
Genetic Programming and
Multi-Agent Layered Learning by Reinforcements

William H. Hsu

bhsu@cis.ksu.edu
Department of Computing and Information Sciences

Kansas State University
Manhattan, KS USA 66506-2302

Steven M. Gustafson

smg@cs.nott.ac.uk
School of Computer Science and Information Technology

University of Nottingham
Jubilee Campus, Nottingham UK NG8 1BB

Abstract
We present an adaptation of the standard genetic
program (GP) to hierarchically decomposable,
multi-agent learning problems. To break down a
problem that requires cooperation of multiple
agents, we use theteam objective functionto
derive a simpler, intermediate objective function
for pairs of cooperating agents. We apply GP to
optimize first for the intermediate, then for the
team objective function, using the final
population from the earlier GP as the initial seed
population for the next. Thislayered learning
approach facilitates the discovery of primitive
behaviors that can be reused and adapted towards
complex objectives based on a shared team goal.
We use this method to evolve agents to play a
subproblem of robotic soccer (keep-away
soccer). Finally, we show how layered learning
GP evolves better agents than standard GP,
including GP with automatically defined
functions, and how the problem decomposition
results in a significant learning-speed increase.

1 INTRODUCTION

For complex problems with low-level primitive
operations, such as robotic soccer [Ki97, MNH97], it is
intractable to search for a direct solution using genetic
programming (GP). This is due in part to the
combinatorial explosion of the GP search space as a
function of the problem state space – e.g., the size of the
playing field. [SVR99] Other factors, such as operator
granularity, also contribute to this growth. Many of GP
researchers who have worked on robotic soccer have
simplified the GP search space through problem
redefinition: raising the level of terminals in order to
evolve higher-level behaviors [Lu98] or using a more
sophisticated fitness function [AT99]. Because robotic
soccer is a multi-agent system (MAS) problem that is
based upon a real game played by humans, it is helpful to
compare learning strategies with those of human teams,
even if we use a different approach to automatically
develop a solution. One important observation is that the

structure of team training in real soccer involves
individual, pair, and small group drills, resulting in a well-
defined hierarchy of behaviors. Traditional GP produces
hierarchical programs by evolving and reusing
automatically defined functions (ADFs). [Ko94, RB94]

In this paper, we show howlayered learningcan also
achieve reuse – faster and more reliably than GP with
ADFs – in developing a solution to an MAS subproblem
of robotic soccer. Just as ADFs provide reusable code
and subroutine structure [Ko94], layered learning
provides a way to build solutions using a divide-and-
conquer approach [St00, SV00a]. The difference between
ADF learning and layered learning, using GPs or other
methods, is that layered learning describes a way totrain
a learning intelligent agent, while ADFs describe a way to
implement structurein the agent representation – i.e.,
code.

Layered learning GP (LLGP) [GH01] can be used to
break down MAS learning tasks by first evolving
solutions for smaller fitness cases or for smaller groups of
agents with a more primitive fitness criterion. While our
adaptation of layered learning to GP is based in part upon
Stone and Veloso’s work in reinforcement learning
[SV00a], similar approaches have been developed that
perform sequential evolution of populations using
different fitness functions [De90, HHC94].

This paper extends our previous study of LLGP for an
MAS task in the robotic soccer domain [GH01] with
further experiments and analysis of LL behavior. We
focus on automatic tuning and validation ofintermediate
representationsin incremental LL. The purpose of our
test bed is to facilitate development of fitness criteria for
“coaching” or training agents based upon their strictly
cooperative performance in a two-agent task. We then
use the evolved individuals to seed a population of agents
to be further improved in three-way competitive
interaction against a fourth agent, the opponent. This new
population and the associated GP form the second layer of
the LLGP system. The product of LLGP is an agent that
is evolvedusing highly fit primitive agents, but does not
necessarily contain exact copies of these primitive agents
as subroutines.

Another advantage of layered learning is that it provides a
logical methodology for implementing a hierarchical
approach to teamwork. In order to evolve more complex
teamwork, we may be able to take advantage of the
dependency of behaviors involving three or more
teammates upon primitive behaviors involving just two.
For example, a low-level primitive in soccer is passing the
ball, a two-agent activity that is incorporated into several
multi-agent activities: guarding the ball; moving the ball
downfield; setting up for a goal attempt; etc. In the rest of
this paper, we shall explore LLGP for MAS problems
using keep-away soccer, a subproblem of robotic soccer
[SV00a, GH01] that shows how complex teamwork can
be hierarchical in nature and therefore can be learned
efficiently in a hierarchical fashion.

