
The Use of Data-Mining for the Automatic

Formation of Tactics

Hazel Duncan

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2007

Abstract

As functions which further the state of a proof in automated theorem proving, tactics

are an important development in automated deduction. This thesis describes a method

to tackle the problem of tactic formation. Tactics must currently be developed by hand,

which can be a complicated and time-consuming process. A method is presented for

the automatic production of useful tactics.

The method presented works on the principle that commonly occurring patterns

within proof corpora may have some significance and could therefore be exploited to

provide novel tactics. These tactics are discovered using athree step process.

Firstly a suitable corpus is chosen and processed. One example of a suitable corpus

is that of the Isabelle theorem prover. A number of possible abstractions are presented

for this corpus.

Secondly, machine learning techniques are used to data-mine each corpus and find

sequences of commonly occurring proof steps. The specifics of a proof step are defined

by the specified abstraction.

The formation of these tactics is completed using evolutionary techniques to com-

bine these patterns into compound tactics.

These new tactics are applied using a naive prover as well as undergoing manual

evalutation. The tactics show favourable results across a selection of tests, justifying

the claim that this project provides a novel method of automatically producing tactics

which are both viable and useful.

iii

Acknowledgements

I would like to thank my supervisors Alan Bundy, Amos Storkeyand John Levine, for

all their input and advice. I would also like to thank both theMizar group and the

Ωmega group for allowing me to work with them and for making me feel welcome in

their respective universities. In particular, I would liketo thank Martin Pollet in the

Ωmega group at Saarbrücken for his valuable insights.

Special thanks are due to my partner Jim Macdonald for helping to support me,

both financially and emotionally, throughout the whole of mystudies.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text,and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Hazel Duncan)

v

Table of Contents

1 Introduction 1

1.1 Technique Outline . 2

1.2 Original Contribution . 3

1.3 Thesis Outline . 4

2 Related Work 7

2.1 Automated Theorem Proving and Provers7

2.1.1 Proof Tactics . 8

2.1.2 COQ . 8

2.1.3 NUPRL . 9

2.1.4 PVS . 9

2.1.5 Mizar . 9

2.1.6 LEGO . 10

2.1.7 Isabelle . 10

2.1.8 IsaPlanner . 11

2.1.9 LambdaClam . 11

2.1.10 Ωmega . 12

2.1.11 Summary . 12

2.2 Previous Learning Methods . 12

2.2.1 Pre-condition Analysis . 13

2.2.2 Learning Proof Methods . 13

2.2.3 Learning using Markov Models 14

2.2.4 Random Fields . 14

2.2.5 Proof Reuse and the Simulation of Human Learning15

2.2.6 Explanation-Based Learning 16

2.2.7 Learning Heuristic Control 17

2.2.8 Summary . 17

vii

2.3 Genetic Algorithms . 17

2.3.1 Koza . 18

2.3.2 Learn2Plan . 18

2.3.3 Summary . 19

2.4 Summary . 19

3 Obtaining Data 21

3.1 Choosing the Theorem Prover . 21

3.1.1 Requirements . 22

3.1.2 Options . 22

3.2 Isabelle . 25

3.2.1 Proofs in Isabelle . 26

3.3 Extracting and Formatting Proofs 29

3.4 Abstraction . 30

3.4.1 Options . 31

3.5 Summary . 34

4 Pattern Discovery 37

4.1 Overview . 37

4.2 Specification . 38

4.3 Existing Models . 41

4.3.1 Sparse Markov Transducers (SMT) 42

4.3.2 Teiresias . 42

4.4 Implementation . 43

4.4.1 Variable Length Markov Models 44

4.5 Finding the patterns . 46

4.5.1 Preprocessed data . 46

4.5.2 Linearisation Process . 47

4.5.3 Finding Patterns . 49

4.6 Experimental Results . 52

4.6.1 Input Choices . 53

4.6.2 Threshold . 55

4.6.3 Some Patterns . 56

4.7 Summary . 58

viii

5 Tactic Formation 61

5.1 Introduction . 61

5.2 Specification . 61

5.3 Grammar . 63

5.4 Genetic Programming . 64

5.5 Traditional GP Method . 65

5.5.1 Implementation . 65

5.5.2 Performance . 70

5.6 Pairwise Combination . 73

5.6.1 Implementation . 74

5.6.2 Performance . 79

5.7 Summary . 81

6 Application 85

6.1 Designing an Automatic Isabelle Prover 85

6.1.1 Isabelle Tools . 86

6.1.2 Implementation . 88

6.2 Adapting the Prover for Different Abstractions 90

6.2.1 Performance . 92

6.3 Summary . 94

7 Evaluation 95

7.1 Patterns . 96

7.1.1 Manual Evaluation . 96

7.2 Tactics . 98

7.2.1 Manual Evaluation . 98

7.2.2 Usefulness . 98

7.2.3 Quality . 98

7.3 Some Examples . 99

7.3.1 A Typical Tactic . 99

7.3.2 A Simple Tactic . 100

7.3.3 A Complicated Tactic . 101

7.3.4 A Good Tactic . 103

7.3.5 A Bad Tactic . 104

7.3.6 Overall Evaluation . 104

7.4 Application . 105

ix

7.4.1 Test Theorems . 106

7.4.2 Choosing the Best Tactics 106

7.4.3 Different Abstractions . 107

7.4.4 Tactic Application results 108

7.5 Other Abstractions . 115

7.6 Summary . 116

8 Conclusion 117

8.1 Summary . 117

8.2 Critique . 121

8.3 Related Work . 122

8.4 Further Work . 123

A Glossary 125

B Isabelle rules and theorems 129

B.1 Rule definitions . 130

B.2 Some complete proof scripts . 131

Bibliography 133

x

List of Figures

1.1 An abstract example of a tactic. .3

2.1 A simple theorem proving example. 8

3.1 An example proof from the Isabelle corpus 28

4.1 Two patterns combined by an or branching structure 39

4.2 The abstracted proof represented in tree structure 40

4.3 The traditional proof tree . 40

4.4 Picture of example proof linearisation. 48

4.5 Threshold required to gain 20 patterns from random selections against

chosen selections. Four comparisons are made. This graph describes

the average of 15 runs across different domains. 54

4.6 Pattern from a set of 500selectedtheorems. 56

4.7 Combined pattern after tactic formation.HereimpI+ means 1 or more

repetitions ofimpI. 57

4.8 Pattern from a random set of 500 theorems. 58

5.1 Two patterns which show potential for an∨ introduction. 62

5.2 Patterns which show potential for aplus introduction. 62

5.3 Two patterns which show potential for macro introduction. 62

5.4 Two patterns which show potential for an∧ introduction. Note that

hereiffI is stored as a step which results is a branch 63

5.5 Results of a crossover when no branches are present and the patterns

end with the same step . 67

5.6 Results of a crossover when no branches are present and the patterns

end with different steps . 68

5.7 Results of a crossover when one of the candidates alreadycontains a

branch . 68

xi

5.8 Results of a crossover when both candidates already contain a branch 69

5.9 Example of a tactic found using Genetic Programming 71

5.10 This shows the percentage of proofs which could have 0, 1, 2, 3 or

more tactics applied to them. 72

5.11 Measure of efficiency of Genetic Programming. The x axisshows the

number of iterations and the y axis shows the decrease in population

size. 73

5.12 Introduction of a macro identifier. 75

5.13 Introduction of the plus operator. 76

5.14 Introduction of the∨ operator. 77

5.15 Introduction of the∧ operator. 77

5.16 How a repetition over more than one step can be found using the macro

identifier . 78

5.17 Example of a tactic found using Pairwise Combination 79

5.18 No. of tactics applicable within proofs. This shows thepercentages of

proofs which have: 0, 1, 2 or 3 or more tactics applicable to them. . . 81

5.19 Measure of efficiency of Pairwise Combination. 82

6.1 Example of a tactic. 89

6.2 Number of theorems proved with increasing complexity. X-axis shows

an increasing complexity rank. Y-axis show the number of theorems

proved or not proved, respectively. 94

7.1 Discovered pattern representing one full branch of a proof. 97

7.2 Example of Complicated Tactic . 102

7.3 Performance of different abstractions. Rule name only:rno. Rule

name with directionrnwd. Class onlyco. Class with directioncwd. X-

axis shows increasing complexity. Y-axis shows the averagenumber

of theorems proved over 20 runs. 107

7.4 Time performance with different abstractions. Rule name only: rno.

Rule name with directionrnwd. Class onlyco. Class with direction

cwd. X-axis shows increasing complexity, Y-axis shows increasing time.108

7.5 Average numbers of theorems proved by Isabelle prover from theorems

taken from narrow groups. X-axis shows increasing complexity, Y-axis

shows the average number of theorems proved 109

xii

7.6 Average times taken to prove a theorem by Isabelle proverfrom theo-

rems taken from narrow groups. 110

7.7 Average numbers of theorems proved by Isabelle prover from theorems

taken from a broad spectrum of theories. 111

7.8 Average times taken to prove a theorem by Isabelle proverfrom theo-

rems taken from a broad spectrum of theories.111

7.9 Average numbers of theorems proved by Isabelle prover from theorems

taken from a broad domain of theories with tactics trained ona narrow

domain of theorems. 112

7.10 Average times taken to prove a theorem by Isabelle prover from theo-

rems taken from a broad spectrum of theories with tactics trained on a

narrow set of theorems. 113

7.11 Average numbers of theorems proved by Isabelle prover from theorems

taken from a narrow group of theories with tactics trained ona broad

spectrum of theorems. 114

7.12 Average times taken to prove a theorem by Isabelle prover from the-

orems taken from a narrow group of theories with tactics trained on a

broad spectrum of theorems. 114

xiii

Chapter 1

Introduction

Within the field of automated deduction, the huge search spaces involved in finding

correct proofs means that fully automated theorem provers are not as advanced as it

was once thought they would be by this time. For example, Newell and Simon claimed

that a computer would “discover and prove an important new mathematical theorem”

by January 1st 1968 [Simon and Newell (1958)]. However, the vast search spaces in-

volved in finding even a relatively simple mathematical proof means that automated

theorem provers are not nearly so advanced. The majority of fully automated theo-

rem provers can only prove relatively simple mathematical theorems and can only do

this much within a specialised domain. Interactive theoremprovers allow for human

intervention to generate the ‘eureka’ steps while providing some automation for the

more tedious steps of a formal proof. In order to increase thecapability of automated

theorem proving, many techniques to aid proof discovery have been developed but this

remains a field with a long way to go to realise its potential.

An important advance in theorem proving was made by Robin Milner when he in-

troduced the notion of tactics [Gordon et al. (1979)]. Tactics are functions from goals to

subgoals which raise appropriate error messages when they fail. The use of tactics has

greatly helped the field of theorem proving by guiding search. The technique described

in this dissertation aims to build upon that success by implementing a method to allow

tactics to be formed automatically. Robin Milner used tactics in his automatic proof

assistant Edinburgh LCF [Gordon et al. (1979)], which initiated the current theorem-

proving, proof-checking, proof-assisting methods. LCF has led to descendents such

as HOL [Gordon (1985)], ISABELLE [Paulson (1986)], COQ [Dowek et al. (1991)],

LEGO [Luo and Pollack (1992)], Nuprl [Constable et al. (1986)] and PVS [Owre et al.

(1992)]. The concept of atactichas become somewhat overloaded in theorem proving

1

2 Chapter 1. Introduction

with many different techniques and theorem provers using itto mean different, yet spe-

cific, things. Within this documenttacticsis used with the classic meaning of a set of

instructions which will further a proof, more specifically information about rules and

techniques which should be applied to the subgoal in order toadvance the proof state.

This phraseology encompasses simple tactics which are sequences of proof steps to

compound tactics which contain more complex operators and information about how

to apply proof steps.

Tactics must currently be developed by hand. The most intricate tactics (such as

Rippling, developed by Bundyet al. [Bundy et al. (1993)]) can take many years and

significant human effort to develop. Even more straightforward tactics require human

intervention and inspiration.

1.1 Technique Outline

This thesis presents the NewT (New Tactic generator) systemand its Isabelle-specific

implementation IsaNewT. The evaluation of IsaNewT shows that it can form useful

tactics automatically using a combination of techniques from probabilistic reasoning,

machine learning and genetic programming.

By adapting probabilistic reasoning techniques, such as Variable Length Markov

Models (VLMM) [Ron et al. (1996)], rule sequences have been identified. These tech-

niques are used to discover commonly occurring patterns existing in proof corpora.

Such patterns can be viewed as simple probabilistic tactics. What constitutes a proof

step varies across different systems and the main NewT system does not require a spe-

cific form. For the ease of reading we represent all tactics inIsabelle formatting which

is the form we have used for development and testing. Within the Isabelle system such

proof steps generally consist of a theorem which is used as a rewrite rule.

These patterns are adapted using Koza-style genetic programming [Koza (1992)].

Using this, the simple tactics are generalised into compound ones, e.g. containing

repetition, branching and other operators from the regulargrammar defined in chapter

5. This process requires the development of an evaluation function for scoring the

evolving tactics. A new evolutionary programming technique is compared against the

traditional Koza-style Genetic Programming method in terms of efficiency and output

tactics.

1.2. Original Contribution 3

The tactics generated by IsaNewT have the form:

Tac1 = [step, repetition(step list), branch([step list],[step list])]

It can be more useful to imagine the tactics as a pictorial tree such as in figure 1.1,

particularly when dealing with complicated tactics.

step

step

step

stepstep

step

+

Figure 1.1: An abstract example of a tactic.

In order to evaluate these new tactics a fully automated prover within the interactive

theorem proving system Isabelle has been developed (IsaAuto). The new generalised

tactics are evaluated by applying them to a test set of theorems and comparing their

performance within IsaAuto. The results with and without the newly discovered tactics

are compared to provide a measure of usefulness.

1.2 Original Contribution

These are the main original contributions of the method described in this thesis:

1. Pattern discovery within a proof corpusA method for automatically scanning

a proof corpus and finding commonly occurring patterns within these proofs

is provided. Although many techniques exist to discover patterns a particular

adaptation of these is used to produce a method specific to discovering patterns

within proof structures. In particular, there is a requirement to adapt methods

designed for sequences to handle trees.

2. Evolution of patterns into tacticsA method is provided for combining sequences

of proof steps together into compound tactics. At this pointan adaptation of ex-

isting Genetic Programming techniques is used to combine sequences together

4 Chapter 1. Introduction

into more general structures which describe multiple sequences. For our pur-

posessequencesare lists of abstracted proof steps.

3. Automatically produced tacticsThe two previous contributions lead to the main

purpose, which is to provide a method to produce tactics automatically. As dis-

cussed in the introduction, this achievement describes a significant contribution

to the field.

The IsaNewT system describes the first attempt to provide a fully automated

method for producing tactics. The analysis of these tacticsyields favourable

results which show that IsaNewT is capable of producing tactics which are both

viable and useful.

1.3 Thesis Outline

• Chapter 2 describes previous work carried out in the fields that the method pre-

sented is concerned with. Existing work in the field of automated deduction is

considered, along with previous learning methods from textprocessing, com-

puter vision and bioinformatics. Also considered is related work in the field of

genetic algorithms and existing automated theorem provers.

• Chapter 3 considers the available choices for a proof corpus. It explains the

choice of proof corpus and the method of obtaining the necessary data. Most

importantly, this chapter describes possible choices of abstraction and justifies

the choices made.

• In Chapter 4 the pattern discovery process is described in detail. Some avail-

able methods are considered and the production of a new technique is presented.

Some results from this stage of the technique are also presented.

• Chapter 5 presents some methods for combining these patterns into compound

tactics. Two approaches are described and compared in termsof results and

efficiency. Some preliminary results for this process are again provided.

• In Chapter 6 the method for applying these tactics in order that they can be

better evaluated is provided. This chapter describes the implementation of a

naive automated prover which is used to evaluate the new tactics.

1.3. Thesis Outline 5

• Chapter 7 shows an in-depth analysis and experimental results from the en-

tire IsaNewT system. This chapter enables a judgement to be drawn regarding

whether the discovered tactics can be considered useful.

• Chapter 8 presents the conclusions of the entire process.

• Appendix A:This contains a glossary to clarify all technical terms used, in par-

ticular, this is used to explain the overloading of certain terms.

• Appendix B:This contains some technical information about proofs and proof

steps.

Chapter 2

Related Work

This chapter gives a broad overview of related work in various fields. It covers a

number of processes which have been applied to a variety of problems.

Traditional reasoning methods and how they have led to this method are considered

along with techniques from other disciplines and how they can be adapted to relevant

uses.

As this technique crosses several disciplines, some of the most relevant work within

each discipline are considered with the uses to which these techniques are normally

put. A range of existing automated theorem provers are introduced followed by an ex-

amination of existing learning methods from a range of fields. This chapter concludes

with some genetic programming techniques, including how they have been applied to

a related problem.

2.1 Automated Theorem Proving and Provers

Automated theorem proving at its most simple is a term which describes the use of

a computer program to prove a mathematical theorem. Within this field areinterac-

tive theorem proverswhich provide proof assistance to a human andfully automated

theorem proverswhich require no human intervention at all.

A conjecture made up of a set of assumptions and a consequenceis given to these

provers which then use their knowledge base (made up of axioms and derived infer-

ence rules) to explore the search space in order to prove the conjecture. The proof is

stored as a sequence of steps which can derive the consequence of a conjecture from

its assumptions.

A proof step can be applied either forwards (what can be proved from A) or back-

7

8 Chapter 2. Related Work

wards (how canA be proved). As an example, the forwards proof of the conjecture

‘A∧B−→ A∧ (B∧A)’ is given in figure 2.1.

Conjecture A∧B⊢ A∧ (B∧A)

Derived rule conjI P,Q⊢ P∧Q

B
asm

A
asm

B∧A
con jI

A∧ (B∧A)
con jI

Figure 2.1: A simple theorem proving example.

2.1.1 Proof Tactics

A proof tactic is a computer program for applying the rules of inference of amathe-

matical theory library [Gordon et al. (1979)], aproof tacticguarantees correctness by

only applying valid rules. Tactics are widely used in interactive proof systems for au-

tomating common patterns of proof and, hence, improving productivity. Tactic-based

theorem provers have been developed both in academia (COQ, NUPRL, PVS, Mizar,

LEGO, HOL, Isabelle, Nuprl) and industry (Forte, ProofPower). Until recently, this

has required the manual construction of tactics. The technique presented here reduces

this impediment by providing a fully automated method for producing new tactics.

2.1.2 COQ

The COQ tool is a formal proof management system [Dowek et al.(1991)] : a proof

done with COQ is mechanically checked by the machine. All logical judgements in

COQ are typing judgements. The core of the COQ system is the type-checking algo-

rithm that checks the correctness of proofs. It checks that aprogram complies to its

specification. COQ also provides an interactive proof assistant to build proofs using

tactics.

COQ has an interactive mode in which commands are interpreted as the user types

them in from the keyboard and a compiler mode where commands are processed from

a file.

• The interactive mode may be used as a debugging mode in which the user can

develop his theories and proofs step by step, backtracking if needed and so on.

2.1. Automated Theorem Proving and Provers 9

• The compiler mode acts as a proof checker taking a file containing a whole devel-

opment in order to ensure its correctness. Moreover, COQ’s compiler provides

an output file containing a compact representation of its input.

2.1.3 NUPRL

The NUPRL proof development tool [Constable et al. (1986)]-first released in 1984 -

is a framework for the development of formalised mathematical knowledge as well as

for the synthesis, verification and optimisation of software. It includes formalisations

of the fundamental concepts of mathematics, data types and programming. The sys-

tem supports interactive and tactic-based reasoning, decision procedures, evaluation

of programs, language extensions through user-defined concepts, and an extendable

library of verified knowledge from various domains.

2.1.4 PVS

The PVS theorem prover [Owre et al. (1992)] provides a collection of powerful prim-

itive inference procedures that are applied interactivelyunder user guidance within a

sequent calculus framework. The primitive inferences include propositional and quan-

tifier rules, induction, rewriting, and decision procedures for linear arithmetic. The im-

plementations of these primitive inferences are optimisedfor large proofs: for example,

propositional simplification uses BDDs, and auto-rewritesare cached for efficiency.

User-defined procedures can combine these primitive inferences to yield higher-level

proof strategies. Proofs yield scripts that can be edited, attached to additional formu-

las, and rerun. This allows many similar theorems to be proved efficiently, permits

proofs to be adjusted economically to follow changes in requirements or design, and

encourages the development of readable proofs.

2.1.5 Mizar

The Mizar proof assistant [Rudnicki (1992)] is similar to the compiler mode in COQ.

A user writes an entire proof and the system checks it for correctness. The source text

is prepared using any ASCII editor and typically includes from 1500 to 5000 lines. The

text is run through the Accommodator. The directives from the Environment Declara-

tion guide the production of the environment specific for thearticle. The environment

is produced from the available data base. Now the Verifier is ready to start checking.

10 Chapter 2. Related Work

The output contains remarks on unaccepted fragments of the source text. These three

steps are repeated in a loop until no errors are flagged and theauthor is satisfied with

the resulting text.

A finished Mizar article is submitted to the Library Committee of Association of

Mizar Users for inclusion into the Mizar Mathematical Library. The contributed article

is subject to a review and if needed the authors must revise their file. The contents of

an accepted article is extracted by the Exporter utility andincorporated into the public

data base distributed to all Mizar users.

2.1.6 LEGO

LEGO [Luo and Pollack (1992)] is an interactive theorem prover designed and imple-

mented in Edinburgh using New Jersey ML. It implements various related type systems

- the Edinburgh Logical Framework (LF), the Calculus of Constructions (CC), the Gen-

eralised Calculus of Constructions (GCC) and the Unified Theory of Dependent Types

(UTT).

LEGO is a tool for interactive proof development in the natural deduction style. It

supports refinement proof as a basic operation. The system design emphasises remov-

ing the more tedious aspects of interactive proofs. For example, features of the system

like argument synthesis and universe polymorphism make proof checking more prac-

tical by bringing the level of formalisation closer to that of informal mathematics.

The higher-order power of its underlying type theories, andthe support of specifying

new inductive types, provide an expressive language for formalisation of mathematical

problems and program specification and development.

2.1.7 Isabelle

Isabelle is a mechanical theorem prover developed with the language ML [Paulson

(1986)]. Isabelle is capable of dealing with many types of logic such as first order

logic (FOL) and Zermelo-Fraenkel set theory (ZF). Most commonly, Isabelle is used

with higher order logic (HOL).

Isar is an extension to traditional Isabelle which operateswith HOL, it is based on

the natural language representation used in the Mizar system. It improves on Isabelle

in a number of ways:

• It has a new theory format supporting interactive development and unlimited

2.1. Automated Theorem Proving and Provers 11

undo operations. This makes developing theories easier to edit and simpler to

debug.

• A formal proof document language designed to make mathematical proofs more

readable has been developed for Isar.

• It contains a simple document preparation system for typesetting formal devel-

opments together with informal text.

Most LCF systems such as Isabelle use a definitional approach. This means that

everything must be proved from a very small number of initialaxioms, namely those

of higher order logic. This has the benefit of ensuring that each step has a well-founded

base – i.e. no axioms are defined which are inconsistent with the existing theory.

Isabelle has the additional advantage for our project of having a large electronic

proof corpus which has proofs from a wide variety of logics (as described above) and

disciplines (from geometry to real analysis to HOL logical reasoning).

2.1.8 IsaPlanner

Lucas Dixon has recently developed IsaPlanner [Dixon and Fleuriot (2003)] as a generic

framework for proof planning in the interactive theorem prover Isabelle. It facilitates

the encoding of reasoning techniques, which can be used to conjecture and prove the-

orems automatically. IsaPlanner provides an interactive tracing tool that allows you to

interact with the proof planning attempt.

IsaPlanner includes techniques to allow rippling, deductive synthesis and genera-

tion of natural language from IsaPlanner traces among otherthings.

2.1.9 LambdaClam

The Mathematical Reasoning Group at Edinburgh implementedthe technique of proof

planning in theClamandλClamproof planners [Bundy et al. (1990); Richardson et al.

(1998)] and applied it particularly to the kind of inductiveproofs that arise in verifi-

cation and synthesis of IT systems. It has extended the rangeof problems that can be

solved without human intervention. In particular, the use of proof critics has automated

the discovery of intermediate lemmas and generalisations [Ireland and Bundy (1996)] -

so called ‘eureka’ steps, which were previously thought to require human intervention.

12 Chapter 2. Related Work

The λClam system specialises in using induction based on the ripplingheuristic.

An interactive theorem prover Oyster-Clam [Horn and Smaill(1990)] has been de-

signed to work with the Clam system. It is based on the NuPrl system but is imple-

mented in Prolog [Pereira et al. (1979)].

2.1.10 Ωmega

TheΩmega group, based in the Saarland University, Saarbrückenand the German Re-

search Center for Artificial Intelligence (DFKI) developedtheΩmega system [Benzmüller

et al. (1997)].Ωmega is a tool with the ultimate purpose of supporting theorem proving

in main-stream mathematics and mathematics education. Thecurrent system consists

of a proof planner and an integrated collection of tools for formulating problems, prov-

ing subproblems, and proof presentation.

