
   

 

ABSTENTION REDUCES ERRORS DECISION ABSTAINING 
N-VERSION GENETIC PROGRAMMING 

 
 Abstract 

 

Optimal fault masking N-Version Genetic 
Programming (NVGP) is a technique for building 
fault tolerant software via ensemble of 
automatically generated modules in such a way as 
to maximize their collective fault masking ability. 
Decision Abstaining N-Version Genetic 
Programming is NVGP that abstains from 
decision-making, when there is no decisive vote 
among the modules to make a decision. A special 
course of action may be taken for an abstained 
instance. We found that decision abstention 
contributed to error reduction in our experimental 
Escherichia coli DNA promoter sequence 
classification problem. Though decision 
abstention may reduce errors, high abstention rate 
makes the system of little use. This paper 
investigates the trade-off between abstention rate 
and error reduction. 

1 INTRODUCTION 

This paper investigates the effect of an abstention threshold 
on the trade-off between abstention rate and error 
reduction, using an N-Version Genetic Programming 
ensemble classifier [1].  

An ensemble binary classifier makes a yes/no decision 
based on votes from the participating ensemble member 
classifiers. A decision abstention occurs, when there is no 
decisive vote among the ensemble modules to make 
decision. An unanimous vote is the most decisive (highest 
ensemble confidence), while a tie vote is the least decisive 
(lowest ensemble confidence). The abstention threshold is 
set somewhere between these two extremes. If the vote 
count of either “yes” or “no” does not reach to this 
threshold, the ensemble abstains from decision-making. 
The ensemble, thus, produces three outputs: yes, no, and 
don’t know. A special course of action may be taken for an 
abstained instance (such as classification by human 
experts) [2]. Abstention reduces the number of errors, 

potentially avoiding overfitting [2]. However, if the 
ensemble classifier abstains too often, it is of little use. Our 
experimental test problem is Escherichia coli DNA 
promoter sequence classification. This problem has been 
explored with artificial neural networks [3][4][5] and 
genetic programming [6]. 

1.1  BRIEF INTRODUCTION OF N-VERSION 
GENETIC PROGRAMMING (NVGP) 

N-Version Genetic Programming (NVGP), which provides 
an optimal fault masking ensemble of automatically 
generated modules, is a new technique for building fault 
tolerant software that significantly reduces errors when 
applied to an E. coli promoter sequence classification 
problem [1]. Genetic programming is used to provide a 
large pool of candidate modules with sufficient diversity to 
allow us to select an ensemble whose faults are nearly 
uncorrelated. We find ensembles with a high degree of 
fault masking by randomly sampling from this large pool 
of modules. The ensembles that produce the expected error 
rate are retained. The expected failure rate f for n 
independent components, each of which fails with 
probability p, where the composite system requires m 
component faults in order to fail (initially derived for n-
modular redundant hardware systems [7]) is  

For an N-version classifier system, such as ours, the i-th 
individual fault rate pi is the ratio of misclassified examples 
to the total number of training instances. In this case, f is 
the failure rate of an ideal ensemble. If the fault rate is the 
same for every pi, f is an area under a binomial probability 
density function as shown in the above formula. The failure 
rate of an ensemble is close to the theoretically optimal rate 
f precisely when component failures are not correlated. 
This is our criterion for selecting the qualified ensembles. 
Explicit quantification of the module diversity with the 
theoretical failure probability is a distinct feature of NVGP, 
guaranteeing phenotypic diversity and the optimal 
ensemble. 
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N-version programming (NVP) was an early approach to 
building fault tolerant software that adapted proven 
hardware approaches to fault tolerance [8]. A fundamental 
assumption of the NVP approach was that independent 
programming efforts would reduce the probability that 
similar errors will occur in two or more versions [9]. But 
this assumption was questioned, because experiments 
showed that modules developed for NVP tended to fail 
under similar circumstances. For example, Knight and 
Leveson rejected the hypothesis of the assumed 
independence of faults by independently developed 
programs [10]. However, this conclusion does not 
invalidate NVP in general. Hatton showed that his 3-
version NVP system increased the reliability by a factor of 
45. Though this is far less than the theoretical improvement 
of a factor of 833.6, it is still a significant improvement in 
system reliability [11].  

The next section reviews previous work on abstention and 
ensemble methods. 

