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Abstract 

Over the past decade, Genetic Programming (GP) has been the subject of a 

significant amount of research, but this has resulted in the solution of few 

complex real - world problems. In this work, I propose that, for some relatively 

simple, non safety - critical embedded control applications, GP can be used 

as a practical alternative to software developed by humans. 

Embedded control software has become a branch of software engineering 

with distinct temporal, interface and resource constraints and requirements. 
This results in a characteristic software structure, and by examining this, the 

effective decomposition of an overall problem into a number of smaller, 

simpler problems is performed. It is this type of problem amelioration that is 

suggested as a method whereby certain real - world problems may be 

rendered into a soluble form suitable for GP. 

In the course of this research, the body of published GP literature was 

examined and the most important changes to the original GP technique of 
Koza are noted; particular focus is made upon GP techniques involving an 

element of concurrency - which is central to this work. This search highlighted 

few applications of GP for the creation of software for complex, real - world 

problems - this was especially true in the case of multi - thread, multi - 
output solutions. 

To demonstrate this Idea, a concurrent Linear GP (LGP) system was built that 

creates a multiple input - multiple output solution using a custom low - level 

evolutionary language set, combining both continuous and Boolean data 

types. The system uses a multi - tasking model to evolve and execute the 

required LGP code for each system output using separate populations: Two 

example problems -a simple fridge controller and a more complex washing 

machine controller - are described, and the problems encountered and 
overcome during the successful solution of these problems, are detailed. The 

operation of the complete, evolved washing machine controller is simulated 
using a graphical LabVIEW application. 



The aim of this research is to propose a general - purpose system for the 

automatic creation of control software for use in a range of problems from the 

target problem class - without requiring any system tuning: In order to assess 
the system search performance sensitivity, experiments were performed using 

various population and LGP string sizes; the experimental data collected was 

also used to examine the utility of abandoning stalled searches and restarting. 
This work is significant because it identifies a realistic application of GP that 

can ease the burden of finite human software design resources, whilst 

capitalising on accelerating computing potential. 
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I Introduction 

1.1 Introduction 

This chapter highlights technological and social changes that are 

simultaneously easing software development whilst the demand for software - 

and software practitioners - grows: Within this context, evolutionary 

computing is introduced as a possible means for creating software, and a 

target user group of electrical product designers / engineers for such a system, 

is proposed. 

1.2 The accelerating demand for software 

The main aim of this research is to propose and demonstrate a method of 

automatic software creation for certain embedded control problems using 

concurrent Evolutionary Computing (EC). This is important because the 

method can capitalise on growing computer power in a context of increasing 

software demand and finite staff. 

The continued advances in integrated circuit design, and materials science in 

general, has led to increasing speed, complexity and capacity of computer 
hardware, whilst reducing power requirements, size and cost: This trend is 

expected to continue until a molecular size limit is hit' - but the growth in 

parallel computing will maintain the momentum in many of these areas. In 

addition, the introduction of the microprocessor and Field Programmable Gate 

Array (FPGA)2 have facilitated generic hardware design, and hence the mass 
demand and production of these devices, leading to further cost reduction. 

Moore predicted that available computing power will continue to double approximately every eighteen 
months due to Increases In integrated circuit capacity: Intel suggest that this trend will continue until the 
end of the decade (http: ltwww. Intel. com/research/silicon/mooreslaw. htm). 

2FPGAs: 
Field Programmable Gate Arrays are dynamically reconfigurable, single chip devices typical comprising an 
uncommitted array of simple logic, various latched devices and RAM. The connectivity between the device 
elements and the chip outputs (and hence the overall FPGA function) Is determined by the bit pattern written 
Into the RAM. The bit pattern Is generated by an optimising compiler using information supplied by the 
designer In the form of graphical schematics, algorithms (programs) or truth tables. For more information: 
http: l/xilinx. com 
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The continued infiltration of cheap and increasingly ubiquitous computing into 

our lives would then seem to be inevitable, and this will naturally lead to a 

corresponding demand for software driven by the following factors: 

" Software for new products 

The availability of compact, powerful, low cost, low power computing 

will enable the continued introduction of new products that would never 
have been a practical proposition before; The ideal example here is the 

mobile `phone. 

" Software for upgraded products 

Market competition to add new features and generally improve products 

will force computing into existing products. In addition to cost savings, 
incorporating the type of electronic devices outlined above can reduce 

engineering effort associated with re-design and maintenance: For 

example, it is far simpler to re - work the software or FPGA - based 

hardware, than re - engineer mechanical controllers for dishwashers or 

engine ignition. 

Further to this, the demand for local wireless networking such as 
BlueTooth or IEEE 802.11 (Wi-Fi)3 promises to place computing in even 

the most commonplace of products. 

" New software products 

New software products will emerge that need to be powered by fast, 

high capacity computers with good communication links: Computer 

games and image processing software are good examples of this. 

' BlueTooth and IEEE 802.11 (WI-Fl): 
BlueTooth Is a joint venture between Nokia and Ericsson and is a complete local radio network specification 
that has been released as an open source document The advocates of BlueTooth anticipate the wholesale 
adoption of local radio networking. Further Information at: http: //www. bluetooth. com. 
IEEE 802.11 Is similar local wireless networking protocol - offering higher data rates than BlueTooth 
amongst other differences. For further Information: htta: //www. weca. neUoaensectionrndex aso } 



8 

" Revision of existing products 

Better computer resources will similarly create an opportunity for 

upgraded versions of existing software to exploit. The resources 

consumed by the Windows operating system, for example, appears to 

have tracked the hardware available. 

Unfortunately, this growth in software demand has outpaced the growth in 

software staff available with many wealthier countries importing software staff 

or exporting software development: If the staffing situation becomes more 

acute, then this may force companies developing software to consider the type 

of work offered to computer staff - during and after recruitment - if possible: 
Ideally, the software design work offered to humans would always be creative 
and challenging. 
Fortunately, this growth in cheaper computing resources has allowed possibly 
inefficient or sub - optimal solutions to be developed for some applications i. e. 

the performance of the human computer user has not really increased: Thus 

applications such as word processors can now be written in high level 

languages (with a consequent reduction in development effort) rather than 

optimised in assembler for speed and code size. 

Considering the current state of computing outlined above, namely; a rising 
demand for software, ever more useable computer resources, and a shortage 

of software staff; an opportunity for practical, automatic methods of software 

creation has arisen. In this research, Evolutionary Computing is harnessed to 

achieve this objective. 

1.3 Evolutionary Computing 

Genetic Programming (GP) [Kota 1992a] has been a research interest since the 

early 1990s, and can be viewed as an extension of Genetic Algorithm research 
[Holland 1975]. Both techniques have many similarities with the earlier work on 
Evolutionary Strategies [Rechenberg 1973] and even the first evolutionary 

computing work of Friedberg in the 1950s [Friedberg 1958]. Overall these 

methods can be classed as Evolutionary Computing, and typically use ideas 

that have analogies with the adaptation and development of natural biological 



populations to their environments. Within these populations, the goal of the 

species is to carry the best genes (that encode the most suitable individuals) 

forward Into the future generations of the population. 
In GP, the solution will typically be a single, evolved program chosen from a 

population of programs created randomly for the first generation: The chosen 
individual here will be the program whose operation most closely matches the 

desired operation - as defined by the data mapping in the training set used to 

direct evolution. 
GP is believed to be a useful search tool, most immediately perhaps, because 

it produces solutions that are ideal for the target medium -a computer. In 

action, GP can perform an efficient parallel search that both explores and 

exploits the search space: Exploration happens with the random sampling of 

the search space by the use of probabilistic adaptation of current population 

members; and Exploitation of the search space occurs by the Identification of 

a tractable fitness landscape that can be followed to a suitable solution: GP 

techniques have already been successfully applied in the solution of practical 

problems [Popp et al 1998][Nyongesa et al 2001]. 

1.4 Target users 

This PhD introduces the idea of using GP techniques to evolve software as an 

alternative to total human development; This is achieved with the prior use of 

problem decomposition into tractable code units. As detailed later, this 

decomposition is achieved by considering problem output requirements, and 

such information will be known to the target users. 
This approach is not intended for general use on all problems - instead a 

specific subset of realistic target problems is identified. Similarly, this 

approach will necessarily target a suitable class of users who are able to 

perform this necessary decomposition. 
Typical embedded control approaches are described and these will be seen to 

be shaped by the hardware output requirements of such software problems. 
Target users then, are the product designers and engineers responsible for 

adding embedded control to such products and, as such, will have the 
technical expertise needed to define the problem in terms of controller output. 
By adopting this technique, these product designers may be freed from the 

need to become practitioners in embedded control application in terms of 

programming or hardware design; and the alternative - the expensive and 
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possible unreliable outsourcing of such work - can be avoided. Similarly, later 

maintenance or re - design could involve re - running the system with a new 
training set. 