2 THE KEEP-AWAY SOCCER DOMAIN

2.1 DEFINITION AND JUSTIFICATION

We call keep-away soccerthe task of keeping the ball
away from a defensive player who is attempting to
capture it from multiple offensive opponents. We chose
keep-away soccer as a learning test bed for MAS because
it:

1. captures a compositional element of teamwork,
composing and refining passing behaviors to
achieve full keep-away soccer behavior, that
occurs in real and robotic soccer

2. elides some objectives of soccer (such as moving
the ball downfield and attempting to score) that,
while crucial, would overcomplicate our study of
basic low-level MAS

3. allows us to easily adjust opponent difficulty

Figure 1. Screen capture of simulator. 1, 2, and 3 are
offensive agents, 4 is the defender, and 5 is the ball,

which moves in trajectory 3-1-2-3-1.

Although there is a strong compositional element,
learning to pass the ball effectively is only part of the
keep-away soccer learning task. In real soccer, human
players learn to minimize the number of turnovers to the
offensive opponent by passing accurately, move to
receive a pass, and make themselves open to receive a
pass, and control the ball effectively. For 3 or more

agents to coordinate effectively, each must be able, when
in possession of the ball, to: select a teammate to pass to,
time the pass appropriately, and maintain open at least
one passing lane.

Figure 1 shows a text-mode screen capture from the
simple program that we used to visualize and animate
games of keep-away soccer. The figure depicts three
offensive agents passing the ball in a counterclockwise
motion (agent 3 passes the ball twice) about a defender.
The trail of the ball is denoted by ’-’. The symbols ’+’,
’;’, and ’*’ show the paths of agents 1, 3, and 4,
respectively. The simulation and visualization were run
for about 30 time steps to collect the screen capture.

Several MAS variants of robotic soccer exist; keep-away
soccer belongs to the category of multi-agent learning
with homogeneous, noncommunicatingagents [SV00b] –
those that share identical code but have no direct channels
of communication other than by observing the behavior of
teammates. This type of problem requires more robust,
autonomous solutions and is therefore an interesting
framework for teamwork learning.

Soccer, whether analyzed as a human or robotic game,
can be broken down into skill-optimization subproblems
such as ball control, passing, and moving. Keep-away
soccer can be decomposed in the same manner. A natural
way to reduce complex, MAS problems, such as that
investigated in keep-away soccer, could generalize to
other cooperative MAS problems [Ta97].

2.2 PROBLEM SPECIFICATION

Test beds for robotic soccer-playing agents have been
framed through theRoboCup competition [KAK+95,
As99]. These have been found to be rich experimental
environments for many MAS research areas, including
flexible teamwork learning [TAA+99], and
methodologies, including hierarchical sensing and
reinforcement learning by Q-learning, temporal
differences, team-partitioned algorithms [SV98], artificial
neural networks, and genetic programming [As99]. At
present, however, hand-coded and hybrid learning
techniques that employ a large amount of hand-coded
domain-specific knowledge still outperform strategies that
are learned automatically.

In keep-away soccer, three offensive agents are located on
a rectangular field with a ball and a defensive agent. The
defensive agent moves twice as quickly as the offensive
agents, and the ball, when passed, moves twice as quickly
as the defensive agent. This is similar to the predator-
prey problem in [LS96], where more than one agent is
required to solve the problem. The objective in keep-
away soccer is to minimize the number of times the ball is
turned over to the defender. A turnover occurs at every
discrete time step in which the defender is within one grid
unit of the ball. Thus, subsidiary objectives for offensive
agents are to continuously move and pass the ball to one
another in order to minimize turnovers.

We think of keep-away soccer as consisting of two layers
of behavior: passing accurately with no defensive agent
present, and moving and passing with a defender to
minimize the number of turnovers that occur during a
game. The two layers of behaviors come from a human-
like view of soccer, but are not heavily dependent upon
domain knowledge. Both types of behavior are important
to playing good keep-away soccer, but the operational
definition does not necessarily give us a way to measure
the effectiveness of a team of agents who have just played
keep-away soccer, which would be useful for finding a
fitness function.