2 PREVIOUS WORK  
Different ensemble construction methods have been studied 
in an effort to enhance accuracy. This section reviews 
abstention, averaging, median selection, boosting, and 
bagging. All methods exploit heterogeneity of ensemble 
components in one way or another. 

2.1  ABSTENTION 

Freund, et al., showed the error bound of averaging 
classifier with abstention [2]. The abstention threshold is 
based on the log ratio of the weighted sum of positive 
predictions and negative predictions. If the absolute value 
of this log ratio is smaller than the threshold, the ensemble 
classifier abstains from predicting. They identify the region 
of abstention as the locations of potential overfitting. Their 
theoretical work shows that the error of such predictor 
cannot be worse than twice of the best individual.  

2.2 AVERAGE AND MEDIAN 

A simple averaging method gathers outputs from all 
component modules and calculates their arithmetic 
average. Imamura and Foster showed simple averaging 
reduces error margins in path prediction [12] and function 
approximation with evolved digital circuits [13]. Another 
approach is weighted averaging, in which component 
modules are assigned optimal weights for computing a 
weighted average of the module outputs. Linearly optimal 
combination of artificial neural networks takes this 
approach [14][15]. Zang and Joung proposed Mixing 
Genetic Programs (MGP). MGP chooses a pool of 
individuals from a population and the master unit assigns 
the voting weights to these individuals using an additive 
weighting scheme [16]. The median value of the outputs is 
then the ensemble output. Soule approximated the sine 
function by taking the median of individuals, which were 
evolved, with subset of the entire training set for 
specialization [17]. Brameier and Banzhaf evolved teams 

of predictors. The individuals are coevolved as a team as 
opposed to post-evolutionary combination [18].  

2.3 BOOSTING AND BAGGING 

Boosting and bagging are methods that perturb the training 
data by resampling to induce classifier diversity. The 
AdaBoost algorithm trains a weak learner (slightly better 
than random guessing) by iterating training while 
increasing the weights of misclassified samples and 
decreasing the weights of correctly classified ones [19]. 
The effect is that the weak learner focuses more and more 
on the misclassified samples. The trained classifiers in each 
successive round are weighted according to their 
performance.  The final decision is a weighted majority 
vote. Bagging (Bootstrap aggregating) replicates training 
subsets by sampling with replacement [20]. It then trains 
classifiers separately on these subsets and builds an 
ensemble by aggregating these individual classifiers. For 
evolutionary computation, Iba applied Boosting and 
Bagging to genetic programming and his experiment 
validated their effectiveness and their potential for 
controlling bloat [21]. Land used a boosting technique to 
improve performance of Evolutionary Programming 
derived neural network architectures in a breast cancer 
diagnostic application [22]. However, both techniques have 
limitations. Boosting is susceptible to noise, Bagging is not 
any better than a simple ensemble in some cases, neither 
Boosting nor Bagging is appropriate for data poor cases, 
and bootstrap methods can have a large bias [19, 23, 24, 
25, 26, 27].  

2.4 CLASSIFICATION OF ENSEMBLES 

Table 1 categorizes current ensemble methods in genetic 
programming in terms of their sampling technique in 
combination with the evolutionary approach. In cooperative 
methods [17][28], speciation pressure (such as that caused 
by crowding penalties [28]) plays a vital role in evolving 
heterogeneous individuals, while in isolation methods there 
is no interaction between individuals during evolution. 
Resampling methods create different classifiers by using 
different training sets (bagging) or varying weights of 
training instances (boosting). Non-resampling methods 
create different classifiers from the same training set with 
or without explicit speciation pressure. NVGP and 
Decision abstaining NVGP are non-resampling techniques 
based on isolated evolution of diverse individuals. 

   Table 1. Classification of ensemble creation methods. 

Evolutionary Training set selection 

Approach Resampling Non-resampling 

Non-Isolation Boosting Crowding 

Isolation Bagging NVGP 

 



   

3 EXPERIMENT 
This section briefly summarizes the NVGP computational 
method (for detail description, see [1]) and presents the test 
results. We first run NVGP then incorporate abstention 
threshold to it. Our experimental problem is to classify 
whether a given DNA sequence is an E. coli promoter, 
using a decision abstaining NVGP. The data set is taken 
from UCI ML repository [29]. It contains 53 E. coli DNA 
promoter sequences and 53 non-promoter sequences of 
length 68. 