1.5 Research aims and objectives 

The aim of this research is to propose and demonstrate a method of automatic 

software creation for a subset of embedded control problems, using 
concurrent EC. 

The objectives of this research are as follows: 

" To examine the published GP research literature in order to establish 

whether any general trends exist: Particular attention will be paid to 

work relating to the use of parallel or concurrent methods in the 

creation of practical application software. 

" To examine the existing practice in embedded control in order to 

highlight distinct features in this type of software construction that 

could be advantageous in automatic software creation. This will 
facilitate the identification of suitable bounds within which GP can be 

realistically used for software creation. 

9 To develop an EC - based system capable of creating a defined subset 

of control applications using a finite, universal language set that 
facilitates the majority of software action, in a simplistic, efficient form. 

" To demonstrate the system above by the production of a solution for a 

realistic, relatively complex control problem with multiple outputs and 
data types. 

" To experimentally examine the operation and sensitivity of the EC 

system developed in order to determine the scope of applicability i. e. 
will the system need to be tuned for each new problem type? 

" To develop a visualisation tool to demonstrate the operation of the 

evolved control application. 
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areas of outstanding work, widening the scope of system applicability 
and improving the system performance. 

1.6 Document map 

The remaining chapters of this document are organised as follows: 

Chapter 2: Literature search 

Popular computational search methods are outlined here, but the main 
focus of this chapter is GP: The major trends in GP research are sought, 

along with significant changes to the original GP technique of Koza - 
especially where these are believed to be directly relevant to the 

automatic construction of practical programs for real application. 

Chapter 3: Control systems 

The temporal and structural hierarchies that make many embedded 

control programs distinct from other types of software, are described 

here: Such an approach to software construction (and hence problem 
decomposition) is proposed as potentially beneficial in EC software 

creation. Finally, the realistic operational bounds for such a creation 
technique (suggesting a target problem class) are outlined. 

Chapter 4: The experimental system 

Details the EC system used to implement the proposed software 
creation scheme: This includes information on the EC approach, 
language set, data types and parameters used. Two demonstration 

problems are described; the first for a simplistic fridge controller and 
the second for a relatively complex washing machine controller. 
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Chapter 5: Experimentation 

The problems encountered, and the solutions adopted, during the 

development of the EC software creation system are described here: 

These include problems of premature convergence, appropriate fitness 

assessment and improving solution accuracy. The sensitivity to 

population size and program length - with regard to search performance 

- is experimentally examined, along with strategies for search 
termination and restarting. Lastly, a graphical simulation of the entire 

washing machine controller and OS operation is described. 

Chapter 6: Conclusion 

Here the completed work is examined, related to the research objectives 

and the contributions to knowledge detailed. This leads on to the 

suggested subjects for future research work. 
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2 Literature search 

2.1 Introduction 

This chapter outlines the various methods of metaheuristic computational 

search and then focuses in on Genetic Programming (GP) - which is central to 

this research: The body of published literature relating to GP is examined and 

categorised into one of three general types in an attempt to perceive trends in 
GP research. In addition, major changes to the original GP technique are 
highlighted, along with enhancements that may increase the real - world 

applicability of the technique; and the intention is to place this work in that 

context. 

2.2 Metaheuristic Search and computational optimisation 

All searches attempt to find something; in computational search the target may 
be the best solution in a search space consisting of possible solutions. 
Normally the method of obtaining a suitable solution would be to design it - if 

this is possible. 
An alternative to design may be to reformulate the problem as a search 

problem and, in many cases, this may be a more appropriate approach for 

complex, combinatorial problems. Clarke [Clarke et al 2003] actively promote 

metaheuristic search as an alternative technique that can span the software 

engineering cycle; suggesting that as software engineering is actually 

engineering, then the real task involves satisfying many parallel constraints - 
rather than finding a single solution: Software engineering can thus be seen as 

suitable for metaheuristic approaches because the task will involve competing 

constraints, a large search space and cost function complexity. (Clarke does 

not include the actual creation of software amongst the suggested software 

engineering task targets). 
As heuristic techniques, metaheuristic computational searches do not 

guarantee to yield the optimum solutions and are not necessarily repeatable 
processes due to their probabilistic nature. Applications for such optimization 
techniques have included financial forecasting, cost estimation, process 

scheduling and other forms of complex optimization problems. They are 

especially valuable where the problem at hand cannot be easily specified and 

so coded for conventional algorithmic solution i. e. by standard computation, or 
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where the combinatorial possibilities make the search unfeasible by that 

method. Hillclimbing, Simulated Annealing (SA), Tabu Search (TS), Genetic 

Algorithms (GA) and Genetic Programming (GP) are all seen as metaheuristic 
search techniques that embody the above description. 

2.3 Hillclimbing 

Hillclimbing is a method of seeking the optimum solution to a problem by 

incrementally advancing the focus of the search over the search space (from a 

random starting point initially) towards an improved solution. The 'next move' 

is to be found by examining the values of solutions in the immediate 

neighbourhood of the current position, and then progressing to a better 

position - should one exist. This Important region that can be considered as 

the `neighbourhood' is determined by the operations available and the problem 

representation or coding used. In this way, the hill climbing method can be 

seen to rove the search space, moving upward to a maximal or optimum 

solution (or downhill to a minima if sought) provided that the search space Is 

continuous. The incremental scope of such a technique is likely to be thwarted 

by any discontinuities encountered, and also may become trapped in local 

optima, unable to reach a possible global optimum. Hillclimbing is a very basic 

technique, but still suitable for certain problems where the search space 

landscape is amenable I. e. unbroken and without extremes of gradient. A 

current application of hillclimbing lies in image processing [Bunyaratavej & 

Miller 2002]: Here, HC is used to optimise image encoding whilst minimising 

the creation of digital noise in an environment where the `cooling' effect of SA 

[see 2.4 below] is seen as too computationally Intensive. 

2.4 Simulated Annealing 

Simulated annealing is a strategy that can be employed to Improve upon basic 

hillclimbing or similar techniques. The process Is analogous to that used to 

change the molecular structure of metals (and other materials) by heating, 

followed by slow cooling, which results in the annealed material becoming 

softer. In the computational equivalent, the heating and slow cooling is 

simulated by loosening the restrictions on the next move during the climb, i. e. 
to allow worse solutions for a number of iterations. As the search progresses 
the likelihood of accepting a poorer move is gradually reduced (the process 
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`cools'). The resulting search will have a wide search neighbourhood initially 

(which may ultimately allow for the discovery of a better overall solution) 
before focussing In on any optimum solution found. 
Simulated annealing has been recently used to tune the coefficients for closed 

- loop motor speed control directly, either on or off - line, without resorting to 

a mathematical model of the target system [Acarnley & AI-Sadiq 2002]. SA Is 

particularly appropriate here because this technique is capable of spanning the 

search space effectively and so cope with the discontinuities inherent in the 
drive I motor / load combination. 

2.5 Tabu Search 

With Tabu search [Glover 1990] the next move across the search space from 

the current position is made by considering the move against a list of moves 

that are deemed `Tabu'. The forbidden or Tabu moves are collected as the 

search continues, using both short and long term memory of the search 

progress. The result can be a more efficient search, requiring fewer moves and 

generally less computational effort as knowledge about the characteristics of 
the search space are gathered. As part of strategies to escape local optima 

without losing any global optimum found, the Tabu restrictions are sometimes 

relaxed. 

