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This thesis descri bes the main features of a Shongly FearibZe EvoZurion Program (SFEP) for 

solving network flow programs that can be non-linear both in the constraints and in the 

objective fùnction. The approach is a hybrid of a network flow algorithm and an evolution 

prograrn. Network flow theory is used to help conduct the search exclusively within the 

feasible region, while progress towards optimal points in the search space is achieved using 

evolution programming mechanisms such as recombination and mutation. The solution 

procedure is based on a recombination operator in which al1 parents in a small mating pool 

have equai chance of contributing their genetic material to an ofEspring. When an o f f s p ~ g  

is created with better fitness value than that of the worst parent, the worst parent is discarded 

Erom the mating pool while the offspring is placed in it. The main contributions are in the 

massive parallel initialization procedure which creates only feasible solutions with simple 

heuristic rules that increase chances of creating solutions with good fitness vaiues for the 

initial mating pool, and the gene rherapy procedure which fixes "defective genes" ensuring 

that the offspring resulting fiom recombination is always feasible. Both procedures utiIize 

the properties of network flows. Tests were conducted on a number of previously published 

transportation probiems with 49 and 100 decision variables, and on two problems involving 

water resources networks with complex non-linear constraints with up to 1500 variables. 

Convergence to equal or better solutions was achieved with often less than one tenth of the 

previous computational efforts. 

Key Words: Genetic Algorithms, Evolution Programs, Network Flows, Non-Linear 

Constraints 
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1 INTRODUCTION 

The objective of this research is to develop an algorithm for solving minimum cost network 

flow problems associated with mixed-integer decision variables (flows) and non-linear 

objective function and flow constrahts. There are currently no known specialized network 

solvers for this problem. The research will focus on the ability to find the global optimum, 

rather than the execution efficiency, which may only be addressed in the final stages of this 

research. 

The field of network optimization has evolved as an important branch of operational research 

in the Iast few decades with application in many areas of engineering and management. The 

need for this research was inspired by two possible engineering applications -- one related 

to water allocation in complex river basin networks and the other related to optimizing 

pipeline operation. Both problems have non-linear constraints and objective function. The 

available solution procedures that have been used in the past for solving these types of 

problems had limited success. They were addressed using linear programming (LP) solvers 

apptied to problems which were forrnulated in tenns of separable cost hct ions  and linear 

constraints. The objective is to find the best possible allocation within a given time period 

in complex river basin networks. To justifjr the use of linear constraints, the problem had to 

be solved using iterations and large calculation time steps. Such solutions were often of 

lirnited practical value for real-the operation. Consequently, the use of the existing models 

with linear programming solvers has so far been restricted to planning studies. 

The field of optimizing pipeline operation has been another important area of interest to 

researchers. The principal goal is to deliver the target voIume through a pipeline within a 

given time period such that the cost of pumping is rninimized. While the pressure constraints 

are non-linear functions of flow, the problem also has difficult non-linear cost functions. It 

c m  also involve mixed-integer decision variables, resulting fiom the fact that some of the 

purnps operate with a fxed speed while others can operate with a variable speed. Very few 



solvers are available to address this kind of problem. The GAMS library of solvers, which 

is considered as the standard in the operational research community nowadays, offers more 

than twenty available modules, but only two of them are capable of addressing the class of 

mixed-integer non-hear problems. It comes with a disclaimer that it is only capable of 

finding local optimums since it relies on a gradient search approach. 

The limitations of various existing search meîhods to fmd global optimums for complex 

constrained problems with objective functions that had numerous local optimums have 

inspired researchers to look for other solution techniques. This gave rise to the recent 

development of the search methods known as Evolution Prograrns (Michailewicz 1994), 

which have become popular in the last two decades due to their effectiveness and have also 

inspired many researchers to focus their attention in this field. While there is no universai 

evolution programrning solver applicable to all methods, this research wilt attempt to show 

that certain properties of network flows can be effectively utilized in the search procedure. 

The proposed methodology combines the knowledge of network flow theory with the recent 

achievements in evolution programrning. The following is the expected contribution of the 

proposed research: 

A generalized approach to solving non-linear network flow problems which could 

be applicable to various fields of engineering, although the testing may be focussed 

on problems of interest to water resources; 

The proposed algorithm would allow cost functions of arbitrary shape for each 

individual arc in the network, which cannot be handled by most fiequently used 

solutions methods which rely on the gradient search approach; 

The proposed algorithm would allow linear or non-linear relationships between arc 

flows in the network, both in tems of loss or gain of flow dong an arc, as well as in 

terms of the mutual relationship between flows on two or more arcs; and, 

The method would aisu be abte to handle mixed integer programs with non-linear 

objective fbctions or constraints. 



The scope of this research includes the following: 

review of recent developments in evolutionary programming as well as a review of 

pertinent background fiom the network flow theory; 

formulation of an algorithm which combines the building blocks of fl ow defmed in 

the flow network theory as the bais  for the proposed evolutionary search; 

development of the cornputer code for a generalized network solver; 

testing of the code by comparing its performance with other published test results; 

testing ofthe code on newchallengingproblems that could not have been solved with 

other solvers; and, 

publishing the resdts of the above tests in selected engineering journals or 

conference proceedings. 

This document starts with introduction of the basic concepts of networks and theory of 

network flows, followed by a reviewof historic developments in network flow optimization. 

The summary of historic developments includes a review of strengths and weaknesses of 

earlier linear and non-linear solutiontechniques, which justifies the need for M e r  research. 

One section is devoted to introducing the reader to the main application area of interest -- 
water resources networks. This application is converted into network flow problems and the 

nature of the constraints and the objective function is discussed. Chapters 4,5 and 6 include 

a review of the relevant properties of network flows which are used in the process of building 

a solution technique, a review of evolutionary programming, and a review of the proposed 

solution technique, respectively. Finally, chapters 7, 8 and 9 include the three case studies 

where the new solver has been applied. 



3 - BACKGROUND AND LITERATURE REVIEW 

Because of their widespread applicability in various fields, networks are one of the most 

extensively studied topics in the last few decades. A bibliography entitled "Deterniinistic 

Network Optimization" compiled over twenty years ago had more than 1000 entries, and that 

was still ody a partial List (Golden and Magnanti, 1977). In general, networks are studied 

in terms of their structure or in terms of associated fûnctions, hence the problems of nerwork 

synthesis or network analysis, although for many real world problems it is sometimes 

difficult to keep a clear distinction between the two. Of prkary  interest to this research is 

analyses of single commodity flows in networks (Ford and Fulkerson, 1962). 

The foUowing sections provide introduction to basic concepts and theorems ofnetwork flows 

fiom the graph theory. These concepts form the bais of the proposed algorithm. 

2- 1 Definitions and Review of Related Terminology 

The theory of graphs is a large body of mathematics with many topics on networks and 

network flows (Busacker and Saaty, 1965; Rockafellar, 1984; Ahuja et al., 1993). In spite 

of the volumes of theoretical contributions fiom various researchers, theory of graphs is still 

missing universal notation. Each textbook or publication on networks starts with defining 

its own notation. This review follows the notation used in Network Flows (Ahuja et al., 

1993) as one of the most recent and the most relevant references in this field. 

There is no clear distinction between networks and graphs in the literature. Some researchers 

make a distinction by defhing networks as special types of graphs which have a flow 

function associated with them. In most general terms, a graph is defrned as a non empty set 

of nodes N, a possibly empty set of arcs A and a rnapping fùnction E between N and A 

(Busacker and Saaty, 1965). Nodes are also called vertices or points, arcs are also known 

as links, edges or branches, and the mapping function is usually referred to as the incidence 



mapping. Networks (as special types of graphs) can therefore be defked by using G = (N, 

A, E) or simply by (N,A) which implicitly includes the incidence mapping E. The incidence 

context is fundamental to a graph, and the usual notation for an arc is (i j) which means that 

the arc is incident with nodes i and j, or that its end points are i and j. A few more terms are 

used in the subsequent sections of this document and they are defmed below. 

Dit-ected (or oriente4 graphs differ nom undirected graphs in the property that elements of 

set A (arcs) are defined as ordered pairs of distinct nodes, as opposed to undirected graphs 

where ordering is not required. In tems of networks, arc orientation allows flow in only one 

direction. This does not pose a Limitation in mathematical programming, since algorithms 

which require only non-negative decision variables can use two non-negative decision 

variabIes x' and x" which are related to the original decision variable in the form of: 

x' - = X (2- 1 

where x is unrestricted in sign. Ln the network, this transformation is equivalent to splitting 

an undirected arc into two parallel directed arcs with opposite orientation which have non- 

negative flows x' and x" associated with them. A directed arc (i j) has two endpoints, i and 

j usually referred to as the head node and the tail node. 

Loops (arcs with the same head node and tail node, i.e arcs which originate and tenninate at 

the same node) have very little use in network flow andysis and they wiII not be considered 

in the following. Mulfiarcs (several parallel arcs which al1 share the same tail node and the 

same head node) will also be excluded fiom M e r  analysis with one important qualifier: 

except for notation (i j) which allows the existence of only one arc with the tail node i and 

head node j, al1 other rules and algorithms discussed in the following apply equally to 

networks with multiple arcs. 

Nodes in the network are classified as sources, sinks or transshipment nodes, depending on 

their respective positive, negative or zero balance of inflows and outflows. Circulatory 

networks are those which contain only trmshipment nodes and their flows are cdled 



circulations, shce fiow does not leave or enter the network at any point. The problem of 

finding optimal circulation is equivalent to the problem of finding optimal fiows, since any 

standard network c m  be converted to circulatory by adding one additional node to it (usually 

termed un»tersalsource/sinkor system balance node), and by adding additional arcs onented 

Eom this node to all other sources as well as additional arcs oriented fiom the sink nodes to 

the system balance node. 

A walk in a directed graph G=(N,A) is a subgraph G' which consists of a subset of mutually 

adjacent nodes and arcs from G. Because of the existing incidence relationship between 

nodes and arcs walk can be defined only as a subset of nodes (a subset of arcs). A directed 

walk is a waik which consists of arcs which have the same orientation. 

Path is a walk without any repetition of nodes. Arcs which belong to a path are classified 

as fonvard or backward, depending on their orientation. A directedpath is a directed walk 

without any repetition of nodes, in other words a path without any backward arcs. Path in 

a network is a walk fkom the source to the sink. 

Cycle is a path which begins and ends in the same node. A directed cycle is a cycle which 

consists of arcs oriented in the same direction. 

Nodes i and j are connected if the graph contains at least one path fiom node i to node j. A 

network is comected if every pair of its nodes is connected, otherwise it is disconnected 

Strong connectivity implies existence of at Ieast one directed path fiom each node to every 

other node in the network. 

A cut is a partition of set of al1 nodes N into two subsets, S and N \ S. Finally, a free is a 

connected graph which contains no cycle. Mmrimum spanning tree or maximum forest is a 

connected graph which contains al1 nodes N of network G while it contains no cycle. 



2.2 Network FIows 

Network flow c m  be defïned as a fimction (or a vector) which associates a value xi, with 

every arc in the network. The minimum costfIow problem is the most general network flow 

problem. Ptior to introducing a mathematical formulation of the minimum cost flow 

problem, the concepts of boundednetworks and feasible aows WU be established. Network 

is bounded if functions 1, and u, are associated with every arc (i j) in the network such that: 

O I Z, I u, ~ ( i ,  j) E A (2.2) 

Functions 1, and uij are termed the lower bound and the upper bound imposed on flow on arc 

(i j). When 1, = O and uij > O the network is termed capacf~ated. A circulation consistiog of 

a set of arc flows x, is feasible if it satisfies the following conditions: 

The first expression is a matrix equation with A c o l m s  and N rows showing that 

surnmation of ail arc flows incident to a given node equds zero in a circulation. The second 

condition forces the flows on each arc to comply with the bounds. Finding vector xi, which 

satisfies the above conditions constitutes the problem of finding a feasible circulation. 

Properties of feasible circulations are of significant importance to the developments of the 

ideas in this research and they will be addressed in more detail in Chapter 4. 

One more vector is required to define the minimum cost flow problern for a network, known 

as the arc cost ci,. It associates a cost of sending a unit of flow fiorn node i to node j dong 

arc (i j). The minimm cost flow (or circulation) is then defined as the problem of fïnding 

a feasible circulation x, which also rninimizes the total cost of flow in the network. This can 

mathematically expressed as: 



subject to the feasibility constraints (2.3) and (2.4). Hence, optimal circulation is the one 

which minimizes the total cost of flow in the network while satisSing the feasibility 

constraints. There can be one or more circulations which are termed optimal. 

If functions lij, u, and ci, are arrays of constant parameters, the above is a linear program. 

Many solution procedures are avaiiable for solving the above problem if it can be represented 

as a linear program. However, if parameters I,, u, and c, are not constant even for only one 

arc in the network, the above problem becomes a non-linear program which is much harder 

to solve. In some cases non-linearities can be 'linearized' and the problem can be converted 

to an approximate linear program. In other cases this cannot be done and the program m u t  

be solved using non-linear programming techniques. The benefits and down sides of both 

approaches are summarized in the following. Much of the algorithmic development has been 

done in the area of linear programming, while the developments in non-linear programming 

Iag behind to some extent due to larger complexity and smaller theoretical foundation in 

cornparison to linear programming. Water resources networks (which represent river basins 

and the accornpanying set of irrigation canals, resewoirs and other components) are 

characterized with extreme non-hearities and sizeable network complexities, yet most of 

the applications to date have relied on linear programming approach with various 

approximations and simplifications. 

2 3  A Summary of LP Applications to Network Flow Problems 

A typical textbook on network programming has almost 90% of its contents devoted to linear 

programming applications. There is a large body of available algorithm and theoretical 

developments, which originated in the 1950s (Dantzig, 1963; Ford and Fulkerson, 1962). 

Normally, an LP program is defined in terms of minimization (or maximization) of an 

objective function which has a linear form, subject to a set of inequalities. The program 

defmed by expressions (2.3) - (2.5) could dso  be represented in this format, by converting 

each equality in Expression (2.3) into a set of two inequalities using the general d e  that each 



equation of the form a = b is equivdent to a set of two inequalities a 2 b and a 2 b. Re- 

writing the program (2.3) - (2.5) using this transformation would provide a definition of the 

minimum cost flow problem as a linear program in its canonical form, suitable for Simplex 

and other popular LP solvers. However, networks have some special properties which 

inspired researchers to develop much more efncient algonthms. instead of converting the 

equaIities into inequalities, these algorithms use the equdities in expression (2.3) and take 

advantage of them. The cycle cancelling algorithm, the successive shortest path algorithm, 

the out-of-kilter algorithm and the network simplex algorithm and their variants are ai l  

examples of these developments. They al1 take advantage of the equality constraints (2.3). 

The uitirnate application of network simplex algorithm was extended to problem of 

optirnizing generalized flows, which can mathematically be expressed as: 

subject to: 

'di E N  

The new term pu is called the arc multiplier of arc (i j) and it is a rational number. If pi =1 

for al1 arcs (id) the problem is similar to the one previously d e h e d  by expressions (2.3) - 

(2.5), however if O < < 1 then there is a loss of flow dong arc (i j) while if pu > 1 arc (i j) 

gains flow fkom node i to node j. Note that the gain and loss functions m u t  be linear to 

allow application of generalized network simplex algorithm, while gain or loss of flow in 

real world problems may not follow a linear function. An LP program defined by expressions 

(2.6) through (2.8) is no longer a circulation, as can be seen fkom the right hand side of 

expression (2.7) which no longer equals zero. The value of each b(i) defines a source if b(i) 

> O, sink i f  b(i) c O and transshipment node if b(i) = O, while C ,  is the cost per unit flow 

e n t e ~ g  the arc at node i. GeneraIized network flow problems are usually more difficult to 

solve, although some recent developments of new solvers claim significant improvements 



in execution speed. There is a vast body of literature on the algorithms for minimum cost 

flow problems and for generalized network flows. The folfowing literature review is 

attempted to caphue the most significant works in this field. 

2.4 Histonc Developments in Linear Network Optimization 

The following is a list of major achievements related to the development of algorithms for 

solving the linear minimum cost fl ow problem in constrained networks. Ford and Fulkerson 

initially developed prïmal-dual aigorithms for transportation problems. They later 

generalized this approach for solving the minimum cost fl ow problem (1 962). Jewel(1958), 

Iri (1960) and Busaker and Gowen (1961) independently developed the shoaest path 

algorithm and showed how to solve the minimum cost flow problem as a sequence of 

shortest path problems. Fulkerson (196 1) and Minty (1 960) have independently developed 

the out-of-kilter algorith, a specialized network solver for minimum cost flow problems 

which consists of a sequence of changing prima1 and dual variables such that the optimality 

conditions derived fkom the complementary slackness theorem are eventually reached. Klein 

(1 967) developed the cycle cancelling algorithm which maintains feasibility at every step as 

it tries to converge to optimality, as opposed to the successive shortest path algorithm which 

maintains the non-negativity cycle costs and flow capacity constraints, but violates the mass 

balance constraints at the nodes. Further irnprovements of cycle cancelling algorithm are due 

to Barahona and Tardos (1 989) whichmodified the algorithm of Weintraub (1 974), Goldberg 

and Tarj an (1 9 8 8), and Wallacher and Zimmerman (1 99 1) which al1 use a different choice 

of augmenting cycles to improve convergence efficiency. Zadeh (1973) provided a 

cornparison of efficiency of cycle cancelling, successive shortest path and out-of-kilter 

aigorithms. Edmonds and Karp (1972) introduced the scaling approach for the minimum 

cost flow problem, based on the capacity scaling technique. Rock (1 98O), Orlin (1 9 8 8), and 

Bland and Jensen (1992) al1 experimented with a scaling technique for the minimum cost 

flow problem. Goldberg and Tarjan developed several improved implementations of the E- 

optimality concept, which was independently suggested by Bertsekas (1 979). Goldberg and 



Tarjan (1 987), Ahuja, Goldberg, Orlin and Tarjan (1 992) have also developed specialized 

applications for minimum cost flow problem. 

Compaiisons of computational efficiency of various algorithrns were conducted by Barr, 

Glover and Klingman (1 974); and Bradely, Brown and Graves (1977). They concluded that 

die best algonthms are the network simplex algorithm and the relaxation algonthm, 

developed by Bertekas and Tseng (1988). Kenington and Helgason (1980), Jensen and 

Barnes (1980) and Ahuja, Magnanti and Orlin (1993) give substantial treatment of the 

generalized network simplex algonthm in their textbooks, although in different ways. Elam, 

Glover and Klïngman (1 979), Brown and McBnde (1 984) have exarnined computational 

performance of the generalized network simplex algorithm, which is believed to be the 

fastest available algorithm for solving the generalized network flow problem in practice. 

Brown, McBride and Wood (1985) have created EMNET program which solves combined 

generalized network problem with additional non-network linear constraints. Sun et al. 

(1 995) provide details of EMNET application and report on its computational effkiency. 

3.5 Linear Programming Limitations 

The most simcant limitation of linear programming is the assumption that al1 constraints 

(upper bounds, lower bounds and costs) cm be approximated as linear functions of flow. 

This is often not the case in water resources networks, as will be discussed at length in the 

next chapter. However, in many cases non-linear programs c m  be 'linearized' and solved 

using the existing LP solvers. 

There is one more aspect of linear prograrnrning which can sometimes complicate its use, 

associated with the decision variables of equal priority (cost). Consider for example a 

problem of finding a minimum cost flow in a network with two or more arcs whose costs 

are equal. The value of the objective fiuiction will then be the sarne for various combinations 

of flows in those arcs which yield the same overall fIow in the network (the sum of al1 flows 



in the network). This has the unfortunate consequence of the existence of more than one 

solution with the same optimality. In practical terms, this may prevent computer models 

from fmding a unique solution, and every small and immaterial change in the input data file 

for repeated simulation nuis may resdt in a different solution which is equally optimal. 

While this may not by considered as much of a technical problem, it is not socially 

acceptable in many instances where modelling is subjected to public scrutiny, as is the case 

for example in the water resources field. The problem of finding an equitable distribution 

for a set of variables ofien anses in complex water resources networks, where for example 

several water users of the same type are to receive water with equal priority. During 

shortages, an LP model may cut supply to some users completely while the others are still 

receiving their target levels. In practicai terms, the LP model has failed to deliver equitable 

supply to al1 users of equal priority. To avoid this problem, it is necessary to rank the users 

in the same type and allow controlled differences. This means that if the number of users in 

the same group is k and the maximum allowed difference in deficit relative to their target is 

1 percent, it is necessary to split each decision variable into 100 new variables each 

representing I percent of the target demand, so the number of variables is increased fiom k 

to lOOk and each of them m u t  be assigned a unique cost c,. In terms of network 

reformdation this is equivalent to splitting each arc representing a user fiom the given group 

into 100 parallel arcs. It is a workable option if 1 percent differences cm be tolerated, but 

still messy and very inefficient. Yet in other instances I percent differences may constitute 

signifiant violation of equal supply thus fùrther restricting the use of LP. 

2.6 Non Linear Network Optimization 

While there are special types of solvers for specific linear programs, every linear program 

can be solved usïng the universal Simplex algorithm (Danzig, 1963). Such universal 

algorithm for non-linear problems does not exist (Hiller and Liberman, 1995; Avriel, 1976). 

In general, non-iinear programs are much more difficult to solve due to the following: 



optimal point in non-lùiear program may not be a corner point of a feasible region. 

Instead, it c m  be any interior point within a feasible region, which creates a 

significdy larger search space in cornparison to linear programs where only the 

corner points need to be examined; and, 

except in a few special cases, non-linear programming algorithms are unable to 

distinguish between a local minimum and a global minimum (except by perhaps 

fmding al1 local minimums). In many complex problems there is no mathematical 

proof to guarantee the existence of a global optimum. 

In spite of these drawbacks, many special cases related to the constraints and the objective 

function have been addressed successfully with specialized algorithms. The following are 

some of the better known non-linear programming algorithms. Their strengths and 

weaknesses regarding possible applicability to water resources networks are reviewed in 

C hapter 3. 

The only class of Non-LP programs which c m  guarantee that local minimum is also a global 

minimum are known as the convexprogramming probIems, which have convex objective 

function while constraints are al1 described using concave functions (Kuhn and Tucker, 195 1 ; 

McCormick, 1983) . It wil1 be seen that water resources networks descnbed in Chapter 3 fail 

both criteria. Hence, the existing Non-LP algorithms cannot guarantee fmding a global 

minimum for ei-ther one of the two problems. Some special cases of Non-LP algorithms that 

have been applied to water resources networks are outlined in the following. 

2.7 Linearly Constrained Programs 

There is a large class o f  Non-LP programs which have iinear constraints and non-linear 

objective function. They include guudraticprograms if the objective function is quadratic, 

which is a sub-set of a larger class of convex problems described by an objective function 



that is concave and coIlStraints that are convex. Of particular interest is a special case of 

convex prograrnming where one additional assumption is valid, Le. where the constraints and 

the objective are represented by separablefimctiom, which means that they can be broken 

down into a finite number of individual linear functions. Separable programrning @anzig, 

1963) was used in river basin allocation models mentioned in section 3.1.5 with a restriction 

that the decision time step be long such that the non-linearities related to river channel 

routing can be approxirnated with Iinear functions. Additional Iinearization of non-linear 

functions related to hydro power, reservoir and weir outflows is typically handled using an 

iterative process built into the model. Limitations and possible errors related ro using 

iterative procedures are demonstrated in Chapter 3. 

2.8 Other Non-Linear Search Methods 

There is a large number of non-linear optimization algorithms which fa11 into the category 

of noncovexprogramming and they are usudy  much more difEcult to solve. As mentioned 

earlier, most of them were developed for a specific class of problems. At this point, there 

seems to be no specialized algorithm for solving non-linear network flow problems for any 

type of decision variables and non-linear arc bounds. The most generd classification of non- 

linear search methods is on direct search whrch require only the objective fuaction values 

and gradient search methods which require estimates of the partial derivatives. The oldest 

direct search method is known under a variety of names (pardel axis rnethod, univariate 

search, etc.) has been attempted by many researchers in a large nurnber of variations. The 

basic idea was to fix al1 coordinates except for one, which is varied in the direction of the 

axis by a smdl positive and negative change. The point with a better value of the objective 

f ic t ion thus becomes the starting point for the evaluation with respect to another variable, 

which is evaluated paraIIel to its coordinate axis. The search progresses in this fashion until 

no M e r  improvement in the value of the objective function can be found (Kowalik and 

Osborne, 1968; Schechter, 1968; Ortega and Rheiboldt, 1967). Improvements of this 

strategy were due to Hooke and Jeeves (1 96 1) who introduced the direct pattern search steps 



which were not pardel to the coordinate axis, as well as Rosebrock (1 960) who introduced 

a strategy of rotating coordinates. Both improvements were aimed at reducing the limitation 

on the nurnber of search directions. A combination of Rosenbrock's ideas were expanded 

by Swan (1964) and later by Box, Davies and Swan (1 969). Nelder and Mead (1965) 

proposed the so cailed 'simplex' search strategy (which has nothing to do with simplex 

method of linear programming). This strategy evaluates the objective function at n + l  corners 

of the polyhedron and moves in the most promising direction accordingly, where n is the 

nurnber of variables or the dimension of the search space. 

