
191 ’Advances in Genetic Programming III, Research and Educational use only’

Christian Igel and Kumar Chellapilla

Fitness distributions are employed as tools for understanding the effects of variation operators in
Genetic Programming. Eleven operators are analyzed on four common benchmark problems by esti-
mating generation dependent features of the fitness distributions, e.g. the probability of improvement
and the expected average fitness change.

9.1 Introduction

Evolutionary optimization methods can be described as computation procedures that op-
erate on a population of candidate solutions through an iterated process of variation and
selection. Different paradigms for evolutionary algorithms (EAs), such as evolutionary
programming (EP), evolution strategies (ES), genetic algorithms (GAs), and genetic pro-
gramming (GP), differ in their representation of solutions in the population, the selection
scheme and the representation specific variation operators.

There exists a variety of possible operators that could be used to generate offspring
given a representation of the solutions in the population. Operators that provide good
rates of finding acceptable solutions through efficient search are desired. From the the-
oretical point of view, the operators in conjunction with the applied selection scheme
should guarantee convergence to the global optimum with probability one at least for finite
search spaces [Rudolph, 1997]. The choice of suitable operators has traditionally relied on
theoretical models of the dynamics induced by these operators under selection or heuris-
tic information regarding the desired parent-offspring fitness changes[Rechenberg, 1994;
Rosca and Ballard, 1994; Utecht and Trint, 1994; Rosca and Ballard, 1995]. In prac-
tice, multi-parent multi-offspring self-adaptive EAs on multi-modal objective functions
are used to solve problems. For the sake of mathematical tractability and ease of anal-
ysis, most theoretical models work with simplified versions of EAs and simple objec-
tive functions and the applicability of the following result, in light of the simplifying as-
sumptions used to obtain the result, becomes questionable. Hence, as long as the used
EAs cannot be analyzed analytically, heuristic design methodologies have to be applied.
However, general heuristic design methodologies such as the principle of strong causality
[Rechenberg, 1994] may be difficult to apply to discrete and discontinuous search spaces
without an empirical analysis of the interaction of the variation operator under consid-
eration and the problem representation [Rosca and Ballard, 1995; Sendhoff et al., 1997;
Igel, 1998]. In GP we are in general concerned with such search spaces and confronted
with several variation operators whose effects are far from being understood completely.

In this investigation, we utilize the concept of fitness distribution analysis as a tool for
characterizing the behavior of variation operators in GP; a method that may lead to a bet-
ter understanding of the search process and to simple design heuristics that improve the
evolutionary computation.

192 ’Advances in Genetic Programming III, Chapter 09’

9.2 Background

Variation operators may be broadly classified into two groups, namely exploratory (or
global) search operators and exploitative (or local) search operators. Global optimization
requires operators of both types. While local search operators are needed for gradually
approaching optima, global search operators are needed for identifying basins of attraction
of various optima and also escaping local optima. Exploration and exploitation may be
incorporated into an evolutionary scheme in different ways. The same operator may be
used to probabilistically act both as a local (exploitative) and global (exploratory) search
operator, e.g. Gaussian mutations for real-valued parameter optimization, wherein changes
of varying degrees are probabilistically generated even when the variances are fixed. Small
changes are generated more often and result in local search whereas large step sizes occur
less frequently and constitute a more global search.

Furthermore, the explorative or exploitative nature of an operator may be controlled
by parameters like the variances in case of Gaussian mutation. Variation may also be
conducted through the use of a set of operators, some of which are tuned to perform local
search, while others perform global search. Examples of such a strategy include the use of
multiple variation operators for the evolution of the structure and parameters of finite state
machines [Chellapilla and Fogel, 1998], neural networks [Yao and Liu, 1996], and parse
trees [O’Reilly, 1995; Angeline, 1996; Chellapilla, 1998].

Fitness landscape analysis has been proposed as a tool for analyzing evolutionary com-
putations, see [Macken and Stadler, 1993] for an overview. The fitness landscape is de-
termined by the fitness function and a distance measure on the genotype space, i.e., math-
ematically it is defined as a map from a (finite) metric space into the real numbers. The
results obtained using fitness landscape analysis only hold for the distance measure used.
Therefore, the analysis of an evolutionary algorithm based on the fitness landscapes ap-
proach requires a metric that is defined with regard to the genetic operators. Examples of
such metrics include the Hamming distance for point mutations when using binary rep-
resentations and the tree edit distance for program spaces [O’Reilly, 1997]. Instead of a
standard metric when given a representation, the metric should be defined in terms of the
variation operators themselves, with each application of a variation operator generating a
unit change in distance. However, the calculation of such a distance measure can be very
complex and computationally expensive. Further, if an operator depends on the composi-
tion of the current population, as does crossover, the distance measure is different every
generation and the distance computations become hard to handle. Kinnear examined the
fitness landscapes on which GP operates by comparing the autocorrelation functions of
random walks and analyzing adaptive walks with respect to the problem difficulty. The
“unusually low” autocorrelations appeared to be “not a particularly good way” to indicate
the difficulty of the test problems[Kinnear, Jr., 1994].

The fitness correlation coefficient (FCC) has been proposed as a means for the analysis
of variation operators in EAs [Manderick et al., 1991]. The FCC of an operator v is defined

193 ’Advances in Genetic Programming III, Research and Educational use only’

as

FCCv =
cov(Fp, Fo)

σF
p
σFo

, (9.1)

where σF
p

and σFo
represent the standard deviations of the mean parent fitness and off-

spring fitness, respectively, and cov represents the covariance function. An absolute FCC
value of one indicates a linear dependency between parent and offspring fitness and a
value of zero indicates linear independence. An FCC close to zero is regarded as an
indicator of a rugged landscape and therefore of weak performance of an EA based on
the operator in question. However, instructive counter examples exist that show that the
fitness correlation coefficient does not necessarily reflect evolvability[Altenberg, 1995;
Fogel and Ghozeil, 1996], one of the main properties determining the quality of evolution-
ary search. Evolvability means the ability of a parent population to produce variants fitter
than any yet existing [Altenberg, 1994].

9.3 Fitness distributions

Fitness distributions (FDs) have been proposed as a means of experimentally estimating
the true nature of variation operators on different performance or objective functions. The
FD of an operator was described in [Grefenstette, 1995] as the distribution of the offspring
fitness given the mean parent fitness. For a variation operator v that produces an offspring
from one or more parents the fitness distribution FDv was defined by the conditional prob-
ability

FDv(Fp) = P (Fo|Fp) , (9.2)

where the random variables Fp and Fo denote the mean fitness of the parents used by v to
generate the offspring, o, and the resulting offspring fitness, respectively. More generally,
the FDv can depend on all the individual parent fitnesses. Mathematically,

FDv(F{p}) = P (Fo|F{p}) , (9.3)

where F{p} depends on the set of fitness values of all parents that produced the offspring.
The FDv is generally quite complex and difficult to compute. However, it is usually

sufficient to be able to focus on estimating important features of the FD[Grefenstette, 1995;
Fogel and Ghozeil, 1996]. In the remainder of this section, we introduce such features of
the FD.