3.1 COMPUTING ENVIRONMENT 

The cluster supercomputing facilities from the Initiative for 
Bioinformatics and Evolutionary STudies (IBEST) is used 
to implement distributed computation. This device uses 
commodity computing parts to build substantial computing 
power for considerably less money than traditional 
supercomputers1. (http: //www.cs.uidaho.edu/ 
thecollective).  This machine enabled experiments that 
would normally run for a month to complete in half a day. 

3.2 INPUT AND OUTPUT 

We used 2-gram encoding for input [30]. The 2-gram 
encoding counts the occurrences of two consecutive input 
characters (nucleotides) in a sliding window. Since there 
are four characters in DNA sequences (“a”, “c”, “g”, “t”), 
we have 16 unique two-character strings to count. For 
example, a sequence “caaag” will be encoded as {ca=1, 
aa=2, ag=1}. The classifier clusters the positive instances 
and places the negative instances outside the cluster. The 
cluster is defined by the mean output value of postitve 
instances ± 3*(standard deviation). If an output value from 
a given sequence falls in the cluster, it is classified as a 
promoter. Otherwise, it is classified as a non-promoter.  

3.3 CLASSIFIER 

3.3.1 Target Machine Architecture  

Our classifier is a linear genome machine [31], which 
mimics MIPS architecture [32]. There are two instruction 
formats in this architecture: (Opcode r1,r2,r3) and 
(Opcode r1,r2,data). The instructions are ADDI, 
ADDR, MUL, DIV, MULI, DIVI, SIN, COS, LOG, EXP, 
NOP, MOVE, LOAD, CJMP, and CJMPI. The length of an 
individual program is restricted to a maximum of 80 
instructions. Each evolving individual (a potential 
component for our NVGP ensemble system) used sixteen 
read-only registers for input data, which contained counts 
for individual nucleotide 2-grams as described above, and 
four read/write working registers. 

                                                        
1 The total cost of the machine is about US$44,000. Micron Technology 
generously donated all of the memory for the machine. 
 

3.3.2 Genetic Programming  

We used 5 crossover methods. Methods (1) and (2) are 
traditional one and two point crossover, respectively. 
Method (3) is one point crossover with inversion applied to 
each crossover segment.  Methods (4) and (5) use four 
random crossover points, with (5) being a single parent 
recombination operator. Fitness is calculated by the 
following correlation formula  

where P and N are numbers of correctly identified positives 
and negatives, and Pf and Nf are the numbers of falsely 
identified positives and negatives [33]. Steady state is used 
for population replacement. Evolution continues until an 
individual of fitness 0.8 or above appears. 

3.3.3 Evolution and Ensemble Testing  

A common holdout test divides the dataset into 2 exclusive 
sets, 2/3 for the training set and 1/3 for the test set [27]. 
Our training sets used a random sample of 35 (53*2/3) 
positive and 35 negative examples, and used the remaining 
examples for the test sets. We performed experiments for 
10 different holdout sets. The evolution and ensemble 
procedures are described below: 

1. Create a training set and test set.  

2. Evolve 40 isolated islands with 100 individuals each in 
parallel. Add an individual whose fitness is 0.8 from 
each island to a set B of single best versions.  

3. Select N individuals by uniform-random sampling from 
B for N=15, 31 to form an NVGP ensemble. See 3.4.1 
for the sampling frequency. 

4. Evaluate the performance of each ensemble. If the 
ensemble is qualified, then retain it for a test set trial. 
Goto 3. The ensemble is qualified if the difference 
between the number of errors expected when versions 
have independent faults and the number of errors 
observed is small (less than one in our case). 

3.4 EXPERIMENTAL RESULTS 

The evolution and ensemble testing procedure described in 
section 3.3 is repeated for 10 different holdout tests in an 
attempt to reduce stochastic errors caused by sampling in 
performance estimation. We first show the performance of 
NVGP without abstention, then with abstention. We 
assume the number of errors have a normal distribution, 
since each test instance can be viewed as a Bernoulli trial 
[27]. 