In gradient search the partial derivatives of the objective function are evaluated at each step 

of the search in order to determine the best search direction for the next step. Kantorovich 

(1 943, Levenberg (1 944) and Curry (1944) are considered the onginaton of the gradient 

strategy. A variant of this strategy is known as the steepest descent (for maximization: 

ascent) method (Brown, 1959). Other authors who investigated this strategy and its 

convergence include Goldstein (1 962), Ostrowski (1 967) and Wolfe (1 969, 1 970, 1 97 1). 

The gradient strategy is of local character and it cannot distinguish between the global and 

local optkuuns. To increase chances of finding a global optimum, it is necessary to start the 

search fiequently fiorn various initial values of the decision variables and compare d l  

optimums found in this repetitive process (Jacoby, Kowalik and Pizzo, 1972). The method 

of conjugate directions (Powel, 1962; Fletcher and Reeves, 1964) aims to speed up the search 

by evaluating the second order partial derivatives. These methods use the values of the 

objective fûnction gathered in the search process to estimate the d u e s  of the partial 

derivatives numerically, and as such they are considered Quasi-Newton methods. They d a e r  

from the pure Newton strategy (Householder, 1953; Goldstein, 1965) which requires no 

explicit values of the objective function, but it does require evaluation of the first and second 

order derivatives, a task that ofien requires a considerable effort. Very few algorithms can 

determine the fvst and the second order partial derivatives 11umerically using the trial and 

error approach (Wegge, 1966). The approximation errors that accumulate in the process 



often cancel out the advantages of the method which are apparent when the partial 

derivatives are known. Efforts were focussed on ways to estimate second partial derivatives 

based on the values of the objective function obtained in the previous steps (Brown and 

Dennis, 1 972; Gill and Murray, 1972; Fletcher and Powel 1963). 

It is recognized that often times the objective fùnction may be too complex for derivation or 

it simply may not have derivatives for al1 values of the decision variables. Since dl of these 

methods move through the feasible region in a step-by-step fashion, it is conceivable that 

their chances of finding a global optimum in problems which are riddled with local optima 

are srnall. The efforts in this research will exploit a new generation of evolutionary search 

methods (Michalewicz, 1994), which tackle the search process fiom all directions wiùiin a 

feasible region. Even though there is no theoretical proof that they always converge to a 

global optimum, the current state of the art confirms that they are capable of finding much 

better local optima than the standard methods, and also that they have the capabiIity to find 

the global optimum in many problems, given the appropriate setup of convergence 

parameters. They are addressed in Chapter 5 in more detail. 

3.9 Dynamic Programming 

Dynarnic Programming @P) offers possible advantages over other search methods since it 

is not affected by the shape of the objective fùnction. DP requires discretization of the 

problem into a f ~ t e  set of stages in the search process. At every stage a number of possible 

conditions of the system (states) are identified and an optimal policy is identified at each 

individual stage given that optimal policy for the next stage is available (Belman 1957; 

Bersekas, 1987; Sniedovich, 1991). In short, the main features of DP approach are: 

O DP approach works with a finite nurnber of states (possible outcornes). Therefore, 

the accuracy of the solution is dehed  by the initial discretization of the problem. 

DP applications are not general, each is developed for a specific problem and if 



something is changed in the configuration of the problem the program coding must 

also be changed and tested. The entire process of developing a DP application 

requires considerable experience and judgment, and it is usuaily problern specific 

rather than generd. 

DP applications are unially more computationally expensive than other methods due 

to slower execution. 

In closing, most researchers have been looking for new approaches which would combine 

efficiency and ability to fkd  the global optimum. Evolurio~a?y Programrning approach is 

proposed in this research as it seems to hold out a promise to achieve both. As a topic of 

speciaI interest it is reviewed in a separate chapter. 



3 WATER RESOURCES NETWORKS 

Constraints related to water supply are associated with existing physical paths, such as 

canals, rivers, pipelines, as well as control structures which regulate the flows such as dams, 

weirs or pressure valves in pipelines. The problems of water supply can be viewed as 

network programrning, since the upper bounds, lower bounds and arc costs have a tangible 

real world representation in water supply networks. They represent design canal flow limits 

or reservoir storage capacities. 

1 Network Representation of River Basins 

A centrai unif of water resources analysis for any region is the river basin, which comprises 

al1 natural watercourses and man-made structures within the boundary of a given watershed. 

Nodes in a river basin network represent the locations in the river where flow is joined or 

split, such as a confluence or a weir. These can be represented as the transhipment nodes. 

Reservoirs are also nodes in river basin networks, and they can act either as sources or as 

sinks, depending on their current mode of operation (refill or release). Hence, in a 

circulatory network representation at least two arcs with opposite orientation are added to the 

system, comecting the reservoir with the system balance node. The sum of flows in these 

two arcs represents reservoir release or refill, depending on its sign. Source nodes represent 

locations on the boundary of the modelled region where water is made available to the 

system (inflows), and dso  at the locations where water is lost to the system (e.g. evapo- 

transpiration trom irrigated land or other consumptive use). Figure 3.1 shows a schematic 

representation of a water resources system with typical components which are discussed 

below. Modelled region is a part of the basin being studied, and it can include the entire 

watershed or parts of it, according to the desired objectives. 



BOUNDARY OF MODELLED REGlON 

Figure 3.1 Network Representation of a River Basin 

Syrnbols used in Figure 3.1 denote the following: 

inflow (flow in the river or canal on the boundary of the rnodelled region); 

stream (river segment between the two nodes); 

reservoir ; 

diversion canal; 

consumptive use node (location with significant losses of water to the system 

such as evapotranspiration on irrigated blocks); 

return flow channel; 

hydro power channel; 

municipal and industrial diversion; and, 

outflow fiom the system at the point where the modelled region ends. 

Before each of the above components is discussed, it should be mentioned that optimal flow 

calcuiations in water resources networks are associated with one or more incremental time 

steps, and that estimates of al1 demands in the system, including crop demand on irrigated 



land and hydro power demand for ail hydro power plants in the system should be available 

and converted to the equivalent water requirements (volumetric or flow-equivalent) within 

a given time step. Hence, the following review is restricted to the detemiinistic approach. 

Figure 3 -2 shows a circulatory network corresponding to the system depicted in Figure 3.1. 

The new node added to the system is node B (system balance node). The flow in arcs 

oriented fkom node B to a source node in the system represent intlows into the system, while 

the arcs oriented towards node B represent losses (flows out of the system). Lncrease of 

storage in reservoirs is considered as a loss within a given tirne interval, while reduction of 

storage amounts to extra inflow for a given t h e  step. Each of the arcs in Figure 3.2 has the 

upper bound, lower bound and a cost function representing the priorïty of allocating flow to 

it. The cost function can be associated with economic cost-benefit analysis, representing the 

cost of deficit that each water user would suffer for various range of shortages. This fiinction 

is often difficult to evaiuate, since it is hard to attach a dollar value for lost fisheries or 

recreational and aesthetic aspects of low flows in natural streams. The conflicting hterests 

of consumptive (industrial and agicultural users) and in-stream users (other social groups 

representing environmental and other water use concerns) are resolved through a political 

process for which no final formula exists. Certain reasonable assumptions can be made in 

general to address this issue. It will be assumed in the following that a sharing policy 

between al1 components exists (including possible equal sharing as a subset of the entire 

policy). The primary goal here is to show the extreme degree of non-linearity of the arc 

flows and bounds. 

inflow nodes in Figure 3.2 are labelled with 1, reservoirs with R and the consurnptive use 

nodes with C. There is one node without any label in Figure 3.2, and this is a simple 

transshipment node. Given arc bounds and costs, the problem of optimal water allocation 

in the basin can be stated using expressions (2.5), (2.4) and (2.3) or in more general terms 

using expressions (2.6) - (2.8). The followulg is a discussion related to the arc bounds for 

each of the component types depicted in Figure 3.2. Inflow arcs have their upper and lower 

bound set equal to the value of flow entering the modelled region. They represent 'hard 



constraints' in this manner, i.e they impose a certain i d o w  into the system. 

Figure 3.2 Circulatory Network Representation of a River Basin 

3.1 . l Flow Conveyance Constraints 

An arc representing a natural channel that does not have a reservoir as its upstream node has 

the lower bound equal to zero and the upper bound equal to the maximum flow that can 

possibly be routed through a channel, which is nonnally a large user-defined number. The 

dificulties exist in the differences between the inflow into the channel at its tail node and 

the outflow at its head node, which can be caused by several factors: 

for short tirne intervals and longer river segments, the channel routing effects may 

result in a difference between i d o w  and outfiow for a given channel, especially 

during periods when variations of flows are experienced; 

losses to seepage can play a significant role for some streams; and, 

local runoff dong the reach can add signincant flow within a given time step. 



It is obvious that a cornbined effect of the above three factors results in a nonlinear 

relationship between the flow in the channel at its tail node and at its head node. This 

functional dependence between the d o w  and outfiow into an arc representing a naturd 

Stream can be convex for some time intervals, and concave for others, depending on the 

hydrologie conditions in the basin. The effects of routing c m  be minimized by choosing 

longer simulation t h e  steps. However, this reduces the accuracy of the analysis since the 

degree of naturd flow variation may be drastically altered or completely lost in the process 

of averaging over weekly or monthly time steps. Mathematicdy, the flows at the upper and 

lower end of an arc (i j) representing a natural a e a m  can be expressed as x, and ~,(x,,,v,) 

respectively: 

where y, represent channel outflow at its downstream end and function f ,  represents the 

effect of hydroiogic channel routing for a given time step. Function fi has two arguments - 

upstrearn infiow x, and the initial conditions in the channel represented symbolically by the 

initial volume V,. Linear programming allocation models have traditionally resorted to 

ignoring funetion f ,  and assuming that y, = xij. This can only be justified by ~ ~ c i e n t l y  

extending the length of the simulated time step, which d e s  out the use models based on 

linear programming to assist in real time basin operation. 

Non-linear constraints aiso exist on diversion canals. While the flow variation may not be 

as significant here, the maximum canal capacity is equal to the design flow rate provided that 

canal is in good operating condition. The lower bound is usually greater than zero for 

primary and secondary canals, since most of them require certain level of flow for successful 

operation of gates. However, there is ofien a non-linear relationship between the inflow into 

a diversion canal and the flow in the originating Stream. This relationship defines the 

maximum flow that can be diverted. There are two types of diversions: controlled (gated) 

and uncontrolled. They impact the upper bound and the flow in a diversion canal, 

respectively. Both are examined in the foliowing. 



The relationship between flow Q and depth d in a river cross section is usually approximated 

using an exponential h c t i o n  of the form: 

where d is depth, Q is flow, a and p are parameters determined by calibration. When 

elevation in the river is below the invert of the diverting weir, the diversion is not possible 

and the flow in the diversion canal equals zero. Hence, there is a minimum threshold flow 

in the river which must be available to operate a diversion canal. This is equally the case for 

gated and unregulated diversions. Once this elevation is above the invert, the diversion is 

possible but there is always the upper bound that c m  be diverted as a h c t i o n  of the flow 

in the river. This bound is dynamic. The gate operator c m  divert less or equal to the upper 

bound within each discrete time interval, depending on the way the gate is operated. 

Consequently, the mode1 has to determine the upper bound on the diverted flow as a function 

of the overall solution for the whole system, since the flow in the stream supplying the weir 

is part of the overail solution. This can be expressed mathematically as: 

where u, is the flow bound of the diversion canal and x, is the available flow in the 

originating stream which supplies the weir. Similar constraints exist for ungated weirs. The 

difference is that innow into this canal always equals the upper bound, so instead of the 

upper bounds, it is the value of the diverted flow that must be fixed as a fimction of the flow 

in the originating stream, hence 

where x, is the diverted flow into the weir and the nght hand side is the sarne as in (3.3). 

Note that both x, and x, are decision variables while f, is a non-linear function which can 

usually be approximated with a polynomial. 



The down side of using an iterative procedure with "successive Iinearization" of the above 

constraint functions are best demonstrated with an example. Consider a simple system 

depicted in Figure 3.3 with one reservoir, one imgation block, one diversion channel and two 

river reaches. This example is based on a real-world constraint which exists on several weirs 

in the South Saskatchewan river basin in Southem Alberta. The system is solved with the 

WRMM mode1 which relies on the Out-of-Kilter network LP solver and successive 

iterations. Solutions are denved over weekiy time steps and iterations within one time step 

is presented in the folIowing. 

River Flow 

1 Img ation 

Ocean 

Figure 3.3 Sarnple basin modelling system 

Note that there are no restrictions imposed on reservoir outflow, but there are restrictions on 

the diversions fkom the river at the weir. Maximum diverted flow is a b c t i o n  of the flow 

in the river according to the relationship depicted in Figure 3.4 below. 
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Figure 3.4 Maximum diversion vs river flow 

As stated earlier, linear programming algorithms require that al1 upper bounds on flow be 

specified as fixed values for each sirnulated tirne interval. The above constraint is just one 

of many examples when this is not the case. To apply linear programming solvers with non- 

linear constraint functions that look like the one in Figure 3.4, it is necessary to go through 

the foliowing iterative steps : 

a) assume a set of fixed values for river flow and calculate the corresponding diversion 

flow limit; 

subrnit the problem to the solver using the values of the upper bounds for diversion 

calculated in step a); 

check if the solution flows derived in step b) comply with the function in Figure 3.4 

within a given tolerance Iimit (e.g. +/- 1 %). 

Ifthe check conducted in step c) failed, reset the upper bound of diversion flow based 

on the river flow obtained fiom the solver in step b) and repeat steps b) and c). 

If the check conducted under c) was satisfactory, declare the problem solved and 

move on to the next time interval. 



Assume that the reservoir is full, i d o w  is zero and the irrigation demand is 5 m3/s. There 

is a small penalty (cost factor) for storage deficits, and a large penalty for irrigation deficits, 

which describes an allocation policy in this case (Le. storage should always be released for 

irrigation). The best solution for a time step is easy to see: the reservoir release should be 

10 m3/s, with 5 m3/s being diverted and 5 m3/s being spilled into the oceaa The initial 

setting of the bounds is therefore 10 for the river channel below the reservoü, 5 for diversion 

and 10 for spills. However, since the linear programming objective function is to minimize 

the total system deficit (Le. deficit in irrigation supply and deficit in storage), the LP denved 

solution for the first iteration is 5 m3/s to river flow, 5 m3/s to diversion canal and zero to 

spill. Solvers based on linear programming are unable to "see" that the flow in the river m u t  

be higher than 5 m3/s to allow for a diversion of 5 m3/s. Al1 they see are the fixed bounds of 

10 and 5 m3/s for each arc in the network. Naturdly, with this kind of problem 

representation spilling into the ocean seems unnecessary and detrimentai to the objective of 

conserving storage. Yet this is exactly what is needed to arrive at the best possible solution. 

This will become apparent as the next few iterations are investigated. With the first solution 

derived by the model, the process proceeds to step c) where flow in the diversion canal is 

checked with the flow in the river. The mode1 k d s  that the flow in the river derived in step 

b) was 5 m3/s, and it h d s  that for this kind of flow the maximum possible diversion is 3 

m3/s. The problem is then sent back to step b) with the new lirnit on diversion flows set to 

3 m3/s. The new solution fiom the Out-of-Kilter algorithm then becomes 3 m31s to river 

flow, 3 m3/s to diversion canal and zero to spill. Again, a check is made and the river flows 

of 3 m3/s are found to correspond to 1.933 m3/s. The process continues in this fashion fiom 

one iteration to another, as depicted in Table 3.1 until the final convergence is achieved only 

when the flows in the river channel and the diversion canal have both reached values close 

to zero. Hence the linear programming with ccsuccessive linearization" resulted in a solution 

with no storage release and 100% deficit for irrigation block while the storage was fuli and 

its cost factor was much lower than the cost of deficit at the irrigation block. 



Table 3.1 Results of 14 successive LP solutions 

The conclusion fiom the above example is the successive linearization may not work when 

flow constraints are non-linear, and in some cases it gives a solution which is far fiom 

optimal. 

3.1.2 Reservoir Outflow Constraints 

Reservoir out£iows are limited by the capacity of the outlet structure (which c m  be eidier a 

weir or an orifice, but with similar effects). Reservoir elevation H, detemiines the maximum 

possible outflow from the reservoir at each point during the given time period. Yet this 

elevation during the time period is also a decision variable resulting 

reservoir balance equation. For a given outlet and any reservoir elevation 

outflow capacity is an exponential function of H, i.e. 

us = aH,P 

fiom the overall 

the maximum 

where us is the upper bound on flow in the downstream channel while a and p are coefficients 



which depend on the type of outiet. Note that on most reservoirs there is usually more than 

one outiet structure - spillway for handling high flows and bottom outlet used in regular 

operation. At certain times both spiilway and bottom outlet may be operated simultaneously. 

Also, in addition to the nahual outfiow, there may be one or more diversion canals supplied 

by the same resentoir with their unique outlet structures represented by their own fünctions 

similar to expression (3.5). Additional Wiculty is that expression (3.5) shows the functional 

dependence for ody one point in thne when reservoir elevation equals H,. Within a 

caiculation time step (which c m  range in the order of days) Hr is not constant, and its value 

at the end of the calculation time step is part of the overall flow solution for the whole 

network. In the fist approximation, one couid infer that the average outflow capacity over 

a time step is the integrated average fiom the beguining to the end of the time calculation 

time step. If H, is expressed as the flow in reservoir arc x, for a given t h e  interval, then 

where T, and Te are the staaing and ending times for a given time interval and x, is the s u  

of Bow in reservoir arcs while $(&) represents the function on the right hand side of 

expression (3 S). Only fXx) at tirne Ti is known. The upper bound us can either be increased 

or decreased within a tirne interval, depending on the flow solution which may include 

reservoir refill or release. Expression (3.6) detennines the upper bound on the outflow. 

Depending on the downstream demands and the avaiiable runoff, the actual release may be 

less than the upper bound determined by (3.6) when the outiet structure is controlled by 

adjusting the gate openings. When there is no gate associated with the outlet structure, the 

above expression not only determines the maximum flow, but rather determines the actual 

oulflow &: 

where x, on the right hand side of equation (3.7) is the sum of £low in the reservoir arcs 



which represents the storage change for a tirne interval. Inflow into the reservoir is part of 

the overail flow solution for a given t h e  step, and it aiso impacts the storage change within 

a time step. Equation (3.7) is a non-linear constraht imposed on outflows fiom reservoirs 

which have ungated outiet structures. 

Consider a numencal example depicted in Figure 3.5 showing a simple system with one 

reservoir and two outflows. One outflow provides supply to a municipality with a maximum 

flow governed by reservoir elevation accordhg to the functiond relationship in Table 3.2, 

while the other outnow is a large capacity bottom outiet for irrigation supply, capable of 

completely emptying the reservoir within a week. 

- - - - -- -- - -- - 

Bottom Outlet 
(large capacity 

Municipal Demand 
l rrigation 
District 

Figure 3.5 Example of outlet structure flow limitations 

Assume that the bottom outlet flow limit is equal to the irrigation canal capacity of 50 m3/s, 

while the orifice outflow limits are a function of reservoir elevation as shown in Table 3.2. 

The example presented in Figure 3 -5 has the following cost factors: municipal demand is the 

most important, with a cost factor of 500 per lm3/s of deficit flows, foliowed by the irrigation 



block with a cost factor of 10 per 1m3/s of deficit flows, and finally deficit in reservoir 

storage is assigned a cost factor of 1 per 1m3/s of deficit in the units of fiow. Storage is 

converted to flow by dividing volume with the length of the time step, which in this case is 

assumed to be 7 days. 

Table 3 -2 Technical description of the reservoir out£low test problem 

VOLUME 
(1000m3) 

O. 
195-082 
406-260 
631 -603 
871.682 

1125.811 
1395 -449 

1679.896 
1978 -765 
2290.896 
2620.025 

2961,258 
3315 -754 
3682.611 
4059 -384 
4448.518 

ELEVATION 
(ml 

1653.540 
1654.230 
1654.920 
1655 - 609 
1656.299 
1656.989 
1657.679 

1658 -369 
1659.058 
1659.748 
1660 -438 

1661.128 
1661.818 
1662.508 
1663.197 
1663,887 

1664 - 577 
1665.267 
1666.000 
1668.000 

OUTFLOW 
(rn3/s 
0-000 
2-350 
3 -678 
4.954 
6.029 

6,977 
7.834 

8.622 
9.355 

10.044 

ELEVATION 
(ml 

l66O,OOO 
1661.225 
1662 -450 
1663.675 
1664.900 
1666.125 
1667.350 
1668.575 
1669.800 
1671.02s 

RESERVOIR INFLOW 12 m3/s 
MUNICIPAL DEMAND 7 - 5  m 3 / s  
IRRIGATION DEMAND 20 m3/s 
STARTING RESERVOIR LEVEL 1667 M 

PENALTIES PER l m 3 / s  FOR DEVIATING FROM IDEAL CONDITION: 
MUNICIPAL DEMAND PENALTI = 500 
IRRIGATION PENALTY = 10 
STORAGE PENALTY = 1 

The above is a demonstration of a mathematical program which has a linear objective 

fimction and non-linear constraints. The next few lines will examine the results of applying 

an LP solver to this problem in an iterative manner: 



a) the initial outflow capacity for orince outflow is set to the initial reservoir level of 

1667 m, which corresponds to about 7.5 m3/s. This capacity is equai to the municipal 

demand; 

b) the solution denved by the model results in an empty reservoir since reservoir storage 

and inflow are less than the sum of both municipal and imgation demand which get 

7.5 m3/s and 14-87 m3/s, respectively; 

C )  the model then calculates the average orifice outflow capacity based on time- 

integration of reservoir levels for the entire week by starting from 1667 m and 

calculating new elevation (and the corresponding maximum outflow) at the end of 

each day assuming steady state inflow of 12 m3/s and outflows iisted under b); and, 

d) the new outflow capacity of 2.85 m3/s obtained in step c) is checked with the 

assumed outflow capacity of 7.5 m3/s and since there is a large difference between 

the two the process is repeated fkom step a) assurning the outflow capacity of 2.85 

m3/s instead of the initially assumed 7.5 m3/s. 

The final solution renders municipal outflow of 2-85 m3/s, irrigation supply of 19.51 rn3/s 

with an ernpty reservoir which corresponds to deficit in storage of 10.359 m3/s. The 

objective h c t i o n  (total cost of deficit) of this solution is: 

Total cost = (7.5 - 2.85) x 500 + (20 - 19.51) x 20 + 10.359 x 1 = 2340.26 

Deficits are calculated in brackets as the difference between the stated target and the 

achieved supply. It is easy to see that the above solution is far fiom the best. A much better 

solution can be picked up manudly, by a s s i g  that the reservoir stays full during this time 

interval. This would result in 7.5 m3/s docated to municipal demand and 4.5 m31s to 

irrigation, without any storage deficit. The corresponding value of the objective function is 

then: 

Total cost = (7.5 - 7.5) x 500 + (20 - 4.5) x 10 + O x 1 = 155.00 



This is certainly a much better soIution in terms of minimizing the objective function than 

the one obtained previously. The iterative use of LP fails to deliver a high quality solution. 

This is because LP only takes into account the fixed value of the channel upper bound, be 

it 7.5 in the first iteration or 2.85 in the second, dong with the pricing vector, which irnplies 

that storage shouid yield to bothmunicipal demand and imgation. LP solvers cannot address 

a relationship between emptying storage for imgation and the resulting change of the limit 

on flow capacity for municipal supply. 

3.1 -3 Hydropower Flow Constraïnts 

The following discussion refers to hydropower plants which operate with variable head-flow 

combinations. For a given time interval, the net head H, is determined by subtracting fiom 

the upstrearn reservoir elevation the tail water elevation and the appropriate head loss across 

the plant. The relationship berneen the power and flow is given by: 

Ph = ~ & - Q - Y - v ~  (3.10) 

where Ph (MW) is the produced power, H,, (m) and Q (m3/s) are the average net head and the 

average flow over a time interval, y is the specific weight of water (9806 N/m3) and q, is the 

power plant efficiency factor. Hence, a specified demand for power over a given time 

interval cannot be converted to the units of flow without knowing the average net head, 

which is a h c t i o n  of the overall reservoir balance in the finai solution, since it depends on 

the average headwater elevation as well as the average tailwater elevation for a time step. 

Average headwater elevation is an integrated average between the starting and the ending 

reservoir level for a time step, while the tailwater elevation may be either a non-linear 

function of flow for the downstream channel or the result of the reservoir balance of a 

downstream reservoir which defines the tail water elevations by its lake level. 

Note also that Q, H, and 'ï), are mutually dependent, which means that if one of them is fked 

it determines a unique range of values for the other two. Assuming that the required power 

is known at the beginning of the t h e  step, the flow in reservoir arcs determines the average 



net head H,, over a time step, which in tum sets the £low requirement Q on the nght hand side 

of equation (3.10) such that desired power Ph can be generated. Therefore, if the power 

target is known, it is possible to setup an iterative scheme and use LP, although the dangers 

of doing so are similar to those addressed in Sections 3.1.1 and 3.1.2. 