Adaptation does not only depend on how often offspring better than their parents are
produced, but also on how much better they are [Altenberg, 1994]. Both aspects of the
offspring FD must be considered while investigating the properties of variation opera-
tors. Therefore, the probability of improvement and expected improvement have been

194 ’Advances in Genetic Programming III, Chapter 09’

proposed as tools for designing efficient evolutionary computations. Improvement has
been defined in different ways. Firstly, improvement can be regarded as the distance
covered on the gradient path towards the (known) optimum [Rechenberg, 1994]. Sec-
ondly, it can be defined as the distance covered to the optimum[Schwefel, 1995]. Thirdly,
improvement can simply be defined as the increase in fitness. The first two definitions
measure improvement in the search space. An explicit metric on the search space is
needed and the optima have to be known. For our purpose, the analysis of GP opera-
tors, these definitions (that were designed for real-valued parameter optimization) would
not work, so we define improvement in the fitness space. The expected improvement
EIv of an operator is therefore defined as the expectation of the fitness difference be-
tween parent(s) and offspring [Fogel and Ghozeil, 1996]. A positive EI indicates that
on average the offspring fitness is greater than the parent fitness and a negative EI in-
dicates that the mean offspring fitness is lower than the mean parent fitness. An alter-
native way to define the expected improvement is to calculate the average change in fit-
ness only when an offspring was fitter than its parent(s), i.e. mathematically the expected
improvement is given by E(max{0, Fo − F{p}}), where E(.) denotes the expectation.
In this case, the expected improvement is always non-negative [Tuson and Ross, 1998;
Fogel and Ghozeil, 1996].

The probability of improvement of a variation operator v, IPv, is defined as the fraction
of the generated offspring that is better than their parents. While an IP value close to
one indicates that on average fitter offspring are generated through the use of the operator,
an IP value close to zero indicates that on average offspring worse than their parents are
generated.

The IP and EI values can be computed analytically for very simple objective functions,
e.g. IP and EI for Gaussian mutations using real-valued representation [Rechenberg, 1994]
or IP for point mutations using binary representation [Bäck, 1996]. In general, these FD
features have to be estimated numerically through Monte-Carlo methods. This has been
done for real-valued representation and Gaussian mutations in [Fogel and Ghozeil, 1996].

If the computational effort to produce an offspring is different for the used operators,
then the features of the FD should be normalized by the needed effort for comparison.

Unlike with most fitness landscape analysis approaches, the analysis of evolutionary
computations using dynamic FD features does not need a specific metric on the search
space.

The features of the FD are not static but change with the problem at hand and also
during the evolutionary process (e.g. it gets progressively more difficult to create a fitter
offspring). In view of this, dynamic (i.e. generation dependent) FD measures are presented
that better capture the properties of variation operators during different phases of evolution.
In [Nordin and Banzhaf, 1995] the change in fitness (measured in percent) using crossover
was calculated in a generation dependent manner for a symbolic regression problem in GP.

Here we estimate seven different features of the FD for investigating the effects of eleven
different variation operators for four common test problems in GP. These features are the

195 ’Advances in Genetic Programming III, Research and Educational use only’

Table 9.1
Summary of the investigated features of the fitness distributions, F{p} and Fo depend on the fitness of the par-
ent(s) and the corresponding offspring, respectively, σF{p}

and σFo
denote the standard deviations, Fb stands

for the fitness of the current best individual and E(.) denotes the expectation

AC average change E(|Fo − F{p}|)

EI expected improvement E(Fo − F{p})

IP improvement probability P (Fo > F{p})

WP worsening probability P (Fo < F{p})

SVP silent variations probability P (Fo = F{p})

IP∗ probability of being better than the best P (Fo > Fb)

FCC fitness correlation coefficient
cov(F{p}, Fo)

σF{p}
σFo

expected absolute fitness change (AC), the expected improvement (EI), probability of im-
provement (IP), the probability of silent variation (SVP), the worsening probability (WP),
the fitness correlation coefficient (FCC), and the probability of global improvement (IP∗).

• The absolute change in fitness, ACv , of an operator v is defined as the expectation of
the absolute change in fitness between the parent and offspring caused by the application
of operator v. The ACv can be used as an indicator of local (small AC values) and global
search (large AC values). This feature can be coupled with other information such as the
region of application of the variation operator (such as the depth of the node in the parse
tree that was used as the crossover point) to determine the sensitivity of different parts of
the genotype to the application of the operator.

• In this investigation, the expected improvement, EIv , is defined as the average change in
fitness between the parent and offspring caused by the application of operator v.

• The probability of improvement, IPv , of an operator v is defined as the fraction of suc-
cessful applications of the operator, where an application of the operator v is considered
successful if it generates an offspring that is better than its parent.

• The probability of worsening is denoted by WPv and defined as the fraction of unsuc-
cessful applications of the operator.

• The probability of silent variations, SVPv, measures the fraction of the application of the
operator v that produce no change in fitness.

• The global improvement probability IP∗
v is defined as the frequency with which offspring

fitter than any existing parent in the population are produced by the operator. This FD

196 ’Advances in Genetic Programming III, Chapter 09’

feature describes the evolvability.

• The fitness correlation coefficient, FCCv , see Eq. (9.1).

The mathematical definitions of these FD features are summarized in Table 9.1.
In the current study, the FD features are viewed as dynamic variables that change during

evolution. Their definitions are extended to make them functions of the generation. For
example, ACv(t) is defined as the average absolute change in fitness between the offspring
and their corresponding parent(s) at generation t. These generation dependent FD proper-
ties for any problem may be conveniently estimated using a set of independent Monte-Carlo
trials.

When using multi-parent operators, only the fitness of the first parent is used for the
calculation of the FD features, i.e., F{p} = Fp1

, see next section. Therefore, since the
application of an operator v either increases, decreases, or does not change fitness, we have
IPv(t)+WPv(t)+SVPv(t) = 1. Using the fitness of the first parent as the reference fitness
may not be the best choice for all investigations, e.g. the fitness of the best parent involved
may be used instead.

The FD values are amenable to statistical tests. In this investigation, the EI and AC
differences were validated using t-tests, the IP, WP, SVP and IP∗ differences were validated
using a χ2-test, and the FCC differences were tested using a t-test after a z-transformation
[Press et al., 1994].

9.4 Evolving computer programs using evolutionary programming

Experiments were conducted by varying the operator(s) used to generate offspring in an
evolutionary programming framework. Computer programs were represented as parse trees
whose structure and elements were to be evolved. A population of trial computer programs
was maintained, variation operators produced changes in these programs, and selection
was used to determine which programs were to survive to the next generation and which
programs were to be culled from the pool of trials.

9.4.1 Initialization

There are several methods for generating subtrees which can be used to initialize the pop-
ulation. The full, grow and ramped half-and-half methods of subtree generation were
introduced in [Koza, 1992] and are based on tree depth. The ramped half-and-half method
is the most commonly used method of generating random parse trees because of its rel-
atively higher probability of generating subtrees of varying depth and size [Koza, 1992;
Banzhaf et al., 1998]. However, these methods do not produce a uniform sampling of the
search space [Iba, 1996]. The subtree generation method used here was based on the length
of the subtree, rather than the depth. First the length of the program was randomly selected

197 ’Advances in Genetic Programming III, Research and Educational use only’

to be between 3 and Lmax. A random program was generated with approximately that
length to initialize the parent. Suppose a tree of length 24 was to be generated. In the
beginning, as the tree was constructed, nodes and leaves were selected with a 50% proba-
bility. No discrimination was made between which nodes and leaves were to be added to
the tree. As the length of the tree came close to 24, the selection of functions and termi-
nals was restricted to only those that would make the length of the program exactly 24 (cf.
[Chellapilla, 1998]). In this study, each of the simulations were carried out with a set of
500 parents, as e.g. in [Koza, 1992]. Each initial tree was randomly generated using the
above subtree generation method with a length between 3 and 50.

9.4.2 Offspring generation through variation

A set of eleven variation operators Vall = {OneNode, AllNodes, Swap, Grow, Trunc, OneC,
AllC, Macro, CrossU, CrossSHC, CrossWHC} was employed to generate offspring from
the parents. From the various GP variation operators introduced so far, we chose operators
based on [Angeline, 1997a; Chellapilla, 1998] for our investigation.