Ωmega allows each user to build up their theory from a small original set pro-

vided withΩmega, this allows the capacity for operation in a wide variety of domains.

Ωmega is currently being used with MathWeb [Kohlhase (2000)]which supplies an

infrastructure for web-supported mathematics.

2.1.11 Summary

This section has described a broad range of the available automated and interactive the-

orem provers available. Some of these systems, such as COQ are used most commonly

for checking the correctness of programs, and some such as Mizar pride themselves on

having a large library of purely mathematical theorems. Many of the systems, such

as the Isar extension to Isabelle strive to bring the readability of the proofs built us-

ing them closer to that of traditional mathematics. In many cases (such as IsaPlanner,

Ωmega and LEGO) the emphasis is placed on removing the lower level steps tradi-

tionally required by formal mathematics. These cases use techniques such as tactics

and proof methods to form a higher level proof structure closer to those developed in

informal mathematics.

The method behind IsaNewT is applicable to any method which involves an ele-

ment of automatic proof search so it could theoretically be applied to any of the provers

described here. However, an important consideration is theavailability of a suitably

sized proof corpus to learn the tactics from. Although many of the provers listed above

have a significant library, the format of these proofs and theease of extracting them

has played a significant role in the choice of proof corpus forNewT.

2.2. Previous Learning Methods 13

2.2 Previous Learning Methods

There have been several previous attempts to learn new proofmethods or tactics from

example proofs. Also of interest to us are systems which learn and predict patterns,

this has been particularly common in the bioinformatics community.

2.2.1 Pre-condition Analysis

Bernard Silver applied techniques of explanation-based learning to the automated learn-

ing of proof methods for equation solving [Silver (1984)]. His Learning-Press sys-

tem analysed successful solutions to equations and generalised these solutions to form

methods for guiding the Press equation solving system. In this way, he was able to

automatically rediscover simplified versions of many of thepreviously hand-coded

methods of Press.

Similarly, Roberto Desimone automated the reconstructionof inductive proof plans

[Desimone (1987)]. Silver and Desimone used precondition analysis which learns

new inference methods by evaluating the pre- and post-conditions of each inference

step used in the proof. A dependency chart between these pre-and post-conditions

is created, and constitutes the pre- and post-conditions ofthe newly learnt inference

systems. These methods are syntactically complete proof steps.

The techniques of both Silver and Desimone generalise from single successful

proofs and require the system to be primed with some key meta-level concepts for

expressing the preconditions and effects of the methods they learnt. This requirement

for priming is a significant drawback to these techniques.

2.2.2 Learning Proof Methods

Kerber, Jamnik, Pollet and Benzmüller have applied the techniques of least general

generalisation to a family of similar proofs to learn new proof methods for various

domains [Jamnik et al. (2002)]. They present a framework forautomated learning

within mathematical reasoning systems. In particular, this framework enables proof

planning systems to automatically learn new proof methods from well chosen examples

of proofs that use a similar reasoning pattern to prove related theorems.

Their framework consists of a representation formalism formethods and a machine

learning technique which can learn methods using this representation formalism. They

present an implementation of this framework, called LearnΩMatic, which adds new

14 Chapter 2. Related Work

methods to theΩmega proof planner. Methods are represented using a regulargram-

mar over individual proof steps and previously learned methods, allowing a hierarchi-

cal collection of methods. Note that this technique requires all the proofs in the family

to be examples of the learned method.

2.2.3 Learning using Markov Models

Ron, Singer and Tishby applied the probabilistic techniques to Variable memory Length

Markov Models [Ron et al. (1996)]. VLMMs processes can be described as a subclass

of probabilistic finite automata (PFA) which they call Probabilistic Suffix Automata

(PSA). Though hardness results are known for learning distributions generated by gen-

eral probabilistic automata, they prove that the algorithmthey present can efficiently

learn distributions generated by PSAs.

In particular, they show that for any target PSA, the divergence between the dis-

tribution generated by the target and the distribution generated by the hypothesis the

learning algorithm outputs can be made small with high confidence in polynomial time.

The learning algorithm is motivated by applications in human-machine interaction. In

their paper, they present two applications of the algorithm.

In the first one they apply the algorithm in order to constructa model of the En-

glish language, and use that model to correct corrupted text. In the second application

they construct a simple stochastic model forE.coli DNA. They looked at data which

has ashort memory property, i.e. consider the empirical probability distribution on the

next symbol in a sequence given the preceding symbols, then there exists a lengthL

(memory length) such that the conditional probability distribution does not change sub-

stantially if we condition on preceding subsequences of length greater than L. These

can form Markov models of orderL > 1, they give efficient procedures both for gener-

ating sequences and for computing their probabilities.

Markov Models have been frequently used in Bioinformatics,especially for clas-

sifying incomplete DNA strands. Some of the work on pattern matching in DNA

sequences [Brazma and Cerans (1994)], as in the GENOME project, is related to the

NewT learning mechanism.

2.2.4 Random Fields

Stephen Della Pietra, Vincent Della Pietra and John Lafferty presented a technique

for constructing random fields from a set of training examples in their paperInduc-

2.2. Previous Learning Methods 15

ing Features of Random Fields[Della Pietra et al. (1997)]. Their learning paradigm

builds increasingly complex fields by allowing potential functions, or features, that are

supported by increasingly large subgraphs. Each feature has a weight that it trained

by minimising the divergence between the model and the empirical distribution of the

training data. A greedy algorithm determines how features are incrementally added to

the field and an iterative scaling algorithm is used to estimate the optimal values of the

weights.

The Random Field models and techniques introduced by Della Pietra, Della Pietra

and Lafferty differ from those common to much of the computervision literature in that

the underlying random fields are non-Markovian and have a large number of parame-

ters that must be estimated. Relations to other learning approaches, including decision

trees, are given. As a demonstration of the method, they described its application to

the problem of automatic word classification in natural language processing.

2.2.5 Proof Reuse and the Simulation of Human Learning

Kolbe, Walter and Brauburger [Kolbe and Walther (1998); Giesl et al. (1998)] in ad-

dition to Melis and Whittle [Melis and Whittle (1998)], havedone related work on

the use of analogy and proof reuse. Their systems require a lot of reasoning with one

example to reconstruct the features which can then be used toprove a new example.

The reconstruction effort needs to be spent on every new example for which the old

proof is to be reused. In contrast, we learn our reasoning patterns from a large number

of examples. A piece of related work in Cognitive Science is Furse’s Mathematics

Understander [Furse (1995)], MU, which stores mathematical domain and procedural

knowledge in a contextual memory system, and tries to simulate how students learn

mathematics from textbooks. MU builds up a uniform low-level data structure, and

while the principle behind this approach is similar to that of this project, IsaNewT

builds generalised tactics from a range of examples rather than focusing on the minu-

tiae of a single example.

In terms of a learning mechanism, fairly recent work on learning regular expres-

sions, grammar inference and sequence learning by Sun and Giles [Sun and Giles

(2000)] is related. Learning regular expressions is equivalent to learning finite state

automata, which are also recognisers for regular grammars.

Muggleton has done related work on grammatical inference methods [Muggleton

(1990)] which automatically constructs finite-state structures from trace information.

16 Chapter 2. Related Work

His method IM1 is a general one and can describe all other existing grammatical in-

ference methods. IM1 consists of first, generating a prefix tree from example traces,

second, merging of states to get canonical acceptor states (which still describe only the

example traces), and third, merging states which essentially does the generalisation of

the structure. The generalisation, i.e., merging, is determined by a particular chosen

heuristic measure.

The existing state automata learning techniques differ depending on the heuristic

that they employ for generalisation. These techniques often require supervision or an

oracle which confirms when new examples are representative of the inferred generali-

sation.

There have been various approaches to incorporate learningin planning. In the

PRODIGY system [Minton et al. (1989)] a number of techniquesfor learning are avail-

able. The goal of the learning process is either to get control knowledge, that is, rules

that describe which goal to tackle next and which method to prefer at the decision

points of the planning algorithm, or learn planning operators from the change of plan-

ning states by observing an expert agent. The aim of NewT differs in both aspects

as the goal is to learn new operators that are learnt from other operators and could be

compared to learning of macro operators of chunks [Rosenbloom et al. (1993)].

Another difference is that these techniques use post-conditions that are not always

readily available. Proof planning methods are complex and the post-conditions are

only available when a method is applied in a concrete proof situation. The NewT

method is applicable without any requirement for concrete pre- and post- conditions.

2.2.6 Explanation-Based Learning

There have been a number of projects on Explanation-Based Learning (EBL) as de-

fined by Tom Mitchell [DeJong (1988)] within the machine learning community. An

EBL takes four kinds of input:

1. What isseenin the world.

2. A high level description of what the program is supposed tolearn.

3. A description of which concepts are usable.

4. A set of rules that describe the relationship between objects and actions in the

domain.

2.2. Previous Learning Methods 17

From this, the EBL computes a generalisation of the trainingexamples that is sufficient

not only to describe the goal concept but also to satisfy the operational criteria. From

this description it would be fair to describe the method usedby NewT as an EBL. In

fact, NewT extends this functionality to a more general case. The techniques used

in this project allow for a generalised proof to be learnt andthe learnt tactics to be

improved with operators such as repetition and branching. These key functionalities

are not part of EBLs.

2.2.7 Learning Heuristic Control

Schulz 2001 [Schulz (2001)], which is a continuation of previous work such as [Fuchs

and Fuchs (1998); Denzinger and Schulz (1996)], investigates learning of heuristic

control knowledge in the context of machine oriented theorem proving, more pre-

cisely, equational or superposition-based theorem proving. Knowledge gained from

the analysis of the inference process is used to learn important search decisions, which

are represented as abstract clause patterns. These are employed in heuristic evaluation

functions to better guide the search when attacking new proof problems. The selection

of heuristic evaluation functions for a new problem at hand is guided by meta-data.

Unlike the technique used by NewT, the learnt information inSchulz’s work is not

represented as a reasoning primitive (as are NewT’s learnt tactics). It rather guides the

search amongst the existing primitives at the global searchlayer instead of building up

new, structured chunks of encapsulated search processes.

2.2.8 Summary

In this section different techniques and uses for learning methods have been examined.

Techniques such as the Press system and LearnΩmatic use information from existing

proofs to advance a new proof. The probabilistic methods used by Ronet al. and Della

Pietraet al. are much more commonly used within the bioinformatics community than

within the automated theorem proving community. However, the application of these

techniques in these cases show how they can be used to learn patterns, which has a

direct bearing on NewT.

Existing work which examines the potential for the reuse of proofs is extensive,

however, these methods often focus on the features of specific examples. These tech-

niques all have a need for context (pre- and post-conditions) which can be difficult to

obtain.

18 Chapter 2. Related Work

2.3 Genetic Algorithms

In this section an examination of Genetics Algorithms (GAs)is presented and consid-

ered as a technique for generalising simple functions into more compound ones. GA

techniques require a minimum of direction, with the input population being sufficient

to randomly improve the functions. Although not known for their efficiency, these

techniques are often put to good use when the specification ofa problem is difficult to

match.

2.3.1 Koza

John Koza explains the principals of Genetic Programming inhis bookGenetic Pro-

gramming: On the Programming of Computers by Means of Natural Selection[Koza

(1992)]. Koza’s work describes and illustrates genetic programming with 81 examples

from various fields, particularly interesting is the ‘Evolution of Subsumption’, which

is what the traditional approach tested in chapter 5 is basedon.

Koza’s approach genetically breeds populations of computer programs to solve

problems by executing three steps:

1. Generate an initial population of random compositions ofthe functions and ter-

minals.

2. Iteratively perform the following sub-steps until the termination criterion has

been reached:

(a) Execute each program in the population and assign it a fitness value

(b) Create a new population by:

(i) Reproduction: Copy existing programs to the new population

(ii) Crossover: Create two new programs by genetically recombining ran-

domly chosen parts of two existing programs

3. The best program at the time of termination is deemed to be the result of the

genetic programming. This may be a complete or partial solution.

Although Koza describes his technique in terms of programs,functions and ter-

minals, there is a direct correlation with tactics, proof steps and operations from the

grammar used by NewT.

2.4. Summary 19

2.3.2 Learn2Plan

John Levine and David Humphreys’ [Levine and Humphreys (2003)] developed L2Plan

(learn to plan), a genetic programming based method for planning. Their system rep-

resents control knowledge as apolicy and learns using Genetic Programming. The

program’s crossover and mutation operators are augmented by simple local search.

L2Plan was able to produce policies which solved all the testproblems it was given,

outperforming hand-coded policies written by the authors.The genetic programming

used for this is well suited to the task of generalising patterns into tactics, randomly

generating an initial population and then evaluating theirfitness against the test set

used by IsaNewT produces results that would be difficult to find using other methods.

2.3.3 Summary

Genetic programming as defined by Koza is traditionally usedfor the development

of software programs. However, the adaptation of this technique to planning as done

with the Learn2Plan system shows its versatility. The evolution of simple patterns into

compound tactics is a problem well suited to Genetic Programming.

2.4 Summary

This survey has covered works within the field of automated theorem proving, machine

learning and genetic programming as the approach used by IsaNewT bridges all three

fields. Within the field of automated reasoning there is much well-documented experi-

mentation into re-using existing proofs in order to find new proofs. However, no other

method has attempted to automatically learn new tactics from such a broad spectrum

of existing proofs.

Pattern discovery is also well-documented in the machine learning community, par-

ticularly when applied to DNA sequencing and text processing. None of these tech-

niques have attempted to learn from a proof-style tree structure, and there are no ap-

plications of pattern discovery techniques within the automated reasoning community.

Within the automated theorem proving community, traditional learning techniques

have usually involved an examination of just a few examples (such as with Desimone

and Kolbe, Walter and Brauburger). This has led to a predominance of learning tech-

niques suited to this purpose. In contrast, the bioinformatics community traditionally

gathers data from a much wider source (such as DNA data as usedby Ron, Singer and

20 Chapter 2. Related Work

Tishby). In order to generate a model of a large proof corpus,the probabilistic methods

employed by the bioinformatics community are much more suitable than the methods

used by the automated theorem proving community.

Genetic programming techniques are mostly used to generatenew programs, but

systems such as Learn2Plan have previously utilised these techniques in planning prob-

lems. The Learn2Plan approach is not used within automated theorem proving but their

application shows how viable this approach is.

Although L2Plan works well on a small search space (it was designed for a small

subset of block moving and stacking problems in robotics) itwould not be feasible in

terms of efficiency to extend this to the more general theoremproving search space.

Chapter 3

Obtaining Data

In this chapter the proof corpus that will used to acquire newtactics is introduced.

The requirements for the theorem proving system that will beused are discussed. An

introduction to our chosen theorem prover along with an overview of the proof styles

and techniques that are available to it are presented.

The tools used in order to extract the proofs from the chosen system are described.

The format that the proofs are put into in order that they can be passed to the pattern

discovery technique in the next stage is presented.

More importantly the notion of an abstraction with respect to the existing proof

scripts is introduced. The choice of abstraction can have a large effect on the quality of

the patterns discovered and also the amount of search required to fill in the missing in-

formation when the discovered tactics are applied. A numberof possible abstractions

are presented and discussed. The advantages and drawbacks associated with each ab-

straction are shown before introducing in detail the selection which will be used in

subsequent chapters.

3.1 Choosing the Theorem Prover

The techniques used in the NewT approach place certain demands on the corpus that

is chosen. In this section these requirements are describedand several theorem prover

which may have a suitable proof corpus are considered. The requirements on the cor-

pus are the only requirements made by the NewT system; given asuitable corpus the

techniques described can be applied to any theorem prover.

21

22 Chapter 3. Obtaining Data

3.1.1 Requirements

A theorem prover with a suitable corpus of proofs to be used with NewT must be

chosen, this corpus must meet precise requirements:

1. It must be stored in computational form, so that it is available for machine learn-

ing

2. It must be sufficiently large to contain many examples of multiply occurring

patterns of proof

3. There must be an appropriate diversity of kinds of proof steps, i.e. sufficient

different kinds of proof steps that patterns can be identified, but not so much

diversity that patterns do not recur. Note that appropriatediversity is relative to

corpus size and abstraction: the larger the diversity, the larger the corpus required

for the re-occurrence of patterns.

Note first that the huge search space generated by resolution-style theorem provers are,

unfortunately, mostly unsuitable because of requirement 3above: typically only one

or two rules of inference are used. It could be possible to differentiate rule applications

by the formulae they manipulate, but these formulae are generated during the proof

search and are often too diverse, e.g. millions of derived clauses. In addition, it has

been suggested that interactive theorem provers may be morelikely to yield interest-

ing patterns due to the structure that people insert in theirproofs. Conversely, it has

also been suggested that a wholly automatic theorem prover may yield patterns as it

searches for proofs in an algorithmic way.

3.1.2 Options

A selection of well-known interactive theorem provers are Isabelle, Mizar, COQ, LEGO

and PVS.

3.1.2.1 Isabelle

Isabelle [Paulson (1986)], the interactive theorem proverdeveloped at Cambridge [Paul-

son (1994)] satisfies the necessary criteria:

1. Isabelle’s theory libraries are available online, and they also come with the Is-

abelle implementation (which is also available online).

3.1. Choosing the Theorem Prover 23

2. Isabelle has several hundred theory files, including a large number based on its

higher-order logic (HOL).

3. Isabelle HOL has a relatively small basis of theorems and higher-order logic ax-

ioms, all subsequent theorems are built upon these (and uponearlier theorems).

It is possible to deconstruct any theorem to this basis, or toany lower level which

provides the appropriate diversity.

Isabelle has some inbuilt commands which allow the proof of atheorem to be

extracted.

3.1.2.2 Mizar

Mizar [Rudnicki (1992)], the interactive theorem prover designed in particular to pro-

duce human-readable proof scripts also satisfies the necessary criteria:

1. Mizar’s theory libraries are available online.

2. Mizar has a huge number (thousands) of large theory files, it claims to have the

largest number of mechanical proofs.

3. Mizar proofs are generated by a user specifying the next subgoal. The prover

itself uses its small number of axioms within the verifier to assert that this is a

correct step achievable using the internal proof rules.

The main drawback to Mizar is the difficulty in obtaining the steps used at each

stage of verification by the internal Mizar mechanisms. Thisrequires direct access to

Mizar’s verifierwhich is restricted by the Mizar group. However, NewT could be used

with Mizar if the corpus was extracted.

3.1.2.3 COQ

COQ (2.1.2), the interactive theorem prover developed within the LogiCal (logique et

calcul) project also compares favourably with the criteria:

1. COQ’s theory libraries are available online, and they also come with the COQ

implementation (which is also available online).

2. COQ has over 3000 entries in its lemma database.

3. COQ also has only a small number of basic axioms.

24 Chapter 3. Obtaining Data

The COQ project has some automatic commands (similar to Isabelle), the steps imple-

mented in these applications must be extracted. Unless COQ provides a tool to do this,

this could be a complex step. Tactics could be generated overthe set of proofs contain-

ing these automated steps, but this may mask patterns and canlimit the diversity of the

corpus.

3.1.2.4 LEGO

LEGO (2.1.6) is the interactive theorem prover developed atEdinburgh:

1. LEGO’s library files are available online and as part of thesource.

2. LEGO has a large library containing thousands of theorems.

3. As with most other interactive provers, LEGO is based on a small number of

initial axioms.

The LEGO system is an older theorem prover which is not so commonly used now.

It is preferable to use a theorem prover which is currently infrequent use where the

discovered tactics will be of more use.

3.1.2.5 PVS

PVS (2.1.4) is the interactive theorem prover where the userguides the application of

primitive inferences:

1. PVS has a large online library which is contained in the program source.

2. The PVS library contains thousands of theorems.

3. PVS is based on a small number of powerful primitive inferences including

propositional rules, quantifier rules, induction, rewriting, and decision proce-

dures for linear arithmetic.

The PVS libraries are far less easy to read than those of the other systems described

here. They are a PVS system dump rather than a human-producedtheory file. Although

this provides no problem for an automated system, it could make inspecting existing

theories in order to learn about PVS more difficult.

3.2. Isabelle 25

3.1.2.6 Summary

In spite of some minor difficulties extracting the corpus in some cases, all of the sys-

tems investigated are viable candidates for NewT.

Isabelle has a few advantages over the other systems for the purpose of extracting

the proof corpus and learning from the proofs. The other interactive systems looked

at sometimes involve machine checking of a human-written proof. This means that

the internal mechanism only uses a few specific steps to checkthat each progression

is valid. This can create problems with the specification that the corpus we use must

be appropriately diverse. Although the user may write a richproof, the proof collected

by the internal system may well contain only the few rewrite rules required to check

the correctness of any step in the proof. In particular, the automatic steps in the final

product of the human proofs could mask the details which may describe many of the

patterns. However, if the internal proofs were considered,it would be possible to miss

the interesting mathematical steps which would entail the necessary diversity.

The corpora from the other systems could be extracted - for example, patterns could

be learned what people type in and not from the verification steps. However, Isabelle is

more conveniently organised for the stated purposes. As theIsabelle system provides

a much more user-friendly approach to accessing the internal proof scripts it has been

chosen as the basis for the proof corpus and hence NewT becomes IsaNewT.

3.2 Isabelle

As previously described, Isabelle is an interactive theorem prover developed with the

language ML. Isabelle is capable of dealing with many types of logic such as first-order

logic (FOL) and Zermelo-Fraenkel set theory (ZF), althoughthe most commonly used

is higher-order logic (HOL).

The syntax of Isabelle is given in the table in table 3.1.

Isar, an extension to Isabelle, has been designed in order toprovide more human-

readable proofs. However, increasing the readability of a proof does not help to extract

the proof scripts. In fact, the older method - still traditionally called Isabelle - of a

sequence of steps each applying a rule is much more suited to IsaNewt’s purpose.

Although Isar is the newer method, and is fast becoming the more commonly used

form of Isabelle, the vast majority of proofs in Isabelle’s proof corpus are written in

procedural Isabelle, this more traditional approach is also still fully compatible with all

26 Chapter 3. Obtaining Data

Table 3.1: Syntax in Isabelle

Syntax Description

& ∧, and

∼ ¬, not

==> =⇒, implication (meta level)

–> −→, implication (object level)

= ≡, ⇐⇒ , if and only if

! or ALL ∀, for all

? or EX ∃, exists

@ ε, Hilbert choice

% λ, lambda abstraction

new releases of Isabelle. This is unlikely to change, as although the Isar style is more

readable, the Isabelle approach is often considered to be more useful in developing

a new proof. Both approaches may be used simultaneously, with more procedural

commands being used within an Isar proof in order to aid development (although it

is unusual for these to remain when a final proof is constructed). This means that the

Isabelle approach of a sequential step approach can be used without fear of becoming

obsolete in the near future.

There has also been some consideration to an automatic method of converting

proofs from Isabelle to Isar (and vice-versa), this would allow IsaNewT to continue

to use new proofs written in the Isar style.

3.2.1 Proofs in Isabelle

Isabelle uses a definitional approach meaning that everything must be proved from a

very small number of initial axioms, namely those of higher order logic (or whatever

logic is being adopted). This has the benefit of ensuring thateach step has a well-

founded base – i.e. no axioms are defined which are inconsistent with the existing

theory. However, this also has the disadvantage of requiring that even ‘trivial’ and in-

tuitive theorems must be proven from first principles at somepoint. Isabelle’s libraries

are so large that most common trivial proofs are already represented within the system.

These theorems can be used as rules within a proof.

Isabelle is user-directed. That is, although Isabelle has anumber of automated

3.2. Isabelle 27

tools, the user decides which proof strategy and which rulesand theorems to use at

all times. This has the advantage of allowing Isabelle to provide both a forward and

a backward proof system (even within one proof). However, this also means that the

user must be familiar with the hand proof, and, unlike with other (automated) theorem

provers, must understand how the proof works.

Isabelle has several important and powerful commands for the user to make use of.

Some of the more frequently used are:

auto This is perhaps the most powerful of Isabelle’s automatic tools. It attempts to

apply all rules defined as simplification rules to all subgoals. This can make a

huge difference in removing tedious simplifications and canalso ’clean up’ the

proof so that the next step becomes clear. It uses Isabelle’sclassical reasoner as

well as its simplifier – this enables it to perform natural deduction steps using

introduction and elimination rules.

simpThis works in a similar way to auto but is restricted to applying the simplifier

only to simplifying one subgoal at a time.

blast Blast is one of Isabelle’s classical reasoning tools. It is an integrated Tableau

prover that can be used to prove subgoals which involving predicate logic. It is

only applied to one subgoal at a time.

rule This command is used to apply a rule (these rules are often previously proven

lemmas and theorems). It has variations

• erulefor backward proofs,

• drule for forward proofs and

• frule which keeps the assumption so that it can be used again.

In a backwards proof construction, the user supplies a goal and applies existing

rules to simplify it to simpler subgoals. This process is continued until all the

subgoals are solved.