More importantly, the hydro power target is ofien not known, and the hydro power plants 

rnay appear in the objective funcion in the following form: 

where the first summation is over dl time intervals while the second siunmation is for al1 

hydro power plants in the basin. The above term rnay appear as ody one item in the 

objective fûnctions, where other items rnay be related to other water management objectives, 

such as irrigation, industriai and municipal water use, riparian flow requirements, etc. With 

complex non-linear relationships between head and flow for various hydro power plants 

withing one time step, as well as across multiple time steps, it is difficult to resort to the use 

of Iinear programming. Previous efforts to apply successive linearization to this problem 

have been attempted (Sun et al., 1995) but they have gone on largely without comparing the 

results to global optimums, shce a reliable non-linear solver with high likelihood of finding 

a global optimum for these problems has yet to be established. 

3.1 -4 Return Flows fiom Irrigated Blocks 

Return flows associated with irrigation or other consumptive use are usually expressed as a 

percentage of gross diversion within a time internai, although a constant retum flow factor 

rnay be added to the percentage. The value of actual percentage rnay Vary during the season, 

but the variation rnay be considered known as it is based on empirical observations. There 

rnay be one or more return fl ow channeIs associated with a single irrigation block. Each 

channel retums a portion of the flow diverted into a block at one or more dif3erent points of 

retum in the system. Irrigation r e m  flows are represented by arcs with both upper and 



lower bounds set to the same value equal to the fraction of the gross diversion, where gross 

diversion is part of the overail network flow solution. This can be expressed rnathematically 

as: 

u, = 1, = f,.x, (3.12) 

where u, and 1, are the upper and lower bound of a return flow arc, respectively, f, is the 

(constant) fraction of gross diversion X, that is returned to the systern. Constraint (3.12) is 

linear, however it cannot be included in the minimum cost flow problem as formulated in 

with expressions (2.3), (2.4) and (2.5), especiaily since more than one return flow channel 

c m  be associated with the same irrigation block. Consequently, it is considered as a non- 

nehvorkcons~aint and as such it requires more general solution algorithms (McBnde, 1985). 

The use of standard network solution algorithms such as the Out-of-Kilter algorithm still 

requires the use of iterations in addressing the retum flow constraints. 

3.2 A Review of Network Models in &ver Basin Management 

A large number of various cornputer modeis have been developed since the early 1970s in 

an effort to aid river basin planning and management- A comprehensive review of these 

developments was compiled by Yeh (1 985). The most widespread approach was based on 

using the network representation as depicted in Figure 3.1 and solving the correspondhg 

linear minimum cost flow problem. The models wbich utilized these concepts are SIMYL,D 

(Evanson and Mosley, 1970), ACRES (Sigvaldason, 1976), MODSIM3 (Labadie et al, 

1986), WASP (Kucera and Dimnet, 1988); DWRSM (Chung et ai., 1989), CRAM 

(Brendecke et al., l989), KCOM (Andrews et al, 1992) and WRMM (Ilich, 1993). Non- 

linearities associated with the bounds were handled by using longer computational time steps 

and by applying successive iterations within a time step if necessary. As stated eariier, this 

is done by initially guessing the bounds, solving the minimum cost flow problem, evaluating 

the network flow soIution against the assumeci bounds, re-setting the bounds to new values 

based on the previous solution, and re-iterating ifnecessary until the assumed bounds and 



the network flow solution were within a reasonable tolerance Limit. This process is repeated 

simultaneously with reservoir outûow, irrigation return flows, hydro power component and 

in some cases the channel time lag, which is also a function of the overall flow solution 

(Alberta Environment, 1995) which creates difficulties in the convergence process, requiring 

sophisticated convergence algorithms. It should be noted that each tirne an iteration is 

performed, a slightly different problem is submitted to the optimizer resulting in a new 

solution that becomes the starting point for the next iteration. There is no guarantee that this 

process will result in a convergence to the global optimum, as demonstrated by the previous 

numerical examples- The problem being solved is non-linear in ternis of its bounds, and the 

guessing process solves successive linear approximations of a non-linear problem. 

Kucera (1 988) used a prima1 simplex method to address the multi-period planning procedure 

for a rnulti-reservoir s ystern. Problems involving network and non-network linear constraints 

have been solved efficiently for long planning perhds using the EMNET solver, which is 

ciaimed to be the fastest embedded generalized iinear programmuig solver available (Sun et 

al., 1995). However, if iterations are employed within any of the above models their effect 

on the quality of the final solution has yet to be addressed. The non-linear constraints c m  

be ignored by avoiding iterations, but with similar effects on the solution quality. 



4 PROPERTIES OF FEASIBLE CIRCULATIONS 

The problem of finding a feasible circulation in the network has two importaut aspects. 

Firstly, if it can be proven that no feasible solution exists for a given ~problem, the search for 

an optimal solution would cease. Secondy, since an optimal solutiorn is necessarily feasible, 

it is instructive to gain insight into the properties of feasible solutions. This may help create 

algorithms which are capable of conducting a search exclusively throrugh the feasible region. 

Some algonthms converge to an optimal point fiom both feasible and infeasible region of 

the search space. This may work well in certain cases, but in many instances this approach 

fails to find global optimum and lacks reasonable efficiency. This research will attempt to 

develop an approach to conduct search exclusively through the feasiible region. 

The theory of graphs defines feasible flow as a vector x, which satisfies constraïnts (2.3) and 

(2.4). The property of feasible flows (circulations) are examined fwst for unbounded 

circulations, then for problems with linear bounds where 1, and uij m e  constant for al1 arcs 

(i j). The discussion is then extended to problems with non-linear bounds. Note that non- 

linearity is here concemed only with the bounds. The shape of the o*bjective functions has 

no impact to the issue of feasibility. 

4.1 Unbounded Networks 

In general, for unbounded networks (1, = O and uij = + m) the circulation vector is subject to 

general vector operations such as addition and scaiar multiplicatiom. For example, if a 

rational number is denoted by g and a feasible circulation vector by x,, then: 

g(x,) = ( g ~ ) ~  (4-1) 

Hence a new feasible circulation vector c m  be generated by scalar multiplication of each 

element of x,~.  Similarly, if x, and y, are two feasible circulations while g and Â. are two 

rational numbers, then: 



is also a feasible circulation. It is easy to see that the transfomations do not violate 

conditions (2.3) and (2.4) for unbounded problems when (1, = O and uij = + a). The above 

vector operations allow generation of new feasibIe solutions as a linear combination of two 

or more existing feasible solutions. Similar operators can be applied for bounded problems 

provided that maximum and minimum flows in the network are known, as discussed in the 

following. 

The other important p ropeq  of circulations, known as theflow decomposition principle, 

states that any circulation can be decomposed into a finite set of directed cycle flows. Let 

w be a set of al1 directed cycles in the network, and let the decision variable be flow dong 

cycles f(w). By introducing a mapping function a, which is equal to 1 if arc (i j) is contained 

in a given cycle and O otheMse, the flow in arc (iJ) c m  be expressed as a sum of al1 cycle 

flows w ' which contain arc (i j). Then 

Flow decomposition principle is based on thefirndarnerztal cycle theorern which states that 

each set of directed cycle fIows has a unique representation as arcflows xv Conversely. 

every circularion x, can be represented (although not necessorily uniquely) as a set of 

directed cyclej7ows at most rn directed cycles. where rn is the total number of arcs in the 

network. A deductive proof of this principle is as follows: Starting fiom a given circulation 

xi, , find an arbitrary directed cycle and reduce its flow such that at least one arc flow on the 

cycle becomes zero. Afier repeating this m times, each arc flow has been reduced to zero and 

circulation has been decomposed into m directed cycle flows, represented by a flcw 

reduction on each of the m cycles found in the process. The Augmenting Cycle Theorem, one 

of the most important theorems of network flows, extends this observation to the cycles 

which are not necessady directed (Ahuja et al, 1993). A cycle w (not necessarily directed) 

in network G is called an augmenting cycle with respect to flow x, if by augmenting a 



positive amount of flow f(w) along the cycle the flow x, remains feasible. The augmentation 

increases the flow on f o m d  arcs in the cycle and decreases the flow on reverse arcs, so w 

is an augmented cycle in G if x, c uij for every forward arc (i j) and x, > 1, for every reverse 

arc. The mapping function C(, can also be defined for cycles that are not necessarily directed, 

by assigning values of 1, -1 to the arcs which belong to the cycle with forward and reverse 

orientation, respectively, or assigning zero for arcs which do not belong to cycle W. 

Similarly, the usual way of handling lower bounds is the representation of the entire network 

is by the use of residual network. In residual networks each arc (i j) is replaced by two 

paraltel arcs with opposite orientation. The arc with the same orientation as the arc in the 

original network has the upper bound equal to uij - xij, while the arc with opposite direction 

has the upper bound set to x, - 1,. Both arcs have lower bounds set to zero. This 

representation is consistent with representing variable x as a sum of two other variables x' 

and x", which are easier to handle in terms of bounds since lower bounds are zero. With this 

representation, each augmenting cycle w in the original network G with respect to flow x, 
corresponds to a directed cycle in residual network G', and vice versa. Hence, fundamental 

cycle theorem can be applied on residual networks to account for lower bounds on arc flows. 

This opens a possibiiity of generating any feasible fIow in the network by assigning flows 

along the augmenting cycles. Most of the existing network algorithms utilize this theorem 

in some form. Several algorithms have been developed with the sole purpose to identie the 

fundamental cycles in the network (Doms and Chen, 1981). Once identified, the 

fundamental cycles can becorne building blocks for generating various feasible flows through 

the network. 

4.2 Circulations with Linear Upper and Lower Bounds 

While circulations in unbounded networks are guaranteed one simple starting feasible 

solution (zero flows on all arcs), that is not the case for networks with positive lower arc 

bounds. It is imperative to first establish that a feasible circulation exists for a given network 

pnor to conducting a search for an optimal circulation. lnfeasible solutions imply that 



circulation vector which satisfies both (2.3) and (2.4) cannot be found. Expression (2.4) can 

be re-written as: 

Arc flows on the left side of the above equation represent al1 incoming flows into node i 

while arc flows on the right hmd side represent al1 outgoing flows fiorn node i. Add 

condition (2.5) to both sides of equation (4.4) to give 

Expression (4.5) is a condition for feasible flows through node i, and it States that the s u m  

of the lower bounds of incoming arcs into node i must be less or equal to the surn of outgoing 

arcs for the same node. Ifthis condition does not hold for any node in the network, there can 

be no feasible flow. Note that any connected group of nodes labeiled as a set of nodes S in 

a given network forms a subgraph which c m  be viewed as a single node in relation to the rest 

of the network. Let S be such a set (also called a subgraph on N) and also define a subgraph 

S', such that S' = N \ S where N is the set of d l  nodes in the network. Arcs incident to nodes 

(S,S1) and (S1,S) are said to form a cut. The above expression can be written for subgraph S 

instead of node i as: 

The existence of a feasible circulation in a network requires 

+Y sr) (4-6) 

that this relationship holds for 

al1 possible cuts (S,S1) in the network. Conversely, the existence of one or more cuts (S,S1) 

for which 

is sufficient condition for infeasibility. This implies that al1 cuts (S,S1) have to be examined 

using expression (4.7) to determine if the network has a feasible solution or not. This task 



is included implicitly in most network dgorithms associated with either finding the 

maximum flow through the network or iinding the minimum cost flow. The net flow v 

across a cut (S',S) is a sum of ail incoming and outgoing flows for (S',S). This is expressed 

mathematically as: 

Since each of the terms on the right hand side of (4.8) is bounded, it c m  be replaced with arc 

bounds provided that the equation changes into inequality 

Expression (4.8) is also known as the Mmcimurn-Flow Minimum-Cut Theorern (Ahuja et ai., 

1993). One important conclusion of this theorem is that every cut (S,S1) in the network has 

a maximum and minimum net flow v associated with it which can be found by inspecting al1 

of its cuts (S,Si). 

Consider now a circulatory network with a cut (S,S1) which contains only the arcs incident 

to the system balance node. In other words subset Sf contains only the system balance node 

while subset S contains all other nodes in the network, For this case the upper and lower 

bounds on v are defined by two specific (maximum and minimum) circulations that can be 

realized in a given network. Denoting those two circulations by Xmin and Xmax, it is 

O bvious that: 

Therefore, due to flow constraints associated with cuts, the actual flows on some arcs may 

never reach their upper or lower bound. The most they could ever reach is determined by the 

value of Xmin and Xmax on every arc. Finding the two circulations (Xmm and Xmax) is 

of paramount importance, since they explicitly define the limits on feasible flows in each arc. 



Various algorithms are available for fïnding feasible flows Xmïn and Xrnax, which can be 

viewed as a set of two maximum flow problems for a network with the same incidence 

mapping but different arc bound structure, or it c m  be viewed as set of two minimum cost 

flow problems in the same network which differ only in terms of the sign of the arc costs. 

Whichever approach is used, feasible circulations Xmin and Xmax can be easily obtained 

using the existing network flow algorithms which are capable of starting with zero flows for 

aII arcs, and are dso  capable of ident-g infeasible solutions. 

Assurning that Xmin and Xmax are availabIe, the generation of other feasible solutions in 

a bounded network can be conducted in several ways. One way is to use linear combinations 

of Xmin and Xmax and the transformations of the circulation vector stated in (4.2). For 

example, a new feasible circulation X can be determined as 

= g(x- ) + +mi, ) (4.1 1) 

provided that the following conditions are attached to f and A: 

g + h = l  and O ~ g ~ l ,  O S A  s 1 (4.12) 

Moreover, any circulation X obtained using expression (4.11) c m  be used as a basis for 

generating additional feasible solutions instead of the initial Xmax and Xmin. Another way 

of generating a feasible flow X is based on using the flow decomposition theorem (4.9, 

which allows subtraction of a directed cycle flow fiom maximum circulation Xmax or 

addition to minimum circulation Xmin. Let X(c) and X(p) be two directed cycle flows. 

Then 

= g ( L  - +)) + + +)) (4.13) 

is also a feasible flow in the same network, provided that the cycle fiows X(c) and X@) are 

within the limits related to arc bounds. For example, if arcs 2,3 and 7 belong to cycle c, then 

the largest possible cycle flow X,=(c) on cycle c is d e t e d e d  by: 



Cycle flow X(c) can have any value between zero and the maximum X(c) defined by (4.14). 

4.3 Tucker's Representation of the Circulation Space 

The basis of Network Simplex method is the relationship between maximum spanning trees 

(also known as rnauimum forests) and the incidence matrix. Denote with m the number of 

arcs in a network and with n number of nodes. Equaiity constraints expressed by condition 

(2.3) represent a set of continuity equations written for every node in the network. It is 

obvious that for a connected network, m r n - 1 since each node must be connected to 

another node via at least one arc. Typically, the number of arcs is greater than the number 

of nodes, partïcularly in the case in circulatory networks. This leads to an observation that 

equality constraints (2.3) are represented by a system of equations with an rn x n matrïx 

which has rn-n+l columns that are linearly dependent and can be expressed as a combination 

of other columns, while n-I columns are linearly independent. It is known fkom graph theory 

that the search for linearly independent coiumns in an incidence matrix is equivalent to the 

search for a maximum forest in a network (Ahuja et al, 1993). There is a finite number of 

maximum forests in any network and each of them is a basis for the minimum cost flow 

problem in the Network Simplex algorithrn, i.e. each one defines a maximum spanning tree. 

The pivoting operation in the Network Simplex method is equivalent to moving fiom one 

maximum spanning tree to another. By denoting the incidence matrix with E and a 

circulation vector with X, circulation c m  be expressed as 

where E is an rn x n matrix while X is a column matrix of size m. This system of equations 

cm be solved for some of the variables X in terms of the others, and written equivalently, for 

various subsets of arcs F c A as: 



Arcs which belong to subset F form a maximum forest while a11 other arcs excluded fkom the 

maximum forest are represented by A \ F where A is the set of al1 arcs in the network. 

Equation (4.16) is known as the Tucker's representafion of circularion space (Rockafellar, 

1984). The size of matrix EF on the left side of equation (4.16) is n-l, and the size of matrix 

EAjF on the right side of equation (4.16) is m-n+l. For any arbitrary choice of arc flows on 

the right hand side of equation (4.16), the arc flows on the left side can be recalculated since 

it is known fiom graph theory that the left hand side ma& in (4.1 6) can be transformed into 

a triangular matrix and solved using direct substitution. Since the choice of arc flows on the 

right hand side of (4.16) is arbitrary, it can include integer values for some and mutual non- 

linear relationships for others. This gives way to generation of feasible solutions which 

would include mixed integer non-Iinear feasible solutions for m+n-l decision variables. In 

other words, if there is a non linear dependence between two arc flows on the right hand side 

of equation (4.16), for any selection of the value of independent variable the dependent 

variable codd be recalculated. 

So far the above analyses excluded constraintç on arc bounds, however constraints are easy 

to include provided that Xrnin and Xmax circulations are known. If the appropriate Xmïn 

values are input on the right hand side, the recdculation of the left side will yield the 

remaining Xmin values thus completing the entîre minimum fIow vector. The case is the 

same if Xmax values are input on the right side of equation (4.16). Consequently, any set 

of arbitrarily chosen arc flows between Xmin and Xmax for any given arc would yield a 

feasible solution by recalculation of the remaining elements of the circulation vector on the 

nght hand side of equation (4.16). A conclusion that should be emphasized at this point is 

that any feasible circulation X can be created using the knowledge fiom the network flow 

theory. 

The above conclusions can be used as the basis for building new search dgorithms for non- 



linear network optimization that utilize various contemporary optimization strategies. When 

arcs bounds have finite values, the total value of feasible circulation is also bounded by 

maximum and minimum values. 

The operator stated in expression (4.1 1) c m  oniy be used to generate a new feasible solution 

for a problem with linear flow bounds and non-linear objective function. Several rcsearchers 

have taken advantage of this operator on problems with linear bounds and non-linear 

objective fünctions (Grafenstette, 1987; Michalewicz 1994) . 

For non-Iinear flow bounds, flows Xmin and Xmax becorne fiinctions of the individual arc 

flow values, hence it is necessary to keep track of them and update them in each step of the 

search process. This results in combination of network fiow theory with the new search 

strategies. No previous research publications could be found that proposed the same concept. 

This approach will be explained iil more detail in the foliowing sections. 



5 EVOLUTION PROGRAMS 

5.1 Introduction and Literature Review 

Evolution programs are probabiliçtic optimization algorithms based on similarities with 

biological evolutionary process. In this concept, a popuZation of individuals, each 

representing a search point in the space of feasible solutions, is exposed to a collective 

Ieaming process which proceeds fiom generation to generation. The population is arbitrarily 

initialized and subjected to the process of selection, recornbination and mutation such that 

the new populations created in subsequent generations evolve towards more favourable 

regions of the search space. This is achieved by the combined use of thefimess evaluation 

of each individual and the selection process which favours individuals with higher fitness 

values, thus making the entire process resemble the Danvinian rule known as the survival 

of fie P e s t .  

Terminology, notation and opinions about the importance and the nature of the three 

underlying processes (selection, recombination and mutation) vary thlloughout the research 

community. Back and Schwefel (1993) identified k e e  main strearns of evolutionary 

algorithms that have emerged in the last three decades: evolution strategies (ES) developed 

by Rechenberg (1965) and refined by Schwefef (1981); evolutionary prograrnrning (EP) 

developed by Fogel Owens and Walsh (1966) and recently refined by Fogel (199 l), and 

Genetic Algorithms developed by Holland (1975) and refined by De Jong (1975), 

Grefenstette (1987) and Goldberg (1989). The field of evolutionary computation has evolved 

since the pioneering work of these researchers. Nowadays there are several well established 

international annual conferences on this topic amacting hundreds of participants while the 

number of papers describing specific applications is growing at an exponentiai rate. In spite 

of the lack of strong theoretical background, the evolutionary approach has emerged in the 

last two decades as a powerful and promising technique that has generated much interest in 

the scientific and e n g i n e e ~ g  community, mainly as a resdt of numerous successful 



applications which far surpassed other search methods in terms of their ability to deliver 

superîor solutions. It is obvious that many different evolution programs can be formdated 

to solve the same problern. They couid differ in tems of their data structure used to 

represent a single individual, recombination operators used for generating new individuais, 

the selection process, methods of creating the initial population, methods for handling the 

constraints of the problem, and the search parameters such as population size. Regardless 

ofthese diflerences, they all share the same principle: apopulation of individuals is subjected 

to selection and reproduction which is carrïed out from generation to generation until no 

M e r  improvement of the fitness function c m  be achieved. 

There are two large classes of problem representation, known as binary orfloatingpoint. 

Genetic algorithm propounded by Holland (1 975) uses a fixed length binary stMg and only 

two basic genetic operators: cross-over and mutation. The raw power of genetic algorithm 

is-demonstrated on a specific application related to selecting the best combination of 40 

- binary variables, which c m  be viewed as hding the best combination of 40 off and on 

switches in a control related problem. This outline provides ïnsight into some of the 

difficulties related to the binary representation and reveais the need for a more suitable 

representation, which is addressed in the following. 

5.2 Explanation of Genetic Algorithm using a Binary Problem 

Most GA application to date have been applied on some form of a binary problem (Goldberg, 

1987). This is acceptable if a decision variable represents a real world phenornena which has 

only two defined states (on or off). The term geneiic cornes fiom the basic idea to represent 

a possible solution of the optimization problem as a long binary string where each binary 

value is either O or 1, thus fonning an artificial chrcrrnosorne for one possible solution. The 

initial population of artificial chromosomes is random. Having created the initial 

population, the algorithm then proceeds by comparing al1 members of the initial population 

and ranking them from best to worst in terms of their fitness. A &action of the best solutions 



are retained and used to breed among themselves producing new generation of possible 

solutions using the cross over and mutation techniques which were initially designed to 

resemble sirnila- processes in nature. The way aaincid chromosomes are combined is very 

much the same as the way biologicai chromosomes are combined when offspring of any life 

form is created. The process t h u s  continues fiom generation to generation and the naturai 

selection of artificial chromosomes eventually results in convergence to an optimum. In 

other words, in technical optimization based on an evolutionary processes the survival of the 

'parent' chromosomes depends o n  its fitness with respect to the objective fict ion.  This bias 

in favour of the solutions with better fitness generates offspring with a high likelihood that 

some of the individuals will surpass the fitness of their 'parents'. The process stops when 

there is no improvernent in the value of the objective function of future generations 

compared to their parents. 

The above approach is very efficient when the decision variable can take one of the two 

possible states. Their power and efficiency is reduced when they are applied to problems 

with a fl oathg point decision variable with difficult constraints. Several attempts have been 

made to convert problems with floating point decision variables uito equivaient binary 

problems, although with varyhg success (Koza, 1993). 

Denote with a(i) a randomly generated binary string of length 40 with values of O or 1 in each 

string bit. For example, a(1) could look like this: 

In this representation the values O o r  1 describe the switch status (on = 1 and off = O). Since 

the total number of switches in the system is 40, the number of combinations to be exarnined 

is î 4 0  , where number 2 represents -the two possible states (on/o£€) for each switch. For each 

randornly generated solution represented by a binary string a(i), an objective fimction (total 

cost of pumping) can be calculated. The classical genetic algonthm proceeds as follows: 



1. Generate randomiy a population of 1 00 binary strings a(i); 

2. Calculate the objective h c t i o n  for each solution generated in step 1 and rank the 

solutions from the best to the worst in terms of their optirnaiity; 

3. Select a small percentage (typically 5% to 30%) of the best solutions obtained in step 

2 for M e r  reproduction and discard the rest as 'unfit' for having offspring. 

4. With the best solutions selected in step 3 as 'parents', generate a new set of 100 binary 

strings of 'offspring' using the cross-over and mutation operators. 

5 .  Repeat the steps 2 through 4 until the calculated objective function value shows no 

M e r  improvernent in tems of optimality or when the improvement is within a 

specified srnall tolerance limit. 

Many types of cross over and mutation operators have been tried by various researchers. In 

natural systems, a new organism is created by a random split in the chromosome string at 

numerous locations and mutual replacement of the genetic code in the resulting offspring. 

A simplified example of this is a single split point of a chromosome into two parts and 

mutual replacement. For example, consider cross-over strings b(1) and b(2) obtained as 

children of strings a(1) and string a(2) listed above with a split point at ce11 1 1 (for simplicity 

of this example seing a(1) has bits equal to O for the first 11 cells and equal to 1 for the 

remaining 29 cells): 

Note that sbing b(1) has the first 11 cells f?om string a(2) and the remaining 29 cells fiom 

string a(l), while struig b(2) has the first 1 1 cells fiom string a(l) and the remaining 29 cells 

from string a(2). To avoid 'degenerate' offspring a mutation factor is aiso introduced, which 



amounts to a s m d  random change of some cells fiom O to 1 or vice versa. Goldberg applied 

the mutation factor to a small fraction of the population (typically 2% to 3%). 