Next, we present the application of layered learning to GP
and explain further how the keep-away soccer is a good,
illustrative test bed for LLGP.

3 LAYERED LEARNING

Layered learningis a term used in the machine learning
and intelligent agents literature [St00, SV00a] to describe
a task-driven and often incremental approach to acquiring
hierarchies of behaviors by reinforcement learning.

de Garis [De90] introduced a very similar concept that he
called behavioral memoryfor a genetic algorithm that
encoded neural networks. Weights and signs of the
networks evolved for one behavior were used to construct
a new population, evolved for a second behavior. Some
of the initial network persisted in the solutions for the new
behavior. Schoenauer and Xanthakis [SX93] then later
applied this concept for constrained genetic algorithm
optimization.

Harvey et al [HHC94] used a layered, incremental
learning approach to robot control in a vision-based
navigation system. The authors achieved this by
sequentially evolving a population using a range of targets
from simple to complex. Winkeler and Manjunath
[WM98] and Eriksson [Er00] later analyzed this approach
toward incremental learning.

Dorigo et al [DC97] developed another hierarchical
learning system that is somewhat different from layered
learning as we have adapted it. In this method, inputs and
processing elements are organized into a hierarchy (from
simple to complex), each of whose layers is incrementally
trained and frozen. This is similar to previous work
applied in domains such as robot soccer, but is not
identical to layered learning or behavioral memory as
these methods do not arrest learning in a particular
portion of the hierarchical model.

Applying the layered learning paradigm to a problem
consists of breaking that problem up into a hierarchy of
subproblems. The original problem is then solved
sequentially, by using the learning results from all the
member problems of each layer in the next layer. This is
conceptually similar to many other divide-and-conquer
learning paradigms, but a key difference is that the
structure of thesolutiondoes not necessarily reflect this
procedural hierarchy oftraining. For example, programs

evolved for a subtask in LLGP are used to seed an initial
population for the next layer, but they may not be
incorporated verbatim in the overall solution as ADFs are.
This type of hierarchical solution is different from the
type that ADF-based GP learning proposes to find, which
focuses on code reuse and structure rather than on how
the subtasks are learned.

Problems that attempt to achieve human-competitive
behaviors [Ko98], such as robotic soccer and keep-away
soccer, lend themselves well to bottom-up decomposition.
This is because human task learning, especially of
cooperative multi-agent behavior, often occurs in a
bottom-up fashion where individuals or small groups first
learn smaller tasks, then how to compose and coordinate
them to solve larger tasks. When the problem is of this
type and we are already using a biologically motivated
method such as GP, it seems very natural to use a bottom-
up decomposition of the problem that simulates this
aspect of human learning and allows GP to learn each of
the smaller problems.

Table 1 is a variant of the table found in [SV00a], which
we have adapted to correlate each prerequisite of layered
learning with a property of genetic programming for
keep-away soccer.

Table 1: Requirements for using layered learning and GP
keep-away soccer justifications.

Layered Learning Genetic Programming

1. Learning from raw
input is not tractable

Complex MAS problems
for GP need to be defined
at multiple levels ÿ

2. A bottom-up
decomposition is given

MAS learning task is
compositional ÿ

3. Learning occurs
independently at each
level

GP can be applied to each
layer independently ÿ

4. The output of one
layer feeds the next
layer’s input

The population in the last
generation of one layer is
used as the next layer’s
initial population ÿ

When we modify standard GP for layered learning, we
need to develop a learning objective for each layer, i.e.,
the fitness at each layer that selects ideal individualsfor
the subtask. As seen in [Lu98], using a single-objective
fitness value often leads to the best performance, and is
much easier than trying to define multi-objective fitness
functions. While multi-objective fitness functions should
allow GP to evolve more complex behaviors, it becomes
more difficult to decide what the components of fitness
should be and how important each one is to the solution.
In preliminary experiments, we found that it was
infeasible to develop either a set of Pareto optimization
criteria or a weighted function over multiple objectives
for keep-away soccer. Instead, we chose to focus on

automatically discovering how to composepassing agents
into keep-away soccer agents.

