Evolutionary STudies (IBEST) at the
University of Idaho; by NIH NCRR grant
1P20RR016454-01; and by NIH NCRR grant NIH NCRR
1P20RR016448-01; and by NSF grant NSF EPS 809935.
We are grateful to colleagues in the Initiative for
Bioinformatics and Evolutionary STudies (IBEST) for
insightful discussions. Finally, we wish to thank the many
students who designed and built our Beowulf cluster, and
Micron Technology for donating the memory for that
machine. We thank John Cavalieri and Janet Holmberg
for proofreading.

References

1. Imamura, K., Heckendorn,R B., Soule, T., Foster, J
A.: N-version Genetic Programming via Fault
Masking Proceedings of the Euro EuroGP2002 5th
European Conference on Genetic Programming (To
appear)

2. Freund, Y., Mansour, Y., Schapire, R E.: Why
Averaging Classifiers Can Protect Against Overfitting.
Proceedings of the 8th International Workshop on
Artificial Intelligence and Statistics,2001
(www.ai.mit.edu/confereces/aistats2001/papers.html)

Table 6. Q values for 31-voter ensembles (ρ=0.5)

abstention
threshold test1 test2 test3 test4 test5 test6 test7 test8 test9 test10

0 6.7 8.0 10.1 7.7 6.8 8.8 7.3 10.4 9.1 9.5

1 7.2 8.3 10.0 7.9 7.1 9.1 7.6 10.6 9.0 9.7

2 8.5 9.2 9.8 8.4 7.8 9.9 8.6 11.1 9.1 10.2

3 10.5 10.5 10.1 9.5 9.3 11.2 10.1 12.2 9.8 11.0

3. Pedersen, A.G., Engelbrecht, J.: Investigations of
Escherichia Coli promoter sequences with artificial
neural networks: New signals discovered upstream of
the transcriptional startpoint. Proceedings of the Third
International Conference on Intelligent Systems for
Molecular Biology (1995) 292-299
(http://citeseer.nj.nec.com/25393.html)

4. Towell,G.G., Shavlik, J.W., Noordewier, M.O.:
Refinement of approximate domain theories by
knowledge-based neural networks. Proceedings of
AAAI-90 (1990) 861-866
(http://citeseer.nj.nec.com/towell90refinement.html)

5. Ma, Q., Wang, J.T.L.: Recognizing Promoters in DNA
Using Bayesian Neural Networks. Proceedings of the
IASTED International Conference, Artificial
Intelligence and Soft Computing (1999) 301-305
(http://citeseer.nj.nec.com/174424.html)

6. Handley, S.: Predicting Whether Or Not a Nucleic
Acid Sequence is an E. Coli Promoter Region Using
Genetic Programming. Proceedings of First
International Symposium on Intelligence in Neural and
Biological Systems, IEEE Computer Society Press,
(1995) 122-127

7. Pradhan, D. K., Banerjee, P.: Fault-Tolerance
Multiprocessor and Distributed Systems: Principles. In
Pradhan, D.K.: Fault-Tolerant Computer System
Design. Chapter 3, Prentice Hall PTR, (1996), 142

8. Avizienis, A. and J.P.J. Kelly: Fault Tolerance by
Design Diversity: Concepts and Experiments. IEEE
Computer, vol. 17 no. 8, (1984), 67-80

9. Victoria Hilford., Lyu, M. R., Cukic B., Jamoussi A.,
Bastani F. B.: Diversity in the Software Development
Process. Proceedings of Third International Workshop
on Object-Oriented Real-Time Dependable Systems,
IEEE Comput. Soc, (1997), 129-36
(http://www.cse.cuhk.edu.hk/~lyu/papers.html#SFT_T
echniques)

10. Knight, J.C., Leveson, N.B.: An Experimental
Evaluation of the Assumption of Independence in
Multiversion Programming. IEEE Transaction on
Software Engineering, vol. SE-12, no. 1 (1986)

11. Hatton, L.: N-version vs. one good program. IEEE
Software, vol 14, no. 6 (1997) 71-76

12. Imamura, K., Foster, J.A.: Fault Tolerant Computing
with N-Version Genetic Programming. Proceedings of
Genetic and Evolvable Computing Conference
(GECCO), Morgan Kaufmann, (2001) 178

13. Imamura, K., Foster, J.A.: Fault Tolerant Evolvable
Hardware Through N-Version Genetic Programming.
Proceedings of World Multiconference on Systemics,
Cybernetics, and Informatics (SCI), vol. 3, (2001)
182-186

14. Hashem, S.: Optimal Linear Combinations of Neural
Networks. Neural Networks, vol. 10, no. 4, (1997)
599-614

(http://www.emsl.pnl.gov:2080/proj/neuron/papers/has
hem.nn97.abs.html)

15. Hashem, S.: Improving Model Accuracy Using
Optimal Linear Combinations of Trained Neural
Networks. IEEE Transactions on Neural Networks,
vol.6, no.3 (1995) 792-794 (www.emsl.pnl.gov
:2080/proj/neuron//papers/hashem.tonn95.abs.html)

16. Zang, B-T., Joung, J-G.: Enhancing Robustness of
Genetic Programming at the Species Level.
Proceedings of the 2nd Annual Conference Genetic
Programming 97, Morgan Kaufmann (1997) 336-342.