In the EP framework presented here, each parent generated a single offspring through
an application of one randomly selected operator with uniform probability from Vall. The
operators are described as operating on a single parent, say p1, to generate a single off-
spring. The two-parent variation operators operated on the parent p1, and a mating parent,
say p2, that was either randomly selected from the population or randomly generated. If
the offspring genotype did not differ from the parent p1, this offspring was discarded and a
new offspring was generated using p1.

• OneNode randomly selected a node in the program and replaced it with another node of
the same arity. AllNodes selected each and every node in the program and replaced it with
a random node of the same arity.

• Swap selected a node that took more than one argument, randomly selected two of its
arguments and swapped them.

• Grow selected a random leaf in the program and replaced it with a newly generated
subtree.

• Trunc randomly selected a function node in the program and replaced it with a terminal,
thus effectively clipping the tree at that node.

• The OneC operator was the same as Gaussian mutation [Chellapilla, 1998] and was
applied only to those terminal nodes in the tree that were numeric constants. It perturbed a
randomly selected numeric constant by a Gaussian random number with zero mean and a
standard deviation of 0.1.

• The AllC operator perturbed every numeric constant with independent and identically
distributed Gaussian random numbers with mean zero and standard deviation of 0.1.

198 ’Advances in Genetic Programming III, Chapter 09’

• The Macro operator [Chellapilla, 1998] applied a sequence of simple mutation operators
to generate an offspring from a parent using the following steps:

1. A Poisson random number N , with mean λ, was generated.

2. N random variation operators were uniformly selected with replacement from the set of
variation operators, VMacro = {OneNode, AllNodes, Swap, Grow, Trunc, OneC, AllC}. If
there were no numeric constants in the terminal set for the problem, then OneC and AllC
operators were excluded from the set.

3. These N mutation operators were applied in sequence one after the other to the parent
to generate the offspring. As an example, if the value N were 2 and the operators selected
were OneNode and Grow, then the offspring would be given by

Offspring = Grow(OneNode(Parent))

For the experiments in this study, the mean value λ was selected to be 4.

• The CrossU operator was a modified version of the subtree crossover operator defined in
[Koza, 1992]. When a parent, p1, had to be varied using CrossU, a mate, p2, was selected
uniformly at random from the existing population at that generation. Randomly selected
subtrees were swapped between p1 and p2 to generate two intermediate offspring, say o1

and o2. Both crossover points are selected in an unbiased manner, i.e., there was no bias to-
wards selecting function nodes more often than terminal nodes as in [Koza, 1992]. If either
of the two intermediate offspring violated the size constraint Lmax = 50 it was considered
infeasible. If only one intermediate offspring was feasible, it became p1’s offspring. If
both the intermediate offspring were feasible, then one was selected at random to become
the offspring. An equal probability of selecting functions and terminal nodes for crossover
coupled with an upper limit of Lmax nodes provided a parsimony bias to the crossover
operator.

• The strong and weak versions of the random mate crossover, CrossSHC and CrossWHC,
were inspired by the headless-chicken crossover operators in [Angeline, 1997a; Angeline,
1997b]. These operators exchanged randomly selected subtrees between the parent, p1, and
a randomly generated mate, p2, to obtain two intermediate offspring, say o1 and o2. The
randomly generated mate, p2, comprised a randomly selected parent, say p′, from the pop-
ulation that was subsequently modified through the application of AllNodes. Thus, p2, had
the structure of the parent p′ but any “content information” was completely randomized.
CrossSHC returned the intermediate offspring that had the same root node as p1 whereas
CrossWHC returned one of the two intermediate offspring at random. If the intermediate
offspring to be returned by CrossWHC violated the size constraint, then the other offspring
which would definitely be feasible was returned. On the other hand, if the offspring to be
returned by CrossSHC violated the size constraint, the process was repeated by regenerat-
ing a new set of intermediate offspring through the selection of different crossover points.

199 ’Advances in Genetic Programming III, Research and Educational use only’

9.4.3 Parent selection

EP-style tournament selection [Fogel, 1995] with ten opponents was applied to select the
parents for the next generation: Every program in the population was compared with ten
randomly selected opponents out of the population. For each comparison in which the pro-
gram’s fitness was better or equal, it received a win. The better half of the population with
the largest number of wins became the parents for the next generation. This process of vari-
ation and selection was repeated every generation for a predefined number of generations,
kmax.

9.4.4 Test problems

Our experiments were conducted on a suite of four problems: the 6-bit multiplexer prob-
lem, the artificial ant problem (Santa Fe trail), the cart centering problem, and the sunspot
modeling problem. Brief descriptions of these problems follow. For a more detailed de-
scription the reader is referred to [Koza, 1992] and [Angeline, 1996].

The goal of the 6-multiplexer [Koza, 1992] problem is to find a computer program con-
sisting of primitive Boolean functions, namely not, and, or, and if, that computes the
output of a four-input two-select multiplexer. The fitness of an individual is the number
of correct outputs that the program generates when tested on all the 64 possible inputs. A
successful program correctly maps all 64 inputs to their corresponding outputs.

In the artificial ant problem, the goal is to evolve a computer program that would act as a
move generating rule for guiding an ant to find all food packets lying on an irregular trail.
The “Santa Fe trail” [Koza, 1992] containing 89 food items was used. The function and
terminal sets were {left, right, move} and {If-food-ahead, Prog2, Prog3}, respectively.
A move rule was considered to be successful if it could guide the ant to collect all 89 food
packets on the trail.

The cart centering problem requires the discovery of a control law that centers a cart that
is free to move to the left or right on a frictionless surface. The terminal set consisted of the
two state variables of the system (the position x and the velocity ẋ) whereas the function
set was {+,−, ∗, %, abs, gt}. At any given time, the control law determined the direction
of a force (of 1.0 N) to be applied. The total time needed to center the cart from a set of
twenty initial states (x, ẋ) selected uniformly at random from [−0.75, 0.75]2 were used to
compute the quality of the control law in centering the cart. The set of initial states was
kept fixed during evolution. A trial was considered to be successful if a control law was
found that could center the cart with a total time that was within 1% of the total time taken
by the mathematically solution that is optimal over [−∞,∞]2. The cart was considered to
be centered when

√
x2 + ẋ2 < 0.1. Each controller was given a maximum of 10 seconds

(500 steps of 0.02 seconds each) to center the cart. Any control law that failed to center the
cart within this time was given a time score of 10 seconds.

200 ’Advances in Genetic Programming III, Chapter 09’

Table 9.2
Computational effort results for the artificial ant, 6-bit multiplexer, cart centering, and sunspot modeling problems
using all variations operators, Vall. Computation effort analysis indicates that R(z) number of independent trials,
each lasting N generations, need to be conducted with a population size of M(= 500), to achieve a success
probability of z = 0.99, resulting in a total of I(M, N, z) number of individuals being processed (see [Koza,
1992] for further details). (∗) indicates that all trials were successful and the results correspond to z = 1.0. The
first two columns give the mean fitness and the corresponding standard deviation of the fitness at generation 200.

Mean sd N R(z) I(M, N, z)

Artificial Ant 89 0 143 1 72,000*
6-bit Multiplexer 64 0 104 1 52,500*
Cart Centering 38.990 5.012 155 1 78,000*
Sunspot Modeling 2991.03 384.82 ——-

The goal of the sunspot series modeling problem is to compute the average number of
sunspots observed in year y using the average number of sunspots observed in the years
y − 1, y − 2, y − 4, and y − 8, denoted by Sy−1, Sy−2, Sy−4, Sy−8, respectively. Sunspot
data from the years 1700 to 1989 containing 290 samples were used as the training set. The
terminal set was {Sy−1, Sy−2, Sy−4, Sy−8, numeric constants}. The functions set was
{+,−, ∗, %, sin, cos}. The mean square error over the 290 samples in the training set was
taken to be the error score of the individual. The ability of the solutions to generalize was
not considered: We only judged how well the solutions fitted the data set and not, as should
be done in real world application, how well the solution really modeled the time series.