A few issues are apparent nom this brief description: population size, the deawsunival 

ratio, cross-over and mutation operators are al1 arbieary and entirely dependent on the 

experience and judgment of the person conducting the study. It wouldtherefore seem strange 

that with so many degrees of fieedom and presumably required calibration this approach c m  

be so successful. This is especidly of interest in view of the fact that each of the bit sMngs 

generated in the way descnbed above is not necessarily guaranteed to correspond to a 

feasible solution, due to the nature of the processes being control with the control switches. . 

In fact, in many real world problems with the above representation most of the solutions 

generated in the above manner couid be infeasible. Researchers had to resort to the use of 

a penalty function associated with infeasibility which is added to the objective function and 

which forces infeasible solutions to 'die faster' in the process of evolution. Goldberg (1 987) 

demonstrates the immense power of genetic algorithms by showing that they manage to 

converge to an optimal solution after having gone through o d y  25 generations, each with a 

population of 100, hence only 2500 possible states were examined out of the search space 

of 2". However, when this problem is considered in the context of floating point variables, 

the decision variable can no longer be binary (O or 1) but must instead take the form of a real 

number, i.e. Xmin(i)~X(i)~Xmax(i), where X(i) is assumed to have the required accuracy 

of 0.000~X(i) ~999.999, such that each decimal digit would have to be converted to a binary 

format, so each decirnal digit would require four binary cells. Hence, a possible solution for 

one switch would now have a binary string with a length of 36. Since there are 40 switches, 

the total length of binary string is 36x40=1440, and the total number of combinations is 

changed fiom Z4O to 2 i440 which clearly puts the problem in a different perspective.. The need 

to abandon the binary string representation of the problem has been recognized in the 

scientific community for some time (De Jong, 1988). Michalewicz (1 994) advocates the use 

of "proper (possibly cornplex) data structures for chromosome representation together with 

an expanded set of genetic operators". He speculates that De Jong's historic work on the 



theoretical formulation of the schemata theorem has inspired subsequent researchers to take 

his work like a gospel in spite of overwheiming evidence that binary representation was 

awkward in many applications. Instead, it is argued that 'natural' representation of a potential 

solution for a given problem and that it is a prornising direction for m e r  research. Koza 

(1 993) observed that "representation is the key issue for genetic algorithms", and that their 

failure in many applications deais with the inability of the binary domain representation to 

deal with nontrivial constraints. Many other researchers agreed, hence the widespread 

propagation of tities such as A Modz$ed Genetic Algorithm (Michalewicz et al., 1992), 

Specialized Genetic Algorithm (Janiko w and Michalewicz, 1 990) or a Non-Standard Genetic 

Algorithm (Michdewicz et al, 199 1). Glover (1 987) and De Jong (1990) were also critical 

of binary representation and suggest search for better domain representation. There is a 

widespread emerging belief that problem specific knowledge must be incorporated in the 

algorithm to ensure its efficient operation (Grefenstette, 2987; Davis, 199 1; Forrest, 1993). 

The curent state of the art in the field of Evolution Programs c m  thus be described as 

follows: 

There is no general aigorithm applicable to ail problems; 

Their efficiency varies fiom very efficient to inefficient as a function of problem size 

and compkxity; 

Most evolution programs converge to an optimal point both Tom inside and outside 

of the feasible region, which means that ofien times more than 99% of the search 

effort is wasted on generating solutions diat are infeasible; 

Evolution programs do not take into account shape or gradient of the objective 

function and they can conduct search within entire feasible domain, which gives them 

a better chance to find a global optimum; 

Evolution programs u s d y  require calibration of the search parameters to ensure 

efficient convergence. 



5.3 Numericd Example with a Floating Point Variable 

This research is based on a variant of Genetic Algonthm with the following properties: 

a) floating point domain representation, which means that chromosomes are represented 

with decimal numbers; 

b) massive initialization procedure which uses a Monte Car10 random search to fïnd the 

small initial parent population of high quality; 

c )  mdti-parent crossover as proposed by the Genitor algorithm (Whitney, 1989); and, 

d) propeaies of feasible flows in networks are inciuded in the algorithm such that the 

search is always restricted to the feasible region by obeying the capacity and flow 

continuity constraints. 

Item d) is explained in more details in Chapters 6 and 7. Items a), b) and c) are demonstrated 

in the numencal exarnple below. Consider for example the problem of fmding the best fit 

analytical equation of the outflow vs elevation curve given with ten pairs of (x,y) points in 

Table 3.2. A typical empirical equation for this curve is: 

Q=  AH^ (5.1) 

where Q is flow (m3/s) while H is the net head (m) above the invert of the outiet, hence in 

the case of the curve given in Table 3.2 the net head is reservoir elevation niinus 1660 m. 

Parameters A and B should be dete-ed in such a way that the difference of the sum of 

squares between the analytic and tabdated values of flow for al1 10 points is mùiimized. 

This can be formulated as: find the values of parameters A and b such that the value of the 

following objective function is rninimized: 

Values of Qi and y- are provided in Table 3.2 for each of the ten points. In addition, fiom 

other empirical studies related to similar curve fits it can be assumed that the most likely 



range for the values of parameter b is (0,l) and for parameter A is (0,lO). To be on the safe 

side in this example the values of parameter A are inçpected in the range of (0,20). The 

value of parameter b must be less than 1 since it is never a straight line, and it must be greater 

than O since the values below zero wouid not result in an increasing function, while it is 

known that the outflow does increase with the increase in net head. Taking into account this 

simple knowledge about the problem reduces the search space to a value for parameter A in 

the interval (0,20) and the value of b in the interval (0,l) which has a significant impact on 

the solution efficiency. In some ways this can be compared to optimizing network flows 

with flow variables in each arc being redc ted  in value between a given minimum and 

maximum. The aigorithm first generates randomly 5 possible solutions, as depicted in the 

top of Table 5.1. It then goes ùirough a process of initiakation, whereby additional 95 

solutions have been generated in apure random manner using the Monte Carlo approach and 

assigning random values to parameters A and b within the prescribed range for each. M e r  

each new solution is created, its objective funciions is evaluated and compared to the worst 

objective h c t i o n  of the initial five solutions. Lfthe new soIution has better fitness than the 

worst of the five initial parents, the worst parent is discarded fiom the top five (also referred 

to as the "mating pool") and the new individual is included in it. At the end of the 100 trials, 

the mating pool has 5 members which al1 have a higher fitness values than the initial five 

randomly generated solutions at the st& of the process. These parents will form the mating 

pool and they will be used as genetic material fkom which the new offspring will emerge. 

The final and the most important part of the algorithrn is recombination. A new solution is 

created by borrowing parameters A and b fiom one of the parents in the mating pool and 

applying a small modification using a normdized variate with a standard deviation equal to 

1 % of the value of the selected parameter. Denoting with a drand(l,5) a discrete function 

that selects an integer number between 1 and 5 with equal chance, and using A(i) and b(i) 

to denote the values of parameters A and b that are currently included in the mating pool, a 

new solution (values of parameters A and b) are generated u s h g  a variant of the standard GA 

procedure commonly known as recombination and mutation, shown in the pseud code below: 



Procedure Recombination and Mutation 
1 select = drand(l,S) 
2 Anew = A(se1ect) + N(O,A(select) *O 01) 
3 if (Anew > 20) Anew = 20 
4 if (Anew c O) Anew = O 
5 select = drand(1,S) 
6 bnew = b(se1ect) + N(O,b(select)*O.Ol) 
7 if (bnew > 20) b n e w  = 20 

8 if(bnew < O) bnew = O 

end 

Line 1 assigns a random value between 1 and 5 to integer variable select. The new value of 

A is then assigned as being equal to one of the five existing values of parameter A that are 

already in the mating pool, with a smail mutational change introduced by appiying a normai 

variate with a mean of zero and standard deviation equal to 1% of the chosen value of A. 

Other small variates could have been chosen, the curent choice is arbitrary and not critical 

to the search progress. Mutation is essential here since it generates the necessary diversity 

in the mating pool. Without mutation in this example the progress would soon be halted 

after the best of the combinations of A and b fiom the pool of five is found. However, it will 

be seen later that in some cases when the shape of the objective fûnction is known, the 

mutation operator may not play such a big role. 

Since the normal variate may resdt in variable Anew being above 20 or below zero, which 

is outside of the desirable bounds, it may be necessary to bring the value o f  Anew back 

within the desired bounds, which is done in lines 3 and 4. The entire process is repeated for 

pararneter b, but with a different value of the variable select, which means that pararneter A 

is picked fiom one parent in the mating pool while pararneter b cornes from another parent. 

As in the initialization procedure, each time a child is created with a fitness that is better than 

the fitness of the worst parent, the child is included in the mating pool and the worst parent 

is discarded from it. From there on the child continues to pass its genetic materid to new 

generations. Table 5.1 shows the results of the objective function with parameters A and b 

for the best 5 solutions after 500 new individuah have been generated using recombination 



and mutation process described above. 

Table 5.1 Demonstration of a Genetic Mgonthm 

The f irst f ive randomlv senerated messes : 
Objective A b 
Function 
443.816 O. 025 0.564 
1045- 883 3.866 0-809 
3885.054 11.700 0.480 
9064.114 7.006 O. 896 

32137.926 16.457 0.747 
The b e s t  five out of one hundred senerated messes: 

Objective A b 
Funct ion 

6,294 3.111 0.504 
29.131 2.199 0.743 
32. 011 5.054 O. 144 
36.606 2.275 0 -455 
48.131 5.518 0.273 

The b e s t  five solutions a f t e r  two hundred recombinations: 
Objective A b 
Function 

By comparison, this problem has also been solved with the Excel solver to give A=2.109, 

b=0.654 and the value of the objective fûnction of 0.0395. To obtain this solution with the 

Excel solver, the settings must include higher precision requirements than those that are 

setup as  default within the solver. 

The new approach proposed in this research is the initialization procedure. Genetic 

algonthms typically start from any randornly generated set of parent solutions and converge 

evennially using recombination and mutation as described above. However, staaing fiom 

good quality parents c m  be very beneficial. Consider for example the sarne problem as the 

one above, but solved without the initialization procedure, Le. the first five solutions shown 

on top of Table 5.1 are used as parents that are subjected to recombination and mutation. 



The resuIts of this process are in Table 5.2, which shows the makeup of the mating pool &ter 

each 500 new uidividuals were created using recombination and mutation. 

Table 5.2 Genetic Aigorithm without initiakation 

The first five randornlv senerated messes: 
Objective A b 
Function 
443.816 O. 025 O. 564 

1045.883 3.866 O. 809 
3885,054 11.700 0,480 
9064.114 7.006 O. 896 

32137.926 16.457 0 -747 
The best five solutions after 500 recornbinations: 

Objective A b 
Function 
19.505 3.602 0 -470 
32.043 0.365 1.480 
32.045 0.338 1.480 
32.519 0.332 1.484 
32.562 0.331 1.490 

The best five solutions after 1000 recombinations: 
Objective A b 
Function 

7.508 1.048 0 -994 
7.665 1.008 0.998 
7.736 1,004 O -999 
7.804 1.024 1.003 
7.854 1.009 0,985 

The best five solutions after 1500 recombinations: 
Objective A b 
Function 

0.447 1.814 0 -726 
0.539 1.784 0.732 
0.608 1.813 O. 734 
O. 615 1.773 0,740 
O. 627 1.761 O, 742 

The best five solutions after 2000 recombinations: 
Ob j ective A b 
Function 

0.050 2.065 O, 665 
0.063 2.036 0,671 
0.065 2.038 O. 669 
O. 067 2.030 O. 672 
0.067 2.030 O. 671 

The best five solutions after 2500 recombinations: 

55 



Ob j ective A b 
Function 

O. 041 2.096 0 - 657 
O. 041 2.091 0 - 658 
O. 041 2.091 O. 658 
O. 042 2.088 O. 658 
0 .O42 2-085 0 -660 

The proposed GA is stable, i.e. it does converge to the same solution eventually, however the 

effort is much more signincant if the starting search points are of poor quaiity in terms of 

their fitness values. Compared to the 2500 generated solutions in this case, the initiaikation 

process resulted in the same fkai solution after only 300 generated triais. 

To show that GA is not a pure random search, the reader shouid examine the impact of pure 

random search based on Monte Carlo generation of 10000 pairs of parameters A and b and 

recaiculating the objective function (5.2) for each pair. The best 5 guesses and their values 

of the objective functions are listed in Table 5.3. The values of their objective fuoctions are 

still three times larger than those obtained with GA. 

Table 5.3 Top five guesses in Monte Carlo search afer 10000 trials 
Objective A b 
Function 

0,113 2.037 0.675 
O, 129 1.975 0.683 
0,129 2,008 O. 682 
O. 132 2.108 O. 661 
O -201 1.965 O. 693 



6 DESCRTPTION OF THE PROf OSED ALGOEUTHM 

The proposed algorithm is intended to combine the properties of feasible circulations in order 

to develop evolution prograrns which conduct the search exclusively within the feasible 

region. This is done in an effort to ease convergence. Two approaches have been tested. 

The first was based on the use of f i u i h e n t a l  cycle flows, and the second on the use of 

Tucker's definition of circulation space, which was found to be superior and it was therefore 

adopted in the three cases studies presented in Chapters 7,8 and 9. The use of fiindamental 

cycle flows was successfully tested on a pipeline optimization problem and published (Ilich 

and Simonovic, 1998). The algorithm outperformed a comparable gradient search method 

in terms of the ability to find global o p h u m .  However, an evolution program based on the 

Tucker's definition of circulation space is presented in the folIowing as a superior option. 

Matrix equation (4.16) allows random selection of arc flows on the right hand side and 

recalculation of arc flows on the ieR hand side by substitution, since the left hand side 

contains the spanning tree structure and as such it can be transformed into a lower triangular 

matrïx. One can pick any values for rn-n+l arc flows on the right hand side as long as they 

are within the respective bounds. Additional non-linear relationships related to the loss or 

gain of flow dong the arcs which belong to the maximum spanning tree can aiso be included 

provided that the maximum spanning tree consists of arcs which al1 have the same 

orientation, or provided that the non-linear fünction F(x) which maps inflow into the arc into 

outflow has its inverse F1(x). For many practical problems non-linear fünctional dependence 

cm be approximated using a higher order polynomial so the latter is not too difficult to 

achieve using proper representation. The algorithm could then proceed with the following 

steps: 

a) Determine existence of at least one feasible solution. Ifthere is no feasible solution, 

stop and declare the problem infeasible. Ifthere is a feasible solution go to step b). 

b) Initialization. Generate randomly a large number of solutions (between 1000 and 



5000, depending on the size of the problem) and select a small fiaction (typically 

between 5 and 15) of the best solutions according to the value of their objective 

fünction. These will constituae "parent solutions" that will f o m  the "mating pool" 

used in step c) to generate new solutions known as ccoffspring". 

Recombination. individual values of arc flows for each solution in the mating pool 

are considered as genetic maiterial fkom which the new individual solutions are 

created. The process is contiinuous, and each offspnng is compared to the worst 

ranked parent in the mating pwol. If its fitness (vaiue of the objective fünction) is 

better than the worst parent in ithe mating pool, the worst parent is discarded and the 

new offspring is placed in it. To discourage being trapped in local optimums, the 

algorithm must ensure that identical twins do not enter the mating pool, since they 

have a tendency to replicate hemselves very quickly. 

The process stops in one of the= two ways -- when a specified number of individuals 

has been created or mtil the improvement of the objective becomes negligible within 

a given number of generated individuals- 

Steps b) and c) above are critical for successful application of this algorithm. They are 

reviewed in more detail below. 

The massive initialization procedure in step 2 generates feasible solutions randornly, 

ensuring that the problem is addressedl fkom all corners of the feasible region. Additional 

improvements in the initialization procedure are related to more fiequent sampling of the 

points which are known to have a mone favourable outcorne. This is done in an effort to 

increase the likelihood of generating ferasible solutions with good fitness values. 

Consider for exarnple a linarized cost funiction in Figure 6.1. This objective fiuiction is linear, 

so the flow in thïs component has a hi& likelihood of falling into one of the break points on 



the curve in Figure 6.1, which are in effect the corners of the feasible region of interest to LP 

solvers. On the other hand, pure random sampling within the feasible range for this 

component (fiom O to a has virtually no chance of ever hitting the exact value of any of 

the break points. One should therefore facilitate creation of suitable points in the search 

space by directing the random sampling to generate sdEcient number of outcornes which 

coincide with one of the break points. 

OBJECTIVE 
' FUNCTION 

1 

I 1 VARIABLE 
-. 1 

1 
I 
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t 

Figure 6.1 Sample objective function 

The above objective fimction is related to a single arc flow. Assuming that function 

randorno returns a pseudo random number between O and 1, the d e s  for generating random 

values for this arc 80w in the initial population can be summarized as follows: 

if(random0 > 0-5) // 50% of generated solutions 

x = xmax random (1  ; // have any value between O and mnax 

else ( / /  50% of generated solutions have one of x,, x,, x, or x,- 

separate = randorn ( 1 ; // generated with equal likelihood 

if(separate c 0.25) 



x = q; 

if (separate >= 0.25 && separate c 0.5) 

X = x, ; 

if (separate >= 0 - 5  && separate < 0.75) 

X = X 2  i 

if (separate >= 0 - 75) 
X = &ax; 

The above sarnpling approach ensures that there is sufficient number of points which belong 

to the corners of the feasible region in the initiabation procedure. A similar approach can 

be used for other types of objective fiinctions with known shape, such that random generation 

of solutions in the favourable region of the search space is encouraged. This is useful with 

fùnctions that have multiple local minima for each variable, as demonstrated in Chapter 7, 

while Chapter 8 shows that the shape of the objective fûnction is not the ody parameter that 

c m  improve the quality of the initial population. Sometimes multipIe regression and other 

fùnctional relationships between two or more decision variables can greatly aid in the search 

for good initial parents, with reasonable expectations that good parents will generate better 

offspring faster, thus improving efficiency of the search process. 

Once a maximum spanning tree bas been identified, it allows for creating a sequence of 

solving balance equations for each node in the network. The process starts by selecting the 

nodes at the outer edges of the network, which have fixed inflows, and randomiy assigning 

outflows for those outgoing arcs which are not part of the maximum spanning tree. Each 

time one outgoing arc has been assigned a value, the maximum flow bound for the next 

outgoing arc fiom the same node is updated accordingly by reducing the total inflow into a 

node with the outflow that has already been assigned, and comparing the balance of 

remaining innow with the upper bound of the next outgoing arc. If the balance of the 

remaining inflow is smaller than the upper bound of the next outgoing arc, the upper bound 

is dynamically adjusted to equal the remaining inflow baiance. Findly, when al l  outgoing 



arcs which are not on the maximum spanning tree have been addressed in this rnanner, the 

r e m d g  balance inflow is assigned to the outgoing arc on the spanning tree. This ensures 

both the preservation of fiow continuity at each node, as well as cornpliance with the flow 

bounds. In water resources networks, typical decision variables are reservoir releases and 

diversions fiom the Stream, while the maximum spanning tree is usually dehed  by the main 

river and its tributaries. Reservoir storage, diversion and r e m  flow arcs form fundamental 

cycles and they are typically associated with independent decision variables. 

Finally, sometimes it is necessary to consider a group of interconnected nodes acting as a 

single node, and the application of the above approach requires more knowledge of the 

nature of the network in order to adequately set up the search process. This is demonstrated 

in Chapter 7. 

6.2 Recombination 

Recombination and mutation are the main driving engines of genetic programrning. To some 

extent the "gene therapy" mechanism explained below takes on a twofold role - as a 

mechanism that ensures that o f f s p ~ g  is always feasible, and also as a mutation operator. 

The role of mutation seems to be dependent on the shape of the objective functions. Since 

a variety of shapes have been uivestigated in the non-linear transportation test problems, the 

role of mutation is addressed in more detail in Chapter 7. 

Recombination is a process of combining genetic material (decision variables) ftom two 

parent solutions in an effort to create a new solution- In this aigorithm the number of 

crossover points is the same as the number of independent decision variables. In fact, the 

entire genetic information describing a single individual is an array of al1 independent 

decision variables belonging to one parent solution. The mating pool is a database of a small 

number of parent solutions where each genome (complete solution) is stored as one database 

record. A complete solution may contain only independent variables, since the dependent 



variables can be re-calculated. Consider an example in Table 6-1. 

Table 6.1 Sample Five member Mating Pool with one possible offspring 

Parent Solution a 
Parent Solution b 

1 Parent Solution e 1 e l  1 e2 1 e 3  1 e4 1 e5 1 e6 1 e7 1 e8 1 e9 1 e l 0  1 :&lm 

Parent Solution c 
Parent Solution d 

r I ! I I t I I I I 

Offspring Solution 1 xl=dl  1 x2=b2 1 x3=a3 1 x4=c4 1 x5=b5 1 x6=d6 ( x7=d7 1 x8=a8 ( x9=d9 1 x1O f x l l  

a l  
b l  

Recombination operator proceeds as foilows: starting from the most upstrearn node (e-g. 

node 1 in the above database), select randody with equal likelihood one of the existing 

solutions for the f is t  independent decision variable (arc flow) associated with this node. In 

other words, pick one of al, b 1, c 1, d 1 or e 1 with equal likefiood. Ln the above table the 

selected variables (genes) for inclusion into offspring are shaded gray. For the first 

independent decision variable the selection was made fiom parent solution d and placed in 

the frrst colurnn of the offspring solution. 

c l  
..'cdjiV' 

Note that decision variable d l  has automatically affected the sum of inflows into its 

downstream node (xl=dl). Consequently, the inflows and the maximum outflows fiorn that 

node will also be aected.  Assume that the downstream node is node 2, and that an 

independent decision variable that was selected is fiom parent solution b as shown in Figure 

6.1. The value of b2 (x2=b2) placed in the new offspring solution may now be outside of its 

fiow bounds which were dynamically updated after node 1 was solved. If' that is the case, 

i.e. if the value of randornly selected x2 is below the minimum or above the maximum 

defined by al1 other inflows and the corresponding minimum outfiows from node 2, then the 

value of x2 needs to be adjusted such that it is brought within the bounds. The process of 

checking the cornpliance wirh the bounds and adjusting if necessary is termed "gene 

therapy". This adjustment will take place before the algorithm proceeds to set the value for 

x3. This approach has not been published prior to this research, and as such it constitutes 

a2 a 
?%&$$?if b3 

c2 
d 2  

a4 
b4 

c3 
d 3  

a5 
& 

5 
d4 

a6 
b6 

c5 
d5 

a7 
b7 

c6 1 c7 [ c8 
16. 7 ,  1 d8 

a a9 
b8 b9 

cg 
- dQ;: 

ajO 
'-b$O ' 

CIO 1 ~11- 
d l 0  1 d l 1  

a l 1  
b11 



contribution to a wider community of investigators who deal with genetic algorithms. Gene 

therapy is re-visited in more detaii in Chapter 7. 

The progress in the search is based on placing each offspring that has better fitness value than 

the last ranked parent in the mating pool, and discarding this parent f%om the mating pool 

altogether. This provides a stable progression, since the q d i t y  of the initial mating pool can 

onIy be improved, it cannot deteriorate. 

To surnmarize, both the initialbation procedure and recombination are organized in such a 

way to ensure that only feasible solutions are created in the process. These ideas are 

explored in more detail in Case Study I in Chapter 7, which demonstrates the main features 

of the proposed algorithm. Numerical examples in Chapter 7 deal with a number of non- 

linear transportation problems that had previously been solved in the literature. 

Transportation problems can be viewed as a subset of network flow problems. Chapters 8 

and 9 provide two applications of the proposed solution technique to water resources 

networks. They ail Vary in size and complexity, as outlined below: 

Case Study 1 problems of 49 and 100 variables, linear constraints, one linear and 

six non-linear objective functions; 

Case Study II 4 16 variables (1 56 independent) and 98 8 non-linear constraints with 

linear objective function; and, 

Case Study III 1628 variables (925 independent), 703 linear and 222 non-linear 

constraints with non-linear objective function. 



CASE STUDY 1 -- AN EVOLUTION PROGRAM FOR NON-LINEAR 

TRANSPORTATION PROBLEM' 

7.1 Introduction 

As mentioned earlier in Chapter 6, in this mode1 the f i s t  selection of the best individuals is 

conducted fiom the population created by a massive initialization procedure. The initial 

selection is later continuous1y updated to include a specified number of the best solutions 

found within a given number of trials. This approach is often descnbed in EP terminology 

as (p -f- h) - ES (Schwefel, 198 1) where p parents produce Â. offspring and the selection of 

the new parents is done from the best p individuais selected out of al1 individuals generated 

in the process. The ranked-based replacement aigorithm used in this research is similar to 

the one used in the Genitor aigorithm (Whitley, 1989). This research has been inspired by 

previous efforts to apply EP approach to solving both linear and non-linear transportation 

problems (Vignaux and Michalweicz, 1989; Michalewicz et al., 1991). The same test 

problems that were solved by these researchers were used for investigating the proposed 

approach. This allows a cornparison of solution quality and the required computational 

effort. Without the previous work, it would be hard to gauge the quality of the proposed 

approach given that traditional gradient based solvers ofken fail to provide good solutions to 

multi-dimensional non-linear problems. 