2.6 Evolutionary Search 

Both SA and Tabu search can be added to other search techniques and both 

will give the search a better chance of achieving better results than, for 

instance, HC alone. This is a feature that can be seen to be inherent in 

evolutionary search techniques like Genetic algorithms[Holland 1975] and 

Genetic programming[Koza 1992]: A search using Genetic Algorithms Is 

distinct from the above techniques in that it employs a population of candidate 

solutions that effectively perform the parallel sampling of the search space. 
Additionally, the use of a population allows GA to sample disjoint regions 

without the loss of any search progress already made. 
GAs are classed as an evolutionary computing technique because the 

population can be seen to evolve so that the best - or most fit - solution to the 

problem at hand, will come to dominate the population, while less fit 
individuals disappear. Consequently, the Darwinian Ideas of speciation and 
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extinction in evolution are frequently used in the description of these search 
methods. 
The notion of search by evolutionary methods is not new: At the inception of 

electrical computing Turing (according to Bennett [Bennett et al 1999]) 

suggested that all intellectual activity consists of a mix of the three types of 

search: cultural (knowledge - based), genetically - based or a search through 

the number space. 
The evolutionary operations of Selection, Crossover and Mutation are common 
to both GA and GP, though the detail reflects the differences in the operating 

environments. In GA the population is made up of a number of chromosomes 

that are formed by representing the parameters of the system ( genes ) 

together as a continuous binary string. This abstraction of the system is 

usually referred to as the phenotype and the system represented by it as the 

genotype. 
In both GA and GP, population convergence can be used to signal an 

appropriate time to abandon further searching: In this thesis, the term 

Convergence is used to describe a situation whereby at least ninety - five 

percent of the population members are identical, and that this situation has 

persisted for at least the previous fifty generations. Here, the term Premature 

Convergence is used to denote a situation whereby the population has 

converged upon a solution - but a better solution is known to exist. This 

premature search stall upon a sub - optimal solution generally indicates a 
failure in the search method that allows the system to become trapped and 

unable to make further progress. Convergence is a condition whereby the 

range and variety of genetic material in the population is approaching a 
diversity minima: In this thesis, the term Diversity is used to refer to the variety 
in the population members: Thus a maximally - diverse population will contain 

only unique individuals whose differences cover the whole individual i. e. in 

both content and structure (in the case of GP). A highly diverse population will 
have a better chance of containing the components initially to build an ideal 

solution. 

2.6.1 Evolutionary search: Genetic Algorithms 

The Genetic Algorithm search [Holland 1975] proceeds in discrete generational 
stages, with each succeeding generation being formed by selection from the 

current generation of chromosomes. This selection process, along with the 



17 

other operations and the creation of the initial population, are generated 
probabilistically. 
The selection operation may be performed by a number of methods with 
tournament selection [Banzhaf et al 1998b] and roulette wheel selection 
[Banzhaf et al 1998c] used widely. With tournament selection, two or more 

chromosomes are selected randomly and the tournament winner is the 
individual judged to represent the best solution to the problem - the fittest. 

The fittest then forms part of the next generation. Typically the tournaments 

continue until the next generation is fully populated with winners. 
In roulette wheel selection, each population member is represented by an 

individual roulette wheel slot but unlike its Las Vegas counterpart, the slots 

have varying widths according to the fitness of the chromosome. Selections 

for the next generation are then made by randomly generating the distance that 

the simulated roulette wheel ball will travel before landing in a slot and 

selecting an individual. With a fitter chromosome having a wider slot it is more 
likely to appear in the next generation. In contrast with tournament selection, 

roulette wheel does not guarantee to pass on the fittest member of the current 

population nor will it definitely reject the least fit - though these events are 

more likely - especially in the early generations before the search has started 

to converge. 

Premature convergence is avoided with the GA technique due to its ability to 

sample the search space whilst refining the current best solution. This 

sampling ability is only possible if new parameter / chromosome values are 

continually created and tried. The initial population, created randomly, 

contains this necessary diversity though it is quickly lost as the relatively unfit 

chromosomes are removed and replaced with copies of fitter contestants. 
Diversity is reintroduced with the use of the mutation and crossover operators. 
Mutation strategies are varied but typically involve randomly selecting a 

chromosome to mutate and then randomly inverting a bit therein. Obviously, 

non- binary representation mutation must be handled more carefully. 
Similarly, crossover operations create new search opportunities by the 

creation of new chromosomes constructed by exchanging fragments of 
existing chromosomes. 
All these processes have analogies with natural populations: Selection with 

speciation and extinction; Crossover with reproduction and the sharing and 

splitting of parent DNA, and Mutation with DNA corruption by oxygen free 

radicals, radiation etc. 
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2.6.2 Evolutionary search: Genetic Programming 

Genetic Programming (GP) can be seen as a hierarchical extension of GA 

where the chromosome Is replaced by a parse tree built of symbols. The 

symbols used will reflect the executing environment of the GP and may be 

statements and constructs in 'C' or VHDL (see 2.7.3.8). 
Unlike many other Artificial Intelligence (Al) and Machine Learning (ML) 

techniques, GP does not need up - front analysis to discover the size of the 

problem: The relative freedom of the GP trees to grow as necessary in order to 

define the solution is distinct from, for example, Artificial Neural Networks, 

where the network structure is usually determined with the aid of heuristics 

and remains static. With GP, the size (and structure) of the solution produced 

is part of the answer. Further to GP's ability to self - structure, GP can create 

and then reuse symbol or program blocks (see 2.7.3.4). This property allows 

the GP technique to scale up to tackle larger problems if necessary. 

2.6.3 GA and GP: Random search? 

The extent to which the GA I GP search can be considered random is open to 

debate, though some random searching will be required to discover unrelated 
but fruitful areas of the search space, the overall search trajectory will need to 

be driven. The problem representation used will ideally allow the mutation and 

crossover operations to largely operate within the immediate neighbourhood 

of the current search focus but with some more distant sampling. This 

consideration will allow some hillclimbing to complement the random search 

action. Beasley [Beasley et al 1993a and 1993b] suggests that GA Is a 

successful technique because it both explores and exploits the search space: 
The randomness is seen to explore the search space whilst the hillclimbing 

action can be seen to exploit it. 
The operation of a random search and an evolutionary search using GP are 
directly compared by Haynes [Haynes 1998j. The conclusion drawn here Is that 

random search may be more efficient with low problem complexity but as 

problems become more complex, and the search area expands, the 

competitive element of GP becomes necessary to guide the search. 
The deterministic nature of all elements of electronic computers Implies that 

any random numbers generated are not truly random: The quality of this 

process should ensure better sampling of the search space and the option of 
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varied solutions. However, this expectation was not borne out by Meysenburg 
[Meysenburg & Foster 1999] in their study of randomness and GA 

performance: In one experiment, the use of an inferior quality random number 

generator resulted in the best GA performance, and generally no link between 

generator quality and GA performance could be found. Cantu-Paz [Cantu- Paz 

2002] rejects this finding as a general result, and suggests that good generator 
quality is essential for the initial population at least. Meysenburg has now 

attempted to explain this anomaly [Meysenburg et al 2002] by suggesting that 

with poorer generators, the deviation between the idealised and the actual 

search path taken will be greater with inferior generators; and this can 

sometimes allow better, though more obscure, solutions to be discovered. 

2.6.4 How GA and GP may work 

In an attempt to explain the success of GA ! GP with some complex problems, 

two main theories have been offered; Holland's Building Block hypothesis 

[Holland 1975] and Goldberg's Schema theory [Goldberg 1989]. 
In the Schema Theory, a schemata is a binary string that may contain either "I'l 

'0' or'don't care' values so that a given binary chromosome string may be 

seen to contain a number of different schemata (using the `don't care' 

notation). With this view, it can be shown that chromosomes containing 

schemata having a higher fitness contribution will tend to increase their 

representation in the population due to the evolutionary action. As a 

chromosome can contain many schemata substrings simultaneously, It can be 

seen that there is an implied parallelism in the GA operation, making GA a very 

efficient computational technique. 
The Building Block hypothesis suggests that a GA search will be successful if 

the schemata are small and relatively independent in terms of their 

contribution toward overall chromosome fitness. The GA process can then be 

seen to operate by building upon blocks of high fitness schemata. This 
hypothesis can be used as a guide for good GA problem encoding, or as a 
heuristic for the potential success of a GA approach to a problem. 
The original schema theory has been criticised because it only relates to the 

next generation - rather than attempting to predict the overall search action 
[Whitley 2001][Langdon & Poll 2002]. 
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Although the structure of interacting GP trees may differ, and so complicate 
any schema theory for GP, exact schema theories that predict schema 
propagation Into the next generation (using single point crossover), have 

existed for some time [Poli & Langdon 1997]. Poll [Poll 2001] has now 

produced a specific theory for GP with subtree - swapping crossover and a 

more general form that may be applied to other types of crossover. In this work 
the 'don't care' operator may replace a single function or a single terminal. 