In a forwards proof construction, the assumptions of a rule are resolved with

other rules to give new assumptions. This is continued untileither the conclusion

of the goal is an instance of some assumption, or the entire goal is an instance of

a theorem.

28 Chapter 3. Obtaining Data

lemma contrapos_pn:"[| Q; P =⇒ 6 Q |] =⇒ 6 P"
apply(rule notI)
apply(rule_tac P=Q in notE)
apply simp
apply(assumption)
done

Figure 3.1: An example proof from the Isabelle corpus

The proof shown in figure 3.1 is presented here simply to give an example of how

an Isabelle proof looks. It begins with the declaration of the theorem (preceded by

lemma). Each of the steps are preceded by the tactic applierapply. In the second

rule step there is a user specified instantiation (P = Q) which instantiates the instance

of P in the theoremnotE to by Q from the subgoal, this user-specification requires

that the addition“ tac” be added torule. In the third step, the user has utilised

Isabelle’s inbuilt simplifier (simp). The final stepassumptioncompletes the proof by

instantiating an assumption to the conclusion. The finishedproof is closed with the

commanddonethis allows the lemma to be used elsewhere by calling on the given

name (contrapospn in this case).

This lemma demonstrates some of the problems that we have in designing our

system. Although the steps used within the simplifier can be extracted, including the

instantiations made by the user would over-specify the proof as there are an infinite

number of potential instantiations. By default, Isabelle instantiates any rule to the first

possible situation in the assumption of a subgoal. Instead,using a specification, a user

can ensure that a rule is applied to the correct part of a subgoal in order to find a proof.

It would be possible to treat instances ofsimp, autoetc. as atomic, but as these are often

overlapping commands and users invoke them at different times, it would be possible

that many significant patterns would be missed. For example,one user may utilise the

commandauto to resolve a subgoal, while another may apply another 2 or three steps

by hand in order to be able to find the solution using the less powerful commandsimp.

Unfortunately, we will always have the problem with our technique that we may

have the correct sequence of rule steps to find a proof but be lacking the relevant

instantiation information. This does not preclude our discovered tactics from being

used as a guide to recommend future steps to a user, one such application of this has

already been implemented by Alison Mercer in PGTips [Mercer(1996)]. The user

could then examine the proof to see if extra information of this kind should be applied.

3.3. Extracting and Formatting Proofs 29

3.3 Extracting and Formatting Proofs

In almost all proofs available in Isabelle, tools such asautohave been used. For this

reason the proof must be extracted from the system in order toinclude the steps which

happened at these points, orautomust be adopted as a primitive step in the IsaNewT

abstraction.

However, ifauto, simp, blastetc. are adopted as primitives there is a risk of losing

important steps which would be part of a commonly occurring sequence as many users

will invoke these tools at different points. In addition, the steps covered by these tools

are likely to be the simpler step that it would expect would befound as part of patterns

which would be commonly used across many kinds of theorem. Isabelle has a number

of tools to allow the steps performed during a call of these tools to be extracted.

Firstly, during installation of Isabelle, it is critical that the full proof derivations are

kept. In more recent versions of Isabelle, these are precompiled and so full derivations

are kept. In older versions compilation was done during installation, so the possibility

to keep only a minimal derivation was included in order to save memory during instal-

lation. This minimal derivation includes some informationon types necessary to allow

each proof to be used as a rule in future, but does not include any information on the

steps used to find each proof.

Extraction of the proof is then made possible by the proof syntax tool

ProofSyntax.print proof of bool thm

The theorem names required can be obtained by

thms of theory

This prints out all the lemmas and theorems defined within thetheory file the-

ory.thy.

The output from the proof syntax command is a large tree (evenfor small proofs)

containing someλ variables, some instantiation information, the rule namesapplied

and the specifications of these rules along with the direction and a large amount of

white noise. However, a straightforward parser can be implemented to remove any

unnecessary or unwanted information and represent the proof information in a neater

(and potentially much smaller) tree structure. This parsercan be designed to keep as

much or as little information as required.

30 Chapter 3. Obtaining Data

3.4 Abstraction

The notion of anabstractionis defined to be the proof remaining after the formatting

mentioned above has been performed. In particular, this abstraction can be varied by

the amount and type of information thrown away. The abstraction used has a direct

effect on how much search remains to be done in order to apply the discovered tactics

as well as how much space will be needed to store the information throughout the

whole tactic-formation process.

In addition, and more importantly, a bad choice of abstraction could remove any

chance of finding any suitable patterns. Too vague or too precise an abstraction and

there is a risk of leaving the boundaries of ‘appropriate diversity’ as defined in section

3.1.1.

To demonstrate some possible abstractions we look at the proof of:

exI: P x =⇒ ∃ x. P x

The proof of this theorem in Isabelle is:

apply (unfold Ex def)
apply (rule allI)
apply (rule impI)
apply (erule allE)
apply (erule mp)
apply assumption
done

The details of each step are as formed as follows:

1. apply (unfold Exdef)

Thisunfoldsthe definition of∃

Ex def: ∃ P ≡ ∀ Q. (∀ x. P x−→ Q) −→ Q

to give

P x=⇒ ∀ Q. (∀ x. P x−→ Q) −→ Q

2. apply (rule allI)

This applies

allI : P x=⇒ ∀ x. P x

to give

P x=⇒ (∀ x. P x−→ Q) −→ Q

3.4. Abstraction 31

3. apply (rule impI)

This applies

impI: (P =⇒ Q) =⇒ P −→ Q)

to give

[| P x; ∀ x. P x−→ Q |] =⇒ Q

4. apply (erule allE)

This applies

allE: [| ∀ x. P x; P x−→ R |] =⇒ R

to give

[| P x; P (x2 Q) −→ Q |] =⇒ Q

5. apply (erule mp) This appliesmodus ponens

mp: [| P −→ Q; P |] =⇒ Q

to give

P x=⇒ P (x2 Q)

Here the conclusion can be instantiated to match the assumption so the theorem

is solved by

6. apply assumption

This shows the complete proof of the theoremexI. This example has no user spec-

ified instantiation or use of Isabelle tools. It was chosen todemonstrate the correlation

between the steps that could be used and the exact proof as held in the Isabelle libraries.

3.4.1 Options

This section introduces a selection of possible abstractions. In each case the advantages

and disadvantages of the selection are considered:

1. Rule name only: This potential abstraction is a list of rule names. In Isabelle,

each rule name is a previously proven theorem or definition.

Example [Ex def, allI, impI, allE, mp, assumption]

AdvantagesThis abstraction allows for a wide diversity (as discussed before in

our description of Isabelle, rules can be deconstructed into their component

parts). It also describes an integral part of the transitionfrom one subgoal

to the next in a proof script.

32 Chapter 3. Obtaining Data

DisadvantagesAs this abstraction leaves out much of the information needed

to perform a proof step, later application of discovered tactics will require

more search than other abstractions might require.

2. Rule name with direction: In this potential abstraction each proof step is a

combination of the rule name as in abstraction 1 and the direction in which it is

applied. In Isabelle, the direction is given by the tacticals rule, drule, eruleand

frule. Definitions are unfolded usingunfold.

Example [unfold Ex def, rule allI, rule impI, erule allE, erule mp, assumption]

AdvantagesThis option has similar advantages to that above with the addition

of a mild decrease of the search required at the application stage.

DisadvantagesAs with the previous example, the amount of search left is the

main drawback (in spite of a slight decrease as compared to abstraction 1).

This abstraction will also require additional space (and hence processing

time at other stages) in order to store this extra information. Comparison

between this abstraction and the previous one relies on the improvement on

search time against the extra storage space needed.

3. Class of rule only: In this potential abstraction, rule names are classified into

groups and the proof step contains only this classification.

Example [definition, Quantifierelim, rewrite, Quantifierelim, rewrite, assump-

tion]

AdvantagesThis type of abstraction would allow patterns involving classes

to be determined, in particular, this would help spot tendencies such as

applying rewrite rules together or stripping off all outside quantifiers as

soon as possible.

DisadvantagesBy limiting the number of different proof steps there is a risk

of reducing the set until there is not the appropriate diversity as required in

the specification. There will also undoubtedly be an unreasonable amount

of search to do before any tactics can be applied.

4. Class of rule with direction: This potential abstraction combines two of the

features from previous suggestions. Each proof step consists of the direction a

rule was applied and the class that the rule has been assigned.

3.4. Abstraction 33

Example [unfold definition, rule Quantifierelim, rule rewrite, erule Quanti-

fier elim, erule rewrite, assumption]

AdvantagesAgain, this abstraction will help spot tendencies of the type de-

scribed previously.

DisadvantagesThis will increase the diversity over 3, but the excessive search

space will remain.

5. Rule name with subgoal information:

There are a number of different options for including subgoal information. We

could include operator information from the part of the subgoal the rule is

applied to. It would be possible to include some instantiation information

or information of which assumption a rule is applied to. However, as each

rule can be applied in such a wide variety of situations the situation where

no patterns at all would be found could easily arise.

6. Main proof operator: In this potential abstraction each rule is reduced to its

most significant operator. A proof step contains the most significant operator of

the applied rule.

Example [def,∧, −→, ∧, =⇒, assumption]

AdvantagesThis technique provides a side method for including subgoalinfor-

mation. For example, if a rule has been applied where the subgoal includes

an∧ operator it is known that this step can only be applied to a subgoal

containing such an operator.

DisadvantagesThere are a limited number of operators available and there are

many rules associated with each operator. There are also many occasions

where there are more than one significant operator and themainoperator

is not clear. In most cases, the significant operator would become clear

through the context of a rule application, however, contextis not examined

so this refinement would be impossible without a change to thestated ap-

proach. It would be possible to examine the context of a proof, however,

this would also involve examining the subgoals at each step of the proof

in order to understand the application of a rule. Such a context-sensitive

method would require a radically different approach to IsaNewT.

34 Chapter 3. Obtaining Data

7. Main proof operator with direction:This potential abstraction combines the di-

rection a rule was applied with the rules main operator.

Example [unfold def, rule∧, rule−→, erule∧, erule=⇒, assumption]

AdvantagesThis abstraction has the same advantages as above with the addi-

tion of having reduced the amount of search needed

DisadvantagesAs with the previous abstraction.

8. Rule name with position in proof: This potential abstraction contains the rule

name that was applied along with a general indication of the position it was

applied in the proof.

Example [beginning Exdef, beginning allI, middle impI, middle allE, end mp,

end assumption]

AdvantagesRules which are likely to start (or end) a proof can be examined.

At application time rules marked beginning would only have to be tested

once for each theorem.

DisadvantagesSome patterns may appear at the start most of the time, but

not exclusively. Most rules would be marked “middle” which would be

wasteful.

A full test and discussion of these abstractions is performed later in the evaluation.

For now, discussion of a proof step is with respect to abstraction 1, ‘rule names only’.

This is for clarity purposes only, abstraction 2 is at least as good a candidate.

3.5 Summary

In this chapter, the requirements for a suitable proof corpus have been defined. The

alternatives have been considered the Isabelle theorem prover selected as the most

suitable to NewT’s needs, it satisfies the necessary criteria of availability, size and di-

versity. The formatting required to transcribe the Isabelle corpus into a suitable format

has been described, and an introduction to the structure of an Isabelle proof has been

presented.

Most importantly, the notion of an abstraction has been presented. A number of

available abstractions have been presented and their pros and cons discussed. For

3.5. Summary 35

IsaNewT’s purposes an abstraction containing either the name of the rule applied at

each step on its own or this rule name with the direction of application is best suited.

For simplicity, therule name onlyabstraction will be used in the rest of this dissertation

unless otherwise stated.

Chapter 4

Pattern Discovery

This chapter describes the technique for discovering commonly occurring sequences of

proof steps from the chosen proofs corpus. The definition of these sequences depends

on the choice of abstraction as described in the previous chapter. The process for

discovering patterns is:

1. Proofs given in tree structure format are explored using machine learning tech-

niques.

2. These proofs are modelled and all occurring sequences areread from this model.

3. The list of all occurring sequences is limited to commonlyoccurring sequences

using a threshold value.

Any information which is contained in the abstraction of theproof corpus can be

learned. However, the simplicity of the abstraction (i.e. the number of proof steps

given per proof) has a direct correlation on the efficiency ofany learning algorithm.

The chapter begins with an overview of the goals involved in this part of IsaNewT,

followed by specific requirements for the software used. A survey of some existing

methods which were tested along with some of the typical problems encountered is

given. The outline to the method for pattern discovery used by IsaNewT is presented

followed by a detailed description of the pattern discoveryprocess. In conclusion,

some experimental results obtained from the pattern discovery process are given.

4.1 Overview

This stage of the IsaNewT involves the search for commonly occurring patterns within

proofs. In particular IsaNewT is looking for sequences of proof steps (rule names in

37

38 Chapter 4. Pattern Discovery

the given abstraction) which occur with a specific level of significance. The level of

significance is defined by a pattern attaining a frequency of occurring which exceeds

a specified threshold. This threshold is variable - a greatersignificance threshold will

lead to fewer patterns being discovered but each of these having a higher frequency of

occurrence.

In some cases a falsely low score may be assigned to a pattern due to small fluctu-

ations. For example, the theorems:

le min iff conj:

which contains the branch:

[conjE,notE,impI,iffI,disjCI,conjI,swap]

and:

if bool eq disj:

which contains the branch:

[conjE,notE,impI,iffI,conjI,ccontr,swap]

Both have similar theorems in many places but the small differences shown here

would be enough to ensure that they would not be counted as twooccurrences of the

same pattern. However, both patterns are common enough thatif the threshold was set

low enough to ensure they were found to be significant then thetactic formation stage

would combine them using an∨ operator:

[[con jE,notE, impI, i f f I ,∨([con jI,ccontr], [dis jCI,con jI]),swap]

In situations such as this it would not be desirable to lose these patterns. After

all, any low-significance patterns which are not improved bythe tactic formation stage

can be discarded before application. For cases like this, itcan be desirable to have a

threshold set to disregard insignificant patterns rather than catch significant ones.

The patterns are discovered automatically from a wide variety of proofs taken from

the Isabelle theory libraries. The intention was to providea system that allowed a

transition from a corpus of proofs to a group of commonly-occurring patterns without

any human intervention. This represents a significant difference from existing work as

the input proofs do not need to be hand chosen.

4.2 Specification

The requirements specified by the IsaNewT approach are as follows:

4.2. Specification 39

• The approach must find commonly occurring patterns within proof trees (rather

than sequences).

Pre-processing forms the proof structures into∧ trees where each node on the tree

is a step in the proof which takes the proof goal from one stateto another. For example,

figure 4.2 represents a proof which would solve the simple logic theorem ‘box equals’

([|a = b, a = c, b = d|] −→ a = d).

A more traditional proof tree would have the goal state at thenodes and the proof

step as labels on the branches which transform one goal stateto another, however, be-

cause no information from the goal state is used the trees canbe arranged as described.

For the purposes of clarity, the full proof tree (i.e. including all the information that

has been removed to form the abstraction) is shown in figure 4.3.

In this proof:

each application oftransrepresents the rewrite rule

[|r = s, s= t|]−→ r = t

and the step

symrepresents the rule of symmetry

r = s≡ s= r

conjE

notE

iffI

conjI

impI

ccontr

disjCI

conjI

V

swap

Figure 4.1: Two patterns combined by an or branching structure

40 Chapter 4. Pattern Discovery

box_equals

trans

trans

sym

assume

assume

assume

Figure 4.2: The abstracted proof represented in tree structure

box_equals

[|a=b,a=c,b=d|] => c=d

trans

[|a=b,a=c,b=d|] => c=A

[|a=b,a=c,b=d|] => B=A

trans

sym

[|a=b,a=c,b=d|] => a=c
solved

(unifies B with a)

[|a=b,a=c,b=d|] => a=b

[|a=b,a=c,b=d|] =>a=d

[|a=b,a=c,b=d|] => A=d

(unifies A with d)

assume

(unifies B with a
and A with b)

assume

assume

[|a=b,a=c,b=d|] => c=B

[|a=b,a=c,b=d|] => B=c

Figure 4.3: The traditional proof tree

4.3. Existing Models 41

assumesimply attempts to solve the subgoal by unifying one of the assumptions

with the goal. In this notation, a capital letter (such asA) represents a variable.

The approach must mine trees of this type to find common patterns.

• The approach should avoid prejudices against length

A two-step combination has a good chance of occurring often simply due to chance,

whereas a long string is unlikely to appear together a high number of times without

some specific reason. This requirement implies that simple ‘counting’ solutions would

be unsatisfactory. Probabilistic methods which would allow a measure significance

based on how often a string of steps occur together as a proportion of how often the

rules are used within the corpus is more appropriate.

• The approach should find subsets of patterns which are themselves patterns

It is possible for a string of (say 4) proof steps which are a common pattern to

be contained within a longer string of (say 9) proof steps. Ifthe smaller pattern also

occurs independently of the larger pattern, it should be considered to be a significant

pattern in its own right. For example, if the discovered sequence:

[a,b,c,a,b,c]

has a frequency of 0.09 but the subsequence:

[a,b,c]

has a frequency of 0.13. Then it is desirable for both sequences to be carried forward,

as the subsequence is also a pattern in its own right.

4.3 Existing Models

The initial hope was that it would be possible to find some existing ‘off the shelf’

methods which could be adapted to IsaNewT’s purpose. Although there is an abun-

dance of pattern matching software available, most patterndiscovery software appears

to be linked with the bioinformatics community for DNA string completion. However,

some examples were found for text; in particular for lookingfor commonly occurring

words within text documents. The restrictive nature of eachsequence within DNA

meant that the techniques designed for this were often restrictive in the variety of in-

put data they could handle - many different rule names would not be accepted. The

diversity of language meant that text tools seemed to present a more likely solution.

A description of two pieces of software which initially appeared to be good candi-

dates is given, along with some of the problems and incompatibilities encountered.

42 Chapter 4. Pattern Discovery

4.3.1 Sparse Markov Transducers (SMT)

The SMT [Eleazar Eskin and Singer (2000)] algorithm works byforming a tree based

on Markov Models given by training data. This specification seemed to be ideal for

IsaNewT’s purpose. In IsaNewT’s case this training data consists of the abstracted

proofs. This prediction tree has been used to provide the likelihood of certain strings

appearing together as patterns.

Applied to the corpus, the SMT algorithm gives a number of patterns. However,

inspection immediately shows that all the patterns have thesame first step and also are

significantly less varied than could reasonably be expected. This is due to the way that

the SMT algorithm works. The SMT program was developed specifically for complet-

ing amino acid sequences in DNA. This means that the trainingdata (abstracted proofs

in IsaNewT’s case) are assumed to be always in a specific position. For IsaNewT’s

purpose the position that the step names appear within the proof is unimportant with

only the positions relative to other steps being relevant. For this reason, some of the

patterns may in fact not be patterns at all but a trait of a certain step appearing at a

certain point in the proof (such as theassumptionstep always being used at the end of

a proof).

These problems were not all foreseen before testing was carried out, but the dif-

ference in intention was expected to cause problems. Originally, it was hoped that

adapting the method would be a feasible alternative. However, after reviewing SMT,

this no longer appeared to be a viable option.

4.3.2 Teiresias

The Teiresias [Rigoutsos and Floratos (1998)] algorithm does not make use of proba-

bilistic methods as intended, instead it finds patterns using a scanning algorithm which

counts the occurrences of each pattern. Although this does not agree with the original

specifications, it was felt that examining this software could be useful. A user-defined

parameter allows the number of occurrences required to define a pattern to be specified.

The program then combines the patterns allowing ‘wild-card’ characters to find more

general sequences. This looked useful as a method of finding sequences which only

differ in one or two steps. The algorithm returns the most specific sequences which

still have the same number of occurrences. The results show that even when a high

significance level is chosen, a high (and varied) number of varied patterns are found.

When a smaller significance level is given to define a pattern avery large number of

4.4. Implementation 43

occurrences are found in just a few seconds (online).

Full documentation for the Teiresias text-word pattern discovery tool along with

free (for non-commercial use) downloads are available online [Rigoutsos and Floratos

(1998)].

In spite of the fact that the SMT program has a specification much closer to that

desired, the Teiresias program seems to provide a better range of patterns. This was

particularly useful in the initial stages for giving an indication of the types of results

that could be expected later. However, as with the SMT technique, this algorithm also

has significant drawbacks.

1. It does not notice the significance of two tactics always occurring together if they

only appear a small number of times. For example, if the steptransonly occurs

(say) 19 times, but 18 of these are followed bydis jI, the Teiresias algorithm

would not notice this to be a pattern.

2. There is no significance given to longer patterns, for IsaNewT’s purposes it could

be desirable for long patterns to have to occur fewer times toconstitute a pattern,

but the Teiresias algorithm treats all strings the same no matter the length.

Adapting any of the methods investigated in order that it would be applicable for

IsaNewT’s specific purposes would be prohibitively complexdue to the overheads in-

volved in understanding software written by someone else inenough detail to change

it. It is more sensible to design a complete, specific approach from scratch, where it

could be certain that it would perform exactly to the specifications.

4.4 Implementation

After examining existing methods it became clear that the best solution would be to

design a specific approach for IsaNewT. As previously stated, the requirements imply

that it would be desirable to look at probabilistic methods for a solution to the pattern

discovery problem.

One way of quantifying the significance of a pattern of a specific length would be

to fit the patterns with a generative probabilistic model that captures their statistical

correlations with the occurrences. Then, whenever the trained modelM is presented

with a patternPat = [a,b,c...n], it assigns to it a score (S), the normalised probability

thatM would emitPat out of all possible patterns of the same length. So the scoreS

44 Chapter 4. Pattern Discovery

would be the frequency of a pattern of lengthn beingPat. Subsequently, a threshold

above which a pattern is considered to be significant can be set. Markov Models are

trained in this way and then used as predictors to compute thenormalised probability

of one step appearing given (a set number of) previous steps.

As patterns of varying lengths are desired, the training stage of a variation on

Markov Models was inspected.

4.4.1 Variable Length Markov Models

Variable length Markov models deal with a class of random processes in which the

memory length - i.e. the length ofPat described above - varies. Their advantage over

a fixed memory Markov Model is the ability to locally optimisethe length of memory

required for prediction. This results in a more flexible and efficient representation

which is particularly attractive in the case where it is desirable to model patterns of

varying lengths.

VLMMs offer the ability to capture statistical correlations of different length scales

in a single probabilistic model. Rather than estimating allpossible sequences of length

d that could exist in the state space, the VLMM models a selected set of sequences

of different lengths. The chosen sequence setS is determined by the training data,

and includes longer sequences where these appear in the dataand shorter sequences

when the longer ones are not required. This sequence selection scheme avoids the

exponential explosion of higher order Markov Models altogether.

However, Markov Chain Models cannot be used as required on the ∧-branching

tree structures that describe the proofs extracted. Although trees could theoretically be

learned in this fashion, the large numbers of branches within proof structures would

cause a massive increase in time and space required for the model. This would make

any substantial set of proofs impossible to mine for patterns.

An ideal solution has not been produced as linearisation down branches assumes

the independence of branches which is not necessarily true.Other methods of dealing

with such tree structures have similar problems, each is a compromise which will lose

some of the detail. A decision was made to linearise the proofs by splitting down

the branches. The subsequent step of genetic programming will have the capacity to

partially reconstruct the link between branches, this is described in chapter 5. Some

suggestions have been made for future work which involves modelling directly over

tree structures.

4.4. Implementation 45

The approach designed for IsaNewT takes the preprocessed data as a sample of

proofs, then searches this data for information regarding proof step names and the

number of times each step occurs in the proof sample. Each of the proofs within

the sample is linearised to remove branches and corresponding weights are attached

to ensure that the occurrences are not given false emphasis due to the linearisation

process, this is explained in detail in section 4.5.2.

The approach examines each step of each proof and updates a database of nor-

malised probabilities of each combination occurring. Thatis, as a sequence of (two or

more) steps is found, it is added to the database with a normalised probability based on

this occurrence in relation to the number of times the lead proof step occurs within the

proof sample. The frequency is based on the lead proof step because it describes the

normalised probability of the sequence occurring given thefirst step, i.e. ‘if we have

A, what is the probability thatB,C,D come next’. The examination continues through

the proof steps, when a sequence is found that is already present in the database (i.e.

this pattern occurs elsewhere) the frequency attached to this sequence is increased.

This examination process covers every combination of everylength and at every

stage present in the proof sample. By examining each proof not just from the initial

proof step, but also from the second, then the third and so on,it is ensured that to be

found, a pattern does not need to begin at the start of a proof.

By using a probabilistic technique which refers to the overall occurrence of a step,

the bias towards patterns involving more frequently used steps is counteracted.