A brief introduction to the balanced transporîation problem is provided first, followed by a 

description of the evolution program broken down in five sections: initialization, evaluation, 

seiection, recombination, and the gene therapy. The final section includes the definition of 

the test problems, discussion of the results for individual test functions, summary of 

cornparison with the earlier results and references. Because of keeping the search within the 

Content of this Chapter has been accepted for publication in the Journal of Heuristics, 
Vol. 7(2), to appear in March 200 1 issue (Ilich and Simonovic, 200 1). 



feasible region, the algorithm was termed Strongiy Feasible Evolution Program (SFEP). 

7.2 The Transportation Problem 

Virtually every text book on operations research has some reference to transportation 

problems (TP), although most of them are associated with the available h e a r  programming 

solution procedures (Hiller and Libeman, 1995). The problem is concemed with finding the 

least cost distribution policy for a shipment of a single cornrnodity fkom m sources to n 

destinations subject to the capacities of each source s(i) and each destination d(i). This can 

mathematically be expressed as: 

Subject to: 

for i =  1, 2, ... m 

2 x ~ = d ( j ) ,  for j= l y  ... n 

The above defines the 6aZanced transportation problem due to the equality sign in the 

constraints. Note that out of the total of rn n variables x, , (m+n-1) are dependent and (m n 

+ 1 - rn - n) are independent. When al1 objective functionsf;,&) are linear, the entire 

problem is linear. The linearity also assumes that al1 (m n + 1 - m - n) independent decision 

variables x, are also independent of each other, i.e the value of one independent decision 

variable has no impact on the value of another. There is a large body of literature covering 

the well established solution procedures for the linear case. A general solution procedure for 

a non-linear case is still lacking. 



7.3 Description of the Proposed Evolution Program 

A floating point representation is used to describe al1 indhiduals (feasible solutions) which 

evolve in the solution procedure. A detailed description of the algorithm is divided in five 

sections: initiaiization, evaluation, selection, recombination and gene therapy. Of those, 

initialization, recombination and gene therapy are of particular interest. 

Initiakation 

The process of initiakation takes advantage of the fact that there are (m +ml) dependent and 

(m n + I - m - n) independent variables. This means that one could assign values to 

independent variables in a random manner, and then recalculate the dependent variables to 

ensure cornpliance with the constraints. There are some rules related to the upper and lower 

b i t s  of the independent variables that must be observed in the process, as explained below. 

To demonstrate this, we use one of the test problems for a 7 x 7 transportation ma& with 

the sums of rows and columns printed in Table 7.1. 

Table 7.1 Sample Transportation Problem 

In this problem the total number of variables is 49, with (7+7-1) = 13 dependent and 36 

independent. One c m  therefore pick any 36 variables as independent. The easiest choice 



is to simply pick one row and one column and designate al1 variables on the chosen row and 

column as the dependent ones. For example, assume that the last (seventh) row and the last 

column contain the dependent variables, while the first six rows and columns contain 

independent variables. Therefore, the fkst  36 variables (x,, through xG6) can be picked up 

in a random order and each ofthem c m  be assigned a value. Each t h e  a value is allocated 

to one of the independent variables, the current sum of the total ailocated flow in the 

corresponding row and column is updated, dong with the total sum of flow of all 

independent variables. Rather than allocating values to independent variables in a 

completely random manner, a more tuned approach can be used based on the howledge of 

the objective function. It is possible to inspect objective fuoction for each decision variable 

prior to starting the initialization procedure and Save the knowledge about its local 

minimums, which can then be used at the time an independent variable is allocated a value. 

This process is defined by calling a value fiom the function allocate on line 10 of the pseudo 

code shown below, and it will be addressed again later. 

Procedure Initialization 

se t  xij = O i = 1, m-1; j = 1, n-1; 

set sumx = O 

set s u m r o w ( i )  = s (i) i = 1, m-1; 

s e t  s u m c o l u r m i ( j )  = d ( j )  j = 1, n-1; 

s e t  r n i n i m u m _ s u m  = u n i f o r m ( m i n f l o w ,  maxf l o w )  

w h i l e  ( sumx <= m i n i m u m - s m )  

j = u n i f o r m (  1, rn-1 ) 

i = u n i f o r r n (  1, n-l ) 

l i m i t  = r n i n i m u m ( s u m r o w  ( i )  , s u m c o l u m n  (j ) ) 

xij = xij + m i n  ( l i m i t ,  a l loca te  ( s u m r o w  (i) , s u m c o l u m n  ( j  ) ) 

s u m r o w ( i )  = s u m r o w ( i )  - xij 

s u m c o l u m n ( j )  = s m c o l u m n  ( j )  - xij 

SuIIIl( = SUIILX + Xij 

end 

end 



The above procedure starts on line 1) by initialinag ali independent variables to zero. On 

line 2) variable sumx, which represents the s u m  of ail independent variables is set to zero 

while variables surmow(i) and sumcolumn(j) are set on lines 3) and 4), respectively, to the 

initiai values given in Table 7.1 for each row and column. Variable minimumumsum 

represents the sum of al1 independent variables. It is set to a randomly chosen value between 

the previously set minfiow and maxflow values. Variable sumx, which represents the total 

sum of al1 independent variables, m u t  be within a range defined by minflow and maxflow. 

The defGtion of minflow and maxflow is given more attention in the foLIowing. 

Consider the values of sums and rows given in Table 7.1. The total flow through the entire 

system including both dependent and independent variabIes is 160. This can be caiculated 

by surnming either al1 column sums (i-e. 20+20+20+23+26+25+26) or by summing the row 

sums, which, due to the de£ïnition of the balanced transportation problem, must be equal. 

Lf  the seventh column and the seventh row have been chosen as the dependent variables, the 

maximum flow that can ever be allocated to the dependent variables is 26+20 = 46. This 

happens in the case when a feasible solution contains variabIe x, which equals zero. In that 

case, the minimum flow that must be allocated to independent variables is equal to 160 - 46 

which is 1 14. On the other hand, when variable x, has its maximum value, which is 20, the 

surn of flows dong the dependant row and the dependent column is 26. In that case, the 

minimum total fiow that m u t  be allocated to the independent variables is equal to 160-26, 

which is 134. Hence rninflow is 1 14 and maxflow is 134. These considerations result from 

the maximum flow -- minimum cut theorem fiom network flow theory. Any transportation 

problem can be viewed as a network flow problem, and the variables in a particdar row or 

column define a cut - a set of arcs which isolates a given set of nodes (source or destination) 

fkorn the other nodes in the network. To generalize, variables minflow and maxfiow above 

are defined as follows: 



Setting the variable minimum-sum in the pseudo code to a randomly chosen value between 

1 14 and 134 was done to ensure that ali comers of the feasible region have equal chances of 

being addressed. The body of the while loop between lines 6) and 14) represents the 

initialization process. On lines 7) and 8) row index i and column index j are picked 

randomiy, on line 9) varÏable Iimit is assigned a value using the minimum of the currently 

remaining capacity of the corresponding row and column, on line 10) independent variable 

xi, is allocated a value using the allocate fimction mentioned above (assignment operator is 

used since one xij may be visited more than once in a single initialization). Finally, on lines 

1 1 ), 12) and 13) variables surnrow(i), sumcolumn(j) and sumx are updated. The process goes 

on until variable sumx becomes greater or equal to the specified minimum_sum. 

The process is fmalized by solving the dependent variables on the seventh row and the 

seventh column, which ensures feasibiiity (not show.  in the pseudo code above). This 

procedure is repeated 500 to 1000 times to create the initiai population. Each individual has 

the variable min imu~~surn  set randomly to a different value between 1 14 and 134, to ensure 

that ail corners of the feasible region receive equal attention. 

The allocate fûnction could have been a simpIe d o r m  guess between zero and the current 

limit set on line 9). However a simple uniform guess is often not very intelligent. For 

'example, in most transportation problems the goal is to minimize the total cost of shipment, 

so many variables in the final solution are set to zero, while a handful of others have high 

values. It is easy to see that the chances of guessing a zero with a uniform distribution 

between zero and a positive number are virtuaIly nil. Therefore, by inspecting the shape of 

the cost function for each decision variable at the outset, a much better guess can be made 

regarding its value, with a higher likelihood of hitting the comers of the feasible region 

which are essential for accelerating m e r  search. In other words, the use of simple heuristic 



d e s  can significantly increase the chances of generating some good solutions in the initial 

population. This c m  lead to major shortcuts in the rest of the search process. The shapes 

of the objective fùnctions chosen for the test problems demonstrate this clearly, and this issue 

will be revisited in the following sections. 

Another important observation should be made at this point: given a large number of 

independent variables, it is possible that the initialkation process could accommodate some 

functional relationships between them. For example, some of the variables could be 

completely dependent on the others, or perhaps theic upper Limit may be a funciion of the 

values of other independent variables. This would require a small adjustment in the 

initialization procedure to generate the independent variables frrst, recalculate their 

dependent counterparts, generate the remaining independent variables which have no 

dependent counterparts, and then recalculate the values in the dependant row and column. 

Similar observation can be made for mixed integer problems: integer variables could be 

assigned only uiteger values in the initialization procedure. While mixed integer problerns 

with non-linear constraints have not been M e r  explored in this paper, it is worth noting 

that the proposed initialization procedure and the rest of the algorithm presented here is fully 

capable of handling them. 

It was initially felt that simulated annealing (Rudolph, 1994) could be used to direct the 

search, in combination with the above procedure. One could obtain the mean and the 

standard deviation of each decision variabie fiom the chosen sample of the best solutions. 

However, no clear conclusion regarding favorable search directions could be drawn fkom the 

best individuals in the initial population. The approach was tested but convergence was 

rather slow and the q d t y  of final solutions was infenor to those found in eadier studies 

(Michalewicz, 1994)- The use of a GA based recombination operator has proven to be 

superior to simulated annealing in this study. However, it will be shown that a combination 

of the two approaches can be productive in some cases, especially in the final phases of the 

search. 



7.5 Evaluation 

Evaluation of the initial population involves calculation of the objective function (fitness 

value) for each of them. It is a standard step in aU GA and EP applications. There are no 

added penalty functions here since the initiaiization procedure guarantees that ail individuals 

in the initial population are feasible. 

7.6 Selection 

A smail fiaction of the individuals with the best fitness value are selected to join the maîing 

pool. The other individuais nom the initiai population are of no M e r  interest in the 

process, they are considered as unsuccessful parents that died without offspring. Various 

sizes of mating pool were tested and the best resuits on the test problems used in this study 

were achieved with the matïng pool containing between 15 and 25 individuals. Sorting of 

the entire initial population is not used, since the selection process does not require that al1 

individuals in the initial population be ranked. What is needed is merely a selection of a 

small fiaction of the best. 

7.7 Recombination 

The recombination operator is the heart of the solution procedure. It is modeled afier the 

natural process h o w n  in biology as crossover, which involves two individuals (or 

genotypes) creating a new organisrn through sexual reproduction by passing some randomly 

chosen genetic material fkorn one parent and some fiom the other. 

in technical problems the genetic matenal is usually represented as a string or an anay of 

nurnbers which are values of decision variables fomùng the feasible solution selected for 

mating. The usud procedure in technical applications of GAs is to break the solution string 

in only one or two points and conduct a mutual replacement by exchanging the partial string 



segments. For example, hvo parents % and b, wodd have their solution strings broken at 

the same point i (where 1 s a, 5 n). By exchanging the sub-strings, two chiidren would be 

created (a,, bJ and @, aJ where k = i+l, n. The problem in technicai appiications is that 

such an operator would often violate the initial feasibility of the parents, since there is no 

mecbanism to preserve feasibiIity of the o f f s p ~ g .  This is why most GA applications with 

floating point domain representation usually resort to some type of linear combination of 

parents V, and V, such as, for example 

where c is a uniform random number between O and 1. This approach guarantees that 

children of feasible parents are also feasible. Similar h e a r  combinations of parents are used 

in other search methods, e.g. Scatter Search (Glover, 1999). However, the downside is that 

such operators can be applied only on problems with linear constraints. The GENETIC-2 

mode1 (Michalewicz et al., 1994) uses a variant of this operator. 

In nature, genetic matenal is a long DNA chain which is broken randody at many points 

during cross-over. This approach is also based on the multipoint crossover, with the number 

of points being equal to the number of the decision variables. Al1 relevant information 

which describes the mating pooI was stored in a matrix consisting of 25 rows, each row 

representing a parent, and 37 coiumns, with the first coiumn containing the value of the 

objective function and the remaining 36 containing the values of the independent variables 

(genes). The crossover technique is based on dlowing each of the chosen 25 parents to 

contribute their genetic material to offspring with equal likelihood. In other words, a new 

individual is created by selecting randornly a value fiom each column of the matrix which 

represents the mating pool, and placing it in the corresponding column of the hewly created 

offspring. In the genetic makeup of a new individual, some parents may contribute more of 

their genetic material than the others, but this is completely left to chance -- no bias is 

introduced between the parents based on the differences in their objective function. This was 



done since it was felt that ranking such a small selection out of a massive initial population 

has no justifiable ment, Al1 chosen soiutions have some good qudities in them, and with 

this approach they are ailowed to corne to the fore without any bias based on relatively small 

differences in the objective fünction, which may be caused by only a few "bad" values 

chosen for some decision variables. In this sense the approach presented here différs fiom 

the cornrnonly accepted wisdom that relies on some form of bias among the selected parents, 

ailowing the best parents to pass their genetic matenal to offspring more often. 

The above recombination operator may result in a new choice of independent variables 

which violate feasibility- Either the sum of an individual row or column may be above the 

prescribed target, or the sum of ail independent variables rnay be less than the required 

variable muiimum-swn. The ~IX must therefore be provided as soon as such a condition is 

encountered, hence the recombination procedure is tied together with the "gene therapy" 

procedure that fixes defective genes in order to preserve feasibility, as outlined in the next 

section. Gene therapy procedure dso plays a role of a mutation operator, since it modifies 

the individual values in the mating pool. We summarize the features of the process 

addressed so far: 

The nurnber of crossover points is the same as the number of independent variables 

(in this example 36); 

As soon as a new individual is created which has a better fitness vaiue than that of 

the worst parent in the mating pool, the new individual joins the mating pool, while 

the worst parent is discarded ftom it; and, 

Identical twins are not allowed in the mating pool. They tend to reproduce each other 

and eventually fil1 the entire mating pool. While this happens gradually and the 

identical twins represent solutions that are usually of very high quality, they often 

represent local optima, which should be avoided. Variety of good genetic material 

and gradua1 improvement of its quality is essential to progress towards the best 

points in the search space. 



7.8 Gene Therapy 

There are two possible violations of feasibility of the new individual created by 

recombination. Either the sum of individual rows or columns may be exceeded, in which 

case a quick reduction to the maximum possible value is required, or the sum of al1 

independent variables may be insficient, resulting in caIling of the initialization procedure 

to randomly add additional flows to independent variables. To achieve the two fixes in an 

easy and efficient manner, the entire matïng process is camed out under the umbrella of a 

procedure similar to initialization, which makes sure that the feasibility requirements 

associated with independent variables are maintained. The gene therapy is therefore a 

monitoring and a@stment procedure which quickly fixes any individual violations of 

feasibility that may occur in the mating process. The foilowing describes the recombination 

and the gene therapy procedure: 

Procedure Recombination 

set xij = O i = If m-1; j = If n-1; 

s e t  sumx = O 

set sumrow (i) = s (i) i = 1, m-1; 

set sumcolumn(j) = d ( j )  j = 1, n-1; 

set rninimum_sum 

generate - selection 
while( there is at least one unvisited gene) 

j = pick - from-selection 
i = pick - from-selection 
limit = minimum(s(i), d ( j ) )  

p = uniform(1, 25)  

xij = xbestPij 

xij = minumum(xij, limit) 

sumrow (i) = sumrow(i) - xij 

end 



17) if (sumx < rninimurn_sum) 

1 8  procedure initialization 

19) end 

Lines 1) through 4) are the same as in the initialization procedure. Line 5) differs a bit, since 

the initial mating pool provides s f ic ien t  information Erom which a desirable range for the 

sumx variable can be selected more accurately, i.e. a better informed guess can be made 

based on the properties of the already chosen for reproduction than a mere d o m  guess 

between the d o w  and maxflow values. On h e  6)  a random sequence of numbers fkom 

1 to 36 is created to ensure that the sequence of aiiocating genes to the new individual is 

random. Lines 7) through 17) capture the process, in which each gene (decision variable) 

is allocated fiom a participating parent which is randomly chosen on line 1 1 ), with the actual 

allocation of genetic matenal carried out on line 12). Gene therapy is performed only if 

required on line 13) and on lines 18) and 19). 

The mating pool is represented by a three dimensional array xbestpy, where p=(l, 25) is the 

parent index while i and j are the row and column indices representing independent variables. 

M e r  fînishing one pass of the above procedure, it is still necessary to re-calculate the 

dependent variables and recalculate the objective function of the new individual. The new 

selection then proceeds imrnediately for each individual. Ifthe individual has a better fitness 

value than the worst parent in the mating pool, it will be placed in the mating pool in its 

appropriate position, pushing ai1 parents with less favorable fitness down by one place and 

pushing the worst parent out of the mating pool. Incest is ailowed in this mode1 (Le. parents 

mate with children) and in general al1 parents produce a new individual. The best parents 

may survive to mate with many fùture generations. One could taLk about a whole generation 

with a single individual (Hunter, 1998), although there is not much point being strict about 

the use of the tenn "generation" any more. Total lifetime of one individual is only a function 

of its fitness value and the fitness value of other individuals in the mating pool. Ifthe best 

individual is found by chance in the initialization procedure, it will outlive ali of its 

0 f f s p ~ g .  



Cdling the initialization procedure at the end of recombination is usually not necessary, but 

even when it happens it is only executed for a few randomly selected independent variables 

which have their flows rnarginally increased. This serves a twofold purpose: it ensures 

feasibility, and it afso serves as a mutation operator since it adds a srnaII variation to the 

genetic makeup of the parents. A total of 10 test problems were solved using the above 

approach, and only two of them required modincation to this algorithm by introducing an 

additional mutational operator. This is M e r  addressed in the following section. 

To summarize, the heart of the algorithm is the recombination procedure, the selection 

procedure and the process of updating the membership of the mating pool. The entire 

algorithm is depicteci below: 

Procedure main 

i n i t i a l i z a t i o n  

evaluation 

selection 

while ( terminating cond i t i on  not true ) 

recombination 

eva lua t ion  

if (fitness (xi, ) < fitness ( ~ b e s t , , , ~ , ~ )  ) 

update xbestPij 

end 

end 

On line 7) a the fitness of the new individual is compared with the fitness of the worst parent. 

If better, the mating pool is updated. Ifnot, a new individual is created. The total number 

of generated solutions xij was used as a tenninating condition in the test problems in this 

research. Two out of five problems tested with 49 variables aiready converged after 3000 

hdividuds were generated (initial population of 500 and a total of Z O O  individuah created 

as a result of mating). This is encouraging considering that the search space consists of 49 

floating point variables. 



It shodd be noted that the gene therapy is aiso capable of introducing adjustments that may 

be required to preserve the mixed integer nature of the problem, or to preserve the non-hear 

relationships in the constraints. 

7-9 Similarity to Minimum Cost Network Flow Problems 

Both transportation problems and minimum cost network flow problems share similar 

constraints, associated with (a) minimum and maximum flow dong an arc; (b) minimum and 

maximum flow through a node; and (c) a continuity equation for each node. Of those, only 

minor adjustrnent of the algorithm presented here is needed to include constraint (a). 

Selection of one dependent column and one row in the TP is equivalent to making a selection 

of arcs that form a maximum spanning tree in a network, which define a set of dependent 

flow variables. Flows on arcs which do not belong to the maximum spanning tree are the 

independent variables in network flow problems (Ahuja et al., 1993). 

7.10 Test Problems 

The objective function for both sets of test problems (7 x 7 and 10 x10) is of the form: 

rn n 

The shape of the objective function f is the same on al1 arcs. The variation between arcs is 

achieved with the cost parameter c,. The 7 x 7 problem is defined below: 

Source Flows : 27 28 

Destinations : 20 20 

Cost cij: O 21 
21 O 
50 17 
62 54 
93 67 
77 1000 

1000 48 



Note that the diagonal elements have zero cost parameters, while there are six cost 

parameters with very large value of 1000 in relative cornparison to the rest. The 10 x 1 0 cost 

matrix and source/destination flows are shown below: 

Source F l o w s :  8 

Des tinarions : 19 
C o s t  ci,: 15 

13 

37 

13 

31 

32 

49 

2 

13 

23 

The above problems were taken fkom the literature since diey were tested earlier 

(Michalewicz et al., 199 1; Michalewitz, 1994), with a total of six objective functions with 

the best results being produced by the GENETIC-2 model. Those fhctions plus a standard 

LP fonn were chosen for this study as defïned below and Iabeled in the same way as in the 

work of Michalewicz et al. 

Function A: f(x) = O 

Function B: 



Function C:  c.. x. .  2 
r/ !I 

Function D: 

Function E: 
I + 1 + 

I+(x~- IO)' l+(~,-11-25)' 1+(~,-8.75)~ 

Function G: c,,xg Oinear programming case) 

Function G adds a linear programming test Ui addition to the basic tests conducted earlier. 

Before discussing any individual results, it is useful to look at the shape of each fuoction 

depicted in Figures 7.1 through 7.6. Simple heuristic d e s  have been applied in each of the 

above functions during the initialization procedure to increase the likelihood of having 

parents with high fitness values in the initial mating pool. The knowledge of the shape of 

the objective function was used in the process of building the heuristics. The hardest 

functions to solve were C and F. The resuits are first discussed for functions A, E and D. 

It may be mentioned at this point that GENETIC-2 experirnents were conducted with 35000 

individuals generated for the 7 x 7 problern and 50000 individuals generated for the 10 x 10 

problem. 
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7.10.1 Function A 

It is obvious fkom the shape of this fiinction that flows on any arc that are less than 2 would 

result in a zero cost of flow dong such an arc. The initialization procedure was therefore 

modified to increase the likelihood that the decision variables with c, > O set to 2, while the 

decision variables with c, = O were allowed to have higher values. Many initial solutions that 

could not comply with these heuristic d e s  had to be allowed due to random sequence of 

allocating values to xg. Strict adherence to this d e  precludes the surn of aU independent 

variables to equal the required minimum sum, given the random sequence of allocating 

values to decision variables. 

For the 7 x 7 problem the mating pool was selected fkom the initial 500 individuals, with the 

objective function of ùie chosen parents ranghg fiom 83 to around 200. After 4500 new 

individuals were created the mating pool had the values of the objective function ranging 

fiom O to 65. The best 7 parents had their objective function equal to zero. Four of them are 

shown in Table 7.2. 

Table 7.2 Solutions for 7 x 7 Problem with Function A 



The power of the initiaiization procedure becomes more evident in the case of the 10 x 10 

pro blem. The initialization procedure generated 1 O00 individuals. The best among them had 

a fitness value of 2 1 6, which is fairly close the optimum of 202 found by GENETIC-2 and 

much better than the optimum of 28 1 fomd with the GAMS (Brooke et al., 1996) solver, 

as reported by Michaiewicz et ai. Mer  10,000 additional individuals were generated, al1 

rnembers of the mating pool had their fitness value below 20 1, with the best of them shown 

in Table 7.3 equai to 173. 

Table 7.3 SoIution for 10 x IO Problem with Function A 

7.10.2 Function B 

Function B is very similar to a linear function. Judging by the shape of this function, the 

obvious heuristic rule here would be to favor allocations of less than 10 on any arc with a 

non-zero cost. Allocation on arcs with zero cost could be rnaximized if necessary, since it 

does not affect the objective hction.  Table 7.4 shows the solution for the 7 x 7 problern. 

The objective Eunction value is 203.75, which is aimost the same as 203.8 1 obtained earlier 

by Michalewicz et al. This solution was obtained withiu 5000 iterations. Table 7.5 shows 

the fmal solution for function B with 1 O x 10 rnatrix. This solution was obtained after 10000 

iterations, with objective function of 159.79, which is a2% improvernent over 163 .O reported 

earlier. 



Table 7.4 Solution for 7 x 7 Problem with Function B 

Table 7.5 Solution for 10 x 10 Problem with Function B 

7.2 0.3 Function E 

This function is yet another case in favor of r n o d m g  the initialization procedure such that 

parents with good fitness values can be generated in the initial population. It is obvious fkom 

the shape of the objective f'unction that the most favorable values are either zero or over 20. 

In fact, the highest the value of flow dong an arc, the better, since the objective function has 

a small positive value of about 0.03 even for x, = O. The initialization procedure was 

modified in the following way. Instead of: 

the mode1 used 



This approach was chosen to demonstrate one more feature inherent in this algorithm. 