Another issue we addressed for layered learning in GP is
the transfer of the population from the last generation of
previous layer to the initial population of the next. The
ideal team will consist of individuals with high fitness on
the coordinated MAS task. Meanwhile, in every
population, there are certain individuals that have a better
fitness than others. We might therefore consider copying
that best individual only and seeding the entire initial
population of the subsequent layer with it. However, this
duplication removes the diversity that was evolved in the
previous layer, which may be detrimental because the best
individual on the subtask may be a suboptimal problem
solver for the overall coordinated team activity. Thus, we
designed two experiments using LLGP: one that
duplicates the best individual and one that simply copies
the entire population.

The final issue we address for LLGP is learning-speed
improvement: to what degree can layered learning
simplify the learning problem, allowing the target fitness
to be reached faster than with standard GP? This increase
in the slope of the learning-speed curve [Ka95] is to be
distinguished from speed-up learning, wherein the
efficiency of the learned problem solver is improved. We
show how layered intermediate and team fitness
objectives achieve greater learning-speed than a
monolithic fitness objective in the keep-away soccer test
bed. We also demonstrate a technique for empirically
choosing a point at which to stop learning primitive MAS
behaviors and switch to the high-level MAS behavior.

4 GP AND EXPERIMENT DESIGN

We designed four initial GP experiments to investigate
and benchmark the performance of LLGP: standard GP
(SGP), GP with ADFs (ADFGP), LLGP with the best
individual duplicated to fill initial populations (LLGP-
Best), and LLGP with the entire final population of the
first layer used to seed the next (LLGP-All). SGP and
ADFGP use the singlemonolithic (i.e., non-layered)
fitness function of minimizing the number of turnovers
that occur in a simulation. ADFGP allows each tree for
kicking and moving to have two additional trees that
represent ADFs, where the first ADF can call the second,
and both have access to the full function set available for
SGP. LLGP-Best and LLGP-All both have two layers;
the fitness objective for the first layer is to maximize the
number of accurate passes (a two-agent task evaluated
over teams of three copies of the same individual, on the
same size field as the keep-away soccer task), while
fitness objective for the second layer is to minimize the
number of turnovers.

We developed two variations on each experiment, with
maximum generation values of 51 and 101. The stopping
criterion for both variations is achieved when an ideal
fitness measure of 0 (where fewer turnover turns are
better) is found, or the maximum generation is reached.

Our preliminary experiments indicated that a population
size of 2000 yielded good results for the keep-away
soccer domain using both SGP and ADFGP. We also
found that the 101-generation SGP achieved better
convergence in fitness and individual size and the 51-
generation SGP, with negligible fitness improvement after
101 generations.

The genetic crossover operator generates 90 percent of the
next generation; tournament selection generates the other
10 percent. [Ko92] The tournament size is 7, with
maximum depth 17. Table 2 summarizes the terminal set
used, consisting of vectors that are egocentric, or relative
to the agent whose tree is being evaluated. Table 3
summarizes the function set used, where all functions
operate on and return vectors. Both sets are similar to
those used in [Lu98] and [AT99].

Table 2: Keep-away soccer terminals (egocentric vectors)

Terminal Description

Defender Vector to opponent

Mate1 Vector to first teammate

Mate2 Vector to second teammate

Ball Vector to ball

Table 3: Keep-away soccer function set

Function
(arguments) Description

Rotate90(1) Rotate current vector 90 degrees
counter-clockwise

Random(1) New random vector with magnitude
between 0 and current value

Negate(1) Reverse vector direction

Div2(1) Divide vector magnitude by 2

Mult2(2) Multiply vector magnitude by 2

VAdd(2) Add two vectors

VSub(2) Subtract two vectors

IFLTE(4) if ||v1|| < ||v2|| thenv3 elsev4

The GP system we use was developed by Luke and is
called Evolutionary Computation in Java (ECJ) [Lu00].
The simulator we developed for keep-away soccer
abstracts some of the low-level details of agents playing
soccer from theTeamBots[Ba01] environment, which in
turn abstracts low-level details from theSoccerServer
[An98] environment. Abstractions of this type allow the
keep-away soccer simulator to be incorporated later to
learn strategies for theTeamBots environment and
SoccerServer.