9.4.5 Experiments

Parent and offspring fitness data were collected in every generation, for each application
of every operator, on each of the four problems, over 50 independent trials of the above
described algorithm. Each trial used a population size of 500 and evolution lasted for
kmax = 200 generations. The collected data were used to estimate the FD features in Table
9.1 of the eleven different operators.

9.5 Results

All 50 artificial ant and 6-bit multiplexer trials were successful by generations 143 and 104,
respectively. The sum squared error on the sunspot modeling problem quickly decreases in
the first 75 generations. Even at generation 200, when the trials were terminated, the sum
squared error continues to decrease as models and parameters that better fit the training data
are found. This does not necessarily imply that the found solutions are better models of the
time series, because they may overfit the training data (the same holds for the cart centering
results). At the end of 200 generations, the mean best sum squared error (over all 50 trials)
was 2991.03 with a standard deviation of 384.82. It appears that models with higher fitness

201 ’Advances in Genetic Programming III, Research and Educational use only’

Table 9.3
Mean cumulative FD features (averaged over all generations and 50 independent trials) on the 6-bit multiplexer
problem for the different variation operators used to generate offspring in an evolutionary programming procedure
for evolving computer programs. These seven fitness distribution features are absolute change in fitness (AC), ex-
pected improvement (EI), improvement probability (IP), silent variation probability (SVP), worsening probability
(WP), fitness correlation coefficient (FCC), and global improvement probability (IP∗). The values in parentheses
indicate the rank of the operator in terms of the FD feature. Smaller ranks imply a larger FD feature value. All
differences in feature values were statistically significant (p < 0.05) except for those marked by daggers: (†)
indicates that the difference between the table entry and the next higher ranking entry in the same column were
not statistically significant.

AC EI IP SVP WP FCC IP∗/10−3

OneNode 4.32(7) −4.25(3) 0.013(3) 0.371(2) 0.616(8) 0.759(2) 0.126(3)†

AllNodes 24.53(1)−24.48(9) 0.005(8) 0.007(9) 0.988(1) 0.045(9) 0.022(9)

Swap 3.75(9) −3.73(1) 0.004(9) 0.678(1) 0.319(9) 0.596(3) 0.037(8)†

Grow 4.28(8) −4.16(2) 0.023(2) 0.341(3) 0.636(7) 0.855(1) 0.168(2)†

Trunc 7.55(4) −7.48(6) 0.012(5) 0.287(6) 0.701(4) 0.495(6) 0.098(5)†

Macro 18.74(2)−18.68(8) 0.008(7) 0.098(8) 0.894(2) 0.174(8) 0.038(7)†

CrossU 6.77(5) −6.62(5) 0.027(1) 0.328(5) 0.645(6) 0.513(5) 0.176(1)†

CrossWHC 15.98(3)−15.92(7) 0.009(6) 0.154(7) 0.837(3) 0.216(7) 0.078(6)

CrossSHC 6.06(6) −5.99(4) 0.013(3) 0.333(4) 0.654(5) 0.583(4) 0.110(4)†

Table 9.4
Mean cumulative fitness distribution features on the artificial ant problem

AC EI IP SVP WP FCC IP∗/10−3

OneNode 37.09(6) −36.99(4) 0.009(3) 0.423(2) 0.569(7) 0.325(4) 2.154(2)†

AllNodes 74.04(1) −73.99(9) 0.006(9) 0.003(9) 0.991(1) −0.012(9) 2.005(6)†

Swap 39.74(4) −39.66(6) 0.008(5) 0.405(4) 0.587(5) 0.295(6) 1.898(8)

Grow 35.95(8)† −35.80(2) 0.016(2) 0.405(4) 0.579(6) 0.363(1) 4.668(1)

Trunc 39.25(5) −39.16(5) 0.008(5) 0.392(6) 0.600(4) 0.308(5) 1.655(9)

Macro 66.07(2) −66.01(8) 0.007(7) 0.087(8) 0.906(2) 0.115(8) 2.048(3)†

CrossU 35.81(9) −35.35(1) 0.028(1) 0.412(3) 0.560(9) 0.329(2)† 2.045(4)†

CrossWHC 57.42(3) −57.35(7) 0.007(7) 0.193(7) 0.801(3) 0.178(7) 1.909(7)†

CrossSHC 36.75(7) −36.65(3) 0.009(3) 0.429(1) 0.562(8) 0.327(3)† 2.032(5)†

Table 9.5
Mean cumulative FD features on the cart centering problem

AC EI IP SVP WP FCC IP∗/10−3

OneNode 39.46(7) −39.19(3) 0.012(3) 0.274(3) 0.714(7) 0.309(3) 0.185(4)

AllNodes 137.10(1) −136.90(9) 0.004(8) 0.007(9) 0.988(1) 0.063(9) 0.027(9)

Swap 26.25(9) −26.14(1) 0.004(8) 0.712(1) 0.285(9) 0.354(2) 0.031(8)†

Grow 37.12(8) −36.38(2) 0.027(2) 0.277(2) 0.696(8) 0.484(1) 0.523(1)

Trunc 49.85(4) −49.61(6) 0.010(5) 0.193(6) 0.797(4) 0.270(6) 0.128(5)†

Macro 93.69(3) −93.48(7) 0.006(7) 0.167(7) 0.826(3) 0.145(7) 0.087(7)

CrossU 45.46(5) −44.77(5) 0.034(1) 0.200(5) 0.766(5) 0.280(5) 0.292(2)†

CrossWHC 94.43(2) −94.19(8) 0.008(6) 0.103(8) 0.889(2) 0.142(8) 0.099(6)†

CrossSHC 43.40(6) −43.13(4) 0.012(3) 0.228(4) 0.760(6) 0.301(4) 0.234(3)†

202 ’Advances in Genetic Programming III, Chapter 09’

Table 9.6
Mean cumulative FD features on the sunspot modeling problem

AC/104 EI IP SVP WP FCC IP∗/10−3

OneNode 10.90(5) −109000.0(7) 0.137(5) 0.029(4) 0.834(7) 0.066(6)† 0.990(4)†

OneC 0.00432(11) −30.13(1) 0.340(1) 0.149(2) 0.511(10) 0.998(1) 1.676(2)

AllC 0.01091(10) −70.85(2) 0.300(2) 0.032(3) 0.667(9) 0.984(2) 2.126(1)

AllNodes 52.25(1) −521400.0(11) 0.009(11) 0.000(11) 0.991(1) −0.066(11) 0.006(11)

Swap 3.42(9) −33970.0(3) 0.033(10) 0.554(1) 0.412(11) 0.175(3) 0.144(10)

Grow 11.96(4) −119000.0(8) 0.149(3) 0.023(8) 0.828(8) 0.086(5) 0.859(6)†

Trunc 6.55(8) −64810.0(4) 0.110(7) 0.026(5) 0.864(4) 0.093(4)† 0.683(7)

Macro 28.62(3) −285400.0(9) 0.062(9) 0.026(5) 0.912(3) −0.009(9)† 0.431(9)

CrossU 8.01(7) −78760.0(5) 0.141(4) 0.013(9) 0.846(6) 0.041(8) 1.062(3)†

CrossWHC 29.53(2) −294300.0(10) 0.063(8)† 0.012(10) 0.925(2) −0.012(10) 0.490(8)†

CrossSHC 10.09(6) −100500.0(6) 0.125(6) 0.025(7)† 0.850(5) 0.061(7) 0.960(5)†

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

20

25

generation

AC

OneNode
AllNodes

Swap
Grow

Trunc
CrossWHC

CrossU
Macro

CrossSHC

Figure 9.1
Expected absolute change, ACv(t), on the 6-bit multiplexer problem. As evolution progresses, the amount of
change generated by an operator increases. In view of the fact that the maximum fitness is 64 and that randomly
selected individuals in the search space have a mean fitness around 32, the AllNodes operator almost completely
degenerates the solutions to random samples from the search space. The AC values for AllNodes are followed by
those of Macro, CrossWHC, Trunc, CrossU, CrossSHC, CrossSHC, Grow, OneNode, and Swap. The lowest AC
values for Swap were generated due to a large percentage of silent variations (see Figure 9.6).