Also, by examining different lengths of potential patternsas well as different start-

ing points, significant subsets along with any larger patterns they are contained within

are found. By definition, this will mean that any pattern of the form abcdewhich is

found to be significant will automatically generateab, abc, abcd, bc, bcdetc. as signif-

icant patterns. However, unless these sub-patterns also occur elsewhere in the sample

(in which case it would be desirable for them to be consideredas significant patterns

in their own right) they will end up with exactly the same normalise probability as the

larger pattern. Therefore, it is easy to weed out any patterns which are contained within

any other patternandhave the same final frequency.

The probabilities associated with the modelled sequences of a specific rule only

sum to 1 if the recursive set of subsequences are not considered. In the case where a

repetition occurs, such as[a,b,c,a,b,c] repeated parts of the pattern such as[a,b,c]

would be updated twice. This would count as two occurrences of such a pattern. Also,

[a,b] would also be recorded which would cause the sum of the frequencies (fora) to

46 Chapter 4. Pattern Discovery

exceed 1.

Ultimately, after weeding out any ‘insignificant’ sub-patterns and removing any

patterns which are linked to a proof step which is only used once within the proof

sample (a fairly rare occurrence which usually crops up whenspecific mathematical

results become theorems and therefore can be used as proof steps in Isabelle), any

patterns which have a frequency attached to them which is above a user-determined

threshold can be weeded out. This threshold is thesignificance value.

The methodology behind the approach used with IsaNewT is similar to that used

by probabilistic parsing [Eisner (1996)] which examines examples with reference to a

grammar to identify which transitions are most likely to happen next. However, the ap-

proach used by IsaNewT focuses on gathering complete commonsequences so patterns

which are found are, in effect, a collection of steps which often occur together. Proba-

bilistic parsing typically follows one branch and uses the information is has gleaned to

predict the next step.

4.5 Finding the patterns

Here a detailed description of the approach outlined above is presented, including ex-

amples to demonstrate how each process works. A detailed description of the prepro-

cessed data is given first, followed by an illustrated description of how the linearisation

process works. A detailed technical description of how these linearised sets are mined

to find significant patterns concludes the section.

4.5.1 Preprocessed data

The abstracted data is preprocessed from the proof scripts to give a simple list of lists

representation for a proof tree. The end of each proof is denoted by ‘;’ which marks

the end of a command in ML, and so allows the program to read each proof separately.

These proofs are written in a file called ‘data’ (this filenameis the default for the

program, but can be easily changed by the user).

An example proof, as given in tree representation in figure 4.2, is given in IsaNewT

form as:

[trans,[[trans,[[sym,assume],[assume]]],[assume]]].

Isabelle is built upon a very small number of basic axioms. These axioms form

the basis of the proof system and are used as rules to prove subsequent lemmas and

4.5. Finding the patterns 47

theorems. Each such lemma and theorem is given a name and can henceforth be used

as a rule to prove other theorems. These names of rules which are in fact the names of

axioms, lemmas and theorems, are what is meant by a referenceto a ‘proof step’. How-

ever, this distinction is based entirely on the chosen abstraction (where the proof steps

consist only of rule names). A different abstraction (higher, lower or intermediate) can

be chosen fairly simply and can be easily integrated into IsaNewT. For example, by in-

cluding the direction a rule is used the information could describe another abstraction.

This information could easily be included in the description given below by adding the

direction directly to the name of the theorem, such an adaptation would look like:

[rule trans,[[ruletrans,[[rulesym,assume],[assume]]],[assume]]]

So it is clear that only the preprocessing step has to be adapted in order to allow differ-

ent levels of abstraction. Indeed, a selection of differentabstractions has been shown

and will later be examined and compared with the main choice.

4.5.2 Linearisation Process

One of the major problems encountered with the pattern discovery is the branching

in the proofs. Although many pieces of software exist for identifying patterns in se-

quences which could be adapted for use with proof structures, no existing methods

or unimplemented theorised techniques which identify patterns within tree structures

have been identified. It was suggested that branches could beignored or simply treated

as a special case i.e. a ‘split token’. However, the frequency of occurrence of some sort

of branching structure within a proof means that in this casemany interesting patterns

may well be lost.

The technique decided upon was to split the proofs into separate sequences and

give weights accordingly i.e. for all the steps before each split the weights are given

as:

1/(b∗w)

whereb represents the number of branches resulting from the split and w represents

the weight immediately after the split. All the steps at the end of each branch have

weight 1 – so a tree which has 2 two-way splits would have a weight of 1 at the end of

each branch, 0.5 on every branch between the last two splits and 0.33 before there is

ever a split point.

The list of lists representation is converted to weighted lists using a recursive pro-

gram which:

48 Chapter 4. Pattern Discovery

[[0.33, trans], [0.5,trans], [1,sym], [1,assume]]

The original tree is shown by figure 4.4.

trans

sym assume

assume

assume

trans trans

trans

sym

assume

trans trans

trans

assume

assume

0.33

0.5

1.0

1.0

1.0

1.00.5

0.33 0.33

Figure 4.4: Picture of example proof linearisation.

• The process cycles until the end of the nested list is found and then assigns the

weight 1 to each node of each branch at this level of the nesting.

• Adds together the inverse of the weights given to each branchand assigns the

weight 1/total weightto the next highest nest.

• Continues this process until the top of the list has been reached.

Example:

[trans,[[trans,[[sym,assume],[assume]]],[assume]]]

[trans,[[sym,assume],[assume]]]∧ [assume]

[sym,assume]∧ [assume]∧ [] assign weight 1

[assume]∧ [] assign weight 1∧ [] assign weight 1

[] assign weight 1∧ [] assign weight 1∧ [] assign weight 1

4.5. Finding the patterns 49

[[1,assume]]∧ [[1,assume]]∧ [[1,assume]]

[[1,sym],[1,assume]]∧ [[1,assume]]∧ [[1,assume]]

new weight = 1/(1/1+1/1) = 0.5

[[0.5,trans],[1,sym],[1,assume]]∧ [[0.5,trans],[1,assume]]∧ [[1,assume]]

new weight = 1/(1/0.5+1/1) = 1/3 = 0.33 (for each amalgamation)

[[0.33, trans],[0.5, trans],[1,sym],[1,assume]]∧

[[0.33,trans],[0.5,trans],[1,assume]]∧ [[0.33,trans],[1,assume]]

These weights are incorporated simply at the point where theMarkov Model is up-

dated. It would be much more elegant to have software which learned Markov Models

directly from the tree structures but as most proofs contain(often multiple) branches,

the increase in complexity made this not feasible. Some suggestions have been made

to implement a method for learning directly from trees in future.

For the purposes of the tactic formation step later, each time a split is found the

step preceding it (i.e. the step whose application resultedin split) is noted. These steps

are kept in a ‘split token’ file so that later it will be known that they appeared at a

branching point.

In the example given, the steptransis labelled as a split token and kept in the split

token file. In this way, if both branches represent patterns the tactic formation step will

note thattransshould be reformed as a branching point and can reform the branches.

If the connection over a branch is indeed significant, one branch representing a com-

monly occurring pattern should result in the other branch also being represented. This

means that any truly significant correlation between branches should be rediscovered

at the tactic formation stage.

4.5.3 Finding Patterns

1. The training data is searched with a simple sweep to find outthe names of all the

different tactics (T). The occurrence (O(T)) of each of these tactics is found.This

occurrence incorporates the weights so that each tactic is counted a correct num-

ber of times. The final figure for each tactic will always be a whole number.

2. The model is trained on the data to give probabilities for each combination oc-

50 Chapter 4. Pattern Discovery

currence O(T).

3. The results are returned as all the patterns with a frequency above a user-specified

threshold.

Step 1 is straightforward.

Step 2 involves assigning a frequency to every possible combination of two or

more consecutive steps within a proof. For example a proof[a,b,c,d] would generate

probabilities for[a,b], [a,b,c], [a,b,c,d], [b,c], [b,c,d] and[c,d].

If no probability for a combination of steps ([a,b,c]) already exists in the database

then the normalised probability given is:

P= (1/o)∗w whereo is the number of times the tactica occurs andw is the weight

assigned to the tactica at that particular point. The weight comes from the first tactic

in the sequence as this weight represents the sequence beginning from this point, It can

be thought of as a weight associated with the branch, not withthe step. ThisP is the

normalised probability that a given sequence is used together within the proof corpus.

If a normalised probability is already contained in the database (OldP) thenP is

added to this value.OldP accounts for the occurrences of this sequence before this

point andP accounts only for this occurrence so addingP to OldP keeps the frequen-

cies up to date.

Example:

For the purposes of this example the following occurrences to each step are assigned.

O(trans) = 67

O(sym) = 14

O(assume) = 157

Note that O(assume) will never be used asassumeby its very nature can only be used

at the end of a proof. The sequences are measured from their first step andassumecan

never be afirst step.

For demonstration, it can be assumed 3 occurrences ofsymbeing followed by

assume(each obviously with weight 1 as assume is always at the end ofa branch) have

previously been found, therefore:

P([sym,assume]) = 3∗ (1/14)∗1= 0.214

is already contained in the database. No other relevant entries exist in the database.

The previous example continues to be used, but for the sake ofbrevity only the first

list is looked at:

[[0.33, trans], [0.5trans], [1,sym], [1,assume]] (4.1)

4.5. Finding the patterns 51

First [[0.33, trans], [0.5trans]] is considered. The frequency associated with this

is computed asP = (1/67) ∗0.5 = 0.0007. This is added directly to the database as

there are no previous entries for this sequence. The following probabilities are then

calculated and added to the database:

P([[0.33, trans], [0.5trans], [1,sym]])= (1/67)∗1= 0.0149

P([[0.33, trans], [0.5trans], [1,sym], [1,assume]])= (1/67)∗1= 0.0149

P([[0.5trans], [1,sym]])= (1/67)∗1= 0.0149

P([[0.5trans], [1,sym], [1,assume]])= (1/67)∗1= 0.0149

ThenP([[1,sym], [1,assume]])= (1/14)∗1= 0.0714 is calculated, but as the sequence

already has an entry in the database that entry must be updated to be:

P([[1,sym], [1,assume]]) = 0.214+0.0714= 0.2854

This makes sense as there are now 4 occurrences ofsymbeing followed byassume,

this is indeed a little under 1/3 of all occurrences ofsym(which was initialised at 14).

This updatestep of the process forms a Markov Model which contains the proba-

bilistic information of every possible combination of steps that occurs in the corpus.

Step 3 is also quite straightforward. All sequences which donot constitute a pattern

or are otherwise not useful are removed. All potential patterns with a final frequency

less than the threshold are discarded. In addition, any patterns whose first element has

O(T) = 1 are also discarded as discussed earlier.

It could be argued that any step which is used less than (say) 5times should be

discarded as a pattern leader. However, even if a step is usedonly twice, if both occur-

rence are followed by the same sequence of steps, the possibility that this is significant

must be considered. For this reason, only patterns associated with single-use proof

steps are removed. In addition, these rarely-used steps arealso unlikely to occur in

future proofs, so they will not cause unnecessary search at the implementation stage.

It should be noted that steps which occur only a few times are rare and constitute

only the smallest number of the discovered patterns (only two or three even in a large

set).

From the (extremelysmall) example above, the threshold could be chosen to be

around 0.2 which would eliminate most of the patterns with small probabilities.

Similarly, as discussed earlier, any sequence which is a direct subset of another

with the same frequencyis also discarded as it only occurred because of its inclusion

as part of the larger set.

In the example, it can be imagined that this is the last sequence to be consid-

ered and no more updates are carried out. All patterns except[trans, trans] (0.007),

52 Chapter 4. Pattern Discovery

[sym,assume] (0.2854), and[trans, trans,sym,assume] (0.014) can be discarded with-

out considering the threshold. It can now be seen that the only pattern to survive

the threshold would be[sym,assume]. If figure 4.4 which shows the whole proof is

again examined, it can be deduced that including the other branch as part of the se-

quences and updating the probabilities associated with theother branches of the tree

would cause[trans, trans] to be discarded also. This is because the frequency asso-

ciated with it would be updated from 0.007 to 0.014, this would make it a subset of

[trans, trans,sym,assume] which holds the same probability meaning that it is unnec-

essary.

Keeping the final probabilities associated with each pattern which survives can

be useful in later stages. In particular, if a low significance threshold is used, many

patterns which are related to each other but are not exactly matched as the process

demands can be caught.

The tactic formation step fuses many of these together, but some patterns will still

be present which truly are below a good threshold. If a tactichas a low score (for

example 1) after the Genetic Programming stage, then it has not been combined with

any other pattern to form a more compound tactic. If such a tactic also had a near-

threshold probability at the pattern discovery stage, thenit can be deduced that it was

not truly significant and it can be discarded. Earlier the wisdom of using a threshold

which is just high enough to rule out insignificant patterns (in order to catch patterns

with borderline frequencies) was mentioned. At this stage in the IsaNewT process it

is possible to rule out false positive patterns which have not been improved by genetic

programming. Testing has shown that with the chosen proof corpus a new threshold

0.02 higher than the original threshold is usually appropriate for this pruning.

4.6 Experimental Results

Finding the patterns is the most significant step in discovering new tactics. These

discovered patterns form the basis for the new tactics, no later stage adds any new

information. However, at this point it is difficult to accurately evaluate any of the

discovered patterns. Indeed, until the final evaluation stage where the completed tactics

are tested using a fully automated Isabelle prover, it is difficult to gain any true measure

of success.

Therefore, this results section is concerned mainly with explaining the choices in

the changeable metrics of the threshold value and the numberand choice of input

4.6. Experimental Results 53

proof scripts. Also presented are some examples of discovered patterns along with

explanations of where and why they might have originally arisen.

4.6.1 Input Choices

The Isabelle theorems are split into two sets -training andtestwith a 1:1 ratio. This

allows each set to have a large component of theorems from a variety of domains.

Within Isabelle, each session of proof created by a user is kept in a theoryfile. Each

of these files represent a selection of proofs mathematically related to each other. In

order to keep these sets as even as possible in terms of information, the proofs from

eachtheoryfile were randomly split between the two sets. This was to ensure that the

training set and the test set would be evenly matched in termsof theorem length, type,

topic and complexity.

As input, any theorems from the training set can be chosen. Some interesting ques-

tions arose when considering how much of an impact the choiceof theorems would

make. It would appear likely that tactics formed from a certain kind of theorem would

perform best when applied to the same kind of theorem (this will be discussed more

fully and tested later in the application chapter). Following this reasoning, the differ-

ences in the probabilities of the patterns discovered was examined both when a random

set of input data was chosen and when a set of input data was chosen that came from

the same theories or types of theories. As the training and test set were split evenly

across Isabelle theories it was simple to use a test set originating in a theory (or set of

theories) and to choose a training set from the same set of theories.

Using a ‘mathematically similar’ set of theorems gives a better probability rate

for patterns - this is expected as the process behind provingmathematical theorems is

not independent of domain or human influence (so two independent theories written

by the same person may have more in common than two theories written by different

people). In this context, ‘mathematically similar’ means theorems within the same

domain (higher-order logic (HOL) theorems, natural numbertheorems etc). This is

shown by comparing the results of sets of 100 input theorems.By comparing the

thresholds required to get 20 patterns from a set of 100 theorems the different results

gained from a random selection, and from a directed selection can be compared. The

results are given in figure 4.5, it is clear that a chosen selection gives much better

results in most cases. In the situations where no improvement has been found it can

be postulated that these proofs are of a more general kind in nature. Every set of

54 Chapter 4. Pattern Discovery

results given were run multiple times on a range of inputs, the results given describe

the average output of these runs.

00

2.5

55

7.5

10

12.5

15

17.5

20

22.5

25

27.5

Effect of Input Choice

Selected

Random

Random vs Selection

Pr
o
b

ab
il
it

y
re

q
u
ir

ed
 t

o
 g

et
 2

0
 p

at
te

rn
s

Figure 4.5: Threshold required to gain 20 patterns from random selections against

chosen selections. Four comparisons are made. This graph describes the average of

15 runs across different domains.

As the domain is broadened, the frequency given to the patterns decreases in gen-

eral. This does not happen in every case, as some steps represent basic (e.g. simplifi-

cation) rules which will often be used in proofs of any kind. However, the main claim

for IsaNewT is that tactics can be discovered using a processwhich requires no human

intervention at all. In fact, the domain selection procedure can be done automatically

using the Isabelle hierarchy, the method for which is described at the end of the next

section.

4.6.2 Threshold

The variable which can make the most difference is the threshold value. However

altering the threshold can in some ways artificially alter the result. It is easy to claim

that (say) 90 patterns from 100 theorems can be found, but if this occurs because the

threshold has been set too low, then these do not truly represent what is wanted in terms

4.6. Experimental Results 55

of patterns.

The threshold can not be arbitrarily decided as can be seen from the previous dis-

cussion on input choices. The size of the input, and the relation each input theorem has

to each other has a significant effect on the required threshold. Although the threshold

has previously been manipulated in order to obtain a specificnumber of patterns, this

is only really useful as a diagnostic and examinatory tool (as for discussing the effect

of inputs above). Using this as a measure to guide the threshold would artificially alter

the results, which should be avoided.

Therefore, it has been most useful to leave the threshold level to the discretion of

the user. In a fully automated tactic formation system however, an automated threshold

selector is required. For this purpose a set of rules have been designed, these reflect

the average optimal threshold values from a large set of testruns:

• Begin with two default values for 100 theorems (which were chosen after exten-

sive testing):

1. if the theorems are chosen randomly, with no consideration given to their

mathematical domain, then the threshold is set at 0.1;

2. if the theorems areselectedfrom a mathematically similar set then the

threshold is set at 0.2.

• The threshold is reduced proportionally to the set size being increased:

Set Size/100= Proportional Set Size

Threshold= Original Threshold/Proportional Set Size

In order to determine whether a set is from a mathematically similar set, theorems

from theory files deemed to be similar have been combined intosubsets so that any

selection of theorems chosen from such a set can be said to beselected. In the Is-

abelle theory structure, this hierarchy is already in placeso this procedure can be fully

automated. When a new theory is begun, the user heads the file with the theory depen-

dencies. Theory dependencies in this set indicate which domain the theorems in the

theory belong to, this allows the IsaNewT process to continue to be automated even if

the patterns are being used to prove (or recommend a step) fora brand new theory.

56 Chapter 4. Pattern Discovery

4.6.3 Some Patterns

To understand the patterns found, it is necessary to examinesome in order to see where

they came from and how they originally applied to theorems inthe proof corpus. Here

two examples are presented and their origins discussed. This examination also allows

the appearance of patterns to be understood when it may not beclear exactly why such

patterns occur.

4.6.3.1 Example 1

The first example pattern appeared in aselectedset of 500 theorems with a frequency

of 0.134. This domain contained the basic higher-order logic theorems such as propo-

sitional rules and rewrite rules. The pattern is given in figure 4.6.

iffI

someI

exE

assume

Figure 4.6: Pattern from a set of 500 selectedtheorems.

This pattern can be found contained in the proof of:

con jI = [| P; Q |] =⇒ P ∧ Q

It completes one branch of the proof. Unfolding the definition of and then applying

the ruleallI leaves the subgoal:

!!R. [| P; Q |] =⇒ (P −→ Q −→ R) −→ R

Here the !!x. represents an unknown constant. So the pattern is followed by applying:

impI (P =⇒ Q) =⇒ P −→ Q

to this subgoal, which leaves:

!!R. [| P; Q; P −→ Q −→ R |] =⇒ R

As with the discovered pattern:

mp [| P −→ Q; P|] =⇒ Q

is applied to get two subgoals, only the first is shown as this is the branch that the

discovered pattern comes from:

!!R. [| P; Q; |] P

4.6. Experimental Results 57

This is a simple instantiation, accomplished usingassume.

This pattern is also used to complete a branch in the proof of:

disjI1 P =⇒ P ∨ Q

This proof begins by unfolding the definition of∨, followed by an application ofallI

and an application ofimpI. These steps leave the subgoal:

!!R. [| P; P −→ R |] =⇒ (Q −→ R) −→ R

To this impI is applied to get:

!!R. [| P; P −→ R; Q −→ R|] =⇒ R

Againmp is applied to get two subgoals, the first of which is:

!!R. [| P; Q −→ R|] =⇒ P

Which is solved using an instance of assume.

In fact, a second examination of the proofs shows that the tactics formation stage

may well combine these two patterns to provide a compound tactic that subsumes both.

This is shown in figure 4.7.

impI+

allI

mp

assume

Figure 4.7: Combined pattern after tactic formation.Here impI+ means 1 or more repe-

titions of impI.

4.6.3.2 Example 2

The second example pattern (4.8) appeared in a random set of 500 theorems with a

frequency of 0.049.

This pattern solves the subgoal:

!!xx2. [|Pa;Px;Px2;∀y. Py−→ y = x2|] =⇒ x = x2

which appears in the proof of the theorem:

some1equality [|∃!x. Px;Pa|] =⇒ εP = a

58 Chapter 4. Pattern Discovery

The steps in the pattern are as follows:

allE [|∀x. Px;Px=⇒ R|] =⇒ R

mp [|P−→ Q;P|] =⇒ Q

The full proofs ofdis jI1, con jI andsome1 equalityare contained in the appendix A.

These are just examples of places these two patterns originally appeared, for them

to have been designated as patterns, they must appear in manyother places.

4.7 Summary

A description of the pattern discovery technique has been presented. After exploring

the options available from existing methods, a new process was developed specific to

the requirements. The parameters contained in this approach have been explored and

some examination of the results so far has been provided.

Examination of techniques for solving problems of this type(pattern discovery)

threw up a number of issues. For the most part, existing solutions deal with DNA

modelling, and those which could be adapted to deal with rulenames, do so in a less

than ideal way. None of the software examined would be easilyadaptable to the pur-

pose of this thesis. Also, none of the software discovered patterns over trees.

When developing the new technique a compromise in dealings with the type of

tree structures described by the proofs had to be made. No ideal solution to this

problem was found in existing software and theory. The decision to linearise the

proofs down the branches meant losing any important connections between different

branches. However, it was decided that it was more importantto keep the connection

between successive steps.

impI

mp

assume

Figure 4.8: Pattern from a random set of 500 theorems.

4.7. Summary 59

The tactic formation step will recover much of the lost information, particularly

if it is significant. If one branch is significant, and there isa direct link between it

and another branch of the same proof, then the second branch will also be found to

be significant. This ensures that both branches will occur aspatterns in the tactic

formation stage.

In order that patterns associated with common rule names arenot reported as sig-

nificant when they arise simply due to chance it was decided touse probabilistic meth-

ods to form the basis for the pattern discovery approach. Thespecification led us to

the training stage of Markov Models. In particular, Variable Length Markov Models

which allow modelling of patterns of any length proved an ideal solution.

The parameters within the approach have been examined and tested. By selecting

the input (through an automated process) and tailoring the threshold to the input given,

it has been possible to optimise the patterns returned.

Many patterns have been extracted using the techniques described and it has been

shown that examining them can give some insight into how theymay have come about.

This information is included to allow a check that the patterns discovered are reason-

able, this was particularly useful during the developmental stage. This information has

no real value to the final tactics. However, it can give an indication of how well they

may be expected to perform, but this cannot truly be tested until after the patterns have

been combined in the tactic formation stage.

Chapter 5

Tactic Formation

5.1 Introduction

This chapter describes the technique for combining the results of the pattern discovery

into compound tactics. This chapter begins with an overviewof the goals, followed by

a specification for solving the problem. The traditional Genetic Programming approach

is described and an explanation given of why it is suited to IsaNewT’s purposes. A

description of the adaptation of the traditional GP methodsis given followed by a

detailed description of the newly developed technique.

At this stage there are some commonly occurring patterns arising from the previous

stages. However, these patterns are linear and bear little relation to the original proof

structures. Also, in many cases the patterns that have been found differ by only a single

step. An example of this is given in figure 5.1, these examplescan be seen in the proofs

of con jI andcon junct1 respectively. It is clear also that some steps may be repeated a

number of times. However, the pattern discovery software will find separate instances

of them as separate patterns, as can be seen in figure 5.2. In addition, where possible it

is desirable to reconstruct the branching structure that was lost during the linearisation

process.

5.2 Specification

As discussed, an approach for combining the patterns that have been found into com-

pound tactics is desired. There are four items to consider:

61

62 Chapter 5. Tactic Formation

allI

impI

mp

allI

mp

spec

Figure 5.1: Two patterns which show potential for an ∨ introduction.

spec

impI

mp

mp

spec

mp

impI

Figure 5.2: Patterns which show potential for a plus introduction.

spec

impI

mp

disjI2

assume

impI

mp

disjI2

Figure 5.3: Two patterns which show potential for macro introduction.

5.3. Grammar 63

spec

conjI

iffI

conjE

assume

spec

conjI

iffI

disjI1

disjI2

Figure 5.4: Two patterns which show potential for an ∧ introduction. Note that here iffI

is stored as a step which results is a branch

1. Macro Formation - Macros which represent internal parts of tactics which occur

commonly are desirable. An example of two candidates is given in figure 5.3

2. ∨ introduction - Combinations of possible patterns (as in 5.1) together with an

∨ operator is desirable.