Knowing that the constraints (sums of rows and columns) are al1 integers, this initialkation 

procedure with the above modification will result in the search space of integer solutions 

only. While the global optimum may not be an all-integer solution, the best integer solutions 

can be found very quickly. Added search in the floating point space is possible by 

introducing an additionai mutation operator, which is done for functions C and F, but not 

here. The best solution found for a 7 x 7 problem has fitness value of 204.88, fairly close to 

204.73 found by GENETIC-2. However, the fitness values of the best solutions found for 

1 O x 10 problem are al1 within 7 1.83 and 72.2 1, almost 10% better than 79.2 found by 

GENETIC-2. It took less than 5000 individuals to reach these solutions for 10 x 10 problem, 

and less than 3000 for 7 x 7 problem. Table 7.6 displays the best solution for 10 x 10 

problem with objective function equal to 7 1.83. 

Table 7.6 Solution for 10 x 10 Problem with Function E 

Although only integer solutions were inspected in both the 7 x 7 and the IO x 10 test 

problems, it was found that Iarge differences of the argument values among the best 

individual solutions for the 10 x 10 problem result in very small differences in the objective 

function, which demonstrates the existence of numerous local optima. This offers a hint as 



to why sirnulated annealhg approach, which was initidly tried in a combination with the 

initiaiization procedure, had so much difficulty converging to high quality solutions. 

This is also a function which gives Iarge contribution to the overdl cost even for smail values 

of decision variables. For example, for a decision variable equal to 0.2 the square root is 

0.45, which, when multiplied with a cost factor of 1000 gives 45. One conclusion that can 

be drawn out of this is regarding the 7 x 7 problem is that decision variables with a cost 

parameter set to ZOO0 shouid ideally be set to zero. This heuristic rule was built in the 7 x 

7 problem. Other than that, the shape of the function reveals that several Iarge values of the 

decision variables in combination with many zeros wodd most likely result in the best 

overdl solution. Hence, the initiakation procedure was modified as foilows. 

where N(0,l) is a normal variate with a mean of zero and standard deviation of 1. Hence, 

there is a 50% chance that a decision variable is set to its current maximum, and a 50% that 

it would be less than maximum, but it still remains in the high range with respect to the 

constraints. 

For the 7 x 7 test problem, the mode1 found a solution with the sarne fitness value of 480.16 

as the one fomd by GENETIC-2. For the 10 x 10 problem, there was a very smali 

improvement to the solution of 39 1.9 obtained by GENETIC-2. The fitness value is 388.9 2 

and the solution is shown in Table 7.7. 



Table 7.7 Solution for the 10 x 10 Problem with Function D 

7- 1 O S  Function C 

This function is a textbook example of a regular quadratic program for which GAMS and 

other gradient based solvers should easily f k d  the global optimum. This problem does not 

have a well defmed favorable corners of the feasible region that could be exploited in the 

initialization procedure. There are however some simple d e s  that couid be used: decision 

variables with very large costs (e-g. 1000) should be kept equal to zero if possible, decision 

variables with cost parameters equal to zero should be allowed to have high values, and the 

remaining decision variables should have values of around 1 or less, since the quadratic 

function is exponentially decreased for the argument less than 1. The main difficulty with 

this function was a tendency of the algorithm to cluster around a local optimum, since al1 

members of the mating poll begin to look iike identical twins, but not quite since the 

numbers differ on the second decimal. So there was a phenornena of having "almost 

identical twins" with negative impacts on convergence, the same problem encountered with 

the emergence of identical twins. To make sure the variety of good genetic material is 

retained in the mating pool, a small mutation operator was added in the recombination 

procedure in the following form: 



where 8 was tested with values between 0.1 and 0.01, with 0.05 being. the best value after 

conducting several test rum. In other words, the parent's gene was copied but it was mutated 

slightly by taking 5 percent of its value as the mean of the standard deviate. The algorithm 

converged to good solutions, but it took more computationai effort t h a n  in the case of the 

previous three test hctions. This approach represents a forrn of a marrriage of GA based 

recombination with simulated annealing. More avenues are being explored at present in 

order to ensure a more efficient solution procedure for this type of function. 

Typically, the gradient search methods (in this case quadratic progranmitng) are expected to 

find a global optimum for these objective bc t ions ,  and other heuristic techniques can be 

gauged by measuring their closeness to the global optimum fourad by a quadratic 

programming model. Indeed, the entire explosion of interest in heuristic methods is not 

because of problems of this kind, but rather the problems with objective function of type E 

or in particular F, where the gradient search methods fair poorly in cornparison to GA 

methods. Table 7.8 shows the solution obtained fiom the GAMS solver, with the objective 

fimction equal to 2535.29, and the best solution fiom the SFEP after 2000~0 individuals, with 

the objective fimction equal to 2534.34. 

Table 7.8 Solution of 7 x 7 Problem with Function C 

GAMS Solver 
20.00 0-52 0.85 1.83 1.59 2.08 0.14 

0-00 19-48 1.86 1.89 2.04 0.15 2.59 

0-00 0-00 17.29 1.18 1.07 1.75 3.70 

0-00 0.00 0.00 18.10 1.27 0.05 0.58 

0.00 0.00 0.00 0.00 19.74 0.26 0.00 

0.00 0-00 0-00 0.00 0.00 20.00 0.00 

0.00 0-00 0.00 0.00 0.29 0.71 19.00 

While their fitness value is aimost the same, some of the individual decisilon variables differ 

by over 20%. There is room for M e r  improvement in the efficiency of SFEP search based 

on the ideas outline above. 



7.10.6 Function F 

This is a challenging function with four possible roots for argument values of 0,6, 14 and 

22. The initiakation procedure was adjusted in such a way as to favor any of those values. 

The same mutation operator as the one descnbed for function C was applied here as well. 

Convergence is slower, however the solutions for both problems are better than those found 

by GENETIC-2. For the 7 x 7 problem, the entire mating pool ends with the fitness values 

between 78.8 1 and 83.18 while the best solution previously found with GENETIC-2 had a 

fitness value of 1 10.94. Table 7.9 shows the two solutions fkom the mating pool with their 

objective h c t i o n  values, found d e r  20000 individuals were generated in the process. The 

10 x 10 problern was run for 40000 individuals. The best individuals generated in the 

process had their fitness values ranging fiom 173.26 to 175.45 while the best solution 

previously found by GENETIC-2 had a fitness value of 201.9. Table 7.10 shows the best 

solution generated for the 10 x10 test problem. It shodd be noted that no attempt was made 

to optimize the efficiency of the search process. Examhed at this point were only the 

robustness of the approach and its overd capability to fînd good solutions. 

Table 7.9 Two solutions for 7 x 7 ProbIem with Function F 

Objective Function = 78.84 Objective Function = 79.72 



Table 7.10 Solution of 10 x 10 Problem with Function F 

7.10.7 Function G 

Pure linear programming case has been added to the set of test above. It is easy to solve 

using available LP solvers and it provides a way of rneasuring the ability of the SFEP solver 

to frnd the global optimum. Micorsoft Excel solver was used as LP solver in this case. The 

7 x 7 probrem was run with 3000 iterations, and 10 x 10 problem was extended to 5000 

iterations. The initialization fhction was modified to include o d y  guesses which are equal 

to maximum possible flow at any tirne. In this way the SFEP is encouraged to search only 

the corners of the feasible region, similar to oîher LP solvers. Identical solution was reached 

by SFEP and the Excel solver for the 7 x 7 problem, with the objective fimction equal to 

1 t 3.2, This solution is shown in Table 7.11. 

Table 7.11 Solution of 7 x 7 Problem with Function G 



Table 7.12 shows the SFEP solution for the 10 x 10 problem. Here the solution is not 

identical, the SFEP failed to converge to the global optimum by a small margin, with the 

final objective fünction of 118.1 while the Excel's LP solver converged to 117.9. The 

difference of 0.17% may not seem significant, but it does serve as a reminder that SFEP and 

other similar dgorithms provide no proof of converging to a global optimum. After 

inspecting the values of decision variables in the mating pool, it was obvious that the global 

optimum values were al1 there, but their right combination did not emerge afier 5000 

iterations. Rather than increase the number of iterations, the way to compete with LP solvers 

on large problems would be to include additional heuristic d e s  in the search process. These 

could be related to mutation or recombination operators. One thing shodd be noted: there 

is no benefit to applying the SFEP where other available LP solvers are much faster and they 

guarantee global optimum. A useful cornparison between SFEP and an LI? solver would be 

to use a large dense network and mod* the SFEP to solve the dual problem. This has 

double advantage to SFEP: (a) no need for gene therapy, since dual variables are unrestricted 

in sign and d imi t ed  in vaiue; and, @) fewer variables, since there are typically fewer nodes 

than arcs. For exarnple, in the 10 x 10 transportation problem there are 19 dual variables that 

must be found to retrieve the optimal values of dl 100 arc flows. To solve an equivalent 

(dual) problem with 19 unconstrained variables may be easier than to stniggle with 8 1 

independent flow variables which are also heavily constrained. 

Table 7.12 Solution of 10 x 10 Problem with Function G 



7.1 1 Cornparison of Results 

Table 7.13 provides a cornparison of the resuits fkom this research with those previously 

reported by Michaiewicz (1994) with two GAprograms: GENOCOP and GENETIC-2. Note 

that GENETIC-2 was specifically designed for transportation problems. Solutions obtained 

with the GAMS solver were compared with the GENETIC-2 and SFEP programs in Table 

7.14, 

Table 7.13 Cornparisons of Results for the 7 x 7 Test Problems 

Table 7.14 Cornparisons of Results for the 10 x 10 Test Problems 

Function 

A 

Of the above, the only h c t i o n  where GAMS found a better solution was function C for the 

10 x 10 problem, although the difference is only 0.7%. Solutions were obtained quickly. 

The Iast column shows the number of iterations needed to h d  the best solution. Execution 

GENOCOP 

2 4 . 1 5  

SFEP # Iterations 

10000 

Funct ion 

A 

SFEP # Iterations 

5000 

GENETIC-2 

O 

GAMS 

281 

SFEP 

O 

GENETIC-2 

202 

SFEP 

173 



times could not be compared directly with the previous work of Michalewicz et al. since they 

were never reported earlier due to a variew of computer hardware that was used in their 

study. The CPU times in this study were timed separately for the 7 x 7 and 10 x 10 problem. 

To generate 5000 iterations, it takes 0.13 seconds of CPU time for the 7 x 7 problem, and 

0.55 seconds for the 10 x 20 problem. The test runs were conducted on a 350Mh.z IBM 

compatible PC with AMD processor. The timing results show that execution times grow 

exponentially with the size of the problem, which was expected. 

7.12 Summary 

This Chapter presents an evolution program for solving non-linear transportation problems 

with possible extension to network flow problems in general. The main features of the 

solution procedure are: 

Massive initialization procedure which generates only feasible soIutions with 

increased likelihood of generating solutions with good fitness based on simple 

heuristic d e s ;  

A multipoint recornbination operator which gives al1 parents in a small mating pool 

equal chances of contribuhg their genetic material to offspring; 

An elitist selection operator which places o f f s p ~ g  in the mating pool only if its 

fitness is better than the fitness of the worst parent, resulting in the removal of the 

worst parent fiom the mathg pool. The selection operator does not allow identical 

twins in the mating pool. 

A gene therapy operator which fixes defective genes (those that violate feasibility as 

a result of the genetic crossover), thus ensuring that o f f s p ~ g  is always feasible; and, 

Non-linear objective functions and constraints can both be included in the search 

process. 

The procedure seems to offer a good potential to become an efficient solver for a large class 

of network flow problems with non-linear objective hc t ions  and constraints. 



CASE STUDY II - OPERATION OF BIGHORN/BRAZEAU HYDRO POWER 

SYSTEM OF TRANSALTA UTILITIES CORPORATION 

8.1 Introduction 

Finding the best reservoir operating d e s  is a complex problem, characterized with non- 

linearly constrained decision variables which Vary both in space and in time and have a 

stochastic component associated with the unceriainty ofreservoir inflows. The development 

of reservoir operating d e s  has been closely associated with the development of 

mathematical models to represent the decision making process. There is no universal 

approach in dealing with this problem. Yeh (1985) provides a summary of various 

approaches that have been tried in the past Two groups of methods that have gained generd 

acceptance among researchers are summarized below. 

The first group is the explicitly stochastic methods (Simonovic 1987, Loucks et al. 198 1, 

Young 1 967). These methods requVe that the entire problem be formulated and solved as 

a stochastic mathematicai program, which means that the uncertainty is represented in some 

way with a random function imbedded in the model. These methods have suffered fiom (a) 

cornputational inefficiency; @) difficulties related to their proper mathematical formulation; 

and, (c) distrust on the part of the reservoir operators due to cornplexity of the model. Many 

models have failed to become practicd operational tools (Oliviera and Loucks, 1997), even 

though the final formulation of the reservoir operating d e s  is usually simple, in the form of 

tables and graphs (Wurbs, 1996). 

The second group is the deterministic optimization methoh. They are easier to understand 

and much easier to solve. They rely on known inflows, while the reality is that inflows are 

unknown. 

To overcome thïs, researchers have resorted to the use of long historic time series of 



naturaiized inflows, where variability and seasonality of the senes includes the necessary 

stochastic component. The deterministic models could be used in two ways: either (a) 

develop optimal rules based on the perfect foreknowledge of the inflow senes and target 

releases for a year (here the operating niles given as the draw down and refill curves 

constitute mode1 output); or, (b) assume an operating nile for a reservoir, run the entire 

senes of historic inflows and current (or projected) demands, and then evaluate the 

performance of the entire system. In this case the assumed operating rule does not change 

during the simulation nin for dl simulated years, and the performance of various scenarios 

can be compared based on various ndes assumed for each scenario. 

Approach (a) provides a set of optimal reservoir draw-dom and re-fill curves which are 

different for every year, due to inflows and water demands being also dif5erent from year to 

year. Approach (b) is not so heavily dependent on the inflow series, but it is not easily 

applicable to multi reservoir systems where the d e r  of possible combinations of rule 

curve shapes is very large. 

Reservoir inflows are an important input for analyses of reservoir operation. Histonc 

hydrologic inflow series are often of insufficient length to capture severe conditions that may 

be encountered in the basin. A time senes of flows with 30 or 40 years on the record most 

likely does not include a 100 year wet or dry hydrologic event. Sometimes there is a need 

to extend the histonc series, which is usually done either by (i) the use of regional analysis; 

(ii) development of rainfall-niooff models, since rainfail data are typically of longer record 

length than the hydrometric data; a d ,  (iii) the use of stochastic models to generate stochastic 

inflow time series which are statisticaily similar to the historic records. The stochastic 

component relates to the variation of inflows and water demands. This variation is included 

in the long time series of data (either historic or stochastic), hence the term implicit 

srochasric models. The use of deterministic optimization models over long time series of 

inputs is typicdy referred to as implicit stochastic oprimizution @ich and Simonovic, 

2000a). 



The first modelling attempts were combined optimization and simulation models (Bhaskar 

and Whitlach 1980). Various mathematical programming techniques have been used to 

address optimal reservoir operation. Russell and Campbell (1996), Bijaya et al. (1996) 

experimented with fuzzy programming, while Oliviera and Loucks (1997) used genetic 

programming to optimize reservoir releases in a multi-resewoir system. Perhaps the most 

popular approach to date is the one based on the use of Linear Programming network solvers 

such as the Out-of-Kilter algorithm (Ford and Fulkerson, 1962; Barr et al. 1974) or EMNET 

(Brown and McBride, 1984), which were the basis for several popular models already 

mentioned in Chapter 3. 

The problem in this study exhibits cornplex non-linearity in constraints, which niles out the 

use of linear programming. The use of SFEP algonthm is investigated in this study in the 

context of solving network flow distribution over multiple tirne steps, where reservoir 

releases are associated with decision variables. The problem definition is provided first, 

followed by methodology and a discussion related to the final results- 

8.2 Problem Definition 

The goal is to optimize operation of a small system consisting of the Bighorn and Brazeau 

reservoirs (Ilich and Simonovic, 2000b) and their respective hydro power plants. These are 

the main peaking power generation plants for Transalta Utilites Corporation (TA) that 

produce a large portion of the peak power requirement in the Province of Alberta. They are 

located in the North Saskatchewan river basin. The schematic representation of the system 

is s h o w  in Figure 8.1. 

There are two outiets fiom Brazeau reservoir. One is a set of two gravitational venturi tubes 

which are used to provide outnows h m  the upper part of Brazeau storage. When elevation 

drops below 959.8 m, the ventun outlets can no longer be used and water must be pumped 

out of the reservoir to Brazeau canal. 



I 

Figure 8.1 Schematics of Bighorn / Brazeau hydro power system 

Two pumps of similar capacity are used for that purpose. Both the venturis and pumps 

release water fiom Brazeau reservoir into a long canal. The canal is operated in a narrow 

elevation range of 959.35 m to 959.5 m, thus providuig a relatively constant head for the 

power plant located at its dowmtream end. The penstock starting at the end of this canai 

supplies flows to Brazeau hydro power plant. The canal storage change effect can be taken 

into consideration in hourly or daily operation, but it becomes insignificant in weekly or bi- 

weekly operation as canal inflows and outflows exhibit a close match. Therefore, one can 

assume that the power generation at Brazeau is a function of only the flow through the plant, 

and not head since the head has a relatively constant value. This assurnption can be verïfïed 

by examining the relationship between the histonc flow and power generation at Brazeau 

plant which demonstrates a strong correlation ( e 0 . 9 9 7 ) .  Maximum flow through the 

Brazeau plant is limited to 347 m3/s. 

The outlet fiom the Bighom reservoir flows directly into the Bighom hydro power plant. 

The generated power is a function of both flow and the head, where the head c m  Vary fkom 



52 m to 92 m. The maximum design flow through Bighom plant is 160 m3/s. 

In an effort to increase productivity, TA has initiated the development of new operating 

guidelines to minimize the cost of pumping. There are two facets related to pumping costs: 

demand charges and energy charges. Of those, demand charges are more significant. The 

demand charge is the maximum instantaneous power calculated as the greater of the constant 

demand or the maximum demand that occurred in the last 12 months. It is obvious that TA 

should make every effort never to use both pumps sirnultaneously, in order to reduce the 

demand charges. This assumption has been incorporated in this study. 

The study relied on the 14 years of power generation and hydrologie i d o w  data in the 1985 

to 1999 period. More inflow data are available, however the historic power production 

patterns were readily available in electronic format only since 1985. Also, the use of power 

generation data pnor to 1985 is less attractive as the power generation patterns of more than 

15 years ago would poorly represent the current conditions. 

This study was based on using a weekly tirne step. The basic concept in this study was to 

allocate power generation between the two pIants such that: a) the historic power production 

pattern is matched as close as possible; b) ody one pump is used for purnping water out of 

Brazeau storage at any point in tirne; and, c) pump use at Brazeau is minimized. The above 

goals were to be achieved assuming only one week of perfect forecast of reservoir inflows, 

the initial reservoir ievels at the beginning of the week and the total power production target 

for the week. 

The goal is to rninimize the total pump usage. Assume that each unit (1 m3/s) of flow 

through the pump is associated with a cost of P, where P is a constant that can take on any 

finite value, e.g. P = 100. Denoting with Qp[i] the flow through a pump in week i, the above 

objective can be mathematicdy formulated as follows: 



The objective function has a straight forward linear formulation, which can also be re-written 

with constant P taken out of the summation. Constant P represents the cost of pumping 1 

rn3/s of flow fkom Brazeau reservoir into Brazeau canai. Virtually any non-negative value 

of P can be used. The above formulation demands minimum use of the pump in the 

operation over the whole year (Le. 52 weeks, where i is the week counter). There are 

eighteen constraints in this problem. They are rnutually interlinked with non-linear 

relationships, as listed in expressions (8.2) through (8.19) below. 



average daily energy generated at Brazeau power plant in week i (MWday) 

average daily energy generated at Bighom power plant in week i (MWhIday) 

average daily energy requirement for the two plants in week i (MWh/day) 

pumped flow out of Brazeau lake in week i (m3/s) 

venturi flow out of Brazeau lake in week i (m3/s) 

turbine flow through Bighom hydro power plant in week i (m3/s) 

inflow into Bighom reservoir in week i (m3/s) 

net head avdable to the Bighom power plant (m) in week i, as defined in 

expression (8). 

volume in Bighorn reservoir at the end of time step i (m3) 

maximum volume in Bighom reservoir for the end of each week i (m3) 

length of the weekly time step in seconds (7.86400=604800) 

ending elevation of Bighorn reservoir for week i 

average tail water elevation at Bighom plant for week i 

a mapping function that converts volume into elevation for Bighorn reservoir 

a mapping function that converts turbine flow into tail water elevation at the 

Bighorn hydro power plant outlet 

inflow into Brazeau reservoir in week i (m3/s) 

volume in Braeau reservoir at the end of week i (m3) 



Vbmax(i) maximum volume in Brazeau reservoir for the end of week i (m3) 

fi a mapping h c t i o n  that converts average elevation in Brazeau reservoir over 

week i into maximum venturi outflow for week i 

f4 a mapping h c t i o n  that converts average elevation in Brazeau reservoir over 

week i into maximum pump outfiow for week i 

fs a rnapping function that converts volume in Brazeau reservoir into elevation 

Each of the expressions (8.2) through (8.19) representing a constraint is explained in the 

following. 

Objective fiuiction formulation. 

Total power produced at both plants must equal the specified target for each week 

An empirïcal relationship between total flow through the turbines (equal to the sum 

of pumped flow and venturi flow) and the power generated at Brazeau. This 

relationship is derived using the average weekly histone values and it irnplicitly 

includes the efficiency. 

Minimum average weekly power generated at Brazeau must be 28.4 MW. This can 

altematively be specified as the minimum turbine flow through Brazeau being no Iess 

than 3 m3/s (fish habitat requirement). 

Bighorn power production equation which converts the available net head and the 

average turbine flow into power. This is an empiricd relationship based on the 

historic data and it implicitly includes efficiency. 

Water balance equation for Bighorn reservoir for a 7 day time step (inflows - 

outflows = storage change). Al1 terms in the equation are in the flow units. 

Limitations on maximum volume in Bighorn reservoir as  a fünction of time. This is 

dynarnic since it is necessary to conduct the pre-flood draw d o m  and refill in the 

spring. 

Cdculation of net head for Bighorn hydro power plant, which equais average 

elevation of Bighorn reservoir over a tirne step mùius the average tail water elevsttion 



over the same time step. 

A function mapping volume of water stored in Bighom resewoir to surface water 

elevation. 

A b c t i o n  mapping turbine flow at Bighorn hydro power plant to surface water 

elevation below the plant. 

Water balance equation for Brazeau reservoir for a 7 day time step. 

Limitation on maximum volume in Brazeau reservoir as a fünction of week i. 

Maximum turbine flow at Brazeau must be non-negative and less than 347 m3/s. 

Maximum flow in venturis cannot exceed the values dependent on elevation in 

Brazeau determined by function f, which converts elevation to the maximum venturi 

outflow. The elevation e n w  into this mapping fùnction should be the average 

elevation per week, which is equal to b r ( i -  l)+J&(i)]/Z, where Ebr(i) is the ending 

elevation per week i. 

Maximum pump flow cannot exceed the values dependent on elevation in Brazeau, 

The elevation entry into this mapping function should aiso be the average elevation 

per week, which is equal to E,(i-  l)+&(i)]/2. 

A function for mapping volume of water stored in Brazeau reservoir to surface water 

elevation. 

Maximum non-negative turbine flow at Bighorn power plant is limited to 160.4 m3/s 

Bighorn generation (MWday)  must have a non-negative value. 

(8.19) Combined release must give a minimum downstrearn flow of 14 m3/s. 

The unbowns are Q,(i), Q,(i) and QJi) for al1 52 weeks (i = 1,52). The weekly inflow series 

as well as the histonc power generation for both reservoirs were used in the initial attempt 

to solve the above mathematical program. The output fiom this exercise is a set of turbine 

fiows at both plants for al1 52 weeks which minunize the use of purnping while in the same 

time meet constraints (8.2) through (8.19 j. 



8.3 Methodology 

8.3.1 Optimization of Historie Reservoir Operations 

Mathematical program defïned by expressions (8.1) througli (8.19) is initiaily solved with 

a pefiect foreknowledge of inflows and power requirements for al1 52 weeks in each of the 

14 years of record. The goal of this exercise is to use solutions obtained in such a way as a 

basis for developing operating rules with short term forecasts of i d o w s  and power 

requirements. Histoncally, the operation of the system was carried out with occasional use 

of two pumps simultaneously. There is no guarantee that the histonc power production can 

always be repeated in the model, which relies on the use of ody  one pump at any point in 

time. Hence, condition (8.2) was replaced by 

while the objective fimction received one more term: 

where 10000 represents the high penalty for not achieving the same level of generation for 

each week durhg the histonc penod under investigation. With this t e m  the objective 

h c t i o n  also becomes non-linear, since the decision variables are fiows, and G,(i) is a non- 

linear fimction of flow. 

The pro blem was solved using a network representation of the system and the existing non- 

linear reiationships in the constraints and the objective fimction. The SFEP non-linear 

network solver allows simultaneous non-linearities in the constraints and in the objective 

hct ion.  