203 ’Advances in Genetic Programming III, Research and Educational use only’

0 20 40 60 80 100 120 140 160 180 200

-25

-20

-15

-10

-5

0

generation

EI

OneNode
AllNodes

Swap
Grow

Trunc
CrossWHC

CrossU
Macro

CrossSHC

Figure 9.2
Expected improvement, EIv(t), on the 6-bit multiplexer problem. The EI ranking of the operators are exactly
opposite to the AC ranking indicating that on the multiplexer problem small changes in fitness were likely to lead
to greater improvement, i.e. in this case lesser degradation.

are likely to be found if evolution were continued beyond 200 generations. In the cart
centering problem, the mathematically optimal rule centered the cart in roughly 2.0088
seconds [Chellapilla, 1997]. We observe that our algorithm consistently found solutions
that were better than the optimal solution. The reason for this was that the mathematically
optimal solution is optimal over initial states (x, ẋ) in [−∞,∞]2 and not over the subset
[0.75, 0.75]2. Detailed analysis of the cart centering problem may be found in [Chellapilla,
1997]. By generation 155, all 50 cart centering trials were successful. The computational
effort results of the four test problems are presented in Table 9.2.

Figures 9.1–9.7 graph the binned, generation dependent values of the seven features
of the FD for the 6-bit multiplexer problem. The corresponding graphs for the artificial
ant problem were very similar. The curves for the cart centering and sunspot modeling
problems were similar to each other but differed from those for discrete problems. Where
necessary, some figures for the sunspot modeling problem have been included.

In order to obtain smoother graphs that were easier to interpret, these feature values were
distributed into consecutive bins five generations wide and the mean value in each bin was

204 ’Advances in Genetic Programming III, Chapter 09’

0 10 20 30 40 50 60 70 80 90 100 110 200

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

generation

IP

OneNode
AllNodes

Swap
Grow

Trunc
CrossWHC

CrossU
Macro

CrossSHC

Figure 9.3
Probability of improvement, IPv(t), on the 6-bit multiplexer problem. Among the operators investigated, the
CrossU operator produces significantly higher IP values and is followed by the Grow operator.

plotted as a function of the middle generation of the bin. It is interesting to note that all the
smoothened FD curves, with the exception of the IP∗ and some FCC curves, for the various
operators maintain a relatively consistent ranking throughout evolution indicating that the
FD features were identifying properties intrinsic to these variation operators. Operators
that generated relatively large values of these features during initial phases of evolution
continued to do so till the end of the evolutionary process. The relative ranking of these
operators on different problems also appears to be similar.

The AC curves (Figure 9.1) start out small during the first few generations and gradually
increase and attain their highest values towards the end of the trial. Similarly, the EI curves
start out high and progressively drop down to low values (see Figure 9.2). Further, the
expected improvement was always negative for all four problems. In comparison with the
EI results on optimization problems in the continuous domain [Fogel and Ghozeil, 1996]
where positive EI values are common, program evolution problems appear to be much more
difficult.

Figure 9.8 shows the IP graph for the sunspot modeling problem. Similar to the EI values
in the first few generations the IP values (Figures 9.3 and 9.8) start out high and quickly

205 ’Advances in Genetic Programming III, Research and Educational use only’

0 10 20 30 40 50 60 70 80 90 200

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

generation

IP*

OneNode
AllNodes

Swap
Grow

Trunc
CrossWHC

CrossU
Macro

CrossSHC

Figure 9.4
Global improvement probability, IP∗

v(t), on the 6-bit multiplexer problem. CrossU, OneNode, and Grow appear
to produce the most global improvements, while AllNodes and Macro generate the lowest number of global
improvements.

decrease. The initial IP values were relatively lower on the discrete problems (ant, mux)
than those for continuous the problems (cart, sunspot). The rate of decrease was also much
higher on discrete problems than on the continuous problems. On continuous optimization
problems gradual changes in fitness values are possible. This gradual change in fitness
and error scores allows evolutionary search to generate frequent enhancements resulting in
higher IP values.

The WP curves were completely determined by the IP and SVP curves. When the IP
values were low and the SVP values were high (e.g. on the ant, mux, and cart problems)
the WP curves were inverted versions of the SVP curves, whereas when the IP values
were high and the SVP values were low (e.g. on the sunspot problem) the WP curves were
inverted versions of the IP curves.

On all four problems, every operator generated global improvements in at least one gen-
eration. Of all the features, the IP∗ was directly related to the rate of finding good solu-
tions of the algorithm especially when the range of the objective function is discrete and
bounded. For example, on the 6-bit multiplexer problem, there are just 64 possible test

206 ’Advances in Genetic Programming III, Chapter 09’

0 20 40 60 80 100 120 140 160 180 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

generation

FCC

OneNode
AllNodes

Swap
Grow

Trunc
CrossWHC

CrossU
Macro

CrossSHC

Figure 9.5
Fitness correlation coefficient, FCCv(t), on the 6-bit multiplexer problem. The FCC values decrease because it
becomes progressively difficult to generate offspring that have a fitness close to the parents fitness as the parent
fitness increases.

cases that determine the fitness and the minimum improvement in fitness is one point. This
implies that at most 64 global improvements per individual can be generated before finding
an optimal solution.

The IP∗ graphs for the sunspot problem are shown in Figure 9.9. On continuous prob-
lems high IP∗ values should also occur with high EI values. Unfortunately, global im-
provements occur very rarely, the IP∗ probabilities are orders of magnitude lower than
corresponding IP values. Hence, it is difficult to obtain significant results and therefore it
is problematic to rely on IP∗ as a measure for estimating operator usefulness.

On finding the global best solution all IP∗ values fall to zero. As a result, the IP∗ curves
for the mux and ant problems reached zero at generations 104 and 143, respectively. The
IP∗ curves for the cart centering and sunspot modeling problems show persistent changes
even at the end of the trials, indicating that if evolution is continued further solutions with
higher fitness will be obtained.

On the discrete problems (ant and mux) the FCC curves (Figure 9.5) started out high,
rapidly fell in the first ten generations, then increased, peaked, and finally gradually de-

207 ’Advances in Genetic Programming III, Research and Educational use only’

0 20 40 60 80 100 120 140 160 180 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

generation

SVP

OneNode
AllNodes

Swap
Grow

Trunc
CrossWHC

CrossU
Macro

CrossSHC

Figure 9.6
Probability of silent variations, SVPv(t), on the 6-bit multiplexer problem. The high SVP values for the Swap
operator were caused by the commutative boolean functions (and, or). AllNodes had the lowest SVP values
followed by Macro (which probabilistically uses AllNodes) and CrossWHC. After the first 15 generations the
SVP values undergo little change.

creased resulting in a hump during generations 10–70. Towards the end of the runs the
FCC values became very small and reached zero. On the continuous problems (cart and
sunspot) the FCC curves for all operators, with the exception of those for the OneC and
AllC, rapidly fell down to very low (< 0.15) values indicating that there was no correlation
between the parent and offspring fitnesses and the relative ranking of the various operators
juggled rapidly. This lack of correlation appears to be caused by large changes in fitness
and error scores between the parent and offspring. On the contrary, the OneC and AllC op-
erators used in the sunspot modeling problem, produced small changes in the sum squared
error and consequently exhibited large FCC values close to one. Overall, we did not find
that the FCC predicted interesting characteristics of the operators that were not already
captured by the other FD features.