2.7 Genetic Programming research 

A decade after its introduction, GP continues to be a popular research subject; 
This may be because GP encompasses many aspects of the other 

metaheuristic search techniques - by result if not by method. Another key 

factor in the popularity of GP, may be the direct and optimised relationship 
between the most common symbols of GP - software constructs and 

statements - and continually improving computer hardware: With a particular 

microprocessor being optimised to work with a particular language, `C' for 

example, any hardware advances will directly carry GP forward. This is 

especially true in the case of parallel GP (see 2.7.3.7,2.7.3.9,2.7.3.10) which 

can be readily mapped onto the parallel computer hardware that is likely to 

supersede its ubiquitous serial counterpart. 
This direct connection between the target host (embedded computers) and the 

software, makes GP the practical and efficient choice for the automatic 

creation of solutions that are both self - structuring, and contain parameters 
that can be optimised. Thus, the remainder of this chapter is devoted to GP, 

which is central to this research. 

2.7.1 An examination of Genetic Programming research trends 

By examination of the Pascal and INSPEC databases hosted at BIDS, the 

direction of GP research since it first appeared here in 1993, can be traced. 
The results of this analysis are summarised in Table 2.1. 
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Year GP Type A Type B Type C Type U 

paper Introducing Improving Applying Unclassified 

s GP GP GP 
1993 2 - - 1 1 

1994 5 2 - 1 2 

1995 17 6 5 3 3 

1996 41 2 9 15 15 

1997 97 1 23 48 25 

1998 130 13 41 64 12 

1999 114 13 37 51 13 

2000 & 

2001* 

724 164 200 158 200 

2002* 220 58 63 30 69 

2003/1 to 

2003/6* 

72 30 10 6 26 

Table 2.1: GP publications classified by type and year. 
[N. B. The original literature source was the BIDS PASCAL database; the latter 

papers (denoted by *) are available on the BIDS INSPEC database - the 

PASCAL database being no longer available. ] 
The papers can generally be sorted into three main categories: 

2.7.1.1 Type A Literature: Introducing GP 

This literature is concerned with Introducing the GP technique as a method for 

existing problems. The problems addressed have historically been tackled 

using other methods and GP is suggested as a successful alternative. Though 

the actual use of GP is typically to model the target system for the purposes of 

optimisation, classification or prediction, a significant proportion of the 

content of these papers is often devoted to introducing the basics of GP to the 

unfamiliar. Generally the work of the `Introducing GP' literature is to perform a 

paradigm shift, whereby ideas from GP research are applied to another 
discipline, rather than progressing the field of GP directly. These papers are 

usually published in journals whose primary concern is not GP or even 
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computing and typically these involve a basic `tried - and - tested' 
implementation of GP. An example of a Type A'Introducing GP' paper is: 

`Animats : Computer-simulated animals in behavioural research' [Watts 

1998] 

Which was published in the Journal of Animal Science 

2.7.1.2 Type B Literature: Improving GP 

The thrust of the literature In the B category is toward advancing the GP 

method rather than applying it to a given problem. These papers are usually 

published where the primary interest Is GP. The focus is toward suggesting 

and assessing variants on the standard GP mechanism. This includes novel 

methods of mutation and crossover, alternate ways of managing the GP 

population, new ways to represent problems, strategies for dealing with 

operational problems etc. In summary, the Type B `Improving GP' literature is 

concerned with enhancing GP operation rather than using it directly as a tool. 

A good example of a Type B `Improving GP' paper is: 

`Genetic programming with active data selection' [Zhang & Cho 1999] 

2.7.1.3 Type C Literature: Applying GP 

These papers are concerned with using GP to perform an evolutionary search 
for an improved result. Some discernible subcategories here include the 
following: 

2.7.1.3.1 Modelling / classification / prediction / regression systems 

Here the objective is to evolve a model of the target system. Once created, the 

model can be used to classify new input or predict output by extrapolation or 

generalisation from partial or complete input. Example titles are: 

`Automated discovery of polynomials by inductive genetic 
programming' [Nikolaev & Iba 1999] 
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'A genetic programming approach to rainfall-runoff modelling' [Savic et 

al 1999] 

2.7.1.3.2 Hybrid systems 

Usually these combine GP with other Artificial Intelligence technologies such 

as Artificial Neural Networks to form an improved combined system, for 

instance: 

`Efficient evolution of asymmetric recurrent neural networks' 
[FigueiraPujol & Poll 1998] 

2.7.1.3.3 Co-operative systems 

Here the model evolved is to perform optimally in conjunction with other 
individuals or agents, for example: 

`Evolving team Darwin United' [Andre & Teller 1999] 

2.7.1.3.4 Applications 

" Controllers: usually used to model and so control external, typically 

motive systems. An example is: 

`Evolving an environment model for robot localisation' [Ebner 

1999] 

" Data mining systems: the GP system is evolved usually in conjunction 

with the database, to create more useful access I retrieval systems. 

`A relational data mining tool based on genetic programming' 
[Martin et al 1998] 

9 Creative systems: the fitness criteria used for evolutionary 
assessment here describes music, electronic circuits etc. 
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`Synthesis of topology and sizing of analogue electrical circuits 
by means of genetic programming' [Koza et at 2000] 

" Program generation: GP is used to evolve programs that meet the 

required objectives when executed. These programs can also be 

sequences of hardware blocks rather than software constructs and 

execute directly in (Field Programmable Gate Array) hardware. An 

example is: 

`Genetic programming using self-reconfigurable FPGAs' [Sidhu 

et al 1999] 

The Type C 'Applying GP' papers are distinct from the Type A'introducing GP' 

papers (which also involve the application of GP) In that they are targeted at 

the GP research community directly, have little introductory information on GP 

and may Involve experimentation with a new or Improved GP process. 

2.7.1.4 Type U Literature: Unclassified papers 
The majority of these papers were primarily concerned with computational 

search methods other than GP I. e. GA or ES; while some were on GP but defied 

easy classification. Other papers contained the phrase 'genetic programming' 

used in the context of child psychology, biological genetics or other non- 

computing disciplines. 

2.7.2 GP research trends observed 

From this simple examination, it would appear that research into GP may have 

peaked in years 2000 and 2001: Certainly it would seem that the proportion of 

type B papers (improving the GP technique) is falling though this may simply 

indicate that the basic improvements have been investigated. This coincides 

with a proportional growth in type A papers (introducing GP). Together, these 

two trends may be indicative of the maturity of GP research; and the 

consequent spread of this technology into other research fields and 

applications. 
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2.7.3 Advances on the basic GP technique 

In order to 'frame' this research, and place it in context with other GP research, 
It Is useful to consider other changes to GP: 
Since the Introduction of GP by Koza nearly a decade ago, the basic technique 

has been Improved in a number of ways, some of these are listed above 
[2.7.1.2]. In many cases GP is seen as an interesting academic pursuit and 
targeted at 'toy' problems such as the Santa Fe Ant Trail or the EvenP 5 

problem4. 
These efforts at the solution of such `toy' problems are important because this 

work may form the substrate upon which the wider adoption of GP is built. 

The belief that many Software Engineering problems may be recast as search 

problems, where GP may be used to search the space of possible programs, is 

certainly appealing. This attraction increases as the demand for software 

outstrips the supply of human effort available [1.2]. 

Improvements upon the basic GP technique continue to be made - new Size 

Fair Crossover [Langdon 2000] for instance - however GP still needs to scale 

up to match more complex problems and gain wider application. The 

scalability is being addressed by the following outlined advances on the 

original Koza GP. The general areas tackled include: 

" Better representation: 
The use of Grammars and Strong Typing can effectively reduce the 

search space and possibly make it more tractable. 

" Problem partitioning and reuse: 
Tackling more complex problems will require more complex solutions. 
This necessitates GP Identifying and using structure within the solution 
by the evolution of reusable functions and storage of shared work 

within communal memory. 

4 The Santa Fe Ant Trail and EvenP 5 GP benchmarks: 
The Santa Fe Ant Trail is a test designed to compare evolved operational strategies. The test comprises a 
closed environment with 'food' scattered randomly within it, The simulated ant has to move about the 
environment, collecting all the food, using the allowed motion steps of left, right or ahead; The ant can see 
food one square ahead. The search motion strategy evolved is run in a loop until all the available food has 
been recovered. The problem is a deceptive scheduling problem with many local optima. 