In SoccerServerand TeamBots, players push the ball to
maintain possession. To kick the ball, the player needs to
be within a certain distance. For keep-away soccer, we
eliminate the need for low-level ball possession skills and
allow offensive agents to have possession of the ball.
Once an agent has possession, it can only lose possession
by kicking the ball, i.e., by evaluating its kick tree.
Because we use vectors that have direction and
magnitude, this implementation would allow for dribbling
actions to be learned, where the agent simply passes the
ball a few units away. This abstraction greatly simplifies
the problem and still allows for a wide range of behaviors
to be learned.

At each simulation step that allows agents to act, if the
agent has possession of the ball – i.e., the agent and ball
occupy the same grid position – the agent’s kick tree is
evaluated. The kick tree evaluates to a vector that gives
the direction and distance to kick the ball. Otherwise, the
agent’s move tree is evaluated. Both trees are composed
of terminals listed in Table 2 and functions listed in Table
3.

For layered learning experiments, the first 5-50 percent of
the maximum number of generations are spent in Layer 1
learning accurate passing without a defender present. To
evaluate accurate passes, we count the number of passes
that are made to a location within 3 grid units of another
agent. The fitness function for thisintermediate objective
is then (200 –passes), where there are 200 time steps per
simulation; a fitness of 0 is best and one of 200 is worst.
The remaining 50-95 percent of the generations are spent
in Layer 2 with a fitness value that is inversely
proportional to the number of turnovers that occur with a
defender present. This is theteam objective. The
defender uses a hand-coded strategy, based upon one of
the standardTeamBots[Ba01] defensive agents, that
always moves towards the ball to cause a turnover.

Each evaluation of an individual in the simulator takes
200 time steps, where the ball can move on each step, the
defender moves on every other time step, and all
offensive agents move together on every fourth time step.
The initial configuration of the simulation places the
defensive agent in the center of a 20-by-20 unit grid. The
field is then partitioned into three sections: the top half
and the bottom left and right quadrants. One offensive
agent is placed randomly in each section, and the ball is
placed a few units from one of the offensive agents,
chosen at random.

Early runs of the system resulted in local optima being
achieved; the most common of these was a control policy
in which all offensive agents crowded the ball to prevent a
defender from stealing it, causing turnover. To eliminate
this “loophole”, the defender, if blocked from the ball, can
move through an offensive agent without the ball by
simply trading places with the opponent if the two are
adjacent on the grid.

5 RESULTS
Each experiment was run 10 times, and averages were
taken across the runs. For all experiments, we achieved
the best convergence behavior with 100 generations, so
this was used as the baseline for SGP, ADFGP, and all
LLGP variants.

Table 4 shows our initial experimental results. For
ADFGP, Good-Average represents the average of the 10
best runs selected from among 20. ADFGP experiments
converged to two clusters of fitnesses – one better than
SGP, the other much worse. When we considered the
individual size of the good cluster, we found that the poor
cluster contains individuals with about half the number of
nodes as individuals in the good cluster. Prefiltering
ADFGP runs based upon individual size may be an
appropriate remedy, but this is beyond the scope of this
paper, as we are focusing on LLGP. We report both
overall and good averages here, however, to show that
LLGP can achieve performance as high as the good
cluster’s.

As shown in Table 4, our first LLGP experiment divided
101 generations into 40 for Layer 1 (successful pass
criterion) and 61 for Layer 2 (minimum turnover
criterion). Copy-Best represents the LLGP-Best seeding
method for Layer 2; Copy-All, the LLGP-All method.
These initial results did not indicate any notable
advantage or disadvantage of LLGP, indicating only that
we can obtain comparable solutions using LLGP-All,
SGP, and ADFGP.

Table 4: Results for experiments with population size =
4000, max generations = 101, averaged over 10 runs.

Lower f (anti-fitness) values are better.

ADFGP LLGP, 40-61SGP

Avg. Good-
Avg.

Copy-
Best

Copy-
All

Best f
gen.
101

11.25 19.67 8.75 23.71 12.67

Mean f
gen.
101

66.89 60.21 64.27 82.03 64.64

Avg.
ind. sz.
gen.
101

228.74 113.25 123.07 161.71 171.40

First
gen. f
≤≤≤≤ 20

33 62 22 101 55

Best f
of run 9.0±

4.98

16.56
±

17.45
6.83 19.29 9.0±

2.73

Table 5: Results for different Layer 1 durations
(population size = 2000), averaged over 10 runs.