For all operators with the exception of CrossU, the SVP values showed a slight decrease
in the initial stages of evolution and remained nearly constant in subsequent generations,
see Figure 9.6. For CrossU we measured a slight increase in later generations. Not surpris-

208 ’Advances in Genetic Programming III, Chapter 09’

0 20 40 60 80 100 120 140 160 180 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

generation

WP

OneNode
AllNodes

Swap
Grow

Trunc
CrossWHC

CrossU
Macro

CrossSHC

Figure 9.7
Probability of worsening, WPv(t), on the 6-bit multiplexer problem. The WP was lowest for the Swap operator
to due the large number of silent variations it generates (see Figure 9.6). On the other hand, the WP for AllNodes
reaches 1.0 after generation 25 and stays there throughout evolution, depicting its extremely destructive nature.
The high WP values for AllNodes are followed by those for Macro (which probabilistically uses AllNodes) and
CrossWHC. For most of the operators, due to the really low IP values (see Figure 9.3), the WP curves are simply
the inverted version of the SVPv(t) curves in Figure 9.6.

ingly, the Swap operator generated really high (SVP > 0.65) rates of silent variations when
commutative functions were present in the function set. AllNodes did not generate any
silent variations after generation 20 in any of the four problems studied here. Macro and
CrossSHC generated very few silent variations. All remaining operators generated silent
variations in one out of every three times they were applied when numeric constants were
not included in the terminal set. However, when numeric constants were included in the ter-
minal set, the rate of silent variations for these operators were considerably lower (< 0.1).
In symbolic regression problems, when numeric constants are also evolved, the range space
typically spans the whole real line or a dense subset of the real line. The likelihood of these
remaining operators generating changes to the symbolic expression that produce no change
in the fitness falls and silent variations become less probable, especially in the absence of
conditionals such as if .

209 ’Advances in Genetic Programming III, Research and Educational use only’

0 20 40 60 80 100 120 140 160 180 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

generation

IP

OneNode
OneC

AllC
AllNodes

Swap
Grow

Trunc
CrossWHC

CrossU
Macro

CrossSHC

Figure 9.8
Probability of improvement, IPv(t), on the sunspot problem. In the first 100 generations AllC generates the
highest IP values and is closely followed by OneC. However, during the later stages of evolution, as would be
expected OneC generates larger IP, values indicating that smaller changes are preferable in the later stages of
evolution. OneNode and CrossU also produce relatively high IPv(t) values and are closely followed by the Grow
operator.

As expected, all the FD features indicate that as evolution progresses it becomes increas-
ingly difficult to find better solutions.

As the relative ranking of the operators varied only very slightly on all four problems
during evolution, the cumulative FD features, averaged over all generations and all trials,
can be used as a concise and useful measure for analyzing the properties of the examined
variation operators. These cumulative FD features for the eleven variation operators on the
four test problems are presented in Tables 9.3, 9.4, 9.5, and 9.6, respectively. The relative
ranking of each operator on each cumulative feature is also presented in these tables. For
all FD features, lower ranks imply a larger feature value.

Most differences in AC, EI, IP, SVP, WP, and FCC were statistically significant. The
number of global improvements were very few in comparison with the number of samples
collected over all 50 trials and as a result the IP∗ differences were mostly statistically not
significant.

210 ’Advances in Genetic Programming III, Chapter 09’

0 20 40 60 80 100 120 140 160 180 200

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

generation

IP*

OneNode
OneC

AllC
AllNodes

Swap
Grow

Trunc
CrossWHC

CrossU
Macro

CrossSHC

Figure 9.9
Global improvement probability, IP∗

v(t), on the sunspot modeling problem. OneC and AllC generated far higher
global improvements indicating importance of evolving appropriate constants during evolution. OneNode, Grow,
and CrossU also appear to generate relatively large IP∗ values. Because global improvements occur rarely, the
generation dependent IP∗ plots are very noisy and not very informative.

In the experiments without numeric constants, OneNode performs the smallest structural
change in the genotype with respect to the tree edit distance [O’Reilly, 1997]. In view
of this, it was considered to be a rather local search operator with most applications of
the operator resulting in small changes in fitness and error scores, i.e. small AC values.
However, the results show that it ranked higher (with larger AC values) than Swap and
Grow operators on three of the four problems, and occasionally ranked higher than CrossU,
CrossSHC, and Trunc. Thus, contrary to what was initially expected, the changes in the
fitness space produced by OneNode were not small. Furthermore, it consistently ranked
third in terms of IP and between second and fourth in terms of IP∗.

The AllNodes operator had the lowest rate of silent mutations and the highest probability
of worsening in all test problems. It generated a less fit offspring nearly every time it was
applied with cumulative WP values of 0.998, 0.991, 0.988 and 0.991 on the four problems.
It almost never generated silent variations with cumulative SVP values of 0.007, 0.003,
0.007 and zero on the four problems. Additionally, AllNodes had the lowest EI values on

211 ’Advances in Genetic Programming III, Research and Educational use only’

all four problems. The FCC scores close to zero indicate that there was no linear correla-
tion between parental and offspring fitness when AllNodes was used to generate offspring.
The only similarity between the offspring generated using AllNodes and the corresponding
parent is the shape of the parse tree. The AllNodes results indicate that the spatial structure,
i.e. the shape of the parse tree without its labels, carries negligible information about the
quality of the computer program. AllNodes rarely generated any offspring that were better
than the best parent in that generation and as a result ranked last (mux, cart, sunspot) or
third last (artificial ant) in terms of IP∗. On all four problems after the first 30 generations
the AllNodes operator never generated any global enhancements. Similarly, after 30 gener-
ations, on the mux, ant, and cart centering problems, the AllNodes operator never generated
any improvements or silent variations, i.e., the IP, SVP, and WP values were zero, zero,
and one.

The Swap operator had the highest number of silent variations on the mux, cart cen-
tering, and sunspot modeling problems. This was caused by the function sets for these
problems containing commutative functions such as and, or (mux), +, and ∗ (cart and
sunspot), wherein swapping the order of the arguments did not produce any change in the
behavior and the corresponding fitness of the program. As a result, in two out of three ap-
plications, the Swap operator generated no change in fitness. For the same reason, on these
problems, Swap ranked last in terms of WP, and had poor IP values. However, as would be
expected, the corresponding EI values that were negative moved closer to zero resulting in
the Swap operator ranking highest on the EI curves. On the artificial ant problem, none of
the functions in the function set, {If-food-ahead, Prog2, Prog3}, were commutative and
as a result, Swap ranked fourth in terms of silent variations, and fifth in terms of IP and
WP (smaller ranks imply larger feature values). Over all four problems, the Swap operator
rarely produced offspring that did better than the population-best at that generation and
ranked next to AllNodes in terms of IP∗.

The Grow operator had the highest FCC score on the ant, mux, and cart problems. On
these problems, it ranked first (ant and cart) or second (mux) in generating offspring that
were better than the best parent at that generation (i.e. in terms of IP∗). Grow consistently
ranked second in terms of the IP and EI. Thus, on the first three problems, the Grow op-
erator appears to be very efficient in generating better solutions. On the sunspot problem,
the performance of Grow in terms of IP∗, IP, and EI was average. Except for the sunspot
problem, Grow ranked eighth in terms of AC, i.e. led to small changes in the fitness space
most of the time. Taking into consideration that Grow is the only structure changing opera-
tor in our investigation that is solely applied to the leaves of the trees, these results coincide
with the hypothesis in [Rosca and Ballard, 1995] that the longer the path from the applica-
tion point of a variation to the root node the less is the probability of large changes in the
fitness.The Grow operator, i.e. adding code at the leaves of a tree, showed a comparatively
low probability of worsening. The effect that on average growing is less destructive than
pruning is one reason for the observed code growth in GP.