The EvenP 5 problem requires the evolution of a five bit even parity generator. This test to compare GP 
methods has been used with many slight variations upon the number of bits, the parity sense, etc. J 
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" Better Implementation: 

Finite computing resources demand finite solutions. Dealing with 
impractical GP tree length or bloat, along with concurrent solutions, will 

make better use of the resources available for real world application. 

" Better fitness assessment: 
Finer problems require better targeted solutions. Accuracy, greater 
reliability and solutions that are generally a better and more concise 

match to the problem are needed. The use of (possibly) Interactive tools 

to guide the solution of problems with a aesthetic dimension, may prove 
to be a most fruitful research area. 

These issues are widely inter-related and addressed in some proportion by the 

technical advances detailed below. 

2.7.3.1 Strongly typed GP 

Allowing a GP system to perform arbitrary crossover and mutation operations 

can easily lead to the creation of both semantically and syntactically Invalid 

code. For instance, a terminal value that acts as a parameter for a function call 

may need to be of a given type. Another example would be an operator that 

requires two arguments might only be provided with one, subsequent to code 

mutation or crossover. The code may be described as 'closed' If such 

problems are avoided. Much early research into GP, including some of Koza's 

early work, circumvented this problem by simply evolving In the LISP 

language. 

The semantic correctness of evolved code Is of potential benefit If the GP 

system Is being used to discover new aspects of the problem domain, or if 

some confidence is required in the validity of the relationships described. In 

these situations, the explanatory power afforded by semantically correct 
`readable' code is desirable. Alternatively, one of the motivations for using GP 

is to allow its inherent creativity to attempt to produce better solutions than 
human programmers. This `black box' approach would generally be restricted 
by the imposition of demands for readable code. 
Syntactic correctness however, is more clear cut; If the code being evolved by 

our GP system Is to be compiled or Interpreted before being executed, then the 
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evolution process will simply fail because the code will not run. However, if the 

code symbols used are not those for a validated compiler (such as the Ada 

compiler) but are lines of Assembler - level constructs [Nordin et al 1999] or 
`C' [O'Neill & Ryan 1999] then the code may exploit undocumented and 

unsupported features of the hardware or software environment. This code may 

then operate in ways that are not repeatable or transportable for use beyond 

the immediate context. In the case of GP code that describes hardware, such 

unrestrained evolution may well lead to the destruction of the host hardware 

(see 2.7.3.8). 

The use of strongly typed GP allows evolution to operate between the above 

two extremes i. e. neither too constrained so as to restrict creativity unduly nor 

too wild so as to be of restricted use. Strong typing can be seen to restrict the 

search space usefully and in its simplest form the types available at mutation 

and creation are restricted. 
Alternatives to strong typing include the use of Context Free Grammars 

[Whigham 1995]. discussed in section 2.7.3.6 and the use of polymorphism. 

Martin [Martin 2000] uses a polymorphic approach in a prototype system to 

evolve intelligent telecommunications networks. With his technique, values of 

different types are maintained simultaneously in memory and chosen 

accordingly. A similar approach is to coerce the stored variables at run time to 

the appropriate type. As Martin points out, simple coercion can often be 

meaningless; for example, the coercion of a Boolean type to a telephone 

number - In addition to being computationally expensive. 

2.7.3.2 Program bloat 

The unrestrained action of crossover in GP can lead to excessive program 
length when already lengthy trees are combined. It is possible that much of the 

code In these trees Is never executed or, if executed, adds nothing to the task 

at hand. Such redundant code sections have become known as'introns', and 
these can obviously Impact the real world use of GP for practical applications 
due to their requirement for storage and possibly processing resources. It is 

clear that the presence of Introns during evolution (or at least the Initial stages) 
should be tolerated as the carriage of unused genetic material will add to 
diversity. This stored diversity can lead to improved sampling, when sections 
of this dormant code material are called into use at a later stage by the actions 
of crossover or mutation. The growth of Introns can also be favoured by the 
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evolutionary process because these code portions form 'padding' to protect 

active and successful code sections from destruction by crossover or 

mutation. Unfortunately, with computer resources being finite, code bloat In 

GP solutions needs to be addressed. A simple solution is to add tree length to 

the fitness assessment criteria and hence evolve out excessive solutions 
during the closing stages of evolution. Simple length alone however, may not 
be a very useful measure of usefulness: Podgorelec [Podgorelec & Kokol 2000] 

states that 'software is the most complex of human constructions' and 

attempts to use a fractal complexity measure to attack program bloat. With 

this method, Podgorelec uses a correlation measure to distinguish between 

random and useful sections of code. The resulting fractal structure overview of 

the code allows for more intelligent pruning of the GP trees. 

2.7.3.3 Tuning GP 

As with many other Al techniques, tuning or optimisation can be associated 

with overfitting the training set and typically occurs at the expense of 

generalizational abilities of the trained system. Yeun [Yeun et al 2000] attempts 
to tune his GP system and avoid such problems by using a two stage 

approach: Firstly the primary GP trees are evolved in the usual way by 

application of a training set and assessing tree fitness in the current 

generation. These primary trees will form a possibly sub - optimal function 

approximation to the target solution. The next stage Is to form auxiliary trees 

using a Linear Associated Memory technique that assigns weights to nodes In 

the primary tree. These weights'are then selected by adjusting their values by a 

small random factor and applying a portion of the training set. The overall 
effect allows the system to creep towards a global optimum. 
A different two stage approach was adopted by Howard [Howard et al 1999] to create a system to 

detect ocean targets from radar images. Here a first stage GP detector is trained using clear ocean and 

perfect target images. Next this detector is fed real images and the false positives recorded. A second 
detector is then trained using the false positives data and the clear images. Finally a composite detector 

is created by using the output of the first detector to qualify the output of the second. Howard also 

suggests a technique whereby the constants in a GP tree may be optimised between generations using a 
GA approach. 
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2.7.3.4 Function evolution 

In order for GP to be a tool for use against larger practical problems it should 
be scalable. One method of improving scalability is to ensure that the GP 

solution can be expanded to match the problem. Ideally such an expansion 

would need to be made in such a way that the evolutionary process undertaken 

was still a practical proposition. One way of achieving this goal is to encourage 
the development of some form of hierarchical structure of re - used code units. 
Koza [Koza 1992c] describes such items as Automatically Defined Functions 

and these include subroutines, functions, loops and iteration. The insertion of 

such reusable code units effectively allow the problem to be partitioned In a 

useful way. 
There are several basic operations relevant when ADF subroutines (for 

example) are required; Subroutine duplication, creation and deletion, and 

parameter duplication and deletion. The process of subroutine creation 
involves choosing a point in a GP tree at random and working downward to a 

second random point. The complete code section is removed and stored 

separately as a subroutine and a reference to it replaces it In the tree body. 

In the duplication operation, an existing subroutine in the subroutine store Is 

copied and references to the original subroutine are replaced randomly by 

references to the duplicate. The effects of mutation and crossover will then 

cause the duplicate and the original to diverge. 

A slightly different approach to GP with ADFs is described by Ahiuwalia 

[Ahluwalia & Bull 1998]. In this system, a dynamic library of functions is 

maintained. The functions are formed in a similar way by compressing 

sections of the GP tree and transferring them to a function library. Diversity is 

maintained by the occasional expansion of a library tree back into the GP tree 

population. The approach here is to randomly swap calls to the library 

functions as the trees are evolved. Functions that are infrequently used as the 

generations progress are dropped from the library. Ahiuwalia's system Is 

intended to progress both the functions in the dynamic library and the GP 

trees by preventing a less fit function `hitching a ride' on a fit free or vice - 
versa. 
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2.7.3.5 Using memory 

The learning, storage and re - use of information is a method widely used to 

enable higher forms of life to tackle more complex problems. In GP, Koza 

[Koza 1992d] suggests many ways in which knowledge, instilled over 

generations, can be stored in memory added to the system. These include 

more complex forms such as indexed memory with two degrees of access. 
Expanding on this, Haynes {Haynes 1998] uses a collective memory system 

where the search task is split by the use of collective memory to store partial 

solutions. The collective memory or knowledge base here is filled by evolved 

search agents with direct access to the search space. In turn, these stored 

partial solutions are used by evolved process agents to complete the system. 
Forcing a separation of the search space from the secondary process agents 
in this way forces the evolution of a system that can partition the problem 

successfully. 