Lower f (anti-fitness) values are better.

Layer 2
Start

Generation

First
Gen.
f ≤≤≤≤ 20

First
Gen.
f ≤≤≤≤ 15

Best f
Gen.
101

Best f
of Run

5 62 79 12 11.75

10 18 30 11.4 9.7

15 24 43 9.63 9.38

20 38 47 9.6 9.6

25 47 80 11.88 11.25

30 51 58 14.1 12.7

35 46 55 7.75 7.25

40 57 82 13.6 13.2

45 67 93 14.11 13.11

50 62 82 11.5 11.1

We hypothesized that we were not yet realizing the full
improvement in learning-speed that could be achieved
using LLGP. To test this hypothesis, we plotted the Layer
2 learning-speed curves [Ka95] shown in Table 5 and
Figure 1 for the following LLGP-All configurations: 5
generations in Layer 1 and 96 in Layer 2, 10 and 91, up to
50 and 51. The 10-91, 15-86, and 20-81 versions of
LLGP-All achieve better convergence than those that start
Layer 2 later, except for 35-66. Even accounting for the
“early start”, we can see that the convergence rate is faster
and the final fitness is better for LLGP when Layer 1 lasts
between 10 and 20 generations. We ran a second series of
Layer 2 learning-speed curves (6 through 15, step 1) that
indicated that the learning rates for 10 through 15 were
not significantly different. We have not yet evaluated the
inherent benefit to generalization quality – i.e., overfitting
control and reusability – of stopping Layer 1 earlier,

though this may be a good question for future
experimentation.

A population size of 2000 is used for the fitness curves, as
the performance for 2000 is similar to that for 4000, as
reported in [Gu00]. Note that if the learning-speed curve
for Layer 1 duration of 0 were plotted in Figure 2 above,
it would be equivalent to that of the SGP, because the
SGP runs for 101 generations with only the team
objective function (Layer 2 fitness).

Table 6: Results for experiments with population size =
4000, max generations = 101, averaged over 10 runs.

Lower f (anti-fitness) values are better.

SGP Good-
ADFGP

LLGP-All,
10-91

Best f
gen. 101 11.25 8.75 9.43

Mean f
gen. 101 66.89 64.27 70.39

Avg.
ind. sz.
gen. 101

228.74 123.07 249.21

1st gen.
f ≤≤≤≤ 20 33 22 26

Best f of
run 9.0± 4.98 6.83 5.78± 2.28

Having found that the 10-91 LLGP exhibited a better
learning speed curve, we repeated the LLGP-All
experiment with population size 4000 and found that it
was able to match the Good-ADFGP performance,
converged at least as quickly as any other GP, and
resulted in the lowest best-of-run fitness values we found
(fewer than 6 turnovers per simulation). This result is
shown in Table 6, with the SGP and Good-ADFGP results
repeated for comparison. We note that the Layer 2
individuals are much larger for LLGP-All-10-91 than for
LLGP-All-40-61. That is, while stopping Layer 1 early
yields a slight improvement in overall fitness and a
significant improvement in learning-speed, it does not
necessarily result in a more streamlined agent code. This
is intuitive because more learning is deferred to Layer 2,
where “passing” behavior is incorporated into the more
sophisticated “keep-away” agents.

6 CONCLUSIONS
We have shown that using layered learning, genetic
programming can evolve intelligent agents for a
cooperative MAS task such as keep-away soccer more
quickly, with better fitness. Additionally, layered
learning GP allows for a natural decomposition of the
MAS learning problem into subproblems, each of which
is more easily solved with GP. The keep-away soccer
problem is a good test bed for abstracting away the

Learning-Speed Curves (5-50, Step 5)

0

10

20

30

40

50

60

70

80

90

100

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation

B
es

tf
itn

es
s

5
10
15
20
25
30
35
40
45
50

Figure 2. Layer 2 learning-speed curves (each
starting at the end of Layer 1) for different Layer 1

durations. Lower is better.

complexities of simulated soccer and allows for different
GP methods to be evaluated and their relative merits
compared. It is also easily extended to the full game of
robotic soccer, and is highly portable across platforms
because our simulator,TeamBots[Ba01], SoccerServer
[An99], andECJ [Lu00] are all written in Java.