17. Terence Soule, “Heterogeneity and Specialization in
Evolving Teams”, Proceeding of Genetic and
Evolvable Computing Conference (GECCO), Morgan
Kaufmann (2000) 778-785

18. Brameier, M., Banzhaf, W.:Evolving Teams of
Predictors with Linear Genetic Programming. Genetic
Programmin and Evolvable Machines, vol. 2, (2001)
381-407

19. Schapire R.E., Freund, F.: A Short Introduction to
Boosting. Journal of Japanese Society for Artificial
Intelligence 14, no. 5, (1999) 771-80
(http://citeseer.nj.nec.com/freund99short.html)

20. Breiman, L.: Bagging Predictor. Technical Report
No.421, Department of Statistics, University of
California Berkley, 1994 (http://www.salford-
systems.com/docs/BAGGING_PREDICTORS.PDF)

21. Iba, H.: Bagging, Boosting, and Bloating in Genetic
Programming. Proceedings of the Genetic and
Evolutionary Computation Conference, vol. 2, Morgan
Kaufmann, (1999) 1053-1060

22. Land, W.H. Jr., Masters T., Lo J.Y., McKee, D.W.,
Anderson, F.R.: New results in breast cancer
classification obtained from an evolutionary
computation/adaptive boosting hybrid using
mammogram and history data. Proceedings of the
2001 IEEE Mountain Workshop on Soft Computing in
Industrial Applications. IEEE, (2001) 47-52

23. Basak, S.C., Gute, B.D., Grunwald, G.D., David W.
Opitz, D.W., Balasubramanian, K.: Use of statistical
and neural net methods in predicting toxicity of
chemicals: A hierarchical QSAR approach. Predictive
Toxicology of Chemicals: Experiences and Impact of
AI Tools - Papers from the 1999 AAAI Symposium,
AAAI Press, (1999) 108-111

24. Opitz, D.W., Basak, S.C., Gute, B.D.: Hazard
Assessment Modeling: An Evolutionary Ensemble
Approach. Proceedings of the Genetic and
Evolutionary Computation Conference, vol. 2, Morgan
Kaufmann (1999) 1643-1650

25. Maclin, R., Opitz, D.: An empirical evaluation of
bagging and boosting. Proceedings of the Fourteenth
International Conference on Artificial Intelligence,
AAAI Press/MIT Press (1999) 546-551
(http://citeseer.nj.nec.com/maclin97empirical.html)

26. Bauer, E., Kohavi, R.: An Empirical Comparison of
Voting Classification Algorithms: Bagging, Boosting,
and Variants. Machine Learning, vol. 36, 1/2, Kluwer
Academic Publishers (1999) 105-139
(http://citeseer.nj.nec.com/bauer98empirical.html)

27. Kohavi, R.: A Study of Cross-Validation and
Bootstrap for Accuracy Estimation and Model
Selection. Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI), Morgan
Kaufmann (1995) 1137-1145
(http://citeseer.nj.nec.com/kohavi95study.html)

28. Soule, T.: Voting Teams: A Cooperative Approach to
Non-Typical Problems. Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-
99), vol. 1,Morgan Kaufmann (1999) 916-922

29. UCI Machine Learning Repository, Molecular
Biology Databases
(http://www1.ics.uci.edu/~mlearn/MLSummary.html)

30. Wang, J.T.L., Ma, Q., Shash D., Wu, C.: Application
of neural networks to biological data mining: a case
study in protein sequence classification. Proceedings
KDD-2000. Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining. ACM, (2000) 305-309
(http://citeseer.nj.nec.com/382372.html)

31. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.:
Genetic Programming: An Introduction: On the
Automatic Evolution of Computer Programs and Its
Applications. Academic Press/Morgan Kaufmann
(1998)

32. MIPS32™ Architecture for Programmers Volume I:
Introduction to the MIPS32™ Architecture
(http://www.mips.com/publications/index.html)

33. Matthwes, B. W.:Comparison of the predicted and
observed secondary structure of T4 phage lysozyme.
Biochimica et Biophysica Acta, vol. 405 (1975) 443-
451