3.4.1 Performance of NVGP 

There are 40×109 and 27×107 possible ensembles to be 
formed respectively for 15 and 31 voter systems out of 40 
candidate modules. Uniform random search sampled 
approximately 40×103 and 27×103 ensembles for 15 and 31 
voter ensembles respectively, from which we selected 
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qualified ensembles for statistics. Table 2 shows the 
numbers of qualified ensembles found for each test. For 
example, we found 23199 qualified 15-voter ensembles out 
of 40×103 samples for the test 1. Table 3 is the result of t-
test on the null hypothesis that average performance of the 
ensembles and the single best versions is not significantly 
different. Table 4 is the result of F-test on the null 
hypothesis that standard error of the ensembles and the 
single best versions is not significantly different. Table 5 
shows error reduction percentage observed in ensembles 
relative to the error rates of the single best versions in the 
set B (see 3.3.3). It represents the average error reduction 

achieved by NVGP over single modules produced by 
genetic programming.  

Figure 1 presents the performance distribution intervals of 
the single best versions and the corresponding N-voter 
NVGP ensemble at a 90% limit. For each holdout test, we 
present statistics for the single best versions, and for each 
of the four NVGP ensembles (N=15, 31). For example, the 
leftmost bar in holdout test 1 is the performance 
distribution of the 40 single best versions, showing that the 
best is estimated to be 20% error and the worst to be 48%, 
with a mean of 34%. The middle bar is 15-voter and the 
rightmost bar is 31-voter ensembles.  

Table 2. The number of sampled qualified-ensembles 

 test1 test2 test3 test4 test5 test6 test7 test8 test9 test10 

15-voter 23199 29370 11596 8601 15973 4267 30455 32141 13171 17279 

31-voter 19650 27205 9910 3197 13778 814 27340 27340 7672 23113 

 

Table 3.  The result of t-test, degree of freedom .≅ 40 for all the test cases. 

 test1 test2 test3 test4 test5 test6 test7 test7 test9 test10 

15-voter 11.07 9.10 3.27 8.67 9.67 10.21 8.80 6.06 6.64 5.46 

31-voter 14.08 10.47 2.14 8.17 10.54 13.53 9.30 5.78 6.62 6.94 

 

Table 4. The result of F test on error rate standard deviations 

 test1 test2 test3 test4 test5 test6 test7 test7 test9 test10 

15voter 3.15 4.10 4.98 3.53 4.01 2.22 2.71 4.37 7.22 3.76 

31-voter 7.17 6.47 12.03 9.36 10.89 4.71 8.13 24.11 47.44 8.07 

 

Table 5. Percentage error reduction of NVGP relative to set of best individual in isolation 

 

 

 

 test1 test2 test3 test4 test5 test6 test7 test7 test9 test10 

15-voter 44 33 14 31 40 31 37 22 25 24 

31-voter 56 38 9 29 43 42 39 21 25 31 

Figure 1. Error rate distribution intervals of the single best versions and the corresponding N-
voter NVGP ensemble at a 90% limit. Leftmost, middle, and rightmost bars are distribution of
single-version, 15-voter, and 31 voter system respectively.  
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3.4.2 Behavior of Decision Abstaining NVGP 

The abstention thresholds are incorporated into the NVGP 
outputs of 3.4.1. The decision abstaining ensemble 
requires abstention threshold, h, and needs ((N+1)/2 + h) 
votes, either positive or negative, to make a decision, 
where N (odd) is the number of vote participating 
individuals. The voting scheme is a simple majority rule, 
if h=0. Figure 2 and 3 are the plots of the abstention rates 
and the error rates of 15 and 31 voter ensemble for the 10 
holdout tests with respect to the abstention threshold, h. 
Figure 4 represents the average abstention and error rates 
from figure 2 and 3 for collective analysis. The error rate 
is a decreasing function and the abstention rate is an 
increasing function. 

4 DISCUSSION 

4.1 NVGP 

Though a holdout test is commonly used to measure 
performance of evolutionary algorithms, it is not reliable. 
Kohavi argues that holdout testing does not provide a 
good estimate of error rate [27]. Nonetheless, we repeated 
the holdout test 10 times with different training/test sets 
for somewhat fair statistics. In figure 1, the hold-out test 3 
does not exhibit apparent superiority of NVGP as in the 
test 1, though we reject the null hypothesis that average 
performance of single best version and NVGP are not 
significantly different at α=0.975. For all the other nine 
test cases, we reject the hypothesis virtually at 100% and 
conclude that NVGP is superior. NVGP error rates in all 
ten tests are far below the theoretical bound shown by 