Conceptually, we can liken our success with LLGP to the
success of human soccer teams. Successful teams are
usually made up of players with unique strategies, where
learning took place in a bottom-up fashion and individuals
first learned to play well together in pairs and small
groups, then as a coordinated team. The LLGP-All
experiments simulate this kind of behavior, where we
attempt to minimize the number of generations needed per
layer. Our results indicate that layered learning in GP
yields benefits over both standard GP and over hand-
coded hierarchical approaches that depend on a large
volume of domain knowledge. This is because it is easier
and more natural to use the team fitness function to derive
an intermediate fitness function, evolve primitive MAS
agents, then let the higher-level (Layer 2) GP discover
how to compose and refine primitive MAS behavior into
complex MAS behavior.

We have considered several extensions to this research.
First, developing a full-scale team for theRoboCup
competition using LLGP would be a good way to test its
abilities more thoroughly (however, the focus in this
paper was on evaluating MAS task decomposition and
improvement of learning accuracy and learning speed).
Diversity in populations is also an interesting issue, and
our continuing research in LLGP investigates how and
whether LLGP promotes diversity. A related question is
the degree to which LLGPreusescode versusrefining it
in higher layers. Other interesting modifications include
developing heterogeneous teams, adding additional lower-
and higher-level layers, and hybridizing ADFs and
layered learning GP.

Acknowledgments

Support for this research was provided in part by the
Army Research Lab under grant ARL-PET-IMT-KSU-07
and by the Office of Naval Research under grants
N00014-00-1-0769 and N00014-01-1-0917. We also
thank Edmund Burke for providing support for the second
author in continuing this work. Finally, thanks to Sean
Luke for providing help with ECJ, the GP library used to
develop our system.

References

[An99] D. A. Andre. SoccerServer Manual Ver. 4, Rev.
02. Available through the World-Wide Web at
http://www.robocup.org, 1999.

[As99] M. Asada. Overview of RoboCup-98. In
RoboCup-98: Robot Soccer World Cup II (Lecture Notes
in Artificial Intelligence Vol. 1604). Springer-Verlag,
New York, NY, 1999.

[AT99] D. A. Andre and A. Teller. Evolving Team
Darwin United. In RoboCup-98: Robot Soccer World
Cup II (Lecture Notes in Artificial Intelligence Vol. 1604).
Springer-Verlag, New York, NY, 1999.

[Ba01] T. Balch. TeamBotssoftware and documentation.
Available through the World-Wide Web at
http://www.teambots.org, 2001.

[De90] H. deGaris. Genetic Programming: Building
Artificial Nervous Systems Using Genetically
Programmed Neural Network Modules". In B. W. Porter
et al, editors,Proceedings of the Seventh International
Conference on Machine Learning (ICML-90), p. 132-139,
1990.

[DC97] M. Dorigo and M. Colombetti.Robot Shaping:
An Experiment in Behavior Engineering. MIT
Press/Bradford Books, 1997.

[Er00] R.I. Eriksson. An initial analysis of the ability of
learning to maintain diversity during incremental
evolution. In A. A. Freitas, editor,Data Mining with
Evolutionary Algorithms, p. 120-124. 2000.

[HHC94] I. Harvey, P. Husbands, and D. Cliff. Seeing
the light: artificial evolution, real vision. In D. Cliff et al,
editors,From Animals to Animats 3: Proceedings of the
Third International Conference on Simulation of Adaptive
Behavior. MIT Press/Bradford Books, Boston MA, 1994.

[GH01] S. M. Gustafson and W. H. Hsu. Layered
Learning in Genetic Programming for A Cooperative
Robot Soccer Problem. In J. F. Milleret al, editors,
Proceedings of the European Conference on Genetic
Programming (EuroGP-2001). Lake Como, Italy.
Springer-Verlag, 2001.

[Ka95] C. M. Kadie. Seer: Maximum Likelihood
Regression for Learning-Speed Curves. Ph.D.
Dissertation, University of Illinois at Urbana-Champaign
(Technical Report UIUC-DCS-R1874). August, 1995.