To appreciate the complexity of the problem, consider for example a set of perfect solutions 



for Bighom turbine flows Q,(i). The model is asked to h d  52 values, where each of them 

c m  range fiom O to 160.4 m3/s, such that conditions (8.2) through (8.19) are dso satisfied 

(note that these conditions include reservoir routing for both venturi and pump outlet to find 

the maximum outnow fkom Brazeau). One small deviation fiom the best value in week 3 

c m  limit the choices in the remaining 49 weeks. Thzre is no known search rnethod that can 

guaranttee to find the global optimum across the entire time domain, and the SFEP aigorithm 

does not make this claim either. It should aIso be noted that TA did not use any optimization 

models to improve its operation in the 1985 to 1999 penod. 

The initial runs resulted in fourteen a n n d  solutions for the entire system with perfect 52 

week forecast for each simulated year. To give more options to the optimizer, each year is 

staaed at the beginning of week 26, which corresponds to July 1 for leap years or July 2 

otherwise. At the be-g of July the reservoir levels are high and the model has a wider 

range of operational options to examine as opposed to starting the simulated year on Sanuary 

1, when the reservoir levels c m  be Iow and the range of options is severely restricted. The 

average potential savings in pumping energy @Wh) achieved with the initial simulation runs 

were in the order of 60% in cornparison to the histonc operation. The surnmary of the results 

is depicted in column B of Table 8.1. Column A gives the historicd pump use in the 1985 

to 1999 period. 

The £inal convergence in most cases resulted in the Bighom elevation being too low, as well 

as Bighorn reservoir being empty for severai consecutive weeks, which would normally be 

avoided. Rather than rank the best solution solely based on the value of the objective 

function, a near optimal solution was selected using both the value of the objective function 

and the shape of the resulting draw down and refill cuves. Two judgmental criteria were of 

interest when analyshg the reservoir elevation patterns. First, the ending elevation for the 

Bighorn and Brazeau shodd be equal to or higher than the minimum elevation of the historie 

1 985- 1 999 record on July 1 for either reservoir. Second, neither reservoir shodd be empty 

for longer than one week. Taking aU this into considerations, the selected results should be 



considered as "near optimal". The results of the above simulated operation with the SFEP 

optimizer dnving power generation at both plants were subjected to two types of analysis, 

as explained in the following. 

8.3.2 Development of Reservoir Operating Zones 

Since 14 years is not a large enough sample for statistical analysis, the simulations were 

repeated for each year individudy by selecting a dSerent starting elevation at the beginning 

of the year for each reservoir. The only exception to this was 1 998/99 when the initial levels 

on Jdy  1 were very high, generation was also high, and incoming flows were below average. 

If the starting levels in July 1 of 1998 were reduced by 2 metres or more on each reservoir, 

the mode1 would have senous difficulties meeting the histonc production pattern. This 

added set of simulation runs gave 40 simulated years (3 starting levels for 13 years and one 

for 1998), which is a slightly betîer base for statistical analysis of simulation results. 

It is possible to look at each individual time slot and find the 10,20,50,80 and 90 percentile 

elevations from obtained results in every week. If al1 points with the same percentile are then 

joined together, they define a draw down and refill line with a certain probability of being 

exceeded. For example, by joining together the points with 50% probability for each week, 

a 50% percentile draw down and refill line is obtained. This iine tells us that it is the most 

Iikely elevation for every point in time during the year for a given reservoir, since 50% of 

simulated elevations were above it and 50% were below. Operating zones shown in Figures 

8.1 and 8.2 were d e h e d  for 1 0,33,67 and 90 percentile using this approach. 

The operating d e s  are simple to follow. If at any point in time the operator is considering 

drawing elevation down fkom zone 1 in Bighom reservoir into zone 2 due to high power 

requirement and low innow, he must fïrst make sure that Brazeau reservoir elevation is also 

brought to the bottom of zone 1 before any releases from zone 2 are made at Bighom 

reservoir. This mle extends for any other two adjacent zones. Therefore, the policy is as 



foiiows: empty zone 1 at Bighom storage first, followed by zone 1 at Brazeau, zone 2 and 

Bighom, zone 2 at Brazeau, zone 3 at Bighom, zone 3 at Brazeau, zone 4 at Bighom and 

kai iy zone 4 at Brazeau. The refili rules are very much the sarne but the order of prionty 

is reversed (i.e. zone 4 at Brazeari is re-filled fïrsî, followed by zone 4 at Bighom, zone 3 at 

Brazeau, etc.) 

rnax zone 
Big horn Reservoir Operating Zones 1 -zone 1 il 

Tirne (days starting from Juiy 1) 

Figure 8.1 Bighorn Reservoir Operating Zones 

1 
l -  max zone : ;  

Brareau Resenioir Operating Zmes - zone1 : j  1 z o n e 2  li 

Time (days starting from July 1) 

Figure 8 -2 Brazeau Reservoir Operating Zones 



These zones can be used in short term simulation with only one week forecast. The number 

of zones is arbitrary, in thïs case five zones were used on each reservoir. The mode1 was re- 

run using two significant changes: 

1. Only one week forecast was impIemented. That means that the mode1 has the inflow 

and power requirements known for only one week ahead. 

2) The objective fûnction was modified to inciude the reservoir zones, as listed below: 

where functions Cbr and Cbg are well known piece wise linear fbnctions representing the 

value of reservoir storage already discussed at length in the literature (S igvaldason, 1 9 76).  

The results of the simulation run that rely on the above zoning niles while using only one 

week perfect forecast of inflows and power requirements are encouraging, as shown in 

column C in Table 8.1. The pump energy savings are close to 50% , which is no t as good 

as it was with a perfect annuai forecast, but it is still considerable, especially since this 

method can easily be applied to systems with rnany reservoirs and hydro power plants. 

However, better results can yet be achieved in this case due to having only two reservoirs, 

as explained below. 

8.3.3 Regression AnaIysis 

Since there are only two reservoirs and two hydro power plants, it would make sense to look 

for a relationship between the turbine flows at each of them as a function of the starting 

reservoir ievels, inflows and the total power requirement. 

The goal is to develop a mathematical f o m  of h c t i o n  f which links the turbine flows at 

each reservoir to the inflows, starting reservoir levels and total power requirement for any 



given week. This function is based on statistical analysis of the results obtained f?om 52- 

week simulation for each year with various starting levels. 

Q b g  = fbp {EL., E b r ,  Ib, Li, Pr) (8.23) 

Assuming reasonably accurate forecasts of inflows and the total load requirement over a 

week, functions fq and f, could be used to tell the operator how to best combine releases 

to produce the required power. In fact, due to constra.int (8.2), only one of the functions is 

required as the other reservoir release c m  be obtained to match constraint (8.2). 

A multitude of values on both the right and left hand side of equations (8 -23) and (8 -24) are 

available from a total of 40 simulated years. Et was found that the best multiple regression 

(R2 > 0.995) c m  be found between the Bighorn reservoir level at the end of a week as a 

function of the initial elevations at Bighorn and Brazeau, average weekly inflows into both 

reservoirs and the totai power requirement for a week. nie  relationship has the following 

f o m  : 

where syrnbol E represents the ending elevation for a week while index i represents the week 

counter. Hence the ending elevation for week i-l is the starting elevation for week i, 

Coefficients a, b, c, d, e, and f have been determined as 0,994422, 0.0564, 

- O.OOO472,O.Ol6S, 0.0073 and -47.55229, respectively. 

The predictive regression model gives the week ending elevation for Bighorn reservoir given 

the initial elevations and weekly inflows for both reservoirs, dong with the total power 

requirement for both hydro power plants. In combination with Bighorn inflow and the initial 

elevation, the predicted reservoir level fiom the multiple regression can be used to estimate 

reservoir outnow for a week. The multiple regression model was tried instead of the 



reservoir operating zones model discussed above, however the trid failed to produce good 

results. In some cases regression was causing reservoirs to spiIl, and in a few rare cases it 

resulted in negative turbine flows at Bighom. It was decided that the relationship developed 

using multiple regression cannot be used on its own. 

The final avenue that was attempted was to combine multiple regression reIationship with 

the zoning concept developed in the previous step. This is a promising approach for a 

number of reasons: 

a) The search for good initial solutions for each week can be improved using the 

regressionrelationship. It is not necessary to generate any values of Bighorn outflow 

between O and 160.4, but rather focus on a much smaller search space defined in each 

step dynarnically using the multiple regression defined by equation (25). The 

regression gives the most likely guess, and the other guesses are clustered around it 

using normal distribution with a small standard deviation equal to 10% of the value 

of the initial guess. The importance of generating initial parent solutions in 

favourable areas of the feasibie region has been emphasized earlier in Chapter 7. In 

thîs case the favourable region is not determined using the shape of the objective 

fùnction, but with the multiple regression instead. 

b) Unintelligible guesses (the ones that result in spills or negative outflows) are 

discarded using the zoning concept which forces generated trial solutions to conform 

to the stated zoning use policy, as well as the recombination mechanism which 

throws away solutions with poor fitness. 

The final solutions in column D of Table 1 obtained fiom a combinatorial model consisting 

of the above zoning concept in combination with the multiple regression predictive model 

gave excellent results with only one week forecast of inflows and power requirements. The 



average reduction of energy required for pumping is amund 88% in cornparison to the actual 

historic record. In terms of the actuaI cost savings in dollars, it could be even higher than 

88% since a lower demand charge could be negotiated due to the assumed operation of only 

one pump instead of two. 

The results Iisted in column D of Table 8.1 surpassed the performance of the mode1 

displayed in the initial nuis with 52 week foresight This means that the initialization 

procedure (the fïrst step in the search process) is very significant for the success of the model. 

In this case there are two issues that preclude finding the best solutions using the 52 week 

foresight: 

1) The use of high penalty for not meeting the total power demand fkom both plants 

(conditions 8.20 and 8.21) is fairly fiequent in the first set of simulations with 52 

week forecast, however it declines significantly once the operating zones are 

introduced. This d o w s  the model to focus more intently on the search within the 

true feasible region without wasting time with infeasible solutions that had to be 

filtered out using a large penalty. This is yet another argument against the use of 

penalty functions in this kind of search. 

Initial selection of solutions with 52 week forecast was not only based on the value 

of the objective funcion, but also on the length of period Bighom reservoir was 

empty. In most cases this meant sacrificing optUnaIity by about 25 % and taking 

solutions which have not yet converged such that the dam operators can accept the 

"role model solutions" as building blocks for generating short term operating policy. 

Therefore, solutions in column B above are a mix of art and science, they are not the 

best solutions found, but they are the best solutions that would Iikely be acceptable 

to the operators. 

This above conclusions also mean that other search options should be examined in the future 



to achieve higher optimality in the initial step of this process, especially when penalty 

functions are requîred to ensure convergence to feasibility of the fnd solutions. 

Table 8.1 Summary of historic and simulated purnping energy requirements in MWh 

Histo ric 52-week one week zones & 

Year ~ m ~ h g  forecast forecast & zones regression rule 

Average 18000 7482 959 1 2142 

The problem has three variables - venturi and pump flow at Brazeau aiong with the turbine 

flow at Bighron power plant. These three variables must initially be solved for al1 52 rime 

steps simultaneously, so there are 156 variables dong with 19 constraints for each time 

interval, which gives a total of 19 x 52 = 988 constraints, virtually al1 of which are non- 

Iinear. The SFEP solver was capable of solving the above problem within 13 seconds on a 

500 MHz PC ninning the Windows 95 operating system. The initialization procedure 

included a total of 1000 individuals. The mating pool has 10 parents, and the recombination 

was carried out for up to 3000 trials. Table 8.2 gives the objective hct ions  of the first 10 



individual solutions, and the best IO solutions lefi in the mating pool after 1000 randomly 

generated solutions. This is followed by the makeup of the mating pool after each 500 new 

solutions were generated uçing recombination. Solution to this problem could not be 

obtained using other solvers. Microsoft Excel could not handle more than 200 non-linear 

constraints, while the MATLAB package failed to deliver an intelligible solution even 

though ihe technical support stafftried to help in setting it up for this problem (Ilich, persona1 

communication). 

Table 8.2 Values of the objective firnction during the SFEP progression 

solution 
rank 

initial 10 additional 
solutions 990 solutions 

RECOMBINATION 

500 1000 1500 2000 2500 
solutions solutions solutions solutions solutions 

There are no units in the above formulation, since the penalty for pumping a unit of flow in 

expression (8.1) is user-deked, while violating condition (8.2) even by a small arnount 

incurs a large penaity of 20000, which is also set arbitrady. 

8.5 Conclusion 

The SFEP algorithm is used in this study in an effort to minimize purnping fkom lower 

storage of Brazeau reservoir. The promising feature of this approach is the inclusion of non- 

linear functions related to reservoir routing and hydro power generation directly in the search 

process. The generated nile based on a one week forecast of infiows and energy 

requirements and the use of the SFEP solver to simulate operation h r  each week individually 

show potential pump energy savings of close to 90% on average over the 1s t  14 years. This 



approach can be used on other systems with different objectives, which can include 

maximizing energy generation in combination with other in-stream or off-stream water 

requirements. 



9 CASE STUDY III - WATER ALLOCATION IN THE BRANTAS W E R  BASIN 

IN EAST JAVA, INDONESIA 

9.1 Introduction 

This Chapter describes testing of the SFEP solver on the Brantas river basin depicted in 

Figure 9.1 and located in East lava, Indonesia. The goal was to use the SFEP such that the 

mode1 could fïnd water allocation that best meets the established objectives of Penun Jasa 

Tirta (PJT), a water management agency in charge of regulating the major water intake 

structures and reservoirs in the Brantas river basin. 

b Pacific Ocean 

Indian Ocean -- 
Brantas River Basin 

- - - -- . 

Figure 9.1 Location of Brantas River Basin 

Perum Jasa Tirta (PJT) has long been a role mode1 agency regarding water resources 

management in hdonesia The agency is flnanced mainly by charging fee for water use in 

the basin. There are four types of users in the basin: hydro power producers, municipalities, 

industries, and agriculture. Mthough the present situation is in the process of change, the 

current fee structure is lenient towards fmers ,  whose imgation withdrawals account for 

most of the consumptive water use, while they do not pay for it. Other water users in the 



basin are Ievled commercial rates which is aimed to encourage water use efficiency and 

sound management practices. 

Whife irrigation, municipal or industrial water use al l  have upper limits on demand which 

Vary in time and space, there is no such Iimit explicitly stipdated for hydro power, where the 

goal is to maximize power generation. Maximizing total power generation in the basin over 

the whole year is adesirable objective since PJT collects a percentage of the generated power 

as its revenue, although it has been noted that there is a surplus of electric energy in 

Indonesia at present and the goal of maximizing power output fiom the Brantas basin may 

necessarily coincide with the overall governent objectives. This objective is constrained 

physically by the flow and head capacities of the turbines, and operationally by other 

priorities that may take precedence. Hence, the management objective for the Brantas basin 

(and many other sirnilar river basins) can be mathematically expressed as: 

where: 

P 

RP 

power generation at any of the hydro power plants in the basin (kwh) 

revenue per kwh aiiocated to PJT as per the existing agreement 

(Indonesian Rupiah = Can$0.00019 at the time of this study) 

sum of revenues fiorn d l  hydro power pIants in the basin (Rp) 

pumped flow through a pumping station (m3/s) 

cost of pumping per 1 m3/s assuming constant head rïse (Rp) 

sum of al1 pumping costs in the basin (Rp) 

water supply for irrigation (m3/s) 

added value of crop production due to 1 m3/s of imgation supply (Rp) 

added value of total crop production fiom al1 irrigated areas (Rp) 



water supply for industry (m3/s) 

industrial fee per 1 m3/s of water use (Rp) 

total revenue fiom ail industrial water use in the system (Rp) 

water supply for municipalities (m3/s) 

municipal fee per 1 m3/s of water use (Rp) 

total revenue fiom all municipal water use in the system (Rp) 

water supply for riparian needs (rîver maintenance) (m3/s) 

river maintenance flow target (m3/s) 

the cost of damage caused by not meeting the riparian flow 

requirement by having 1 m3/s deficit (Rp) 

Cm] the value of total loss for not meeting the riparian flow targets (Rp) 

The fees that are currently is use are S l ~ p / m ~ ,  35 ~ p / d  and 13.61 RpKWh for industrial, 

municipal and hydro power use, respectively. However, there are legal and operational 

requirements that may ovemde the econornic values attached to them. For example, 

industrial users pay a higher fee than municipalities. However, municipal supply takes legal 

precedence over industrial water use, and as such it should be assigned a higher pricing 

vector indicating higher pnority within the model. There are other water management 

objectives that are political, such as irrigation or the maintenance flow. The fee levied for 

irrigation water use is stiU a political issue which brings some uncertainty to the value of Cir. 

If zero is used as the value for Cir (since irrigators are currently not payïng for water at all), 

water may not be allocated to irrigation within the model. Hence the value of Cir must be 

detemiined using its political importance. Sùni1a.r remark is applicable to C m ,  which is the 

equivalent monetary vaiue associated with river maintenance (tliis implicitly includes water 

quality as the maintenance flows rnay be governed by water quality requirements). 

The above objective can be formulated as maximization of revenue for PJT with inclusion 

of important political objectives and operational constraints. It is applicable to each 

operational tirne interval, which in this study is restricted to a IO-day penod due to the 



available input data, Since an allocation decision in one time interval has implications on 

the management options in the following time intervals, it is desirable to carry out basin-wide 

optimization of allocation both in space (due to spatial variation of supply and demand) and 

in time (due to seasonal variations in supply and limited reservoir storage). Emptying 

reservoirs too soon may cause high costs to the downstream users later in the dry season, and 

vice versa, being too conservative in the beginning of the dry season may limit the h a 1  

output for the whole year by using only a hc t ion  of the available live storage. Hence, the 

goal of hding optimal allocation must include the time component by summing up the 

above expression over al1 time intervals within a year: 
f 

where the f is t  summation is over al1 time intervals within a year, whiIe the summations 

inside the curly braces are conducted over ail basin components of the same type (e-g. 

irrigation, industrial, or municipal users). The above equation maxirnizes annual net revenue 

for PJT. The following consiraints apply to the above maximization problem: 

Power generation is constrained by the operating charactenstics of the turbine and generator, 

which are hctions of flow and average net head over a tirne interval. The average net head 

is a function of average reservoir infiow, outflow and the starting eIevation for a time 

interval. 

Maximum pumping rate is constrained by the operating characteristics of the pump, which 

is also affecteci by the average anticipated head nse over a time step. 



Qir s Dir (9-5) 

Irrigation supply should not exceed the ideal demand D i .  defined for each area by the crop 

requirements and conveyance losses. 

Qin s Din 

Industrial supply should not exceed the ideal demand Din (m3/s). 

Municipal supply should not exceed the ideal demand Dm (m3/s). 

Finally, one more term should be added to the objective function. It represents importance 

of storing excess water in the reservoirs. Without this term, the mode1 would be indifferent 

to spilling surplus fiows as opposed to storing them in reservoirs. The pricing vector for 

storage is the lowest in the system, which means that storage will give in to any other 

demand. The low pricing vector is stilI required to make sure that reservoirs re-fil1 during 

the wet season. With this term the objective function takes the following fom: 

where: 

Qr ending reservoir storage in the units of flow for a tirne interval (m3/s) 

Dr target flow into reservoir required to keep it full at the end of a time 

step (m3/s) 

Cr the value of storage (Le. the cost of 1 m3/s of deficit in storage) 

x ( ~ r  - Dr) - Cr the value of total cost for deficit in storage for all reservoirs 
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Since the cost of storage deficit is the lowest in the system, it does not alter the solution 

(water allocation) for other components. It is required by the model to avoid mecessary 

spills and ensure re-fills during high flow seasons. 

The model was appjied on the current system configuration in an effort to investigate 

possible management improvements over the Iast 23 years. Therefore, the sub-system 

consisting of Wonorejo reservoir numbered (34) in the Schematics in Figure 9.2 has been 

excluded, dong with the entire Wonorejo sub-system, including the purnp (14 l), diversion 

canals (1 14), (1 16) and (104) and hydro power plants (64) and (66). Basically, the Brantas 

river basin has been cutoff fiom the Wonorejo sub-system and the new developments 

presently under way are aimed at re-establishing the connection at node (4). This connection 

is still not operational so it was left out in this study. Sutami and Lahor are the only two 

reservoirs with sizeable storage. Sengumih, Wlingi and Lodoyo are weirs with run-off-the- 

river hydro power plants. They were modeled as nodes without storage since their entire 

storage can be re-filled (or emptied) with a flow of less than 3.5 m3/s over a 1 O-day time step, 

which was used in this study. Typical river flow at those weirs in the dry season is around 

50 m3/s while in the wet season it may exceed 200 m3/s. 

Rehini flow channels r e m  a percentage of gross diversions to the points of r e m ,  while 

inflow nodes represent m o f f  contribution of a sub-catchment between subsequent inflow 

nodes. Local infiows can be either positive or negative, implying gains or losses (mady due 

to channel attenuation) within the same IO day period. There are 25 decision variables in the 

Schematic in Figure 9.2, and they were solved simuitaneously for 37 time intervals (one Ml 

year plus one more t h e  interval fiom the following year), such that the acîuai nehvork size 

of this problem corresponds to 925 independent variables. In addition to testing the SFEP 

solver on a problern of this size, the other benefit is to try to examine by how much the Basin 

operation could have been improved in the pst if the minimum riparian fIow of 20 m3/s has 

been maintained at the city of Surabaya (charnel 85 in Figure 9.2). 
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Figure 9.2 Brantas River Basin Modeling Scheniatics 
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HistoricalIy, the imposed minimum was only 7 m3/s. In recent years more water is needed 

during the low flows seasons due to municipal supply and water quality concems. 

9.2 Modelling of the Brantas Basin with the SFEP 

The model was setup to evaluate systern performance over individual time steps as well as 

simultaneous time steps up to one year. This was done to ease the use of the mode1 as an 

operational tool. PJT is currentiy using the model as a seasonal planning tool. Of particdar 

interest are the non-Iinear constraints in this problem, which are reviewed in the following. 

9.3 Non-Linear Features 

The general form of the objective function was defined earlier in Section 9.1. The term 

related to pumping can be ignored, since the pump station under construction is a new 

component that hasn't existed over the last 23 years for which the input data are available. 

Note that the objective fiuiction fiom Section 9.1 is non linear due to the power term. This 

is the only non-linear item in the objective function, but it is rather complex since the values 

of head, flow and efficiency have intricate links among them that should be preserved- Of 

particular interest are non-linear flow and head constraints which are listed below. 

9.3.1 Maximum Turbine Flows and Net Head 

Sutami hydro power pIant generates about the half of the hydro electric output of the entire 

Brantas basin. The maximum turbine flows are given as a fùnction of the available average 

net head (NH) over a time step, where NH is given as: 

NH=HW,,-TWw, (9.9) 

HW, and TWavg are the average head and tail water elevation over a given tirne step, and 

they themselves are fünctions of the initial storage, inflow and outflow fiom the reservoir for 



a given tirne step. Hence, one could write: 

HW_ = ~ ( c Q . ~ ~ Q ~ ~ ~ .  v.) 

The first expression does not include the ending reservoir storage since this is implicitly 

included in the three given parameters. The second expression defines outflow as the only 

factor that denves the tail water elevation through some form of stage-flow rating curve. 

That relationship is in effect for al1 hydro power pIants in the Brantas basin except in the case 

of Senggunih hydro power plant, where of Sengguruh is equd to the HW,, of Sutami 

reservoir located downstrearn of it. Ln other words, the Sutami lake level defmes the tail 

water elevation for Senggunih. 

The desired choice is to route al1 outflows ( x ~ o u t  ) through the turbines. However, this 

may not be possible since the 1 s t  on turbine flows is a function of the available NH, and 

yet NH depends on the entire reservoir balance ( x ~ i n  , CQOU~ and the starting reservoir 

level for a time step). The maximum flow (QM) function was d e h e d  using the polynomial 

fit based on the turbine data available from madacturers, resulting in the following: 

For N H  r 78 m 

QM = 3 (0.03097220618 -5.875362193265 NH + 321.32746923567) (9.12) 

Multiplier 3 denotes the maximum fiow for the case when al1 three turbines in parallel 

connection are operated at Sutami hydro power plant. The above relationship has been 

incorporated into the model for this study. 



9.3.2 Hydro Power Efficiency 

Power is produced with variable efficiency, which depends on the combination of net head 

and flow for a given thne step. An attempt was made to derive a functional f o m  of 

efficiency using the historic operation data for Sutami and Selorejo power plants. This 

attempt failed in the case of Sutami hydro power plant, since the histonc data contained 

errors which ofien provided efficiencies above 100%. The historic data were used for 

developing an em~irical expression for efficiency as a function of flow and head for Selorejo, 

while the manufacturer's specifications were used to develop the same kind of expression 

for Sutami hydro power plant. The expressions are given as follows: 

For Sutami hydro power plant: 

For Selorejo hydro power plant: 

The above relationships between turbine efficiency (EF), flow (Q) and head (NH) have been 

included directiy in the source code and used each time the power generation was calcualted. 