3. ∧ (re)introduction - The reintroduction of the branching information lost during

the linearisation procedure earlier is desirable. An example of two candidates is

given in figure 5.4

4. + introduction - A representation of repeated steps with aplusoperator to de-

note 1-or-more repetitions is desirable.

5.3 Grammar

Some care is required over the choice of the tactic language.The choice ranges from

regular grammars, via a limited set of tacticals to a generalprogramming language,

such as ML (as used in LCF [Gordon et al. (1979)]). A parsimonious language will

be better suited to genetic programming, e.g. a limited set of tacticals. Moreover,

the language must not require information that cannot be obtained by analysis of the

proof corpus. For instance, it is no use including while-loops or if-then-else, if their

64 Chapter 5. Tactic Formation

conditions cannot be constructed.

Non-conditional forms of repetition and non-determinism must be used instead. It

has therefore been decided to represent generalised patterns in the same way as Kerber

et al. [Jamnik et al. (2002)]. using the following languageL which is defined as:

r ∈ L for rule name identifiersr

m∈ L for macro identifiersm

[L1,L2] ∈ L

(L1∨L2) ∈ L

for L1,L2 ∈ L

(L1∧L2) ∈ L

L+ ∈ L for L ∈ L

The rule name identifiers denote the rule names (or proof stepassociated with the

abstraction) which appear in the extracted proof sequences. Macro identifiers are used

as abbreviations for a patternL ∈ L .

The operators have the semantics of tacticals. The term[L1,L2] is interpreted as

sequencing (L2 is applied afterL1),∨(L1,L2) stands for a disjunction (eitherL1 or L2 is

applied), an∧(L1,L2) has the semantics thatL1 is applied to one subgoal andL2 to the

other subgoal. The term+L denotes an arbitrary number (equal to or greater than one)

of repetitions ofL. In order that this operator can be used with the informationgiven,

its use is defined to be ‘as few as necessary’. In other words, this step is repeatedly

applied only until the next step in the tactic can be used. In the situation that it occurs

at the last step of a tactic, its use is defined to be ‘as often as possible’.

An example of a generalised tactic would be:

[step, ∨([step,step],[step]), +[step, step], macro(m), ∧([step],[step])]

wheremacro(m) is itself an identifier for a tactic.

5.4 Genetic Programming

If the discovered patterns are considered as simple tactics, then this stage of the ap-

proach can be though of as an evolution of these simple tactics to compound ones.

More specifically, these simple tactics are being evolved into ones which are more

suited to the task (describing the proof corpus). Evolutionary Programming is ideal

for this purpose, providing an approach which will allow a generation of increasingly

better tactics with each increment. As there is no exact measure of when the optimum

tactic set has been found, it is desirable to use a technique such as EP where the initial

5.5. Traditional GP Method 65

population converges on a solution. Therefore stopping theprocess at any time will

still provide a useful result.

Genetic Programming (GP), a specific instance of EP, is idealfor IsaNewT as the

tactics being generated can be though of (in some sense) as programs to solve a prob-

lem.

5.5 Traditional GP Method

Koza’s GP approach genetically breeds populations of computer programs to solve

problems by executing three steps:

1. Generate an initial population of random compositions ofthe functions and ter-

minals.

2. Iteratively perform the following sub-steps until the termination criterion has

been reached:

(a) Execute each program in the population and assign it a fitness value

(b) Create a new population by:

(i) Reproduction: Copy existing programs to the new population

(ii) Crossover: Create two new programs by genetically combining ran-

domly chosen parts of two existing programs

(iii) Mutation: Choose one program and randomly mutate a point on it by

adding or removing an operator or command.

3. The most fit program at the time of termination is deemed to be the result of the

genetic programming. This may be a complete or partial solution to the specified

problem - i.e. a partial or complete program.

Although Koza describes his technique in terms of programs,functions and termi-

nals, there is a direct correlation between this and tactics, proof steps and operations

from the grammar.

5.5.1 Implementation

A seeded Genetic Programming implementation is used where the discovered patterns

are the initial population set. Much of the change comes fromcombinations of two pat-

terns with the approach ending after a time-out. The fitness function scores tactics over

66 Chapter 5. Tactic Formation

the initial population not over the entire corpus. This is because the patterns included

in the initial population are representative of the most commonly used parts of the

corpus. Scoring over the entire corpus would not only be incredibly time-consuming

but can result in over-generalisation of tactics which would require increase the search

space at the application stage. This algorithm is covered bythe following steps:

1. All the patterns are scored according to how many other patterns within the initial

population (the set of discovered patterns) they subsume. Initially many of the

scores will be 0. However, all patterns are ordered by rank (where the first pattern

scored highest) according to their score. Patterns with thesame score are ranked

arbitrarily.

2. One of three procedures below are applied. The choice of procedure is randomly

chosen, although with weights which provide a bias towards certain procedures.

Crossover (preferred - 50%), mutation (25%) and reproduction (25%). These

weights were chosen after extensive testing. The higher than normal mutation

weight is required in the early stages to ensure the reintroduction of branches

and operators. This allows later crossovers to work as expected and speeds up

the initial process.

• Crossover works generally by randomly choosing a branch of each tree (P1

and P2) and swapping them. However, the initial population consists solely

of patterns not trees so crossover works by choosing a point on each pattern

(P1 and P2) and adding the remainder to the other by insertingan∨ if the

last step matches (shown in figure 5.5) and an∧ if it doesn’t (shown in

figure 5.6). For the purposes of the figures, a tree branch represents and∧

branch. An∨ branch results in a graph as in figure 5.5, in this case an∨ is

included for clarity. Although allowing a small random possibility for an

∧ to occur even with matching ends allows more variety. This permits the

situation where a (∧) branch occurs but coincidentally both branches end

the same. A random number generator chooses whether a portion of the

pattern will just be “cut-and-paste”, whether branches will be introduced

or (in the case that branches already exist) that traditional branch-swapping

occurs (shown in figures 5.7 and figure 5.8).

In each case a small random probability is allowed for one of the other

feasible options to occur. For example, even if both patterns already contain

5.5. Traditional GP Method 67

a branch there is a chance that another random branch will be inserted

instead of the traditional subtree swap.

• For mutation, a random point in the pattern is chosen (via random-number

generator (RNG)) and the pattern is mutated at that point. Ifthat point is an

operation (∧, ∨ or +), the positioning is changed slightly. One branch of

an∧ can be moved (so effectively the split starts one step earlier or later)

and the length of an∨ or apluscan be lengthened or shortened by one step.

For example, if the patternP1 chosen is:

[a,b,c,∨([d,e], [f ,g]),h]

and the point chosen to mutate is the∨, then the boundaries of the∨ can

be moved to get:

[a,b,c,∨([d], [f ,g]),e,h]

which effectively adds an element of the∨ to the main sequence, or it could

be expanded to get:

[a,b,∨([c,d,e], [c, f ,g]),h]

If the patternPat chosen is:

P1

a

b

c

d

P2

f

e

g

Randomly chosen crossover point

NewP1 NewP2

a

b

e

f

d

c
g

f

d
d

c g

Figure 5.5: Results of a crossover when no branches are present and the patterns end

with the same step

68 Chapter 5. Tactic Formation

P1

a

b

c

d

P2

f

e

h

g

Randomly chosen crossover point

NewP1 NewP2

a

b

f

e

f

gc

d g

c

d h

h

Figure 5.6: Results of a crossover when no branches are present and the patterns end

with different steps

P2
a

P1

b

c

d

e

f

g

ih

NewP1 NewP2
a

b

c

h d

e

f

g

i

Figure 5.7: Results of a crossover when one of the candidates already contains a

branch

5.5. Traditional GP Method 69

[a,b,c,+(d,e), f ,g]

and the point chosen is theplus, then:

[a,b,+(c,d,e), f ,g]

could be obtained or thepluscould be shrunk to get:

[a,b,c,+(d),e, f ,g]

If the patternPat chosen is:

[a,b,c,∧([d,e, f], [g,h, i])]

and the point chosen is the∧ then the result could be any one (randomly)

of:

[a,b,∧([c,d,e, f], [g,h, i])]

[a,b,∧([d,e, f], [c,g,h, i])]

[a,b,c,d,∧([e, f], [g,h, i])]

or:

[a,b,c,g,∧([d,e, f], [h, i])]

If the pattern chosen (or the point in the pattern chosen) hasno operator

then the step at that point can be randomly swapped (for another step),

removed or an arbitrary new step or operator can be added.

P1

a

b

c

P2 NewP1 NewP2

a

b

Randomly Chosen crossover point

c

d
ed

f

g

h

i j
i j

f

g

h

e

Figure 5.8: Results of a crossover when both candidates already contain a branch

70 Chapter 5. Tactic Formation

• Reproduction simply involves the chosen pattern being copied directly into

the new population.

3. Depending on the technique chosen, one or two patterns areselected. A bias is

allowed to sway the random selection towards good patterns but bad patterns can

still be chosen. The original ranking of the patterns is based on their frequencies

in the pattern discovery stage, but later rankings reflect their improvement in this

section (i.e. how many other patterns they subsume).

4. When a new pattern is formed, it is scored and the score is compared against

its parent’s score. If the offspring scores best then it is 90% more likely to be

chosen for a new population than its parent. If the parent scores best then it is

90% more likely to be chosen for the new population than its offspring.

5. When the current population is empty. the procedure is repeated using the new

population. However, a copy of the initial set of discoveredpatterns is kept so

that new candidates can be scored using this.

It would be possible to evaluate each new candidate against atest set of theorems

instead of the discovered patterns. However, this would lead to mutations based on this

step and not on tactics formed from the discovered patterns.Although this could be

useful, this approach is not used to demonstrate that it is possible to form tactics from

one training set which can be repeatedly used in the future.

In fact, genetic programming of this type could be used (witha random start or

otherwise) as a stand-alone approach in order to find the bestset of tactics to model the

whole corpus. The main drawback to this approach would be thelength of time that

this would take. Even when modelling a (relatively) small set like the set of patterns

with a seeded input, the GP technique can be very inefficient.

5.5.2 Performance

Genetic Programming was not expected to be particularly efficient in terms of time. It

was hoped that this technique would provide good tactics which would compensate for

this. GP does in fact produce some interesting tactics.

In this section, some of the tactics which have arisen from this stage, along with

some evaluation of these are described. Until the application of these tactics are de-

scribed and a more specific appraisal of their worth can be given, they must be evalu-

ated using the test set obtained from the proof corpus.

5.5. Traditional GP Method 71

The efficiency of this approach is also discussed, includingan examination of the

differences made by adjusting the time-out value and the size of the initial population.

5.5.2.1 Results

Genetic Programming has yielded a number of new tactics, a few of these may be

completely inapplicable as they have progressed into the new population due to the

‘random factor’. Of those kept, most are only partially applicable. The wide range

of tactics from Genetic Programming encompass; some with only two steps and no

operators - unchanged from the pattern discovery stage because all changes have re-

sulted in a lower score than the initial score, some very longtactics which include large

branches (∨ or∧) which are inapplicable but which have been kept because therest of

the tactic scores well.

A fairly typical example is shown in figure 5.9. This tactic represents a sequence

of ex1E followed by either all dupE followed by ssubst or someIfollowed by exE,

then 1 or more repetitions ofallE followed bymp.

ex1E

all_dupE

ssubst1

someI

exE

mp

(allE) +

V

Figure 5.9: Example of a tactic found using Genetic Programming

Using one branch of the∨ (left-hand), this tactic could be applied to part of the

proof of:

some1 equality= [|∃! x.P x; P a|] −→ (SOME x. P x) = a

However, there does not appear to be any occurrence which contains the right-hand

side. This does not prove that the right-hand side can never be used, but it is not

applicable within the set and would represent unnecessary search during application.

Full details of all the steps in this tactic and their application to this proof can be

found in appendix B.

72 Chapter 5. Tactic Formation

As an example, from one input sample of 100 patterns and 3,200,000 iterations,

53 tactics were kept. The tactics kept have a score of at least1 from the scoring

system detailed previously. This set of 53 patterns does notcompletely describe the

initial population as some patterns have mutated until theyare no longer useful. In this

particular set, the highest score was only 7. This means thatthe best tactic only com-

pletely described 7 of the original patterns, from an initial population of 53, it would

not be unreasonable to expect better. This slightly disappointing result provides the

main motivation for the construction of the ‘Pairwise Combination’ approach, which

is described in section 5.6.

A measure of the usefulness of these tactics can be gained by comparing them

against the test set to see how often they would be applicable. This is not limited to

once in a proof, so it is possible to measure how many proofs have tactics applicable

to them and how many tactics are applicable. This measure is shown in figure 5.10.

45.00%

19.00%

25.00%

11.00%

Use of tactics within proofs

no tactics

1 tactic

2 tactics

3 or more tactics

Figure 5.10: This shows the percentage of proofs which could have 0, 1, 2, 3 or more

tactics applied to them.

5.5.2.2 Efficiency

As the initial population consists of patterns (containingno branches), a certain re-

liance must be placed on chance to provide the useful (or any)branches. This is one

of the reasons that genetic programming starts off so slowlyin the case of IsaNewT.

By measuring the average score of the tactics against the number of iterations the effi-

5.6. Pairwise Combination 73

ciency of the Genetic Programming technique can be examined, this is shown in figure

5.11.

Figure 5.11: Measure of efficiency of Genetic Programming. The x axis shows the

number of iterations and the y axis shows the decrease in population size.

As can be seen from figure 5.11, above 3,000,000 iterations, there is very little

improvement. The initial population for this sample was 37.By comparing a number

of these graphs the optimal number of iterations has been found to be roughly propor-

tional to 100,000 for each member of the initial population.Of course, this is a rough

guide, but it goes safely past the convergence point of the graph in all test cases.

5.6 Pairwise Combination

Although Genetic Programming apparently offers a good fit tothe requirements of

IsaNewT, it was felt that a more directed approach might be more effective. In particu-

lar, one of the great strengths of GP is the potential for mutation to allow a previously

unexpected solution to arise. However, the intention with the IsaNewT method is to

find tactics specifically based on commonly occurring patterns, so it is not necessary

to find new possibilities in this way. For this reason, in addition to the implementation

of the traditional Genetic Programming approach, there is also an implementation of a

novel method.

74 Chapter 5. Tactic Formation

The new approach is inspired by Koza’s GP algorithm. This approach, which has

been named ‘Pairwise Combination’, uses the discovered patterns as an initial popula-

tion, but focuses solely on the crossover step of the GP algorithm.

5.6.1 Implementation

The method involves repeated iterations in which two members of the population are

chosen and an attempt made to combine them. The number of iterations is decided

by the user. The default is 1,000,000 iterations, which is not unreasonable even for a

small set in genetic programming. The default is usually enough to generate a ‘stable’

set of tactics from a pattern base of 50. A ‘stable’ set is defined to be one which will

not change significantly even when run for another 500,000 iterations. Each iteration

consists of the following steps:

1. The patterns are each assigned a number at random (this assignment is done

simply using the order that the patterns came out from the pattern discovery

stage which is random).

2. The number of patterns are counted (N) and 2 (distinct) random numbers be-

tween 1 and N are chosen. The patterns assigned to these numbers are chosen to

be compared, say (P1,P2).

3. Firstly a check is performed to see if P1 is a complete subset of P2 or vice versa.

These complete subsets can appear provided the frequency they attained in the

pattern discovery stage was different (i.e. the smaller pattern appeared in other

places as well as being a subsection of the larger pattern). If so, the smaller

pattern (say P1) is named as amacro and given the nextmacro identifierin

succession (e.g. m3).

The occurrence of this pattern in P2 is replaced by m3. Amacrois not permitted

to contain a step that is known to be a branching step (see step6). If such a

macrowere permitted and put in place, the method would have to lookinside the

macroto check for branching points or risk not joining known branches together.

Looking inside the branches would greatly increase the timetaken to perform

each iteration and not discovering the branches would be a significant drawback.

Losing out on some potentialmacroswas seen to be the least important loss. An

example ofmacrointroduction is shown by figure 5.12.

5.6. Pairwise Combination 75

mp

and_def

spec

and_def

spec

assumption

macro1

and_def

spec

Figure 5.12: Introduction of a macro identifier.

76 Chapter 5. Tactic Formation

4. If themacrostep fails, then the potential for aplusoperator is checked. P1 and

P2 are compared. If they only differ by a repeated step (i.e.[a,b,c,c,d] and

[a,b,c,c,c,d]) then aplus is introduced ([a,b,+(c),d]). This is better shown by

figure 5.13. There are instances where adding aplusmay be an over-generalisation,

but it is common that two sequences which only differ by the repetition of a step

are representative of other sequences which have a different number of repeti-

tions of this step.

spec

mp

mp

impI

spec

impI

mp

impI

mp

spec

+

Figure 5.13: Introduction of the plus operator.

5. If P1 and P2 are dissimilar so far then a search is performedfor a potential∨

introduction. Both patterns must begin and end the same. If this is true then a

filtering process is undertaken until the shortest difference is covered by the∨.

For example:

P1= [a,b,c,d,e, f] P2= [a,b,g,h, i,e, f]

becomes:

[a,∨([b,c,d,e], [b,g,h, i,e]), f]

then:

[a,b,∨([c,d,e], [g,h, i,e]), f]

and finally:

[a,b,∨([c,d], [g,h, i]),e, f]

in which the∨ covers the shortest difference. An example of this is shown in

figure 5.14

5.6. Pairwise Combination 77

In order to avoid long sequences with very little in common being joined by a

large∨ there is a simple scoring system. A sequence scores 1 point for every

original pattern it subsumes and loses 1 for every member of (the longest branch

of) an∨. The score must be non-negative for the new sequence to be accepted.

This also prevents the disjunction over every possible sequence being returned

as a tactic. This would otherwise score well, but would not bevery useful!

mp

allI

impI

allI

spec

mp

allI

mp

V specimpI

Figure 5.14: Introduction of the ∨ operator.

6. If P1 andP2 are still unchanged a branching point is looked for. All steps which

result in branching are known (they are gathered in the weighting stage of the

pattern discovery). All steps inP1 andP2 until a branching step is reached must

be matched. If this is possible then the tactic with branching is passed back into

the population. This is shown in figure 5.15

trans

trans

sym

assume

trans

trans

assume

trans

trans

assumesym

assume

Figure 5.15: Introduction of the ∧ operator.

78 Chapter 5. Tactic Formation

7. If none of these steps are successful thenP1 andP2 are passed back into the

population unchanged.

8. If necessary (i.e. ifP1 andP2 are merged) then the identifiers assigned to the

new patterns are updated. Only the new tactic is kept,P1 andP2 are discarded

as they are subsumed by the new tactic. This causes the population to shrink.

The entire population is kept as the current tactic set. Unlike the more traditional GP,

there is no ‘old’ and ‘new’ population, the population incrementally changes contin-

uously. If a good initial selection of patterns is found and the time limit is sufficient

then the patterns set will be significantly reduced.

By choosing the two compared patterns randomly, combinations of different steps

are allowed to arise. For example, apluscan be introduced over a macro allowing a

repetition of more than 1 step. This is shown in figure 5.16.

macro1

mp

and_def

spec

and_def

spec

assumption

macro1

and_def

spec

mp

macro1

mp

+

assumption

assumption

macro1

Figure 5.16: How a repetition over more than one step can be found using the macro

identifier

As a copy of the initial population is kept when using this technique unchanged

tactics can be re-examined. By inspecting both the originalscore from the pattern

discovery process and the final score from this tactic formation step, it can be decided

whether they should be eliminated before the application procedure. A tactic which

came from a pattern with a low frequency (very close to the threshold) and which also

subsumes few, if any, other patterns at this stage (and so attains a score of close to 1), is

likely to be a less useful tactic and so can be discarded or reduced in importance when

it comes to the application stage.

5.6. Pairwise Combination 79

For the purposes of application, all the tactics have been kept but the tactic set has

been arranged so that these ‘weak’ tactics will always be attempted last.

5.6.2 Performance

As with the traditional GP approach, the efficiency of this technique must be measured.

The size of the initial population and the time-out value arevaried to ensure these are

not factors.

The tactics gained from this approach are discussed and a comparison drawn be-

tween them with those obtained from traditional GP. As with the pattern discovery

stage, only preliminary evaluation is carried out here, with a complete evaluation be-

ing carried out in conjunction with the applications.

At this point, of most interest is the comparison between thetwo techniques.

5.6.2.1 Results

A number of tactics have been evolved using the Pairwise Combination technique.

They range from only having 2 steps and no operators to having16 steps and 7 oper-

ators. A fairly typical example with 5 steps and 3 operators is shown in figure 5.17.

Also shown are the steps that the macromacro1is short for. This tactic represents a

sequence ofand def followed by specfollowed by mp and then an∧ split. Theas-

sumptionstep should be applied to one subgoal and one or more repetitions of impI

thenassumptionapplied to the other.

macro1

mp

assumption (impI)+

assumption

macro1

and_def

spec

Figure 5.17: Example of a tactic found using Pairwise Combination

This tactic could be applied within the proof ofcon junct1:

con junct1 : “[| P ∧ Q |] =⇒ P”

80 Chapter 5. Tactic Formation

apply(un f old andde f)

to get:

∀ R. (P −→ Q −→ R) =⇒ P

then:

apply(drule spec)

to get:

(P −→ Q −→ R) −→ R =⇒ P

then:

apply(drule mp)

to get 2 subgoals:

R =⇒ P

and:P −→ Q −→ R

The first of these is solved withassumptionconcluding the first leg of the proof. To

the second:

apply(rule impI)

is applied to get:

P =⇒ Q −→ P

The next step,assumption, cannot be used at this point so theplusoperator is utilised:

apply(rule impI)

to get:

[| P; Q|] =⇒ P

Which is solved byassumptionthus completing the proof.

From an input sample of 40 patterns and 2,000,000 iterations, 14 tactics remained at

the end of the entire IsaNewT process. Unlike with traditional Genetic Programming,

the final population completely describes the initial population. While it would be

possible to also measure the increase in score against time for this approach, this cannot

be compared directly against the GP approach as the GP approach contains tactics that

will be discarded.

As with GP, a measure of the usefulness of these tactics can begained by comparing

them against the test set to see how often they would be applicable. This measure is

shown most clearly in figure 5.18.

5.6.2.2 Efficiency

As the Pairwise Combination method is much more directed than traditional GP, it

is a much more efficient technique. By measuring the size of population against the

5.7. Summary 81

number of iterations, a measure of how many patterns have been combined can be

gained. Therefore a measure of the efficiency of the PairwiseCombination technique

for IsaNewT’s purposes can be gleaned. This is shown in figure5.19. A full week-long

test was run but there were no further changes to the population.

As can be seen from figure 5.19, above 1,000,000 iterations, there is very little

(often no) improvement. The initial population for this sample was 48. As with the

GP approach, a number of these graphs were compared to obtainan optimal number

of iterations. In this case it is roughly proportional to 25,000 for each member of the

initial population. This rough guide goes safely past the levelling out point of the that

graph is used as a termination criterion. Using the PairwiseCombination technique,

increasing the initial population does not result in a direct increase in the number of

iterations required as more potential matches exist to be found. However, it does not

cost as much to continue with the iterations as time goes on asa falling population

means that each iteration is faster.

5.7 Summary

Two methods based on Evolutionary Programming techniques have been described

that are used to evolve the discovered patterns into tactics. Some efficiency results

26.00%

31.00%

25.00%

18.00%

Use of tactics within proofs

no tactics

1 tactic

2 tactics

3 or more tactics

Figure 5.18: No. of tactics applicable within proofs. This shows the percentages of

proofs which have: 0, 1, 2 or 3 or more tactics applicable to them.

82 Chapter 5. Tactic Formation

have been presented on the two techniques and some typical examples described.

Unsurprisingly, a comparison of the results obtained from Genetic Programming

and from Pairwise Combination show that PC provides significantly better results. Ge-

netic Programming relies on many random decisions which canbe very useful when

dealing with a problem where the specification is poor. However, IsaNewT’s problem

- that of combining patterns to form tactics - has well-defined goals.

Using random choicescanbe very useful; it has been used to choose the candidates

for crossover as initially there is no way to tell which selections would make good

candidates. In spite of the ranking system implemented, there is no way to know if two

(or more) bad patterns might combine to make an excellent tactic. By exploiting this

within a directed system, as done in Pairwise Combination, an efficient evolutionary

procedure inspired by Koza’s GP algorithm has been created.

With a comparison of the worst case estimates of how many iterations a run might

need, it is already clear that PC beats GP by a factor of 4. In real time, PC performs

even better due to fewer operations in later iterations (this is because of a smaller

population size).

In terms of the tactics obtained, both GP and PC provide viable options. Genetic

Programming will produce some tactics which could not have been found simply us-

00 25,000 50,000 75,000 100,000 125,000
00

55

10

15

20

25

30

35

40

45

50

Population size vs no. of iterations

No. of iterations

Po
p

.
si

z
e

Figure 5.19: Measure of efficiency of Pairwise Combination.