[KAK+95] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda,
and E. Osawa. RoboCup: The Robot World Cup
Initiative. In Proceedings of the 1995 International Joint
Conference on Artificial Intelligence (IJCAI-95)
Workshop on Entertainment and AI/Alife. Montréal,
Canada, 1995.

[Ki97] H. Kitano. The RoboCup Synthetic Agent
Challenge 97. In Proceedings of the1997 International
Joint Conference on Artificial Intelligence (IJCAI-97),
Nagoya , Japan, 1997.

[Ko92] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, 1992.

[Ko94] J. R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press, Cambridge,
MA, 1994.

[Ko98] J. R. Koza.Genetic Programming III: Darwinian
Invention and Problem Solving. Morgan Kaufmann, Los
Altos, CA, 1998.

[LS96] S. Luke and L. Spector. Evolving Teamwork and
Coordination with Genetic Programming. InGenetic
Programming 1996: Proceedings of the First Annual
Conference. J. Kozaet al, eds. p. 141-149. MIT Press,
Cambridge, MA, 1996.

[Lu98] S. Luke. Genetic Programming Produced
Competitive Soccer Softbot Teams for RoboCup-97. In
Proceedings of the Third Annual Genetic Programming
Conference (GP98). J. Koza et al, eds. p. 204-222.
Morgan Kaufmann, Los Altos, CA, 1998.

[Lu00] S. Luke. Issues in Scaling Genetic Programming:
Breeding Strategies, Tree Generation, and Code Bloat.
Ph.D. Dissertation, Department of Computer Science,
University of Maryland, College Park, MD, 2000.

[MNH97] H. Matsubara, I. Noda, K. Hiraku. Learning of
Cooperative Actions in Multi-agent Systems: A Case
Study of Pass Play in Soccer. InAdaptation, Coevolution,
and Learning in Multiagent Systems: Papers from the
1996 American Association for Artificial Intelligence
(AAAI) Spring Symposium, AAAI Technical Report SS-
96-01, p. 63-67. AAAI Press, Menlo Park, CA, 1996.

[RB94] J. P. Rosca and D. H. Ballard. Hierarchical Self-
Organization in Genetic Programming. InProceedings of
the Eleventh International Conference on Machine
Learning (ICML-94), p. 251-258. Morgan Kaufmann,
Los Altos, CA, 1994.

[St00] P. Stone. Layered Learning in Multiagent
Systems: A Winning Approach to Robotic Soccer.MIT
Press, Cambridge, MA, 2000.

[SV98] P. Stone and M. Veloso. A Layered Approach to
Learning Client Behaviors in the RoboCup Soccer Server.
Applied Artificial Intelligence (AAI) 12(3):165-188.
Taylor and Francis, London, UK, 1998.

[SV00a] P. Stone and M. Veloso. Layered Learning. In
Proceedings of the Eleventh European Conference on
Artificial Intelligence (ECAI). 2000.

[SV00b] P. Stone and M. Veloso. Multiagent Systems: A
Survey from a Machine Learning Perspective.
Autonomous Robots, 8(3): 345-383. Kluwer Academic
Publishers, Norwell, MA, 2000.

[SVR99] P. Stone, M. Veloso, and P. Riley. The
CMUnited-98 Champion Simulator Team. InRoboCup-
98: Robot Soccer World Cup II (Lecture Notes in
Artificial Intelligence Vol. 1604). Springer-Verlag, New
York, NY, 1999.

[SX93] M. Schoenauer and S. Xanthakis. Constrained GA
Optimization. In S. Forrest, editor,Proceedings of the
Fifth International Conference on Genetic Algorithms
(ICGA-93), p. 573-580. Morgan Kaufmann, San Mateo,
CA, 1993.

[Ta97] M. Tambe. Towards Flexible Teamwork.Journal
of Artificial Intelligence Research, 7: 83-124, 1997.

[TAA+99] M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem,
G. Kaminka, S. Marsella, and I. Muslea. Building Agent

Teams using an Explicit Teamwork Model and Learning,
Artificial Intelligence, 110:215-240. Elsevier, 1999.

[WM98] J.F. Winkeler and B.S. Manjunath. Incremental
Evolution in Genetic Programming. In J.R. Koza, editor,
Genetic Programming 1998: Proceedings of the Third
Annual Conference, p. 403-411. Morgan Kaufmann, San
Mateo, CA, 1998.