2.7.3.6 Grammars 

Grammars have been used to abstract the problem away from the space of 

program symbols and constructs. This can be seen to make difficult problems 

more straightforward and Leung [Leung & Wong 1995] uses a Logic Grammar 

representation to outperform a system utilising Koza ADFs. 

Ryan [Ryan & Ivan 2000] has created a system called Grammatical Evolution 

GE) whereby the solution symbols are represented In binary In a variable 
length chromosome, similar to that used In a GA. Mapping from the phenotype 
to the genotype Is performed using Bachus Naur Form rules. This ensures that 

the program code ultimately produced will be valid, and the target language 

variable. The GE system is also shown to deal with the problem of program 
bloat. 

2.7.3.7 Parallel GP populations 

The advantages afforded by the possibility of simultaneous exploration of the 

search space in GP, can be compounded by the use of multi-processor 
platforms to perform fast concurrent evolution or execution of the GP. 

Typically parallel GP systems divide the total population Into a number of 
subpopulations or demes and these demes evolve largely in isolation. 
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Diversity ( and hence new search trajectories ) are facilitated by exchanging 

some of the least fit members of one subpopulation with fit members from 

another. Fernandez [Fernandez et al 2000] combines such an Island model with 

a client - server model to manage the exchange of members between demes. In 

this paper, Fernandez establishes some heuristics about population size, 

number of populations, exchange strategies and rates etc, Of course, these 

parameter choices needed for parallel GP are additional to those facing the 
designer of a standard GP system. 

2.7.3.8 Hardware concurrent GP 

Field Programmable Gate Arrays ( FPGAs ) are dynamically reconfigurable 
integrated circuits ( ICs ) that contain arrays of generic hardware blocks and 
interconnection I gating logic. The function of these blocks and their 

interconnection and gating is determined by the bit pattern held In the 

underlying configuration memory. This bit pattern, and hence the overall FPGA 

function, can be downloaded to the device from a computer or from another 

source. 

The FPGA has two major application advantages: Firstly it can be used to 

integrate and replace a large amount of discrete ICs thus making compact, low 

cost and low power electronic hardware possible. Secondly, the FPGA allows 
for easy to maintain or dynamic solutions in much the same way that 

embedded software has the advantage over hardware in engineering solutions. 
Both these attributes make the FPGA of Interest to GP research and typically 

the FPGA is used to execute the GP using hardware function blocks as the 

symbols rather than the more usual software constructs and operations of a 

software - implemented GP. 

Executing and evolving the GP in hardware in this way, has many advantages 
[Koza 1992e] that mainly stem from the natural concurrency that can enable 

parallel execution and pipelining of the GP trees during both execution and 

evolution stages. In addition, this parallel execution can operate at up to 
hardware gating speed. 
Reetinder [Reetinder et al 1999] suggests the use of the FPGA as a self - 
contained evolutionary black box whereby an initially random configuration bit 

pattern is loaded into the FPGA. The fitness of the hardware solution defined 

by the bit pattern is assessed according to the ability of the configured device 
to perform the target task. This approach, though computationally efficient, 
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has some drawbacks in that It can evolve designs that use artefacts of that 

particular device and its current environment that are not transportable; For 

example, ambient temperature and humidity that can affect the execution 

speed of the device or the reliance on parasitic or undocumented (and so 
Inconsistent) artefacts of the device. Indeed, In some FPGA devices an 

arbitrary configuration pattern can destroy the device because active outputs 

may be connected together. 
Popp [Popp et al 1998] uses a hybrid approach whereby the ultimate GP code 
is executed in the FPGA hardware but the evolution occurs (with useful 

constraints ) elsewhere. Popp uses Very high speed integrated circuit 
Hardware Definition Language (VHDL) rather than normal software to form an 

algorithmic description of the solution in the GP parse trees. 

This VHDL description and definition of the FPGA function Is simulated to 

assess its fitness externally. Finally the evolved VHDL solution Is compiled and 
downloaded to be executed in hardware. In addition to the VHDL description 

giving a degree of explanatory power to the solution, the time consuming steps 

of post - compilation design placement, routing and downloading are avoided. 
However, the use of a simulation to model the FPGA operation in abstraction 

should be noted as a disadvantage of this method. 
A different attempt at GP on parallel hardware was made by Poll [Poll 1999] 

where the bitwise parallel processing that occurs In serial computers is 

exploited. In this paper, Poll describes how the 32 bit positions of a 32 bit wide 

machine can be viewed as 32 separate I bit processors operating concurrently 

on the same instruction. This view is restricted to operations whereby register 

bit - neighbors operate completely independently i. e. bitwise logical 

instructions. This novel form of Single Instruction Multiple Data parallel 

processing was shown to improve the processing speed of GP type operations 
by 1.5 to 1.8 orders of magnitude under certain circumstances. 

2.7.3.9 Slicing I Parallelized concurrent GP 

As an alternative to evolving programs explicitly for parallel hardware, existing 

code may be parallelized: This approach will enable the performance leaps 

offered by parallel platforms to be utilised by legacy software that was created 
for serial computation. The re - engineering of old, poorly maintained and 

possibly undocumented code is an onerous task - without the added burden 

that parallelization presents. Previously, the methods employed In 
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parallelization included manual translation or the use of parallelizing 
compilers. The main work involves the decomposition and distribution of the 

processing Involved In program loops amongst the processors available. The 

secondary task of distributing the sequential code fragments is less 

problematic. A successful parallelization will not only share the burden of 
iteration but also ensure that this sharing scheme minimises any waiting 

necessitated by program loop dependencies. Williams [Williams & Williams 

1999] describes four basic loop conversions that may be tried: Loop fusion - 
where loops are amalgamated; Loop splicing - where a single loop is expanded 
into two; Loop interchange - where the inner and outer loops of a loop nest are 

exchanged, and finally, Loop reversal - where the order of loop execution Is 

reversed. 
Williams uses a GP approach to attack this complex problem with two 

strategies; Gene Transformation and Gene Statement. With Gene 

Transformation, the program loops are numbered and a useful list of 

sequential loop transformations evolved. The focus of Gene Statement Is on 

the code constructs themselves. 

Ostrowski [Ostrowski & Reynolds 1998] introduces program slicing as a 

method of program decomposition where a slice is an equivalent program 

extract that tracks all the program statements that effect a given variable for a 

given input range. 
Combining both program slicing and automatic parallelization, the Paragen 

system [Ryan & Ivan 2000] will slice a program in order that GP equivalents to 

the slice can be evolved. These equivalents are then readily ordered for 

distribution across a parallel array. Ultimately the Paragen system may 
become a powerful tool that will re - engineer ( and maintain ) existing 
programs into an equivalent version in any language and for any platform. 

2.7.3.10 Task sharing GP systems 

The use of multiple agents or subprograms that may be evolved to collectively 
solve complex problems efficiently has been researched in various formats: 
Angeline [Angeline 1997] created a system of Multiple Interacting Programs in 

which number of parse trees are evolved that can share intermediate variables. 
Each tree is associated with one output and intermediate variable pair, and is 

evolved in isolation. This can be seen as a method of partitioning a problem 
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and so scale the problem into a manageable form. This automatic problem 

partitioning effect is similar to that of Haynes mentioned earlier (see 2.7.3.5). 

Two distinct types of problem decomposition are investigated by Vallejo 

[Vallejo & Ramos 2000] whilst attempting to evolve an insect locomotion 

simulation. In the first experiment, Task Sharing between six subprograms 

one per leg) is evolved - with the legs operating independently - but having 

access to a common binary memory containing current leg status data. In the 

second experiment, the more successful method of Result Sharing was 
investigated and in this case the evolutionary fitness assessment 
incorporated a measure of how well the subprograms worked together in co- 

ordinating the legs. 

2.7.3.11 N version GP 

The use of concurrent voting systems or teams, using N different versions (N 

Version Programming or NVP) to enhance the reliability of software systems 
has been the subject of research using both human and evolved GP software. 

2.7.3.11.1 Human NVP experience research 

Hatton [Hatton 1997] investigated human NVP and clearly demonstrated the 

reliability benefits obtainable with this method by comparing the rate of faults 

between the best in a population of versions, and a voting team drawn from 

that population. The use of this method in software self - diagnosis is also 
highlighted here. Clearly the advantages of having N versions voting on a 
decision is only of value (in terms of software fault tolerance ) if those 

versions differ usefully. Homogeneous voting teams may have value in 

situations where hardware fault tolerance is an issue. 
With the focus on software fault susceptibility, Lyu [Lyu 1993] suggests four 

ways in which software diverges: 

(1) Diversity in the software structure. 