5.7. Summary 83

ing the initial population. This means that GP could conceivably produce interesting

tactics that could not be discovered using the pattern discovery technique (although

this was not observed during any of the tests). As IsaNewT is designed to expressly

exploit such patterns to form new tactics, this feature of GPis not necessarily useful

(even on the rare occasions it could produce a fantastic tactic by fluke) but may be

worth exploring in another context. Most of the tactics produced by GP have at least

some part of them which is either redundant or inapplicable.In some cases, GP will

produce tactics and parts of tactics which could never be applied, and while most of

these will be weeded out by the scoring process it is inevitable that some will linger.

Pairwise Combination produces only tactics which arise from the initial population

and because of this it can be guaranteed that all final tacticsare applicable in some

instances. Indeed, studying the number of proofs which can be partially described by

at least 1 tactic, see figure 5.18 an improvement over similarstatistics from GP can be

seen.

Pairwise Combination shows an improvement both in tactic applicability and in

efficiency when compared again to traditional Genetic Programming for IsaNewT’s

purposes.

Chapter 6

Application

In order to test the new tactics which have been discovered byIsaNewT and to demon-

strate whether they are in fact useful tactics, a simple fully-automated theorem prover

within the Isabelle interactive prover has been developed (IsaAuto). In this chapter is

a description of this prover.

The implementation of IsaAuto is described along with some details about the type

of input which will be given for comparison. One of the more complicated steps in

implementing the prover was the adaptation for each abstraction in order to ensure that

a fair comparison was always maintained.

This chapter is concluded with some results on the performance of IsaAuto. These

results do not provide an evaluation of the tactics but rather provide the baseline so that

a good selection of theorems can be chosen for testing purposes in the evaluation.

6.1 Designing an Automatic Isabelle Prover

The Isabelle prover described here was designed with the express purpose of evaluating

the usefulness of the tactics. To that end, it was decided that the prover would perform

a naive search through all the possible rules and tactics in order to find a proof. Evalua-

tion of the discovered tactics would occur by comparing the search described against a

search for a proof with these tactics added as heuristics. Weargue that an improvement

in time and in the number of theorems proved demonstrates that the discovered tactics

are indeed useful.

By using Isabelle as a basis for the prover, IsaAuto inheritsall the soundness of

Isabelle. In addition, IsaAuto has no way to check whether a contradiction has been

found (i.e. a theorem is false) and will just report a failureto prove the theorem.

85

86 Chapter 6. Application

6.1.1 Isabelle Tools

Isabelle has a number of inbuilt tools designed to aid the user in developing an auto-

mated prover within Isabelle. These have been utilised in the development of IsaAuto.

6.1.1.1 Isabelle’s Inbuilt Tactics

Isabelle uses a different notion of tactics than the one useduntil now. In order to avoid

confusion, the Isabelle tactics will from now on be referredto with the abbreviation

tacs. Isabelle has a number oftacswhich are defined as “an abbreviation for func-

tions from theorems to theorem sequences” in the Isabelle reference manual [Paulson

(1986)]. In comparison to IsaNewT’s tactics, Isabelle’stacscontain possible rules to

apply, along with the information on how these rules are to beapplied. Thesetacscan

in fact be thought of as mini-provers.

Some of the more common or relevanttacs available within Isabelle are given

below, (commands in brackets show abbreviation available to the most common).

resolve tac thms i (rtac) refines the proof state using the rules contained in the list

thms(normally introduction rules). It resolves a rule’s conclusion with subgoal

i of the proof state

eresolvetac thms i (etacthm i) performs elim-resolution with the rules (normally

elimination rules). It resolves with a rule, proves its firstpremise by assumption

anddeletesthat assumption from any remaining subgoals

dresolve tac thms i(dtacthm i) performs destruct-resolution with the rules (normally

destruction rules). This replaces an assumption by the result of applying one of

the rules

fresolve tac thms i(ftac thm i) like dresolvetac except the selected assumption is not

deleted

assumetac i (ataci) attempts to solve subgoali by instantiation

(eatacthm j i) performsetacthm thenj timesatacon subgoali

(datac thm j i) performsetac thmthenj timesatacon subgoali

(fatac thm j i) performsftac thm thenj timeatacon subgoali

6.1. Designing an Automatic Isabelle Prover 87

ares tac thms itries proof by assumption and resolution; it abbreviatesassumetac i

ORELSE resolve tac thms i

rewrite goals tac def (rewtacdef) unfolds the definitionsdefsthroughout the sub-

goals of the proof state, leaving the main goal unchanged.

rotate tac n i rotates the assumptions of subgoali by n positions from right to left

(left to right if n is negative)

6.1.1.2 Isabelle’s Tacticals

Isabelle has an inbuilt notion of tactical which are operations ontacs. They can be

thought of as high-level control structures.

Some of the more relevant ones are:

tac1 THEN tac2 is the sequential composition of the twotacs. Applied to a proof

state, it returns all states reachable in two steps by applying tac1 followed by

tac2. First, it appliestac1 to the proof state, getting a sequence of next states;

then it appliestac2 to each of these and concatenates the results.

tac1 ORELSE tac2 makes a choice between the two tactics. Applied to a state, it

tries tac1 and returns the result if successful; ittac1 fails then it usestac2. This

is a deterministic choice; iftac1 succeeds thentac2 is excluded.

EVERY [tac1, ...tacn] abbreviatestac1 THEN .. THEN tacn. It is useful for writing

a series of tactics to be executed in sequence.

FIRST [tac1, ..., tacn] abbreviatestac1 ORELSE .. ORSELSE tacn. It is useful for

writing a series of tactics to be attempted one after another.

TRY tac appliestac to the proof state and returns the resulting sequence, if non-

empty; otherwise it returns the original state

REPEAT tac appliestac as many times as possible (including zero), and allows

backtracking over each invocation oftac.

REPEAT1 tac like REPEAT tacbut always appliestacat least once.

Isabelle also has a number of search and control tacticals which are adapted in

order to provide the automated prover.

88 Chapter 6. Application

DEPTH FIRST sat p tacreturns the proof state ifsat preturns true. Otherwise it ap-

pliestac, then recursively searches from each element of the resulting sequence.

In effect it appliestacTHEN DEPTH FIRST sat p tac.

BEST FIRST (sat p,dist f) tac does a heuristic search, usingdist f to estimate the

distance from a satisfactory state. It maintains a list of states ordered by distance.

It appliestac to the head of this list; if the result contains any satisfactory states,

then it returns them. OtherwiseBEST FIRST adds the new states to the list,

and continues. It will find a solution, if one exists

SOLVE tac appliestac to the proof state and then fails if and only if there are sub-

goals left

6.1.2 Implementation

A prover of the type required can be implemented in Isabelle with a minimum of

effort using the inbuilt Isabelletacsand tacticals. A straightforward implementation

of a prover can be achieved usingrtac, dtac, etac andatac with the argumentthms

containing the names of all the rules used. As described earlier, the entire Isabelle

system is based on a few basic axioms, and any rule can be deconstructed into the

sequence of rules which made up the proof of its own theorem. This has allowed the

restrict of the Isabelle database of rules (which is potentially infinite as more and more

lemmas are added with each new theory file) to around a hundred.

However, the implementation described above has a number ofproblems. Most

importantly, allowing rewrite rules to be applied in any direction will leave the problem

of looping. Also needed is a method of unfolding definitions.This contains the names

of any definitions available. Although this can also be a potentially lengthy list, none

will be applicable unless the object appears in the subgoal.If rtac is removed then

there is an insistence that some part of the rule matches exactly with a part of the

subgoal (one of the assumptions foretacand the conclusion fordtac). Now a newtac

PER SUBGOAL can be defined:

PER SUBGOAL rules= etacrulesORELSE dtacrulesORELSE rewtacde f s

In Isabelle, subgoals are numbered sequentially. When one subgoal is proved, the

rest are moved up (so when subgoal 1 is solved, 2 becomes 1, 3 becomes 2 etc.). By

default, atac is applied to the first subgoal unless otherwise stated. Therefore, in order

6.1. Designing an Automatic Isabelle Prover 89

to search for a proofper subgoalwould be applied repeatedly to the first subgoal until

a solution is found. Effectively:

IsaAutorules= SOLVE (REPEAT1 per subgoalrules)

is being performed.

Backtracking occurs when an application ofREPEAT1 fails (i.e. no applicable

rule can be found), in such a situation, the last rule application is undone and search

continues as if this rule was inapplicable.

Now the discovered tactics are processed into Isabelle-style tacsso that they can be

used in IsaAuto. Otherwise only the Isabelletacstraditionally used in writing proofs

by hand are used as the mechanism for IsaAuto.

erule tac thmworks in the same way asetacthmsbut only tries to apply one partic-

ular rule instead of one from a selection of rules.

drule tac thmworks in the same way asdtac thmsbut only tries to apply one partic-

ular rule instead of one from a selection of rules.

Hence each theorem name can be adapted to a tactics usingerule tac , drule tac,

ORELSE, REPEAT andTHEN . Thus a tactics such as that represented in 6.1 would

be represented by:

macro1

mp

assumption (impI)+

assumption

macro1

and_def

spec

Figure 6.1: Example of a tactic.

branch tac = ((REPEAT1 erule tac impI) ORELSE (REPEAT drule tac impI))

THEN assumption

90 Chapter 6. Application

tactic = (rewtac and def) THEN ((erule tacspec) ORELSE (drule tacspec)) THEN

((erule tac mp) ORELSE (drule tac mp))

THEN ((atacTHEN branch tac) ORELSE (branch tac THEN atac))

Although this is not a pretty format, it can be generated witha simple parser. This

allows an encoding to be generated for each of the tactics astactic n so that the prover

including the tactics would become:

prover with tactics=SOLVE (REPEAT1 FIRST [tactic 1,... tactic n,per subgoal

rules])

After a timeout, search is cancelled and a result of ‘no prooffound’ is returned.

This is a very naive prover which will not perform well as a prover in its own right.

However, it is suitable for the purposes of being a testing engine for the discovered

tactics. Equal inefficiencies occur in both conditions, so the results gained from the

tactics are fair.

6.2 Adapting the Prover for Different Abstractions

The description presented of IsaAuto and its implementation deals with the abstrac-

tion consisting solely of the rule names at each stage. The alterations needed to adapt

IsaAuto for different abstractions must be discussed. As the abstraction chosen repre-

sents the level of information from the corpus, it directly affects how much work the

prover will still have to do.

1. Rule name with direction

With tactics: This is almost trivial to adapt. Simply restrict those stepsmarked

forward to theerule tacapplication, and those marked backwards todrule tac

Without tactics: In order to keep search as even as possible elimination and

destruction rules can be restricted toetacanddtac respectively

2. Class of rule only

With tactics: Replaceerule tac with etacand replace the name of the rule as

described above with the list of rules associated with the class. Each of

these possibilities must be searched through. Similarly for drule tac

6.2. Adapting the Prover for Different Abstractions 91

Without tactics: The test without tactics would remain the same.

3. Class of rule with direction

With tactics: This would be a direct combination of the two previous exam-

ples.

Without tactics: The test without tactics would remain the same.

4. Main proof operator:

With tactics: This information would be of little help at the application stage.

If a rule is applicable then the subgoalmustcontain the significant operator.

In fact, no extra theorems were proved and the average time taken to prove

the theorems was worse with the tactics in place. This is unsurprising as

at every step of the tactic every rule with a matching main operator would

have to be searched. Many of these will rarely be used and would not

normally be considered in a search until all other possibilities had been

discounted.

Without tactics: The test without tactics would remain the same.

5. Rule name with position in proof

With tactics: Restrict any steps marked ‘beginning’ to the first pass of the

loop of IsaAuto and restrict any marked ‘end’ to only be applied when they

solve the subgoal. However, it will not usually be known which step will

solve a subgoal until it has been applied. Therefore all steps marked ‘end’

would have to be attempted at every stage and the result discarded if it did

not solve the subgoal (even if it was applicable).

Without tactics: The test without tactics would remain the same.

The only change suggested to the prover without the tactics is the refining of the

theorem lists into elimination and destruction rules. As will be shown in the evaluation,

both examples of this have been tested. Although this refinement shows an improve-

ment in speed performance, occasionally it results in a theorem not being proved that

would have been otherwise. This is due to the rare occasion when a traditional elimi-

nation rule (or a traditionally destruction rule) is used inan unusual fashion.

92 Chapter 6. Application

6.2.1 Performance

IsaAuto is not designed to be comparable with other fully automated theorem provers.

It does not contain any clever heuristics or techniques to improve performance and

search time. It was designed solely to form a basis for comparison to test the discovered

tactics.

In this section some results gained from testing IsaAuto without the tactics are

provided in order to gain a baseline for performance. This will allow a determination

of the complexity of theorems that IsaAuto can reasonably beexpected to deal with.

This evaluation of performance also allows the time-out level to be set to return a ‘no

proof found’ result.

The type of theorems IsaAuto can deal with are examined first.A selection of

theorems for testing purposes should be chosen which will contain both theorems that

IsaAuto can deal with along with theorems that it cannot.

This section continues by looking at a selection of theoremsthat are successfully

proven and considering the time it takes for these to be proven. By varying the al-

lowed depth of search a level that will provide the best compromise between reason-

able search times and number of theorems proved can be found.

6.2.1.1 Types of theorems

This section begins by rating some theorems based on their existing Isabelle proofs.

The existing, hand-produced proofs are used as these shouldrepresent a good (not

wasteful or circuitous) proof. This would not be a reasonable assumption for many

hand-produced proofs, especially those written by novicesas a certain amount of

search will have been done during the proving process and maywell still exist in the

proof. Nevertheless, the proofs which are held in the Isabelle libraries have been up-

dated many times over the years to keep compatibility to newer versions of Isabelle.

The theorems are rated from a score of 1 (easy to prove) to 10 (very complex to

prove), the ratings are calculated on the following criteria:

1. Number of steps in the proof.

• This reflects the amount of search that will be required to finda solution,

as any proof found by the prover is likely to be at least as long. Therefore,

this measure provides a measure of complexity.

2. Number of ‘special’ techniques used.

6.2. Adapting the Prover for Different Abstractions 93

• The term ‘special’ techniques denotes instances such as situations where

the instantiation is specified, or a lemma is inserted with thecut technique.

These weight heavily towards complexity as the prover with or without the

discovered tactics will be unlikely to find a proof for these theorems.

• Use of automatic techniques such asauto. These techniques can represent

a large area of search space so they have a weight higher than the num-

ber of steps. However, any of these tools can automatically be found by

Isabelle so they have a complexity weight less than the previous ‘special’

techniques.

These criteria have allowed us to rank the theorems from simple, such as:

theorem:
Q −→ P ∨ Q
apply (rule impI)
apply (rule disjI2)
apply assumption
done

to complex such as:

lemma atleast free SucD lemma:
!m a. m a = None −→ (!c. atleast free (m(a|→c)) n) −→
(!b d. a neq b −→ atleast free (m(b|→d)) n)

apply (induct tac "n")
apply auto
apply (rule tac x = "a" in exI)
apply (rule conjI)
apply (force simp add: fun upd apply)
apply (erule tac V = "m a = None" in thin rl)
apply clarify
apply (subst fun upd twist)
apply (erule not sym)
apply (rename tac "ba")
apply (drule tac x = "ba" in spec)
apply clarify
apply (erule notE impE)
apply (case tac "aa = b")
apply fast+
done

Figure 6.2 shows the successfulness of IsaAuto without the new tactics in solving

these different ranks of theorems.

As can be seen, IsaAuto understandably can only handle the more simple forms of

theorem, this is not a reflection on the quality of the tacticsbut is the result of such a

naive prover. Even in these levels, no proofs are found for many of these theorems.

94 Chapter 6. Application

Only one theorem was proved in any section from rank 5 and above, this is probably

due to a mis-assignment. In fact examining this proof shows that each step is in fact

simple, and that it was ranked due to the high number of applications ofsimp in the

proof script.

From this analysis it can be deduced that it would be most useful to use a selection

of theorems ranked from 1 to 4 with a very small number ranked 5in order to create a

realistic test set.

6.3 Summary

The inbuilt Isabelle tools (tacsandtacticals) have proved invaluable in implementing

IsaAuto. No use has been made of many of the more complicated tools available such

as those allowing more intelligent search techniques and heuristics.

Nevertheless, a simple Isabelle prover which can find proofsfor fairly simple the-

orems has been developed. Although performance is slow and many more complex

theorems will not be proven by IsaAuto there now is a good platform for testing the

usefulness of the discovered tactics.

11 22 33 44 55 66 77 88 99 10
00

22

44

66

88

10

Ranks of Theorems Proved

Proved Not
Proved

T
h

eo
re

m
s

Pr
o

ve
d

Figure 6.2: Number of theorems proved with increasing complexity. X-axis shows an

increasing complexity rank. Y-axis show the number of theorems proved or not proved,

respectively.

Chapter 7

Evaluation

This chapter presents an evaluation of each stage of the development of IsaNewT along

with an overall evaluation and analysis of the results.

Generally, evaluation of tactics can only truly be carried out through application.

It is to this end that the IsaAuto prover has been developed. However, it is possible to

carry out some evaluation of the tactics through manual inspection. This is particularly

useful when used to compare the evolved tactics to the more basic patterns discovered

by the early stages of IsaNewT. The merit of a tactics can be judged by:

1. Its applicability - how broadly can it be used?

2. Its effectiveness - does it advance the state of a proof?

3. Its mathematical interest - how significant a concept doesthe pattern describe?

The third point listed is best evaluated by means of manual inspection.

A re-examination of some of the patterns discovered earlieris performed. Various

measures and examination techniques can be used to indicatehow useful later tactics

formed from these patterns will be.

Next, results from the tactic formation stage are presented. Some manual evalu-

ation techniques along with some analysis of the measures associated with this stage

in the same way as with the patterns is performed. This process particularly rewards

complex tactics.

Most importantly the integral part of the evaluation, the results of application are

presented. A variety of results from different test sets against equivalent results from

IsaAuto without the new tactics are shown. These test sets are completely separate

from the training sets used to generate the tactics.

95

96 Chapter 7. Evaluation

The chapter continues with a discussion of the information gained from different

forms of abstraction. In particular, there is a focus on the information learned which

could not be exploited at the application stage.

This chapter concludes with a summary of the results.

7.1 Patterns

Already presented in previous chapters were some results onmanual evaluation of the

patterns within the chapter on pattern discovery. That is expanded on here with some

discussion about how manual evaluation can provide both some interesting features

and how the measures used at this stage can be adapted to measure the tactics at a later

stage.

7.1.1 Manual Evaluation

An important stage in the development of IsaNewT was the rediscovery of an existing

theorem. As has been mentioned several times before, some ofthe more advanced

theorems have been deconstructed into their proofs. For this reason, it was postulated

that finding a pattern or tactic which described the proof of aknown theorem would

provide validation that the technique was sensible.

Imagine a theoremfoo (say) that has been deconstructed to its proof, it can be seen

that every time this theorem is used as a rule within any otherproof the sequence of

steps which make up this theorem would appear. In this way, any theorem that is used

as a rule a reasonable number of times should appear as a pattern if the technique is

working as intended.

Indeed, an early example of this was discovered in the pattern discovery stage.

As the proof trees have been linearised down the branches, itis only to be expected

that only one branch of a proof would be found except in the case that a proof has

no branches. The perfect example of the latter case is demonstrated by the simple

propositional rule:

7.1. Patterns 97

lemma (P −→ Q) ∧ (Q −→ R)
−→ (P −→ R)
apply (rule impI)
apply (rule impI)
apply (drule conjE)
apply(drule impE)
apply assumption
apply assumption
apply (drule impE)
apply assumption+
done

After applying IsaNewT on the theorem set covering basic Higher Order Logic and

propositional theorems (in which this rule is used often) this pattern (given in figure

7.1) can be found. As can be seen, this describes the first branch of the proof given

above.

assumption

impI

conjE

impI

impI

Figure 7.1: Discovered pattern representing one full branch of a proof.

The probabilities assigned to each pattern can be used as a guide to the order of

preference the tactics should be given at the application stage. To any tactic is attached

the highest probability associated with the patterns that formed it.

That is, if patterns1, ..., patternsn are the patterns that were combined to make the

tactictac then thepatternj such that this pattern had the highest frequency score in the

pattern formation stage is located. This frequency now becomes a weight associated

with tac, weight(tac). This measure is used to rank the discovered tactics so that ones

that would be expected be more applicable from the pattern discovery stage will be

attempted first during application.

98 Chapter 7. Evaluation

7.2 Tactics

7.2.1 Manual Evaluation

Many of the tactics discovered represent expected combinations, for example, the strip-

ping away of quantifiers is one set of steps that would be expected to occur together.

Others among the tactics discovered, while not expected, are easily understandable

when the proof steps and the rules they describe are examinedby hand. This is also an

invaluable tool for examining the original occurrence of the tactics discovered which

turn out to score badly. By looking for the instances within the training set that these

patterns were discovered from, it often becomes clear why anunusual combination

occurs. This also allows identification of particular combinations which might only be

used in a small number of proofs - if this combination always occurs in sequence then

a small number may well be enough to identify this set as a pattern.

7.2.2 Usefulness

To evaluate against a test set, some metrics to measure individual tactics have been

devised. By measuring the percentage of proofs in a test set that the tactic can be

applied to (only one count per proof, even if the tactic couldbe applied multiple times),

an estimate of how useful the tactic will be can be discovered. By using a different set

of proofs for the test set than those used for the training set, it is possible to ensure that

features peculiar to the training set are not rewarded. Ignoring multiple applications in

a single theorem ensures that this usefulness quality reflects the percentage of proofs

that a tactic can be applied to. For example, if a tactic couldbe applied 10 times within

one proof but not to any other proofs at all, it would not be a very useful tactic in a

general sense. Allowing multiple occurrences within one proof to be counted could

give a false reading in the case of a very large but unusual proof. Of course in real

applications, multiple applications within one proof are performed.

The usefulness score is given as a percentage.

7.2.3 Quality

In the same way as above, a measure of quality can be taken by weighting usefulness in

favour of longer and more complex tactics. This prevents discrimination for two-step

combinations which may appear (at least in part) due to chance. This technique pre-

vents longer tactics from being penalised for being less common. It would be expected

7.3. Some Examples 99

that a widely applicable long or complex tactic would be moreinteresting than a short

tactic of the same applicability.

This is measured with a score which describes a trade-off between the complexity

and the applicability. This score is calculated with:

complexity((no. o f steps+ no. o f operators)/(100−Use f ulness))∗100 (7.1)

This technique does not guarantee a good measure of quality but seems to offer a

reasonable solution to an extremely difficult question.

The quality score has a minimum of 2 (2 steps, no operators, and a usefulness score

of 1). The maximum is theoretically unlimited as it depends on the number of steps

and operators within a tactic. For practical purposes, a tactic can be imagined to have

an upper bound complexity of 50 (although it is extremely rare to find any tactic with

a complexity above 30). This would give an upper bound to the quality of 5000. This

would require an extremely long and complex tactic which is applicable to every proof

in the test set. It is not difficult to imagine how unlikely that would be!

Even choosing a score of around 50, it is unlikely that any tactic will come close to

this as an upper bound, an ideal tactic would still fall shortof this mark. An extremely

complex tactic which was applicable to 10% of the proof corpus would only score

around 30.

7.3 Some Examples

A large number of discovered tactics are available but only aselected few which

demonstrate a range of styles, expressivity and quality will be discussed. The ex-

amples given here were generated from an initial training set of 989 theorem which

yielded 197 patterns. These patterns were generalised to form 122 tactics. Of the final

122 tactics, 36 were discarded as they had a borderline frequency and had not been

improved by the Pairwise Combination stage of IsaNewT.

7.3.1 A Typical Tactic

A fairly typical tactic would have 3-4 steps (rule names) andone operator (∧, ∨, +,

macros are not considered as operators because although they can make discovered

tactics easier to understand and compare, they do not add to the complexity).

100 Chapter 7. Evaluation

7.3.1.1 Scores Gained in Formation Step

From the training set the examples have been chosen from, theaverage scores would

be: 0.063 in the pattern discovery stage, and 7 for the genetic programming stage (this

is always Pairwise Combination). The pattern discovery stage has a percentage score

([threshold,100]). The tactic formation stage score reflects the number of other patterns

subsumed (including itself). This score can be[1,n] wheren is the number of patterns

found in the pattern discovery stage (usually 80-110).

7.3.1.2 Manual Evaluation

The average tactic could be fairly easily analysed manuallyas described with the pre-

vious examples. However, the number of patterns and tacticsdiscovered makes this

prohibitive, and it is mostly useful to manually examine thefew at each end of the

scale, along with a couple of random examples.

Usefulness

The average tactic has a usefulness score of around 17%. Thismeans that the average

tactic can be applied to around 17% of the proofs in the test set. This reflects well

on the tactics, suggesting that the thresholds have helped us to produce some truly

significant tactics.

Quality

The average tactic scores around 4.5 for quality. This quality score for an average

tactic is excellent as it demonstrates that IsaNewT has not become bogged down with

two-step sequences. In finding tactics with 3 or 4 steps and 1 operator which are widely

applicable justification of the claim that the tactics discovered are truly useful begins

to appear.