Freund [2] even without abstention. Table 4 indicates that 
performance fluctuation of NVGP is statistically 
significantly smaller than single versions. Apparently, as 
the ensemble size approaches to the pool size, the 
performance fluctuation becomes smaller. If we combine 
all the individuals in the pool, there is no performance 
fluctuation. Therefore, a larger fluctuation may be 
expected for NVGP if the component pool size is huge. 
But, also true is that duplicate phenotypes start populating 
the pool as the pool size becomes larger. In fact, our 
experiment witnessed that an exhaustive search for an 
optimal ensemble of 39 voters from the pool failed in 
three out of the ten holdout tests.  This possibly indicates 
that the entropy of the pool may have reached a plateau 
with the given training data and training method. If this is 
the case, the small performance fluctuation for optimally 
sized NVGP will still hold regardless of the pool size 
increase. Further study is needed for an optimal size of 
NVGP. 

Notice that a single best individual has a chance to 
become practically a random classifier (error rate above 
0.4) roughly 10%-20% of the time on unseen data. 
Unfortunately, we have no way of knowing which 
individual would become a random classifier beforehand, 
because they all have the same fitness (0.8) on the 
training set. This is the risk we must bear with a single 
best classifier. Fluctuation in performance is the very 
reason why we compared the distributions, and why 
NVGP has superior performance.  

4.2 ABSTENTION 

Figure 4 shows (see dashed lines) that the decision 
abstaining NVGP achieved a near zero error rate, at high 
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Figure 3. abstention rate and error 
rate for 31 voter system 
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cost of abstention rate, approximately 80%, for both 15-
voter and 31-voter ensembles. Abstention rates 29% of 
15-voter and 28% of 31-voter ensembles give 50% error 
reduction over NVGP alone (no abstention). Whether 
these abstention rates are acceptable for error reduction 
depends on how critical it is to have wrong predictions.  

The abstention rates and the error rates are monotonic 
with respect to the abstention thresholds, and the trade-off 
between abstention and error reduction can be estimated 
almost linearly. Consequently, there is no analytically 
measurable peak gain by abstention. Subjective judgment 
must be used to set the abstention threshold. The 
following formula may be used to numerically measure 
the effect of abstention: Q= Ea + ρN, where Ea is the 
number of errors with abstention, N is the number of 
don’t know outputs, and 0�ρ��� ,I ρ=1, then don’t know is 
as bad as wrong prediction and counted as an error.  On 
the other extreme, if ρ=0, it is as good as correct 
prediction. The larger the ρ value is the more penalties for 
don’t know outputs.  

Let the number of errors of NVGP alone (no abstention) 
be Ez. If Q � (z, then we are unconditionally better off 
with abstention. For example, setting ρ=0.5 (half way 
between correct and incorrect prediction), we obtain Q 
values for 31-voter ensembles as shown in Table 6. The Q 
values are fairly close to Ez when the threshold is 1, which 
gives 3.2% error reduction (Figure 4 data). In other 
words, threshold = 1 is a break-even point for the trade-
off between abstention and error reduction for ρ=0.5. For 
safety critical applications, such as medical diagnostics, a 
smaller ρ value would be appropriate for the trade-off 
analysis. That is to say, do not penalize heavily when an 
ensemble is trying to avoid a random guess. It may well 
be the case where the training set was inappropriate for 
particular instances. 

4.3 POST-EVOLUTIONARY COMBINATION 

Post-evolutionary combination is thought to be 
computationally inefficient, because many runs are 
required to obtain a sufficient number of individuals [18]. 
However, inexpensive cluster computing alleviates this 
problem (see section 3.1). Not only can the post-
evolutionary search for the optimal NVGP ensemble be 
performed in parallel, but also the search may no longer 
need to be continued after an optimal ensemble is found. 

5 CONCLUSION AND FUTURE 
RESEARCH 

We showed the experimental classification result by 
NVGP, which significantly improved accuracy and 
reduced the performance fluctuation. Then, we 
incorporated decision abstention to it. Abstention in effect 
avoids random guesses when the ensemble confidence is 
low, i.e., votes are too close to call. It is a viable method 
to reduce errors. The trade-off between abstention and 
error reduction is subjective. The abstention threshold 
value depends on how critical an application is. 

It is important to curve the abstention rate increase. We 
plan to embed the individual confidence to enhance the 
ensemble confidence. The individual confidence, in our 
case, can be measured by the distance of an instance from 
the cluster center. The further the distance, the lower the 
confidence. The ensemble confidence in prediction is 
measured by the level of disagreement among the voters. 
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