(2) Diversity in the fault quantity within the software. 

(3) Tough - spot diversity which measures the fault quantity in 

`awkward' areas of the software; And lastly. 
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(4) Differences in the way in which the software fails. 

Lyu's paper also suggests methods for forcing diversity across the design 

teams by the use of different languages, design methodologies etc. 

2.7.3.11.2 GP NVP attempts research 

The use of evolved GP teams to create an N version voting system is an 

attractive idea because of the cost of human development effort (which will 

continue with the need for N version maintenance) and the difficulty in 

achieving design diversity with humans. With an evolutionary approach, two of 

Lyu's four diversity types can be directly related to the stages of genotype and 

phenotype creation; Genotype diversity is related to program structure whilst 

phenotype diversity is indicated by the failure behaviour of the system itself. 

Feldt [Feldt 1998] identifies the three'classes of GP genotype diversity that can 

be manipulated as: 

(1) Those concerned with the search space (functions, terminals, 

any forced program structure such as ADFs ). 

(2) Those that are concerned with the search ( population size, 

mutation rate etc. ). 

(3) Those to do with the evolution itself ( number of test cases etc. ). 

Bongard [Bongard 2000] provides a heterogeneity (or social entropy here) 

metric that is used in his co-operative GP Legion system: Unfortunately, the 

measure is directly dependent on the fitness measure used in evolution, that 

is, problem specific. 
Further GP N version research by Soule [Soule 1999] considers how the voting 
balance can be used to give useful feedback on how efficiently the system has 

tackled the problem: For instance, a large majority vote may indicate a waste of 
resources such as that caused by poor input partitioning. Similarly, the voting 
scheme can be seen to introduce a form of hysteresis into the system acting to 

evolve more robust solutions than a single channel GP solution - though 

utilising more resources. 
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2.8 Future mass search paradigms 

The use of parallel hardware combined with the decomposition of problems, 

may be one answer to certain hard computational search problems; two 

promising alternatives that may allow a 'brute force' attack (whereby all 

possible solutions are tested) have been suggested: Both of these techniques 

have the potential to circumvent the upper limit on data processing calculated 
by Bremermann for classical computers [Bremermann 1962] of 2x10^47 bits 

per second per gram of its mass. 

2.8.1 DNA computing 

Here candidate solutions can be encoded at a molecular level in DNA and the 

solutions tested using biochemistry. The testing stage may take hours but the 

payback lies in the mass parallelism afforded by the molecular encoding; it is 

suggested that 10"23 operations maybe encoded in just two test tubes of DNA. 

This would seem to make hard problems such as message decryption 

possible where an unknown 56 bit key (e. g. the DES encryption standard) was 

used. 
A recent paper attempts to bring DNA computing slightly nearer by using the 

DNA material to construct nano-scale computing elements: Pelletier & 

Weinerskirch [Pelletier & Weinerskirch 2002] describe a process for the 

construction of three dimensional computing arrays consisting of bit 

multipliers and other elements, that could offer true mass computing. 

2.8.2 Quantum computing 

According to Spector [Spector 2002]. quantum computers would be able to 

perform exponentially many parts of the same calculation simultaneously: 
Recent progress on the path to building one of these astonishing (though 

currently hypothetical) machines, has been the reliable sensing of the quantum 

computing element (Qubit) state - without changing that state. Spector 
[Spector et at 1998] has used GP to evolve algorithms that would give better- 

than-classical computer performance - when ultimately run on quantum 
computers - by simulating the operation of Qubits. Spector suggests that the 

quantum parallelism and inherent probabilistic processing of these machines 
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should make them ideal for searching program space by GP, yielding better- 

than-classic evolution speedups. 

2.9 Chapter summary 

In this chapter, the main forms of computational search have been described, 

and the use of GP has been detailed: By examining the body of published GP 

literature, three general types of research have been identified, namely; 
Introducing GP, Improving GP and Applying GP. As the main thrust of this 

work Involves the application of GP, this chapter has focussed on changes in 

the original GP technique that have resulted in improvements In its 

effectiveness, efficiency and applicability. Lastly, two new computing 

paradigms have been described that promise to exponentially expand the 

power of computing - far beyond its current steady growth - further facilitating 

search. 

This examination of published GP research highlights the lack of work 
involving the use of GP for the creation of application programs for real 

problems: The aim of this research is to address this omission by suggesting a 

software creation method targeted at embedded control applications - which is 

the subject of the next chapter. 
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3 Control systems 

3.1 Introduction 

This chapter characterises embedded control systems, explains why they are a 

suitable problem domain and then outlines an approach that can be used for 

the automatic creation of software for certain control applications. 

3.2 Embedded control systems: Dedicated computing 

An embedded control system will typically comprise of dedicated hardware 

hosting dedicated embedded software or 'firmware' (i. e. between 'hardware' 

and 'software'). This is distinct from the ubiquitous PC situation, which is a 

more familiar small - scale computing operation to most people. With the PC, 

the software applications executed share the machine with the Operating 

System (OS) and other applications; each application will appear to temporarily 

convert the general - purpose PC hardware toward a specific function i. e. to 

turn the whole into a word processor, for instance. 

In the case of embedded software, it is usually expected that the hardware ! 

software will perform one application only: Examples of such applications can 
include mobile 'phones, microwave ovens or network switches. Usually the 

rest of the controlled equipment is so targeted at one function, that the total 

dedication of the control system to that function can be advantageous: The 

consequent removal of any requirement for design flexibility for either 
hardware or software, allows for the paring - down of most ancillary 
functionality. In the case of the controller hardware, this will allow the 
designers to usually choose hardware that will perform exactly what is needed 

and no more. This consideration leads to hardware with minimal size, weight, 

power consumption, operating speed and cost. This ability to minimise and 
tailor hardware is particularly important with mass - produced items such as 

video recorders, MP -3 players etc. An existing Evolutionary Computing (EC) 

example of such minimisation for mass production uses GA search to discover 

the longest execution path (time) In a car engine management computer. 
Knowledge of the worst case cycle time will enable the designer to choose a 

minimal, lower performance (lower cost) processor for the management role 
with confidence [Gross 2000]. 
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The workhorse of embedded control is the microprocessor and frequently a 

version of this device aimed specifically at embedded control - the 

microcontroller - can be used. A microcontroller has a microprocessor core 
but with many of the other hardware functions (more usually performed by 

other hardware 'support' devices around the microprocessor) Integrated onto 
the microcontroller chip. In extreme cases, the address and data busses of the 

microprocessor do not leave the device due to on - chip program and data 

memory etc. This will free the pins of the microcontroller chip for relatively 
direct connection to the rest of the equipment i. e. lights, switches, 

communication links etc., further minimising the design. 
Similarly, the dedication of the control system to one application will allow for 

the use of minimal software that only has to perform the task at hand - often to 

the exclusion of an OS (because there is no hardware sharing or porting) 

allowing the application software to talk to the hardware directly. This cut - 
down software requirement will further reduce speed, cost, size and other 
design demands. 

Literature devoted to embedded application development appears to be 

scarce; for further consideration of real time, low level embedded 

programming [Leventhal 1978] can be consulted: Alternatively, the hardware 

and software issues relating to microprocessor - level interfacing are 

examined in [Zaks & Lesea 1979]. 

3.2.1 Comparison between embedded control and other applications 

The following table [Table 3.1] attempts to highlight areas where embedded 
control applications generally differ from those of other computer applications: 
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Embedded control 
Application 

General computer 
Application 

Data interface to world Varied & complex: may 

require conversion 

GUI, printer, keyboard, 

network etc 

Platform Optimised, specific Generic 

Platform cost Critical, minimised Less Important 

Response timing Critical Less Important 

Aesthetics Minor issue More Important 

Pressure to upgrade Little Competition 

Development expertise Essential Not always 

Table 3.1: Comparison between embedded control and other computer 

applications. 