7.3.2 A Simple Tactic

A simple tactic could consist of two proof steps with no otheroperators. For example:

[atomizeeq, i f f I] (7.2)

As in the case above, simple tactics can often be studied by hand to see why certain

steps would be likely to occur together. Many of the simple tactics found have been

examined, and although many are more obscure than this example, it is often possible

to see why such small sets appear. In fact it is normally because such small sets are

combined together by an author to form a new rule in some more recent theory file.

7.3. Some Examples 101

7.3.2.1 Scores Gained in Formation Step

Simple tactics such as that in (7.2) do not change from the original pattern discovery

stage, therefore the scores assigned in the initial formation provide a good indication of

what other evaluation methods find. However, they suffer in the genetic programming

stage as they are never improved and therefore never subsumeany other tactics. This

example had a probability of 0.092 in the original pattern formation and a score of 1 in

the genetic programming stage.

7.3.2.2 Manual Evaluation

These simple tactics are ideal candidates for manual evaluation as it is generally easy

to spot why small combinations go together.

For example, if:

atomizeeq: (x≡ y) ≡ x = y (7.3)

and:

iffI : [P =⇒ Q;Q =⇒ P] =⇒ P = Q (7.4)

Then the two can be used in conjunction to reduce an equivalence to two (simpler)

subgoals involving implication using backwards reasoning.

Usefulness

These short simple tactics generally score well in the usefulness category, as their

simplicity means that they are less likely to be theory-specific and more likely to be

applicable in many situations. However, it can be the case that even simple tactics may

appear often in the training set and not at all in the test set.

This example could be applied to 11% of theorems in the test set.

Quality

All simple tactics are penalised heavily in the quality measure due to their simplicity.

Even a high usefulness rating is not enough to score well here.

This example gets a score of 2.2

7.3.3 A Complicated Tactic

Much more complicated examples exist, such as:

[impCE, [m3]∨ [[(allE)+]∧ [notE]]] (7.5)

102 Chapter 7. Evaluation

where the macrom3 is

[notE,assumption] (7.6)

Which is represented pictorially in figure 7.2 for ease of reading. Examples containing

impCE

m
3

allE+ notE

m
3

notE

assumption

Figure 7.2: Example of Complicated Tactic

all operators, such as this one, are rare, but there are many tactics which contain one

or more operator (not including macros).

7.3.3.1 Scores Gained in Formation Step

Complicated tactics such as this are more likely to suffer from a less generous score

at the pattern discovery stage. They do not normally score aswell here as simpler

patterns. However, the changes gained in the genetic programming stage allow this

score to contribute.

This example scored 0.006 in the pattern formation (the best-scoring pattern which

it subsumes) and 9 in the genetic programming stage.

7.3.3.2 Manual Evaluation

These are the trickiest candidates for manual evaluation asit is not always clear how

the steps link together. However, referring back to places in the original proof script

where this tactic could be applied is a good way of finding out how sensible these

complicated tactics are.

(All the rules associated with each proof step name are givenin appendix A.)

Usefulness

These complicated tactics generally don’t score very well in the usefulness measure as

they are too specific to be widely applicable.

This tactic could be applied to 2% of the theorems in the test set.

Quality

These complicated tactics score very well in the quality test, even when they have a

poor usefulness rating.

7.3. Some Examples 103

This example scored 6.1 as a quality rating.

7.3.4 A Good Tactic

Unsurprisingly, some of the best tactics across all the metrics are some of the combi-

nations that originally were expected. Within the domain ofHigher Order Logic (i.e.

logic-based theorems as opposed to math-based theorems), the best combination found

was:

[spec,ex1E] (7.7)

7.3.4.1 Scores Gained in Formation Step

The best tactics naturally have the most common occurrence from the start and so score

very well in the pattern discovery stage. However, they are often not changed by the

genetic programming stage so do not receive a good score for this.

This example scored 0.49 in the pattern discovery stage and 1in the genetic pro-

gramming stage.

7.3.4.2 Manual Evaluation

The best tactics are often the most obvious or expected. Thiscombination strips quan-

tifiers from a subgoal before other steps are applied. This tactic seems so expected

because many people strip away quantifiers when performing proofs. Dale Miller sug-

gested that people liked to transform subgoals into a quasi-normal form before trying

to find a proof [Miller and Nadathur (1987)].

In this example,specis a rule which allows you to choose an instantiation for a

universal quantifier andex1E strips off an existential quantifier by automatic instanti-

ation.

Usefulness

These type of tactics are very useful as expected.

This tactic could be applied to 51% of the theorems in the testset.

Quality

These common tactics score reasonably in the quality test. Despite often being short,

simple tactics, the high usefulness score can improve the quality score. However, they

still often don’t score nearly as well as the most complicated examples.

This example scored 4.1 in the quality test.

104 Chapter 7. Evaluation

7.3.5 A Bad Tactic

However, along with the good tactics, also discovered are some bad ones.

[least de f, the equality,con jE, [[allE]∨ [order antisym]],order antisym] (7.8)

7.3.5.1 Scores Gained in Formation Step

Tactics such as this are a prime example of how patterns specific to a small set can

be discovered as commonly occurring patterns although theydo not occur often in a

wider setting. This example scored 0.5 in the pattern formation score and 1 in the

genetic programming stage.

7.3.5.2 Manual Evaluation

This tactic appeared as a commonly occurring pattern from the training set but did not

appear once in the test set. The first step “least de f ” only occurs twice in the set and

so this tactic covers all occurrences. However, the patternfinder scores patterns on

how often a combination occurs after a step in relation to thenumber of times this step

appears.

This example is only used for proving properties aboutLeast, hence the reason the

definition is used here and not often elsewhere.

Usefulness

These type of tactics score 0 usefulness.

This tactic could be applied to 0% of the theorems in the test set.

Quality

This pattern can still gain a reasonable quality score. Thisis not necessarily a mis-

take, because although it may never appear again, this situation could occur with a

mathematically interesting combination of rules.

This example scores 7 in the quality rating. This is due to itscomplexity and

demonstrates the imperfections of the quality scoring system. This system works well

in the average case but can be confused by some extremes.

7.3.6 Overall Evaluation

The new tactics can be evaluated as a group using the usefulness and quality measures.

From the test set associated with the same domain as that the examples were taken

from, 32% of the theorems could have at least one tactic applied to them. In this case

7.4. Application 105

there is no attempt to apply these theorems, simply a comparison between the tactics

and the existing proofs of the theorems in the test set. Each proof is examined to see

if any complete tactic matches any part of the proof of a theorem. This means that

32% of the theorems could use the tactics in order to find a proof. However, this does

not specify if extra information would be needed (such as instantiation information) in

order to apply the tactics.

The manual analysis techniques provide a wide range of perspectives. There is a

measure for intuitiveness, and the usefulness and quality scores give new ways to rate

the newly discovered tactics. The measure that most attention should be paid to must

depend on the intention for the tactic (usefulness vs quality) and on the type of tactic

it is (simple vs complex).

In particular the manual step can rely on the other measures to some extent. For

example, if a ‘bad’ tactic scores 0 usefulness but a respectable quality, it may well be

worth re-investigating the reasons for these steps to be applied.

However, in terms of automation, this kind of tactic (even ifmathematically inter-

esting) would probably not be required often enough to justify a heuristic inclusion.

Ultimately, the overall score given to a tactic with these measures is only worth-

while when given some kind of context.

7.4 Application

In this section the details of testing the tactics with IsaAuto is described. The section

begins with a description of the choice of test theorems, including the variation of

complexity and mathematical similarity.

The section continues with an explanation of the choice of tactics to go into the

prover as heuristics. Also described is how this process canbe fully automated in

order that no human intervention is required at any step of tactic generation.

There have been many questions over the abstraction used andhow different ab-

stractions can and will affect the performance of the final tactics. The abstractions that

can be applied to the prover are compared and the robustness of the technique with

respect to the choice of abstraction is discussed.

Comparisons of IsaAuto’s performance with and without the tactics is shown in a

number of graphical displays. Explanations are given for these results and how they

validate the claim that IsaNewT can automatically formulate useful tactics. The best

and worst case examples discovered are discussed along withsuggested reasons why

106 Chapter 7. Evaluation

these extremes have been found.

7.4.1 Test Theorems

In the previous chapter IsaAuto was tested to discover what complexities of theorems

it would be reasonable to include in the test set. It was demonstrated that the optimal

solution appeared to be theorems ranked at difficulty 5 or lower by the ranking system

described. The results shown in the previous chapter demonstrated that for a com-

plexity greater than 5, the prover would not be able prove enough theorems to make a

comparison possible and lower than 5 would not present a difficult enough challenge.

At the initial stages of this project each Isabelle theory was split in half randomly.

This means that the tactics have been trained on theorems both within and exceeding

this complexity limit. This will have no bearing on the results, as the capacity for

complex theorems is more dependent on IsaAuto than the generated tactics.

The theorems ranked above 5 were removed to bring the test setto a reasonable

level. The theorems were left in groups according to the theory they originally occurred

in. This allows for a gauge of what type of theorem each is (i.e. propositional logic,

natural numbers, set theory).

By separating theorems into groups (some of which overlap),the discovered tactics

can be linked to the best set of test theorems.

7.4.2 Choosing the Best Tactics

Tactics trained on a set of theorems perform best when applied to theorems of a similar

type. This can be seen in hand-built tactics as these are normally developed with a

particular type of problem in mind. Also in human mathematics, techniques learned in

a particular discipline are likely to be used to prove similar theorems within the same

discipline. Therefore it seems likely that the discovered tactics will demonstrate the

best success rate when applied to theorems similar to their test set.

Tactics have been learned from a variety of theory groups. Many of these overlap

and so testing has occurred over a range of specificity. For example, some of the tactics

have been discovered from all the theorems in the test set from HOL, others only from

the group theory subset mentioned previously.

To prove whether or not tactics truly will perform better on atest set of theorems

which is mathematically similar to the training set there isa comparison of results

taken from a range of theory choices later in this chapter.

7.4. Application 107

7.4.3 Different Abstractions

At previous stages there has been discussion regarding the different options available

as to the level of abstraction used. Figures 7.3 and 7.4 show the average performance

over a range of test theorem sets of the different abstractions. Each test set comprises

50 theorems; 20 at complexity 1, 10 at 2, 10 at 3, 7 at 4 and 3 at 5.Each test set is

taken from a different type of theory, the tactics were trained on different theorems

taken from the same type.

The abstractions represented are ‘rule name only’rno, ‘rule name with direction ’

rnwd, ‘class only’co and ‘class with direction’cwd.

Figure 7.3: Performance of different abstractions. Rule name only: rno. Rule name

with direction rnwd. Class only co. Class with direction cwd. X-axis shows increasing

complexity. Y-axis shows the average number of theorems proved over 20 runs.

As can be seen, using classes instead of rule names results ina significant increase

in the time it takes to prove a theorem and a slight drop in the number of theorems

proved (mostly due to time-outs). This was expected and doesnot necessarily mean

that the inclusion of classes as a measure does not give us interesting information.

There is a very slight time improvement when the direction isincluded along with

the rule name. Although this is beneficial, it is offset by theextra information which

108 Chapter 7. Evaluation

Figure 7.4: Time performance with different abstractions. Rule name only: rno. Rule

name with direction rnwd. Class only co. Class with direction cwd. X-axis shows

increasing complexity, Y-axis shows increasing time.

must be carried at every stage of this project. The time increase is not significant

enough to make this a necessary adaptation, but neither is the space requirement oner-

ous enough to make this undesirable. It appears that these two abstractions are compa-

rable in terms of their suitability.

This section has demonstrated that although choice of abstraction does of course

play a part in the applicability of the discovered tactics, the technique is robust enough

that some flexibility in the choice of abstraction can be tolerated but also that some are

consistently better than others.

7.4.4 Tactic Application results

This section describes the most important part of tactic evaluation. The results from

the prover with and without tactics are compared when tryingto prove theorems taken

from the test set. Both the average time taken to prove a theorem and the number of

theorems from the test set which the prover successfully proves are compared.

7.4. Application 109

7.4.4.1 Comparison of Domain Specific Training and Test Set

The first comparison shows the average performance of tactics learned from a narrow

domain of theorems (such as well-founded recursion), the test theorems are also taken

from this narrow domain (from those reserved for the test set). This is represented in

figures 7.5 and 7.6

Figure 7.5: Average numbers of theorems proved by Isabelle prover from theorems

taken from narrow groups. X-axis shows increasing complexity, Y-axis shows the aver-

age number of theorems proved

As can be seen, when the tactics are trained from narrow groups there is a large

improvement both in the average time taken to prove a theoremand in the number of

theorems proven.

Best CaseThe best case in this example is shown by a proof found very quickly by the

prover with tactics against a proof not found by the prover without. Examination

of this shows that the quick proof is almost entirely described by one single tactic

(only two steps in this proof are not represented by the tactic).

Worst Case In these test sets, no theorem proved by the prover without tactics is

failed to be proved by the prover with the tactics included. This means that the

110 Chapter 7. Evaluation

Figure 7.6: Average times taken to prove a theorem by Isabelle prover from theorems

taken from narrow groups.

tactics have not slowed the prover down so much that timeoutsare called upon.

This may not be the case for more complex theorems but there isno realistic way

to test this at present. However, there are a few examples where the proof by the

prover with tactics takes significantly longer to find. Examination of one of these

cases shows that a long proof was found but that no tactic was applicable at any

stage, the extra time was taken because each tactic must be tested every time the

subgoals change.

7.4.4.2 Comparison of General Training and Test Set

Next to be compared is the average performance of tactics learned from a broad domain

of theorems (such as Higher-Order Logic), the test theoremsare also taken from this

large group (from those removed for testing purposes). Thisis represented in figures

7.7 and 7.8

As can be seen, when the tactics are trained from broad groupsthere is a smaller

improvement than obtained from the narrow groups. This still represents a noticeable

improvement both in time and in number of theorems proved.

Best CaseThe best case in this example is shown by a proof which contains three

separate tactics at different stages.

7.4. Application 111

Figure 7.7: Average numbers of theorems proved by Isabelle prover from theorems

taken from a broad spectrum of theories.

Figure 7.8: Average times taken to prove a theorem by Isabelle prover from theorems

taken from a broad spectrum of theories.

112 Chapter 7. Evaluation

Worst CaseThere is a larger set of discovered tactics in this example and there are

the rare occasions where a proof solved by the basic prover fails when the tactics

are added. However, this is rare (not more than 1 in 500 theorems).

Defining the thresholds - retrospectiveThese measures were used on tactics discov-

ered from patterns with a range of significance thresholds. It was discovered that

the best results were obtained when the threshold was set so as to give around 1

pattern for every 10 theorems. This generally meant that thethreshold should be

set at around 0.002. However, in order that patterns which would later be com-

bined into tactics are caught, a setup with a lower thresholdof 0.001 was chosen.

Any tactics which had not been improved (in the tactic formation stage) and had

an initial probability (from the pattern discovery stage) of between 0.001 and

0.002. This approach gave a very slight improvement but provided more variety

of tactics to work with.

7.4.4.3 Specific Training, General Test

Next to be compared is the average performance of tactics learned from a narrow do-

main of theorems (such as proofs about hyperreals), the testtheorems this time are

taken from a large domain. This is represented in figures 7.9 and 7.10

Figure 7.9: Average numbers of theorems proved by Isabelle prover from theorems

taken from a broad domain of theories with tactics trained on a narrow domain of theo-

rems.

7.4. Application 113

Figure 7.10: Average times taken to prove a theorem by Isabelle prover from theo-

rems taken from a broad spectrum of theories with tactics trained on a narrow set of

theorems.

In this example there is still an improvement overall, but ithas been reduced to a

very slight improvement. It could be imagined that this is because most tactics will

only be applicable if the test theorem is also from the narrowgroup. This setup was

not expected to provide promising results but it was examined in order to be thorough

and consider every combination.

Best CaseThe best case in this example is shown by a tactic which is applicable on

a number of occasions to theorems which did not come from the narrow group.

Worst CaseThere are a number of cases where no tactics are applicable. Also, there

is at least one example of a tactic which is never used.

7.4.4.4 General Training, Specific Test

Next to be compared are the average performance of tactics learned from a broad do-

main of theorems, the test theorems this time are taken from anarrow domain. This is

represented in figures 7.11 and 7.12

In this example a better improvement can be seen than in the narrow vs broad

example. This is because tactics learned from a broad spectrum will have applicability

across that spectrum.

114 Chapter 7. Evaluation

Figure 7.11: Average numbers of theorems proved by Isabelle prover from theorems

taken from a narrow group of theories with tactics trained on a broad spectrum of theo-

rems.

Figure 7.12: Average times taken to prove a theorem by Isabelle prover from theo-

rems taken from a narrow group of theories with tactics trained on a broad spectrum of

theorems.

7.5. Other Abstractions 115

Best CaseThe best case in this example is shown by a few tactics which are widely

applicable (some can be applied in over 60% of theorems)

Worst Case Again, there are a number of theorem where no tactic is applicable

throughout the proof. It can be imagined that this is becausethese theorems

require a particular (e.g. mathematical) technique.

7.5 Other Abstractions

In this section some of the information gained that has not been capitalised on is ex-

amined. Potential uses of this information is discussed.

Two main pieces of information have been lost (described earlier when discussing

different possible abstractions) :

1. Classes

2. Main Rule Operator

While it has not been feasible to apply either of these two pieces of information in

the application stage, they still say something interesting about the way that people do

proofs.

The abstraction containing class information demonstrated that most classes appear

in clumps. In particular, when fed through the pattern discovery stage and then the

tactic formation stage tactics of the type

[(rewrite)+,(quantifier elimination)+,(rewrite)+,(simplification)+]

are common. While this has no direct bearing on the IsaNewT methodology it de-

scribes a method which could be used as a heuristic in proof search when it is desirable

to produce a proof that would be more intuitive to a human.

Similarly, examining the type of patterns found when including the main operator

information yields interesting results. In this case a little more examination is nec-

essary in order to spot the patterns. If the operators are grouped together (algebraic,

quantifier etc.) then a tendency for operators within these groups to be clustered to-

gether is noticeable.

116 Chapter 7. Evaluation

7.6 Summary

This chapter has described the culmination of IsaNewT and the overall performance

of the discovered tactics. As a first attempt at providing a method for automatically

generating tactics, it was never to be expected that tacticswould be produced which

could be compared to those produced by humans. Instead, it has been claimed that

IsaNewT provides a method for automatically producing useful tactics. The results

given in this chapter demonstrate that fact.

Some of the information gained from different stages of the tactic discovery process

are discussed along with discussion of the use of different abstractions. Many of the

abstractions suggested cannot be directly tested, and others which have been tested

did not directly improve the usability of the discovered tactics. Similarly, the manual

evaluation of the patterns and tactics provides an interesting intellectual exercise but

does not improve the tactics in any way (but it was not intended or expected to). Some

of these techniques used to rank the tactics could possibly be adapted but the whole

aim is to avoid any kind of necessary human intervention at all.

It is the section on application which really demonstrates the worth of the tactics.

Although there are some individual theorems that take longer to prove with the tactics

and (rarely) there are cases where this extra time will result in a theorem not being

proved, it is important that no test set has resulted in an overall decrease in perfor-

mance.

Every single test set showed an average increase both in numbers of theorems

proved and in the average time taken to prove a theorem. This is unsurprisingly

more pronounced when the field is narrower. This undoubtedlyproves that the tac-

tics IsaNewT has automatically produced are indeed useful.

Chapter 8

Conclusion

This dissertation set out to provide a method of automatically formulating tactics which

would prove to be useful in discovering new proofs. IsaNewT formed new tactics from

commonly occurring patterns found in the large corpus of existing Isabelle proofs.

These newly discovered tactics were tested using a number ofmethods, most im-

portantly a naive automatic prover formed within Isabelle -IsaAuto. This automatic

prover allowed an evaluation of the new tactics’ usefulness. A comparison of the num-

ber of proofs completed and the time taken to complete such proofs provided a measure

of usefulness which allowed the tactics to be compared against naive search at the rule

level.

The commonly occurring patterns discovered in the Isabellecorpus have provided

a good base from which - with Genetic Programming techniques- a good selection

of new tactics have been formed. Evaluation has demonstrated that these tactics can

certainly be described as useful. Using these new tactics asan aid to search (for a

proof) improves results and efficiency in all but a few cases.

8.1 Summary

This project required a number of early decisions such as thechoice of prover from

which the proof corpus was used, along with the level of abstraction that should be

used. A choice was made to use the Isabelle interactive proofsystem as it satisfied all

the necessary criteria:

1. A large proof corpus.

2. The proof corpus stored in electronic form and easily accessible.

117

118 Chapter 8. Conclusion

3. A variable specificity.

In chapter 3 we discussed in detail a number of possible abstractions such as:

1. Rule name only.

2. Rule name with direction.

3. Class of rule.

4. Class of rule with direction.

5. Main proof operator.

6. Rule name with subgoal information.

7. Main proof operator with direction.

8. Rule name with position in proof.

Evaluation of the different abstractions show that of this selection, ‘rule name only’

or ‘rule name with direction’ are the two most viable optionsfor the purpose of creating

new, useful tactics. However, some of the other abstractionoptions have provided

some interesting information. This is typified by the application of the ‘class of rule’

abstraction which clearly demonstrates the preference of proof authors for grouping

certain classes of steps (such as simplification) together.

The abstracted proof corpus (mainly the ‘rule name only’ option) was data-mined

to find commonly occurring sequences. In searching for a method suitable to use for

this process an examination was made of what is meant bycommonly occurring. For

IsaNewT it was appropriate to define acommonly occurring patternto be a sequence of

rule steps which occur together with a probability above a specified threshold. Variable

Length Markov Models are a probabilistic process which describe the probability of

an event occurring after a given sequence of events. This procedure was well suited to

IsaNewT.

No pattern discovery technique was found that could cope with the tree structure

of the proofs, so linearisation down the branches was performed on the proofs. The

loss of connection across the branches was deemed to be minimal, and a method to

reconstruct as much information as possible was given in thegenetic programming

section of the dissertation.

8.1. Summary 119

Experimentation with the (mathematical) properties of theproofs used in the train-

ing set and with the threshold we used to denotesignificanceallowed the process of

producing a good pattern set to be refined. Patterns trained on a set of proofs with a

similar mathematical background produced better tactics overall. In order to avoid the

restrictions caused by requiring proofs to be preselected,and to keep the entire pro-

cess automated, methods of automating this process were examined. Like most other

theorem provers (automated and interactive), Isabelle’s existing proofs are stored in

grouped theory files, each theory file containing a group of similar theorems. Similar

theory files are grouped together in named directories. Thishierarchy allows use of the

existing grouping as the preselection criteria. Although abetter preselection could no

doubt be made with careful manual selection, the given method satisfies the criteria of

being completely automated.

The third stage of IsaNewT involved the formation of tacticsfrom the discovered

patterns. The language used to describe our tactics allowedfor four new operators to

be introduced at this stage:

1. Macro

2. ∨ branching

3. ∧ branching

4. + repetition

As the most cursory examination of any commonly occurring patterns shows, they

can be combined in a number of ways, even when there is not necessarily one ideal

set. If a pattern (P1) could be combined with anotherP2 to formP3 or with a different

oneP4 to produce a different new tacticsP5, but bothP3 andP5 perform equally

well in tests, then there is no way to know which would be the best choice for the

long term and so there is no ideal solution. In order to formulate the best tactic set it

was desirable to use a technique which would allow incremental improvements which

could be evaluated at each step. Genetic programming techniques provide exactly this

advantage along with the benefit of having a solution at everyiteration, removing the

need to wait on an ideal solution which may not exist.

In many applications the random elements of GP are one of the main advantages

to this technique. For the purposes of forming new tactics from the existing patterns,

which has a well defined goal, it was more efficient to have a directed approach. To

120 Chapter 8. Conclusion

this end, the Pairwise Combination technique was developed. As described in chapter

5, this technique has many similarities to the traditional GP. However, results show it

produces patterns which are directly connected to the initially discovered patterns - this

is sometimes lost in the random mutations of more traditional GP. The PC technique

also allows for a concrete aim towards reforming the branches lost in the abstractions.

All significant links are rediscovered to some extent.

PC, the directed genetic technique is much more efficient andsuccessfully com-

bines the discovered patterns into compound tactics.

The final stage of the IsaNewT methodology involves testing the new tactics to

discover if they are in fact useful and applicable in a numberof cases. To this end

IsaAuto, an automatic prover within the Isabelle system, was developed. This prover

was developed to search exhaustively through the availablesteps to search for a proof.

No sophisticated heuristics or proof techniques were used within this prover, but the

intention was not to develop a good automated prover, but to provide a platform for

testing the tactics.

The tactics performed well when added as a heuristic to the automated prover. This

is demonstrated fully in chapter 6. This testing demonstrated that using tactics learned

from a preselected set provides better results. In additionto producing patterns which

have a higher probability in the patterns discovery stage, the tactics performed much

better when used against a test set of similar theorems. Using the hierarchy within

Isabelle as described earlier, test sets can be formed of theorems similar to the ones the

tactics were generated from.