212 ’Advances in Genetic Programming III, Chapter 09’

In the sunspot series modeling problem, the OneC and AllC operators ranked highest in
terms of the IP, EI, FCC, and IP∗ features. As would be expected OneC generated changes
that were more local than those generated using AllC. As a result, OneC ranked higher
than AllC in terms of the IP, EI and FCC, whereas AllC ranked better in terms of IP∗. The
results show that on symbolic regression problems that involve numeric constants, most of
the global improvements are generated by operators used to evolve constants. Structure
optimization is obviously harder than parameter adaptation.

It is very important to have operators that can efficiently evolve not only the structure
of the symbolic expression but also the right set of constants in the solution. The OneC
and AllC operators appear to be well suited for optimizing such constants during evolution.
Most of the changes generated by OneC and AllC, as depicted by their AC values, were
orders of magnitude lower than those generated by all other operators. In the first 100 gen-
erations AllC generated the highest IP values and was closely followed by OneC. However,
during the later stages of evolution, as would be expected OneC generates larger IP values
indicating that smaller changes were preferred in the later stages of evolution.

The CrossU operator had the highest IP values on the ant, mux, and cart problems and
the differences between the IP values for CrossU and the other operators on these problems
were statistically significant. In terms of IP∗, it ranked first on the artificial ant and mux
problems, second on the cart centering, and third on the sunspot problems. Moreover,
CrossU had the highest expected improvement on the ant problem, and ranked fifth in
terms of EI, on the mux, cart, and sunspot problems. The large IP∗ and IP values indicate
that the CrossU operator is well suited for generating, with a high probability, offspring,
that are better both than their parents and the population-best parent. Consequently CrossU
appears to be a useful operator on the four problems tested here. Encouraged by the good
results, we ran the algorithm described in Section 9.4 with CrossU as the only operator used
for variation. Again, 50 runs were conducted per test problem. The results are shown in
Table 9.7. As the good FD values indicated, the algorithm showed very good performance,
not only compared to the results in Table 9.2. Although CrossU can be used as the only
search operator, this setting does not fulfill the conditions necessary for the theoretical
convergence property briefly mentioned in the introduction.

The CrossSHC showed consistent above average FD results (this coincides with the good
performance shown in [Angeline, 1997a; Angeline, 1997b] and in own experiments) and
the Trunc operator ranked below average on most features while the Macro and CrossWHC
operators performed poorly on all four problems, but were always better than AllNodes.
This poor performance of Macro which probabilistically uses AllNodes appears to be caused
by the extremely destructive nature of AllNodes.

Most of the differences between the FD features of the headless-chicken operators, i.e.
CrossSHC and CrossWHC, and CrossU, were statistically significant. This indicates dif-
ferent dynamics of these closely related operators.

213 ’Advances in Genetic Programming III, Research and Educational use only’

Table 9.7
Computational effort results for the artificial ant, 6-bit multiplexer and cart centering problem using only
crossover. The population size was 500 in all the trials. The computational effort corresponds to z = .99
except for the multiplexer problem where all runs were successful by generation 56 and the result corresponds to
z = 1.0. Two of the artificial ant runs failed to find an optimal solution by generation 200 and only 41 of the 50
cart centering trials were successful by generation 200. The reason why not all of the ant and cart centering trials
were successful may be premature convergence due to the exclusion of mutation.

Mean sd N R(z) I(M, N, z)

Artificial Ant 88.4 3.71 59 2 60,000
6-bit Multiplexer 64 0 56 1 28,500*
Cart Centering 38.00 4.91 1 19 19,000
Sunspot Modeling 2987.5 431.57 ——-

9.6 Discussion

When evolutionary search is conducted through the use of a set of variation operators, in
the most general case, the performance of the algorithm is determined not only by the
effects generated by each operator but also by the interactions between these constituent
operators. Operators that perform well when used alone might not work constructively
when used together. On the other hand, certain operators might synergistically interact
with other operators resulting in enhanced performance.

Some operators may not be able to traverse the whole search space of desired computer
programs. For example, among the operators investigated, the OneNode, AllNodes, Swap,
Grow, Trunc, OneC, and AllC, are not capable of searching the entire program tree space
when used alone. In such cases there is a need for the design of suites of operators that can
traverse the whole program space.

As it is desirable to find as good a solution as possible in reasonable time, operators
that simultaneously generate large IP, EI, and IP∗ values over successive generations are
needed. Operators such as AllNodes that rarely or never generate offspring better than their
parents and the population-best parent may be excluded from the set of operators. However,
these FD features do not describe all necessary properties of an EA. For example, operators
that show good rates of improvement may increase the speed of the search process but
on the other hand may decrease the solution quality due to the loss of diversity in the
population which might lead to premature convergence when using certain operators.

Operators such as Swap that mostly generate silent variations may be acting as catalysts
enhancing the performance of other operators. It might therefore be more appropriate to
use them with a lower probability than completely excluding them. Furthermore, efficient
evolutionary computations may be designed by varying the probabilities of using various
operators such that small changes in fitness are produced more often and large changes are
produced less often.

214 ’Advances in Genetic Programming III, Chapter 09’

The above analysis of the fitness distributions features indicates that CrossU, Grow, and
CrossSHC possess a high probability of generating beneficial variations and variation may
be generated by selecting these operators more often. The performance of the Macro op-
erator may be enhanced by (a) dropping AllNodes form the set of operators used during
an application of the Macro operator (VMacro), and (b) decreasing the probability of us-
ing Swap. The CrossWHC operator is better suited for exploration and its probability of
application may be decreased.

Results from the FD analysis may enable us to tune the evolutionary search, e.g. to make
it more exploitative or exploratory. The off-line results of the FD analysis can be used to
improve the performance of an EA for program induction, as shown briefly by improving
the search performance of the used algorithm by using just one operator that showed over
average good FD values. However, the FD of an operator may potentially vary with the set
of variation operators being used with it. Additionally, it may depend on the composition
of the population (as in the case of crossover).

Instead of an iterated procedure of off-line FD analysis followed by a subsequent change
in design of the evolutionary algorithm and further experimentation, the FD analysis may
be used on-line. In such an approach the FD results from the previous generation(s) would
guide the usage of various operators in subsequent generation(s). Overviews of operator
adaptation in GAs can be found in [Tuson and Ross, 1998; Smith and Fogarty, 1997]. The
design of such on-line FD analysis tools and procedures in GP remains an area of further
research.

9.7 Conclusion

Fitness distributions (FDs) have been utilized as tools for understanding the behavior and
dynamics of variation operators when evolving computer programs represented as parse
trees. A set of seven dynamic FD features has been proposed that describes the effects
of variation operators during evolution. Using these FD features, the behavior of eleven
different single- and multi-parent operators has been analyzed on four common benchmark
problems. Results indicate that these FD features help us to empirically investigate the dy-
namic behavior of various operators and contribute to a better understanding of how these
variation operators work. Instructive examples were found that show that certain assump-
tions, such as that OneNode generates small changes most of the time or AllNodes is useful
for search, may not hold. Such enhanced understanding of operator effects may enable us
to choose (problem dependent) the appropriate evolutionary algorithm to obtain better so-
lutions and reduce computation time. Future work will be directed towards designing both
off-line and on-line methods of incorporating the knowledge obtained from FD analysis for
the design of more efficient evolutionary computations.

215 ’Advances in Genetic Programming III, Research and Educational use only’

Acknowledgments

The authors would like to thank M. Kreutz, B. Sendhoff, and P. Stagge for their stimulating
discussions and D. B. Fogel for his valuable comments on the work. Christian Igel would
like to acknowledge support from the BMBF under grant SONN II 01IB701A0.