9.3.3 Connection Tunnel 

By far the most challenging non-linear constraint is related to the flows in the connection 

tunnel between Lahor and Sutami reservoirs. These flows typicaily range between 5 and 10 

m3/s, although they are known to have exceeded 20 m3/s on rare occasions. The tunnel fl ows 
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Figure 9.3 Sutarni and Lahor comection tunnel (1 3 1 ) 

are a constituent element in the water balance equation for both Lahor and Sutami. Proper 

modeling of those flows is essential for allocation studies and real time operation within the 

Brantas river basin. Figure 9.3 gives the layout of the two reservoirs. Inflow into Sutarni 

reservoir consists of the return flow fiom Molek Irrigation (block 41), outflow kom 

Senggunih weir (power flows through plant 60 dong with spills via channel(71) when total 

outflow exceeds power plant capacity) and the local inflow (Q,) within the catchrnent 

between Sengguruh weir and Sutami reservoir. The only Inflow into Lahor reservoir is the 

local =off i?om its catchent  (QJ. Lahor has two outfiows: (a) downstrearn spi11 via 

charnel (72), and (b) connection tunnel connection tunnel nurnbered (13 1) in Figure 9.2. 

Flows in the comection tunnel within one tirne step can be approximated using the 

following : 

Q = 10JH (9.16) 

where H is the average elevation differential between the two reservoirs over a given time 

interval, i.e. 



where: 

Els &uthg elevation at Lahor for a time step (m) 

Ele ending elevation at Lahor for a time step (m) 

Ess starting elevation at Sutami for a time step (m) 

Ese ending elevation at Sutami for a tirne step (m) 

Of those, only Els and Ess are known, while Ele and Ese depenci on: 

(a) total ixlaow and outflow for Sutami reservoir, 

(b) total inflow and outflow for Lahor reservoù; and, 

(c) starting elevation of Lahor and Sutami (Els and Ess). 

It should be noted that comection tunnel fiows c m  take any direction between Sutami and 

Lahor reservoirs. The comection tunnel flow can act as either inflow or outfIow in the 

balance equation of each resenroir. Therefore, the comection tunnel flow is a part of (a) and 

(b) listed above. The problem of finding the best allocation in the basin considerably 

complicated by the above fimctional dependencies, where the connection tunnel flow 

depends on six other variables listed under (a), (b) and (c), while four of those listed under 

(a) and (b) are also affected by the comection tunnel flow itself. Note that an error of O. 1 

meters in assumed value for the head differential H gives an error in the estirnate of the 

connection tunnel flow in the order of 3.16 m3/s. The fünctional dependence is very sensitive 

to the value of elevation differential H, thus requiring a sophisticated convergence scheme 

in the process of generating feasible solutions. A feasible solution is the one where the 

starting and ending levels of both reservoirs give a caiculated value of the comection tunnel 

flow, while the same value of the connection tunnel flow is included in the mass balance 

equations for each reservoir. Pennitted tolerance limit is +/-0.01 m3/s between the assumed 

and calculated value of  the connection tunnel flow. 



9.4 Dehition of Modelhg Objectives 

The objective h c t i o n  that c m  be used in the SFEP is no' Iimited only to linear terms. Two 

cases are considered, one referring to a single solution for each time interval and the other 

referring to a simultaneous solution over the entire year. The following cost factors are 

considered, expressed in cost for 1 m3 of deficit fiom the target for riparian flow and 

reservoir storage and the revenue h m  allocating 1 m3 to industry, municipality, irrigation 

and f ial ly revenue fiom generating 1 KWh of hydro power: 

Com~onent Cost Factor (RD) 

riparian flow target 145 / m3 

municipal demand - 3 5 / m 3  

industrial demand -51 /m' 

irrigation demand - m m 3  

reservok storage 0.06 / m3 

hydro power - 13.61 /KWh 

Negative cost factors indicate benefits (revenue) to PJT, while positive cost factors describe 

importance (weight) of an undesirable factor. The highest cost is incurred by violating the 

nparian flow requirement, which is incurred for each m3 of deficit required to maintain the 

flow of 20 m3/s in channeI(85). An effort was made to mode1 the existing cost parameters 

that are currently charged by PJT. In that context, maintenance flow target of 20 m3/s is 

considered an important political objective. As such, it has a higher value than indusaial, 

municipal or irrigation water use. Accordhg to the current fee structure hydro power has by 

far the lowest prioriiy. Using Sutami as an example, with rated head of 78 m, unit flow of 

1 m3/s, average efficiency of 0.85 and the cost factor of 13.6 1 RpKWh, the revenue Rs over 

a 10 day period is: 

Rs = (9.807 78 1 0.85) KW 10 days 24hr/day 13.61Rp/ KWh = 2123826.672 Rp 



When expressed in the units of 1000 Rp, this is equivalent to the revenue of 2 123 [l O' Rp] 

per 1 m3/s of flow for 10 days. On the other hancl, 1 m3/s of municipal water use would 

generate revenue of 86.4*10*35 = 30240 in the uni6 of [103 Rp]. According to this cost 

structure, reservoir releases should be made for other water uses and power shodd be 

generated as a by-product of those releases. A possible conflict between consumptive use 

and hydro power is oniy apparent in the case of the first three irrigation blocks, numbered 

(40), (41) and (42) in the schematics in Figure 9.2. Other irrigation blocks are Iocated 

downstream and they could readily utilize flows released fkom hydro generation throughout 

the year. 

The above fee structure results in a priority policy which is in line with many other river 

bas& where hydro power generation is a by-product of reservoir releases made for other 

purposes, especially in the dry season. 

Case A: Single time step optimization 

In this case each time interval is handled individualfy, which means that the mode1 does not 

use fiow forecast beyond a single 10-day time step. The objective function cm be 

formulated in generd as: 

Since the SFEP setup on the existing configuration without Wonorejo sub-system, the term 

related to purnping costs ( z ~ p  - Cp ) cm be ignored. 

The SFEP was originally setup to solve the minimum cost flow problem in a network with 

non-Iinear objective function and constraints. In the above formulation the objective 

function is set to maximize the net benefit. To convert it to a form suitable for SFEP, the 



terms within should change sign and maxirmzation shodd change to minîmization. This is 

a simple mathematicai conversion that has no physical meaning, however mathematically 

the two forms of the objective function are equivalent. 

Cost factors for hydro power, Mgation, industriai and municipal water use are given in the 

input data file with negative signs which means that the target is to maximize them, white 

the maintenance flow target and storage conservation have a positive sign since the model 

is penalizing deficit of deviation Gom the ideal level for those two components. 

Case B: Multiple time step optimization 

In this case the objective is the same as in Case A but the entire year is solved at once, which 

means that the model uses perfect flow forecast for 365 days. Using the same argument as 

for case A related to the conversion of maximization of net benefit into a minimal cost flow 

problem, the previous objective function can be expanded over al1 36 time intervals 

simultaneously. 

r 

one should keep in mind that there are upper limits to consurnptive (irrigation, industrial and 

municipal) water use. Those three terms could have also been re-written using a positive 

cost applied to the deviation from the ideal zone. In other words, 



subject to: 

The above formulation is equivalent to 

min { z ( D. In - Q ~ J - R ~ J  

in the second formulation the constraint is inchded in the objective function. 

Mathematically, those two forms state the same objective. At this point the SFEP was 

programmed to use the former formulation, however that can be easily changed to 

accommodate either form. 

Case B is based on perfect fiow forecast for the whole year. This is a major advantage which 

should give better overall results in Case B than in Case A- The studies involving Case B 

are of practicd use only if they are aimed to develop reservoir operating guideiines. 

9.5 Results 

The first run was selected on three individual years typical of medium, wet and dry 

conditions represented by years 1978, 1984 and 199 1, respectively. Table 9.1 shows the 

progression of the SFEP algorithm during the solutinri process. The Est column shows the 

value of the objective b c t i o n  for a given solution, with corresponding values of only the 

first four independent variables belonging to that solution. The problem has 925 independent 

variables (25 for each of the 37 t h e  intervals) and additionally there are 703 dependent 

variables (19 for each of the 37 time intervals). The entire mating pool therefore consists of 

925 columns, too many to show in hard print. However, Table 9.1 is primarily of interest 

in terms of the change of the values of the objective fhction. The year that was chosen in 

Table 9.1 is 199 1 (dry year) with simultaneous solution for the whole year. Channels (1 3 1 ), 

(72) and (73) are the connection tunnel, Lahor reservoir spill and Sutami reservoir spill, 

respectively, while component 6 1 is hydro power plant at Sutami reservoir (the values shown 



in the table are dl in flow units). Inflow into Lahor in the first time step is 7.48 m3/s 

(=4.74+2.73), while the maximum hydro power flow at Sutami is about 1 32 m3/s, so there 

is not much room to manoeuver and some spi11 is inevitable. This is why there is no large 

variation of connection tunnel flow in the fïrst time step, however the next 36 time steps are 

different. Therefore, each row of 925 nurnbers contains enough information to rebuild one 

complete feasible solution. The fïrst number in each row identified as  the "Penalty" is the 

actual value of the objective h c t i o n  (9.20) as calcdated by the model. Note that dus value 

can be either positive ore negative, and that the goal is to obtain the minimum possible value. 

The initial 10 members of the maring pool have been improved on average by ody  3 0% after 

1000 more members were generated in a completely random manner. Additional 4000 

random members improve the quaiity of the mating pool by about 45% compared to the 

initial IS members, but d e r  that any additional improvement would be very small and 

Table 9.1 Objective b c t i o n  for various stages of SFEP progression 

The first 10 members of the mating pool 

-- Penaltv - 

Mating Pool members after initialization procedure 
resulting in 1000 randomly created individuals 

-- Penalty - 
427198566.742 
443901576.517 
468538947.104 
471216857,657 
473362569.525 
478902846.830 
479941884.497 
499612370, 646 
499621437.714 
503946079.600 

Mating Pool after the first 10 recombinations 

-- Penalty --- [131] ---- [ 721---- [ 733---- 
38145555.645 4.57 2.91 

1 611- 
0.00 131.85 

349728097,574 4.47 3.01 0.00 131.57 
356201935.008 4.47 3.01 0.00 131.57 
378282973.290 4.57 2.91 0.00 131.85 



Mating Pool after 20 recombinations 

-- Penal 
-53184871 

Mating Pool after 30 recombinations 

-- Penalty --- Cl311 --- 
-53184871.781 4.47 
-2OS21l7l.995 4.57 

Mating Pool after 40 recombinations 

-- Penalty --- (1311 ---- 
-53184871.781 4.47 
-52653475. 505 4-51 
-38911474.187 4.57 
-35819246.664 4.48 
-29851943.183 4.09 
-2O2Zll7l.995 4.57 
-15289749.867 4.48 
-12657188.718 4.47 
-12069957.783 4.57 
-6952527.701 4.47 

Mating Pool after 50 recombinations 

-- P e n a l t y  - 
-59880515.731 
-586lO365.734 

Mating Pool af ter 100 recornbinations 

-- Penalty --- 11311 ---- [ 721 ---- [ 731---- 
-63268689 -809 4.50 2.98 

611- 
0.00 131.65 

-62395074.722 4.57 2.91 0.00 131.85 
-61696592.084 4 -50 2.98 0.00 131.65 



-60801009-577 4.50 2.98 0-00 131.65 
-59880515.731 4.57 2.91 0-00 131.85 
-58993359-880 4-50 2.98 0-00 131.65 
-58610365.734 4.49 2.99 0.00 131.64 
-58092264-331 4.51 2.97 0-00 131.68 
-57127295.450 4-57 2.91 0-00 131.87 
-53369495.251 4.50 2.98 0.00 131.65 

Mating Pool after 150 recombinations 

-- Penal 
-67027274 
-66958659 
-66639419 
-66581659 
-66490324 
-664 66367 
-66168593 
-65068900 
-64712454 
-64622448 

Mating Pool after 200 recombinations 

-- Penal 
-67788538 
-67373646 
-67243249 
-67142915 
-67027552 
-67027274 
-67011366 
-66958659 
-66664978 
-66639419 

Mating Pool after 300 recombinations 

-- Penal 
-71088013 
-70843144 
-70044911 
-70038755 

Mating Pool after 500 recombinations 

-- Penalty --- Cl311 ---- 
-72495075.526 4.49 
-72029875.865 4.47 
-72023906- 988 4.48 
-71977750.082 4 -53 
-71970862.692 4.49 
-71925229.395 4.47 
-71800594 .O02 4.53 
-71796512.238 4.48 
-71786575.267 4.50 
-71785525.034 4.48 

Mating Pool after 1000 recombinations 

-- Penalty --- [ 1311 ---- [ 721---- [ 73 1 ---- 1 617- 
-74451941.077 4.48 3.00 0.00 131.60 
-74367166.629 4.48 3.00 0.00 131.60 



it would corne at a great cost in CPU tirne. Yet genetic recombination operator speeds up 

the improvements tremendously. m e r  starting the process of recombination, of the first 1 O 

individuals generated using the cross-over technique, 7 were eligible for inclusion in the 

mating pool. In the next 20 recombinations the mode1 managed to find 2 solutions which do 

not violate the maintenance flow target and provide higher reservoir Ievels, such that huge 

positive penalties have disappeared and the negative values (indicating benefit to PJT) have 

prevailed. Again, only 4 parents have survived the transition fiom the tenth to the twentieth 

recombination, six of them were replaced in the mating pool by their children. This can be 

identified by comparing the values of the objective functions in the mating pool after the first 

10 recombinations and after 20 recombinations. A hi& quality parent solution, such as the 

top ranked parent after 20 recombinations with the objective function of -53 18487.78 1 will 

offer its genetic material to almost 100 children before it is pushed out of the mating pool by 

new solutions with better fitness. After complethg the first 1000 recombinations, there is 

very little improvement. Most independent decision variables have converged and further 

progress is ody  possible by mutation, which was setup as a small normalized change to 

about 2% of alI independent decision variables, such that it plays a minor role in this 

problem. By cornparison, solution of individual time steps of Case A resdted in the total 

value of the objective h c t i o n  for the whole year of -41743714 Rp (negative value 

representing benefit due to minimization of the objective fùnction), almost 50% below the 

-74237789 Rp obtained for annual optimization in Case B, which was to be expected due to 

having a perfect inflow forecast in Case B.. 

It takes roughly 1 second of CPU time on a 500 MHz PC to generate 100 solutions. The 

above simulation nin has a total of 2000 generated solutions which takes about 20 seconds. 

Included in the solution process is a sophisticated iteration scheme which solves the reservoir 



balance for Lahor and Sutami reservok several tirnes iteratively until the connection tunnel 

and water balance constraints are all satisfied. This iterative scheme reduces the variance of 

the initidy generated guess for the connection tunnel flow within the feasible reaim, which 

is why large variation of the values is not apparent in Table 9.1 even at the initiai stage. 

Both objective fiuictions have flaws that must be dealt with. Using a single time step 

optiniization in an effort to maximize hydro power results in an empty reservoir within 

several time intervals. The reservoir then does not re-fil1 for the rest of the year since hydro 

power has higher cost factor than storage. Therefore, it was concluded that Case A camot 

be run without including some kind of reservoir operating guidelines, such as the operating 

zones used in Case Study II or a realistic hydro power target for each time interval. 

Typically, Case B should be nin first and its results analyzed in an effort to try to generate 

some the shape of storage zones and their pricitig vectors which work the best for short term 

forecasts considered in Case A. This effort was beyond the scope of testing the SFEP solver. 

The danger of fmding the best overdl solution using the objective function as in Case B 

results in an interesting phenomena - the model decides to ernpty storage at the end of the 

year and thus increase power production. To counter this, an additional time interval was 

added to include the first 20 days of the following year and place the minimum power 

generating elevation of 260 m at Sutami at the end of 37" time interval, which is then 

discarded in the k a 1  analyses. This worked in some cases, but it still resulted in reservoir 

levels that were below the full supply leveI at the end of the year, when the wet season has 

usually been in fidl swing for at least a month. The effect of the comection tunnel routine 

on resewok levels is discussed below. 

Objective function B has been applied to the Brantas Basin in al1 23 years (1977 to 1999). 

In cornpaison to the histonc operation, it provided higherpower generation in each year, and 

on average by about 6.5% in spite of the high maintenance flow requirement of 20 m3/s 

which was aiways met in the model while in reality the minimum target was only 7 m3/s. 



Higher maintenance flow requirement has caused an increase in irrigation deficits in the 

Delta region on average by about 3.97%. 

There is a hydro power plant only downstream of Sutami, so any spills &om Lahor are a loss 

to power generation at Sutami. The operators are then faced with an enviable task of having 

to generate enough head between the two reservoirs to minimize spills without having a 

reliable infiow forecast. Consider for example sirnulated results for year 1992. This was a 

wet year, so the ideal should be to keep both reservoirs full (Le. Lahor elevation at 272.7 m 

and Sutami at 272.5 m). This means that the available head is ody 0.2 meters. According 

to (9.1 1) and (9.12) this corresponds to a tunnel flow of 4.47 m31s. Connection tunnel flow 

of 15 m3/s corresponds to about 2.25 m average head differential between the two reservoirs 

over a tirne step. Assume the following situation: both reservoirs are full, Lahor inflow is 

15 m3/s and the reservoir operators want to send 15 m3/s of Lahor inflow into Sutami via the 

connection tunnel (this results in no spills fi0111 Lahor). To obtain 15 m3/s of tunnel flow the 

elevation of Sutami should be reduced fiom 272.5 to 268.4 over a given time step. Lahor 

elevation wodd remain the same since its inflow equds outnow (h this case ail outflow is 

placed in the connection tunnel). Therefore, the average elevation at Lahor is 272.7, while 

the average elevation at Sutami is 

This gives the difference between the average elevation of Lahor and Sutami of 272.7 - 

270.45 = 2.25 rn, which provides the necessary head differential to rout a flow of 15 m3/s 

through the tunnel. This also means the loss of head for power generation of Sutami in the 

order of 2.25 m. Infiows will change in subsequent time steps and the operators must try to 

maintain fevels of both reservoirs close, while in the same time trying to minimize the spi11 

iÎom both reservoir that would bypass hydro power plant at Sutami. 

A manual check was conducted to veriG that the tunnel fl ows calculated as a function of the 



Table 9.2 Tunnel flows fiom the mode1 and h m  direct caiculation 

1 Year 1993 1 10-day 1 10-day 1 tunnel fiows 1 flows using 

Lahor 

1 1 0-day ending 1 ending 1 ending 1 from SFEP 1 hydraulic formula 

Sutami Connection Connection tunnel 

initial elevation . 

elevation 
270.770 

elevation 
266.120 

(m3/s) (m3fs) 



average reservoir elevations at Sutami and Lahor is within 0.01 m3/s of the value obtained 

by the SFEP simulation. This was followed by a check of the reservoir balance for Sutami 

and Lahor, since the tunnel flow is a constituent of reservoir balance for both reservoùs. 

In column 4 of Table 9.2 the tunnel flows were assigned by the SFEP, while in column 5 

they are cdculated as fùnction of the average head differentid between the two reservoirs. 

A table similar to Table 9.2 can be generated for each simulated year. Figure 9.4 shows the 

elevation of Lahor and Sutami for ail 23 years using objective function Case B. 

Figure 9-4 Sutami and Lahor Elevations from SFEP Simulation 
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Figure 9.4 Sutami and tahor EleWions h m  SFEP Simulation 

The elevations of the two reservoirs are closely tied together, which shouid be expected as 

a result of the connection tunnel. Table 9.2 demonstrates that the connection tunnel flows 

comply with clifference between the hvo reservoirs. Large inflows into Lahor cause lowering 

of the elevation at Sutami reservoir in order to create enough head differential to route most 

of Lahor inflows through the tunnel. This in turn reduced the head of Sutami reservoir, but 



it aIso increases the net head of Sungguruh hydro power plant located upstrearn of Sutami 

dam. This kind of constraint could not be handled using other models based on linear 

prolzramming- 

PJT indicated a strong desire to use this mode1 as a planning tool to study the various cost 

factors as part of the on-going negotiation if the new water pricing policy with the Provincial 

Govemment of East Java. 

9.6 Conclusions 

The Brantas river basin offers a typical size water allocation probtem with several comrnon 

non-linear constraints related to hydro power generation, and a few unique non-linear 

constraints related to the comection tunnel flow. The SFEP solver was modified to include 

several iterative steps between solving the balance equation at Lahor and Sutami reservoir 

such that both the connection tunnel flow formula (9.17) and both reservoir balance 

equations are satisfied. These iterative steps are also a form of "gene therapy" approach, but 

with additional sophistication since two reservoirs and their levels are involved, along with 

the dynamic maximum turbine flows fiom Sutami reservoir. The SFEP managed to keep al1 

generated solution within the feasible domain and progressed to the favorable regions of the 

search space rather quickly. 

The onIy do wnside in solving this pro blem for the whole year (Case B) is that i t seems t hat 

an annual solution must be obtained wiîh me or more tirne intervals of the following year 

included in the simulation, to avoid having the ending reservoir level of annual simulation 

at the minimum operating level for its respective hydro power plant. These time intervals 

belong to the following year and they can bias the solution in the given year if the inflows 

are excessively dry or wet. 



10 CONCLUSIONS 

10.1 Summary of  the SFEP Features 

This research attempted to develop a specialized type of genetic aigorithm suitable for 

solving non-linear network flow programs which may be non-linear both in terms of bounds 

and the objective function. The main features of the approach are the massive initialization 

procedure that initiates the search fkom many feasible points in the search space 

simultaneously, and recombination procedure which maintains feasibility of offspring by 

employing the gene therapy operator. The search can also be assisted by using heuristic d e s  

that generate more individuals in the favorable areas of the search space when such areas c m  

be determîned. The algorithm provides a stable and relatively fast convergence when 

compared to other similar search methods, mainly due to restricting the search within the 

feasible region. This helps reduce the large overhead associated with generating infeasible 

solutions which is common to other EP search methods. 

The proposed algorithm was est tested on a series of non-linear transportation problerns for 

which various high quality solutions were available in the literature. in addition, the linear 

case was added and its solution compared to a standard linear TP solver. The proposed 

algorithm either equaled or surpassed the previous solutions in tems of the quality of the 

objective function, and it proved to be over ten times faster for several cases of complex 

objective functions with multiple minima. The test problems ranged between 49 and 100 

decision variables. 

The second set of tests was a water resources network with unusual constraints related to the 

sum of hydro power being equal to a specified power target. The main difficulty in this 

problem was that this constraint was not a direct h c t i o n  of flo W. Rather, it is a fbnction of 

all 52 idows,  the starting reservoir levels at the beginning of the year and the reservoir 

outflows at each of the time steps preceding a given time step. This constraint could not be 



induded in the model such that the model ensures the search withh the feasible region alone. 

Hence, a high penalty term had to be added for violating this conStra.int. Although this seems 

like a departure fiom the stated goal to search o d y  within the feasible region, the final results 

obtained in the study seem very optimistic. 

The h a 1  test runs were conducted on the Brantas river basin modeling schematics. This 

problem is of standard size for many water resources studies and it has a l l  components that 

typically play a role in studies of this size. The objective function is non-linear, and the 

constraints related to hydro power and the connection tunnel are also non-linea.. This 

problem required additional work on modifj6ng and expanding the gene therapy concept to 

include difficdt hydradic constra.int related to the connection tunnel flows. The model 

provides fast solutions however the penod being optimized has to be extended by a few 

additional time intervals that should be discarded in the final analyses. 

Future Research Directions 

There are several possible improvements to this approach that require a larger study 

fiamework- At this point the user has to "calibrate" the model to a particular problem by 

finding the most efficient size (number of parents) of the mating pool, the optimal number 

of individuals generated during initialization as well as the best mutation fiequency and 

mechanisrn. These issues can be resoIved by building a database of previously solved 

networks and recording their size and complexity dong with the best parameters that were 

found for a particdar application. The solver should eventually be able to scan a new 

problem in terms of its size, the shape of the objective fûnction and the complexity of the 

constraints, try several parameter options and record the one that works the best such that on 

similar problems in the future it can refer to the best set of parameters that were deterrnined 

on earlier runs. This means that the SFEP solver can be prograrnmed to be self-adaptive to 

a various size and types of network flow problems. The process of developing self-adapting 

mechanisrn must be coupled with building a database of parameters used in the previous 



solutions that the mode1 could access and "learn" fkom them. This undertaking was beyond 

the scope of this research. 

For example, when the objective function is clearly defined for each variable, as in the case 

of the transportation problem example, the solver could inspect the values in each ce11 by 

solving the objective function for that cell for 100 discrete values of the argument. The 

values with the best fitness (Le. the local minimums) would then be placed in the database 

and used in the initiakation procedure to generate more solutions in the favorable areas of 

the search space. 

For each application the user has to decide which arcs form the maximum spanning tree. 

This means that the user must know what a given network represents and what are the 

decision variables in it. Similar to other heuristic search techniques, an application of this 

algorithm is problem specific, and the knowledge about the problem being solved is 

essential. An expert system encompassing a database of previous successful applications 

would help a novice user, but the final success of this kind of tool is still very much 

dependent on the proper setup, which depends on the experience and judgernent of the user. 
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