Using such a selection of tactics and test set, the discovered tactics perform well

across the board. On average, the automated prover with the tactics added outperforms

the basic prover in both time taken to prove theorems and the number of theorems

proven. Although search time takes longer when the tactics fail to be useful, this is

outweighed overall because a successful application of a tactic removes the need for

the search for a number of individual steps.

This application demonstrates that IsaNewT’s newly discovered tactics can indeed

be described as useful. They are applicable in a variety of situations and do not require

a prohibitive level of search.

8.2. Critique 121

8.2 Critique

Many of the decisions made during the course of this project were only one of a num-

ber of available alternatives. For example, the choice of Isabelle as the foundation

prover was made in spite of a number of alternatives which would have been suitable

for NewT. There is no reason why the techniques and principles within this project

could not be used with any other prover. Indeed, any prover which satisfies the initial

constraints would be suitable.

In this case, all that would be required to adapt our system toanother prover would

be a formatter to parse the existing corpus into a suitable format for the pattern discov-

ery process. The tactic applicator here is presented for evaluation purposes, a different

system could use the tactics in any way it wished. This process is not dependent on

the rule names specific to Isabelle, nor does it depend on the rule names being of the

Isabelle structure. Each “rule step” is read in as a string atthis point. Therefore, if

the corpus of a new proof was abstracted to a suitable proof step format, it could be

applied directly to the tactic formation system.

It would have been desirable to apply NewT to a number of otherprovers in order

to check the robustness and ensure that the successful results shown with the Isabelle

automatic prover would be reflected with other provers but time did not allow, this is

planned as future work.

A variety of abstractions were tested, and one was selected which produced the best

results for tactic discovery. However, NewT’s technique does not allow for any sub-

goal information (such as instantiation information). Inclusion of subgoal information

would allow learning of patterns that are used in specific situations as opposed to just

those which are used frequently. Subgoal information couldalso be used to indicate

when the tactics should be applied, this would remove some unnecessary search when

attempting to apply our tactics.

In discovering patterns, a technique of linearisation has been devised and used to

circumvent the problem of pattern discovery within tree structures. Ideally a technique

which learns directly from the tree structures would be used. Although no such tech-

niques had been found, some suggestions have since been madeand are planned to be

carried out in future. However, during the tactic formationstage, any patterns which

match up to a branching point will be joined together. Although this means that a

pattern may reach a point where several branches must be chosen from, it also means

that any significant links across branches will be regroupedtogether. As such, these

122 Chapter 8. Conclusion

connections may be applied together during the applicationstage.

In applying the tactics, they have been tested with a naive search method. This

type of method is extremely inefficient and so although the new tactics perform well

in this setting it is doubtful that they would perform well against any automatic prover

which uses more sophisticated techniques. It would be interesting to examine their

performance when added as an extra heuristic to a more sophisticated prover.

8.3 Related Work

Before this project the LearnΩmatic project was the most similar attempt to automat-

ically formulate tactics. In chapter 2 we described how Kerber, Jamnik, Pollet and

Benzmüller utilised the technique of least general generalisation to learn new proof

methods for various domains.

Their project requires that a family of similar proof be carefully hand chosen. Al-

though we have previously described a method to automatically group proofs together

in order that the resulting tactics will be more successful,this grouping is still far more

general than that used by LearnΩmatic. Unlike IsaNewT, the LearnΩmatic approach

learns proofmethodswhich encompasses preconditions, postconditions and a tactic in

order to construct proof plans. Their higher-level approach increases complexity re-

sulting in the requirement that every proof to be learnt frommust be an instance of the

pattern.

The IsaNewT approach learns patterns from a lower-level within the proof, so no

additional information is required and learning can be performed from any diversity

of proof corpus. Restricting the proof scripts to specific domains is not necessary, it

simply provides a better quality of final tactic. In any case,assigning proofs to domains

as suggested can be fully automated.

Both Silver (1984) and Desimone’s (1987) work with precondition analysis learn

new proof steps which can be equated to learning new tactics.The reuse of existing

proofs in both cases has a direct relation to the work presented here. However both

Silver and Desimone generalised single successful proofs in order to develop an new

method. IsaNewT differs significantly from this approach inthat a broad range of

proofs are examined in order to find similarities which can then be reused.

Recently, Alison Mercer has written an extension to IsaNewTwhich uses the pat-

terns discovered in the initial stages of IsaNewT as a primerfor a recommender sys-

tem within Isabelle. Her work (PGTips) is integrated into the Proof General [Aspinall

8.4. Further Work 123

(2000)] scripting system to provides users with a ‘recommend’ option while they write

a proof. At the beginning of an Isabelle theory file, the user must input any depen-

dencies on existing theory files. This dependency is used to select the set of patterns

which should be used (the patterns are grouped according to the sets of theories they

were trained on).

When a user reaches a point within a proof where they require arecommendation,

the click Mercer’s ‘recommend’ button in the Proof General window. This button

prompts PGTips to match the commands previously used in the proof to any patterns

existing in the pattern set. Up to three patterns with the highest probability are chosen

and their subsequent steps are returned as a recommendation.

Having Mercer’s project developed with the patterns discovered here is an ideal

usage of IsaNewT. It would be more complicated but interesting to see a similar system

which used the final tactics discovered in our project as an initial input.

8.4 Further Work

The IsaNewT methodology provides an original way to automatically produce tactics

which can be useful in a number of situations. There are a number of improvements

and extensions which would be interesting.

Firstly, IsaNewT uses only proof step information. There iscurrently no method to

include information from the subgoal. This could be a usefulinclusion to the tactics. It

would allow more specificity about the occasions when these tactics should be applied.

Inclusion of subgoal information would also allow learningof patterns of the form

‘when the subgoal containsx, then applyy’ rather than the current ‘ifa thenb are

applied, then applyc’. It may be possible for techniques which allow relationships to

be quantified to be utilised to this affect.

Inclusion of subgoal information would have the further benefit of allowing termi-

nating conditions for the final tactics. This would allow an enrichment of the current

grammar, permittingi f ...thenandwhilestatements. In particular, this would allow an

enrichment of theplusoperator by giving it termination conditions.

Discussed in the critique was the desire to extend NewT to encompass other theo-

rem provers. Provers such as COQ, NUPRL, PVS, Mizar and LEGO would be ideal

candidates for this extension. Correctly formatting the corpus from any one of these

would allow direct application of NewT.

In applying the IsaNewT techniques to other provers the doorwould be opened to

124 Chapter 8. Conclusion

extending Mercer’s recommender system to be used with theseprovers also. Using

the finished tactics as a basis for recommendation instead ofthe initial patterns would

allow a more sophisticated and robust recommendation. Indeed, Mercer’s system cur-

rently provides 3 recommendations when a request is made. Often, the patterns that

form these recommendations would be combined into one tactic at the tactic forma-

tion stage. A good extension to both projects would be to extend this recommender to

utilise the finished tactics in other provers along with Isabelle.

Many sophisticated automated provers exist. It would be beneficial to examine

the possibilities for incorporating tactics discovered using NewT into a sophisticated

hierarchy. This would allow further testing of the quality of the tactics along with,

hopefully, providing another concrete usage.

A final extension to IsaNewT would be to learn from more complicated tactics.

At the current stage, it is reasonable to test the tactics against a basic prover setup

as the tactics were learned from such low-level proof steps.It would be hoped that

if NewT’s techniques were applied to a corpus consisting of complex tactics that it

would be possible to learn in turn even more complicated tactics. For example, it

must be considered that if NewT is applied as it stands, then every available position

in a proof is replaced with the applicable tactic in place of the rule name sequences,

there would be a good basis for reapplying the tactics discovery process. In this way

it could be possible to incrementally increase the complexity of the corpus, and hence

the tactics being discovered.

Appendix A

Glossary

∨ branch An ∨ branch in a tactic can be read as “dox OR doy”. Described fully in

chapter 5.

∧ branch An ∧ branch in a tactic can be read as “dox to subgoal 1 AND THEN do

y to subgoal 2”. These are designed to reflect the original∧ branches in a proof

structure. Described fully in chapter 5.

crossover Creation of two new programs (or tactics) by combining randomly chosen

parts of two existing programs. Described fully in chapter 2.

+ repetition The + operator reflects a “1 or more” repetition. Described fully in

chapter 5.

abstraction We have produced several viable abstractions of the Isabelle proof corpus.

Each abstraction contains the information from the corpus that we use as an

input to our pattern discovery process. Each abstraction isdescribed in detail in

chapter 3.

Automatic theorem prover A fully automated theorem prover is one which requires

no human intervention to find a proof of a mathematical theorem.

class For the purposes of abstraction, we have in some cases grouped the rules into

classes. These describe the type of rule used, such as simplification rule, defini-

tion, rewrite etc.

direction Proofs in Isabelle can be formed either forwards or backwards. Direction

denotes which way the rule should be applied.

125

126 Appendix A. Glossary

drule, rule, erule, frule These are the directional instructions used in Isabelle proof

steps. They are described full in chapter 3.

Genetic Programming (GP) Genetic Programming is an evolutionary technique pio-

neered by John Koza which is used to incrementally adapt a population to satisfy

a specified criteria. It is described in detail in chapter 2.

Interactive theorem prover An interactive prover is a theorem prover which is often

designed to be closer to a proof assistant. At each stage a user must input the next

proof step(s) and the prover then ensures that a correct proof has been generated.

macro A macro (mx) is used to denote a common subtactic as shown in figure 5.12.

Described fully in chapter 5.

mathematically similar We define the notion of mathematically similar to describe

theorems which prove facts in a similar domain. These can be agroup of theo-

rems such as theorems on geometry to the basic theorems of Higher Order Logic.

Pairwise Combination (PC) Pairwise Combination is our own GP process inspired

by evolutionary programming and GP in particular. It is described in detail in

chapter 5.

pattern Patterns in this project are commonly occurring sequences of proof steps.

These can also be thought of as simple tactics.

proof step A proof step for our purposes is based on our abstraction. It contains the

information in our abstraction which describes the transition from one subgoal

to the next. This is usually a rule name or a rule name with the direction it should

be applied, although for some abstractions it may just be theclass a rule has been

assigned to.

reproduction Copying of an existing program into new population. Described fully

in chapter 2.

rule name The rule name is simply the name of the rule applied within a proof step.

In Isabelle each rule name is the name of the theorem, definition or axiom that is

applied at that point.

sequenceA sequence is a sequence of proof steps. These are potential patterns but we

do not yet know how frequently they occur.

127

significance threshold The significance threshold is probability above which a pattern

in the pattern discovery phase is deemed to be significant. Described fully in

chapter 4.

split token The name given to a proof step which results in a branch.

tactic A tactic is a function which furthers the state of a proof. We use tactics to mean

a combination of rule steps. Our tactics can be anything froma simple sequence

of proof steps to a more complicated arrangement of proof steps which contain

operators such as∧ and∨ branching.

Theory We use ‘theory’ in the Isabelle sense to mean a (usually small) collection

of mathematically similar theorems. In Isabelle, every time a user inputs new

theorems, he must group them in a new theory file.

Variable Length Markov Model (VLMM) A Variable Length Markov Model is a

probabilistic technique which models sequences or varyinglength and assigns

them a probability.

129

130 Appendix B. Isabelle rules and theorems

Appendix B

Isabelle rules and theorems

B.1 Rule definitions

and_def: ‘‘P ∧ Q ≡ ∀ R. (P −→ Q −→ R) −→ R’’

all_dupE: ‘‘ [| ∀ x. P x; [| P x; ∀ x. P x |] =⇒ R |] =⇒ R

allE: ‘‘ [| ∀ x. P x; P x =⇒ R |] =⇒ R’’

allI: ‘‘(!!x. P x) =⇒ ∀ x. P x’’

atomize_eq: ‘‘x ≡ y ≡ x = y’’

atomize_all: ‘‘(!!x. P x) ≡ ∀ x. P x’’

assumption unifies the subgoal with an assumption

box_equals: ‘‘[| a = b; a = c; b = d|] =⇒ c = d’’

ccontr: ‘‘(¬ P =⇒ False) =⇒ P’’

conjE: ‘‘[| P ∧ Q; [| P; Q|] =⇒ R |] =⇒ R’’

conjI: ‘‘[| P; Q |] =⇒ P ∧ Q’’

contrapos_nn: ‘‘[| ¬ Q; P =⇒ Q |] =⇒ ¬ P’’

disjCI: ‘‘(¬ Q =⇒ P) =⇒ P ∨ Q’’

disjE: ‘‘[| P ∨ Q; P =⇒ R; Q =⇒ R|] =⇒ R’’

disjI1: ‘‘P =⇒ P ∨ Q’’

disjI2 ‘‘Q =⇒ P ∨ Q’’

ex1E: ‘‘[| ∃! x. P x; !!x. [| P x; ∀ y. P y −→ y = x |] =⇒ R |] =⇒ R’’

Ex_def: ‘‘∃ P ≡ ∀ Q. (∀ x. p x −→ Q) −→ Q’’

exE: ‘‘[| ∃ x. P x; !!x. P x =⇒ Q |] =⇒ Q’’

exI: ‘‘P x =⇒ ∃ x. P x’’

B.2. Some complete proof scripts 131

iffI: ‘‘[| P =⇒ Q; Q =⇒ P |] =⇒ P = Q’’

impI: ‘‘(P =⇒ Q) =⇒ P −→ Q’’

impCE: ‘‘[| P −→ Q; ¬ P =⇒ R; Q =⇒ R |] =⇒ R’’

Least_def: ‘‘Least P ≡ THE x. P x ∧ (∀ y. P y −→ x ≤ y)’’

mp: ‘‘[| P −→ Q; P|] =⇒ Q’’

notE: ‘‘[| ¬ P; P |] =⇒ R’’

notI: ‘‘(P =⇒ False) =⇒ ¬ P’’

order_antisym: ‘‘[| x ≤ y; y ≤ x|] =⇒ x = y’’

some1_equality: ‘‘[| ∃! x. P x; P a |] =⇒ (SOME x. P x) = a’’

someI: ‘‘P x =⇒ P (SOME x. P x)’’

spec: ‘‘∀ x. P x =⇒ P x’’

ssubst: ‘‘[| t = s; P s|] =⇒ P t’’

swap: ‘‘[| ¬ P_2; ¬ P_1 =⇒ P_2 |] =⇒ P’’

sym: ‘‘s = t =⇒ t = s’’

the_equality: ‘‘[| p a; !!x. P x =⇒ x = a|] =⇒ (THE x. P x) = a’’

trans: ‘‘[|r = s; s = t|] =⇒ r = t’’

B.2 Some complete proof scripts

lemma box_equals:"[| a = b; a = c; b = d |] =⇒ c = d"
apply(drule trans)
apply(assumption)
apply(rule trans)
apply(rule sym)
apply(assumption)
apply(assumption)
done

lemma conjI:"[| P; Q |] =⇒ P ∧ Q"
apply(unfold and_def)
apply(rule allI)
apply(rule impI)
apply(drule mp)
apply(assumption)
apply(drule mp)
apply(assumption)
apply(assumption)
done

132 Appendix B. Isabelle rules and theorems

lemma contrapos_nn: ‘‘[| Q; P =⇒ Q |] =⇒ P’’
apply (rule notI)
apply (rule_tac P=Q in notE)
apply simp
apply assumption
done

lemma disjI1:"P =⇒ P ∨ Q"
apply(unfold or_def)
apply(rule allI)
apply(rule impI)
apply(rule impI)
apply(erule mp)
apply(assumption)
done

lemma exI: ‘‘ P x =⇒ ∃ x. P x.’’
apply (unfold Ex_def)
apply (rule allI)
apply (rule impI)
apply (erule allE)
apply (erule mp)
apply assumption
done

Bibliography

Aspinall, D. (2000). Proof General: A generic tool for proofdevelopment. In 1985,

editor,Proceedings of TACAS 2000: Tools and Algorithms for the Construction and

Analysis of Systems, Lecture Notes in Computer Science. Springer-Verlag.

Benzmüller, C., Cheikhrouhou, L., Fehrer, D., Fiedler, A., Huang, X., Kerber, M.,

Kohlhase, K., Meier, A., Melis, E., Schaarschmidt, W., Siekmann, J., and Sorge,

V. (1997). Ωmega: Towards a mathematical assistant. In McCune, W., editor,

14th International Conference on Automated Deduction, pages 252–255. Springer-

Verlag.

Brazma, A. and Cerans, K. (1994). Efficient learning of regular expressions from

good examples. In Arikawa, S. and Jantke, K. P., editors,Algorithmic Learning

Theory: Proc. of the 4th International Workshop on Analogical and Inductive Infer-

ence, AII’94, pages 76–90, Berlin, Heidelberg. Springer.

Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., and Smaill, A. (1993). Rippling:

A heuristic for guiding inductive proofs.Artificial Intelligence, 62:185–253. Also

available from Edinburgh as DAI Research Paper No. 567.

Bundy, A., van Harmelen, F., Horn, C., and Smaill, A. (1990).The Oyster-Clam

system. In Stickel, M. E., editor,10th International Conference on Automated De-

duction, pages 647–648. Springer-Verlag. Lecture Notes in Artificial Intelligence

No. 449. Also available from Edinburgh as DAI Research Paper507.

Constable, R. L., Allen, S. F., Bromley, H. M., et al. (1986).Implementing Mathemat-

ics with the Nuprl Proof Development System. Prentice Hall.

DeJong, G. (1988).Exploring Artificial Intelligent. Morgan Kaufmann, San Fransisco,

CA.

133

134 Bibliography

Della Pietra, S., Della Pietra, V., and Lafferty, J. (1997).Inducing feature of random

fields.IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–

393.

Denzinger, J. and Schulz, S. (1996). Learning Domain Knowledge to Improve Theo-

rem Proving. In McRobbie, M. and Slaney, J., editors,Proc. of the 13th CADE, New

Brunswick, number 1104 in LNAI, pages 62–76. Springer.

Desimone, R. V. (1987). Learning control knowledge within an explanation-based

learning framework. In Bratko, I. and Lavrač, N., editors,Progress in Machine

Learning – Proceedings of 2nd European Working Session on Learning, EWSL-87,

Bled, Yugoslavia. Sigma Press. Also available from Edinburgh as DAI Research

Paper 321.

Dixon, L. and Fleuriot, J. D. (2003). IsaPlanner: A prototype proof planner in Isabelle.

In Proceedings of CADE’03, LNCS, pages 279–283.

Dowek, G., Felty, A., Herbelin, H., Huet, G., Paulin, C., andWerner, B. (1991). The

Coq proof assistant user’s guide, version 5.6. Technical Report 134, INRIA.

Eisner, J. M. (1996). An empirical comparison of probability models for dependency

grammar. Technical report, University of Pennsylvania.

Eleazar Eskin, W. N. G. and Singer, Y. (2000). Protein familyclassification using

sparse markov transducers.Proceedings of the Eighth International Conference on

Intelligent Systems for Molecular Biology, August 20-23.

Fuchs, M. and Fuchs, M. (1998). Feature-based learning of search-guiding heuristics

for theorem proving.AI Communications, (11):175–189.

Furse, E. (1995).Learning university mathematics. In: Mellish, C. (Ed), Proceedings

of the 14th IJCAI. Vol. 2. International Joint Conference onArtificial Intelligence,

Morgan Kaufmann, pp.2057-2058.

Giesl, J., Walther, C., and Brauburger, J. (1998). Termination analysis for functional

programs. In Bibel, W. and Schmitt, P., editors,Automated Deduction – A Basis for

Applications, Vol III: Applications, volume 10 ofApplied Logic Series, chapter 6,

pages 135–164. Kluwer Academic.

Bibliography 135

Gordon, M. J. (1985). Hol: A machine oriented formulation ofhigher order logic.

Technical Report 68, Computer Laboratory, University of Cambridge. revised ver-

sion.

Gordon, M. J., Milner, A. J., and Wadsworth, C. P. (1979).Edinburgh LCF - A mech-

anised logic of computation, volume 78 ofLecture Notes in Computer Science.

Springer-Verlag.

Horn, C. and Smaill, A. (1990). Theorem proving and program synthesis with Oyster.

In Proceedings of the IMA Unified Computation Laboratory, Stirling.

Ireland, A. and Bundy, A. (1996). Productive use of failure in inductive proof.Journal

of Automated Reasoning, 16(1–2):79–111. Also available from Edinburgh as DAI

Research Paper No 716.

Jamnik, M., Kerber, M., and Pollet, M. (2002). Automatic learning in proof planning.

In van Harmelen, F., editor,Proceedings of 15th ECAI. European Conference on

Artificial Intelligence.

Kohlhase, M. (2000). OMDOC: Towards an OPENMATH representation of

mathematical documents. SEKI-Report SR-00-02, Universität des Saarlandes.

http://www.mathweb.org/ilo/omdoc.

Kolbe, T. and Walther, C. (1998). Proof analysis, generalization and reuse. In Bibel,

W. and Schmitt, P. H., editors,Automated Deduction - A Basis for Applications,

Vol. II Systems and Implementation Techniques, Applied Logic Series, vol. 9, pages

189–219. Kluwer Academic Publishers, Dordrecht, Boston, London.

Koza, J. R. (1992).Genetic Programming: On the Programming of Computers by

Means of Natural Selection. The MIT Press.

Levine, J. and Humphreys, D. (2003). Learning action strategies for planning domains

using genetic programming. Technical report, University of Edinburgh.

Luo, Z. and Pollack, R. (1992). Lego proof development system: User’s manual.

Report ECS-LFCS-92-211, Department of Computer Science, University of Edin-

burgh. See alsohttp://www.dcs.ed.ac.uk/home/lego.

Melis, E. and Whittle, J. (1998). Analogy in inductive theorem proving. Journal of

Automated Reasoning, 22(2).

136 Bibliography

Mercer, A. (1996). Pgtips: A recommender system for isabelle. Undergraduate project

dissertation, School of Informatics, University of Edinburgh.

Miller, D. and Nadathur, G. (1987). A logic programming approach to manipulating

formulas and programs. InProceedings of the IEEE Fourth Symposium on Logic

Programming. IEEE Press.

Minton, S., Knoblock, C., Koukka, D., Gil, Y., Joseph, R., and Carbonell, J. (1989).

Prodigy 2.0: The manual and tutorial. Technical Report CMU-CS-89-146, School

of Computer Science, Carnegie Mellon University, Pittsburgh.

Muggleton, S. (1990). Inductive acquisition of expert knowledge. InAddison-Wesley,

Reading, MA.

Owre, S., Rushby, J. M., and Shankar, N. (1992). PVS : An integrated approach to

specification and verification. Tech report, SRI International.

Paulson, L. (1986). Natural deduction as higher order resolution. Journal of Logic

Programming, 3:237–258.

Paulson, L. (1994).Isabelle: A generic theorem prover. Springer-Verlag.

Pereira, L. M., Pereira, F. C., and Warren, D. H. (1979). User’s guide to DECsystem-

10 PROLOG. Occasional Paper 15, Dept. of Artificial Intelligence, University of

Edinburgh.

Richardson, J. D. C., Smaill, A., and Green, I. (1998). System description: proof

planning in higher-order logic with Lambda-Clam. In Kirchner, C. and Kirchner,

H., editors,15th International Conference on Automated Deduction, volume 1421

of Lecture Notes in Artificial Intelligence, pages 129–133, Lindau, Germany.

Rigoutsos, I. and Floratos, A. (1998). Combinatorial pattern discovery in biological

sequences: the teiresias algorithm.Bioinformatics, January(14(1)).

Ron, D., Singer, Y., and Tishby, N. (1996). The power of amnesia: Learning proba-

bilistic automata with variable memory length.Machine Learning, 25.

Rosenbloom, P., Laird, J., and A., N. (1993). The soar papers: Readings on integrated

intelligence.MIT Press.

Bibliography 137

Rudnicki, P. (1992). An overview of the Mizar project. In1992 Workshop on

Types for Proofs and Programs, Bastad. Chalmers University of Technology. See

http://mizar.org for up-to-date information on Mizar and the Journal of Formalized

Mathematics.

Schulz, S. (2001). Learning Search Control Knowledge for Equational Theorem

Proving. In Baader, F., Brewka, G., and Eiter, T., editors,Proc. of the Joint

German/Austrian Conference on Artificial Intelligence (KI-2001), volume 2174 of

LNAI, pages 320–334. Springer.

Silver, B. (1984). Using Meta-Level Inference To Constrain Search And To Learn

Strategies In Equation Solving. PhD thesis, Dept. of Artificial Intelligence, Univer-

sity of Edinburgh. Published as a book by North Holland.

Simon, H. A. and Newell, A. (1958). Heuristic problem solving: The next advance in

operations research.Operations Research, 6(1).

Sun, R. and Giles, L. E. (2000). Sequence learning: Paradigms, algorithms and appli-

cations.No. 1828 in Lecture Notes in Artificial Intelligence.