Bibliography

Altenberg, L. (1994), “The evolution of evolvability in genetic programming,” in Advances in Genetic Programming, K. E.
Kinnear, Jr. (Ed.), Chapter 3, pp 47–74, MIT Press.

Altenberg, L. (1995), “The Schema Theorem and Price’s Theorem,” in Foundations of Genetic Algorithms 3, L. D. Whitley and
M. D. Vose (Eds.), pp 23–49, Estes Park, Colorado: Morgan Kaufmann.

Angeline, P. J. (1996), “An investigation into the sensitivity of genetic programming to the frequency of leaf selection during
subtree crossover,” in Genetic Programming 1996: Proceedings of the First Annual Conference, J. R. Koza, D. E. Goldberg, D. B.
Fogel, and R. L. Riolo (Eds.), pp 21–29, Stanford University, CA: MIT Press.

Angeline, P. J. (1997a), “Comparing subtree crossover with macromutation,” in The Sixth Conference on Evolutionary Program-
ming, P. Angeline, R. Reynolds, J. McDonnel, and R. Eberhart (Eds.), pp 101–111, Indianapolis, Indiana: Springer-Verlag.

Angeline, P. J. (1997b), “Subtree crossover: Building block engine or macromutation?,” in Genetic Programming 1997: Proceed-
ings of the Second Annual Conference, J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo (Eds.), pp
9–17, Stanford University, CA: Morgan Kaufmann.

Bäck, T. (1996), Evolutionary Algorithms in Theory and Practice, Oxford University Press.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998), Genetic Programming – An Introduction; On the Automatic
Evolution of Computer Programs and its Applications, Morgan Kaufmann, dpunkt.verlag.

Chellapilla, K. (1997), “Evolutionary programming with tree mutations: Evolving computer programs without crossover,” in
Genetic Programming 1997: Proceedings of the Second Annual Conference, J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M.
Garzon, H. Iba, and R. L. Riolo (Eds.), pp 431–438, Stanford University, CA: Morgan Kaufmann.

Chellapilla, K. (1998), “Evolving computer programs without subtree crossover,” IEEE Transactions on Evolutionary Computa-
tion, 1(3):209–216.

Chellapilla, K. and Fogel, D. B. (1998), “Revisiting evolutionary programming,” in Proceedings of the SPIE: Application and
Science of Computational Intelligence, volume 3390, pp 2–11, Orlando, Florida: SPIE – The International Society for Optical
Engineering.

Fogel, D. B. (1995), Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press.

Fogel, D. B. and Ghozeil, A. (1996), “Using fitness distributions to design more efficient evolutionary computations,” in Pro-
ceedings of 1996 IEEE Conference on Evolutionary Computation, pp 11–19, Nagoya: IEEE Press.

Grefenstette, J. J. (1995), “Predictive models using fitness distributions of genetic operators,” in Foundations of Genetic Algo-
rithms 3, L. D. Whitley and M. D. Vose (Eds.), pp 139–161, Estes Park, Colorado: Morgan Kaufmann.

Iba, H. (1996), “Random tree generation for genetic programming,” in Parallel Problem Solving from Nature IV, Proceedings of
the International Conference on Evolutionary Computation, H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel (Eds.),
pp 144–153, Berlin: Springer-Verlag.

Igel, C. (1998), “Causality of hierarchical variable length representations,” in Proceedings of the 1998 IEEE International
Conference on Evolutionary Computation, pp 324–329, Anchorage, Alaska: IEEE Press.

Kinnear, Jr., K. E. (1994), “Fitness landscapes and difficulty in genetic programming,” in Proceedings of the 1994 IEEE World
Conference on Computational Intelligence, Z. Michalewicz, J. D. Schaffer, H.-P. Schwefel, D. B. Fogel, and H. Kitano (Eds.),
volume 1, pp 142–147, Orlando, Florida: IEEE Press.

216 ’Advances in Genetic Programming III, Chapter 09’

Koza, J. R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, Cambridge, MA:
MIT Press.

Macken, C. A. and Stadler, P. F. (1993), “Evolution on fitness landscapes,” in Lectures in Complex Systems, L. Nadel and D. L.
Stein (Eds.), Santa Fe Institute Studies in the Science of Complexity, pp 43–86, Addison-Wesley.

Manderick, B., d. Weger, M., and Spiessens, P. (1991), “The genetic algorithm and the structure of the fitness landscape,” in
Proceedings of the Fourth International Conference on Genetic Algorithms, R. K. Belew and L. B. Booker (Eds.), pp 143–150,
UCSD, La Jolla, CA: Morgan Kaufmann.

Nordin, P. and Banzhaf, W. (1995), “Complexity compression and evolution,” in Proceedings of the Sixth International Conference
on Genetic Algorithms, L. J. Eshelman (Ed.), pp 310–317, Pittsburgh, PA: Morgan Kaufmann.

O’Reilly, U.-M. (1995), An Analysis of Genetic Programming, PhD thesis, Carleton University, Ottawa-Carleton Institute for
Computer Science, Ottawa, Ontario, Canada.

O’Reilly, U.-M. (1997), “Using a distance metric on genetic programs to understand genet ic operators,” in Late Breaking Papers
at the Genetic Programming 1997 Conference, J. R. Koza (Ed.), pp 188–198, Stanford University, CA: Stanford University
Bookstore.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1994), Numerical Recipes in C, Cambridge University Press, 2nd
edition.

Rechenberg, I. (1994), Evolutionsstrategie ’94, Werkstatt Bionik und Evolutionstechnik, Stuttgart: Frommann-Holzboog.

Rosca, J. P. and Ballard, D. H. (1994), “Hierarchical self-organization in genetic programming,” in Proceedings of the Eleventh
International Conference on Machine Learning, pp 251–258, New Brunswick, NJ: Morgan Kaufmann.

Rosca, J. P. and Ballard, D. H. (1995), “Causality in genetic programming,” in Proceedings of the Sixth International Conference
on Genetic Algorithms, L. J. Eshelman (Ed.), pp 256–263, Pittsburgh, PA: Morgan Kaufmann.

Rudolph, G. (1997), Convergence Properties of Evolutionary Algorithms, Hamburg: Kovač.

Schwefel, H. (1995), Evolution and Optimum Seeking, New York: John Wiley & sons.

Sendhoff, B., Kreutz, M., and von Seelen, W. (1997), “A condition for the genotype-phenotype mapping: Causality,” in Proceed-
ings of the Seventh International Conference on Genetic Algorithms, T. Bäck (Ed.), pp 73–80, MSU, East Lansing, MI: Morgan
Kaufmann.

Smith, J. E. and Fogarty, T. C. (1997), “Operator and parameter adaptation in genetic algorithms,” Soft Computing, 1(2):81–87.

Tuson, A. and Ross, P. (1998), “Adapting operator settings in genetic algorithms,” Evolutionary Computation, 6(2):161–184.

Utecht, U. and Trint, K. (1994), “Mutation operators for structure evolution of neural networks,” in Parallel Problem Solving
from Nature III, Y. Davidor, H.-P. Schwefel, and R. Männer (Eds.), pp 492–501, Jerusalem: Springer-Verlag.

Yao, X. and Liu, Y. (1996), “Fast evolutionary programming,” in Evolutionary Programming V: Proceedings of the Fifth Annual
Conference on Evolutionary Programming, L. J. Fogel, P. J. Angeline, and T. Baeck (Eds.), pp 451–460, San Diego, CA: MIT
Press.

217 ’Advances in Genetic Programming III, Research and Educational use only’

Index

evolutionary programming, 6
expected improvement, 3

fitness distribution, 3
fitness landscape, 2

probability of improvement, 3

silent variation, 5