3.3 Temporal and operational hierarchies in embedded control systems 

Another distinct feature of embedded control systems relates to their `real - 
time' nature: The majority of embedded control systems operate continuously 

and immediately - often to meet strict response time criteria. This is both 

possible (due to the dedication discussed above) and essential due to the 

nature of some control applications. For example, the response time of a web 

browser is less of an issue when compared to the response time for an 

emergency stop input on a hydraulic ram controller. 
Prioritised processing is achieved - and can be guaranteed - in embedded 

control systems by using exception or interrupt processing. Typically, this is a 

hardware facility that will force the processor to run specific pieces of code in 

response to certain events. These events could be the activation of a sensor, 

activity on a communications link or the expiration of a timer. Generally, 

necessary execution priorities can be set up when the computing system is 

designed: This will allow events such as data storage and safe shutdown (in 

response to a power failure signal) to take precedence over keyboard polling, 

for instance. Mixed in with these, timer interrupts can be used to sample an 

analogue input or to update the position error in a motion control system: 

Multitasking OS simulate multiprocessor operation and resource sharing on a 

single - processor platform with the use of context switching initiated under 

such timed exception processing. 
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3.4 Multiple inputs and multiple outputs 

A further distinct feature common. to many embedded control systems is the 

presence of multiple inputs and outputs: A building management control 

system, for instance, would need inputs for temperature, humidity, time-of-day 

etc; and output demand values for temperature and humidity, control lights 

and door locks etc: A missile would need to input its relative position in space 
in three dimensions, and produce three separate outputs to correct that 

position. 
These inputs and outputs are all distinct hardware ports and consequently 
distinct data sources and sinks. Again, the necessity that embedded control 

systems need to integrate with the multi - dimensional real world forces this 

structure on the hardware and, consequently, on the software. 

3.5 Task decomposition in embedded control systems 

Exception processing on dedicated platforms is used as a method of 

guaranteeing response times and ordering processing priority, whilst the 

requirement for multiple input and output streams further segments the code. 
Indirectly, these software structure frameworks automatically deal with some 

of the complexity inherent in these applications by creating operational 
`channels' linking inputs to outputs across execution space, and through 

processing time. The code in such channels may be then treated in Isolation 

to some degree, and hence the code for the overall application may be created 

or examined in a more piecemeal fashion. 

The idea of examining software by starting at the outputs and working 
backwards down the `channel' to discover the causal relationships that gave 

rise to that output, has already been the subject of test and maintenance 

research [2.7.3.9]. 

3.6 Using application decomposition: Automatic creation of control software. 

The idea behind this research is that by targeting applications of this type - 
with the Inherent structuring and decomposition of the software, the threads 

of code used to form the channels (described above) can be, for a certain class 

of application, simpler; simple enough to create automatically. 
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Existing forms of genetic programming (GP) create software automatically but 

an examination of GP literature [2.7] reveals few, real instances of code 

evolved to perform a specific function (of any real complexity) for real world 

application. Perhaps this is not surprising given that creating computer 

programs by GP can be seen as a Markov process5 and, as such, the longer 

the program is (and so the greater the linear complexity) then the probability 

of its discovery will decrease geometrically. 

The aim of this work then, is to suggest a method of ameliorating the program 
discovery task by suitable decomposition until the problem becomes tractable 

by evolutionary search. Even then, the pragmatic view will be to restrict scope 

of this work to a subset of software design problems which are, already, 

relatively simple. 

3.7 A suitable class of problems 

The idea of using automated methods for generating control software 

inevitably leads to issues of trust being raised: Accuracy, reliability and 

robustness may all appear compromised due to the lack of human intervention 

- even though human design is demonstrably far from fault-free. 

This research suggests an alternative method for software creation but 

realistically this will only be applicable to a subset of software problems. This 

subset is a particular class of problems that can be loosely defined by 

identifying; 

(1) The type of problems that are wholly unsuitable 

(2) The type of problem which is more appropriate: 

Markov processes: 
The construction of an LGP string can be seen as a Markov process: 
A Markov process Is a discrete random process whereby the probability of moving onto another state 
depends solely on the current state of the process and not on any history or other stored Information. Thus 
the choice of the next statement In the construction of a GP tree I string can be viewed as an Independent 
and undirected event for that Individual. This model has been used to construct a analysis of GP operation 
[Langdon & Poll 2002]. 
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3.7.1 Prohibitive problem features 

. Safety - critical problems 

The ability for an evolved program to find a perfectly fit, though 

incorrect, solution resulting from an ambiguous fitness function is very 

possible: Typically, this can occur because the fitness function used is 

an abstraction of the real problem. Such invalid solutions may well be 

transparent to automatic testing generated in the same manner. 
Even with the adoption of measures to prevent ambiguous solutions 

being used, the notion of using machine - designed software in 

situations where lives could be lost would be the act of a brave - or 

misinformed - vendor. 
Such considerations about the real and perceived trust in a product 

would easily prohibit this software creation method being used In 

applications such as lift controllers, missiles, aviation systems etc. 

" Problems requiring solutions of high complexity 

Problems that could not be decomposed and would always require an 

evolved solution with even a relatively low level of computational 

complexity, would be problematic - simply because the search space 

would be vast, and the probability of discovering the solution 

consequently small. 
Applications such as signal processing or compilation can be included 

in this category. 

9 Problems requiring high reliability or robustness 

The advantage in creating software automatically is that there is no 
human input; in this act, the actual nature of the code being run can be 

unknown, and as a consequence, the potential for unreliable operation 

exists as real - world execution uncovers unforeseen problems: Aside 

from the safety - critical issue, the simple problems of trying to sell an 

unreliable product will preclude an automatic approach for many 

applications. Examples here could include assembly - line control I 

monitoring applications or access / entry control applications. 
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" Problems requiring high accuracy 

Problems requiring solutions than can offer high precision output will 
typically present a higher search burden because the evolved solution 

will need to be almost exact. Applications such as accounting packages 

and computer - controlled tools are examples of such inappropriate 

targets. 

" Problems requiring defined response timing 

Demanding guaranteed response timing, or fixed execution time in 

general, would necessitate the evolution of temporal execution 
hierarchies on top of the structural processing hierarchy and present an 

unreasonable burden upon the system proposed here. This could 

exclude targets such as high speed communication systems, games 

programs or the safe control of moving objects. 

" Problems with complex inputs or outputs 

The necessity to define fitness functions that will accurately allow the 

EC to find the correct solution would be Immensely difficult for 

situations where complex input or output had to be handled: Consider 

the case of ASCII keyboard input or GUI output. In cases where the 

output has a subjective or aesthetic dimension, it may never be possible 
to express the required solution explicitly to a computer: Indeed, the 

effort involved in capturing such a fitness expression could easily 
outweigh any labour - saving advantage promised by automatic 

methods. 

3.7.2 Suitable problem features 

Beyond the applications that do not fall into the above categories of unsuitable 

problems, the following outline problem characteristics that can facilitate the 

proposed technique: 
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9 Problems that can be decomposed appropriately 

These are problems where the solution may be, or has to be, realised 

with the use of multiple outputs and where the code producing that 

output can be formed as a channel fed from one or more inputs. The 

ability to segment a larger and more complex problem into a number of 

simpler code channels is central to the `divide and conquer' strategy of 
this work. 

. Mundane problems 

These are problems whose solution may not be perceived as 'exciting' 

or `challenging' work, making the staffing of such projects an issue 

[1.2]. 

" Support for product designers 

This system could be used to produce code for product designers who 

wish to use embedded control technology but who do not have the time, 

interest or budget to become embedded control programmers. 

Consideration of the above criteria, and those prohibitive criteria outlined in 

[3.7.1], classify target problems as ideally being non safety - critical: Simple 

(when decomposed) problems that do not require precision, undue reliability 

or defined response times. 

A subset of embedded control applications can be seen to fit this description. 

Thus examples of such applications could include fridges, TV remote controls, 
building environment management systems and dishwashers. 

3.8 How application decomposition can be used 

In the embedded control systems categorised at the start of this chapter, the 

problem decomposition is an artefact of the necessity to prioritise and divide 

execution by using both ideas of processing order and output requirements. 
To segment arbitrary control applications along these lines would not be 

practical automatically because this would require an unreasonable amount of 
input from the product designer: Instead, the approach Is to segment the 



46 

application by output alone - because the product output requirements would 
be known to the target system user (the product designer) [1.4]. The 

decomposition of control problems by output alone (and not execution priority) 
will inevitably preclude problems where guaranteed response times are 

essential; but this restriction upon the target problem class is viewed as an 

acceptable compromise [3.7.2]. 

With this segmentation approach, each output will be the evolved output of (at 

least) one execution channel that has visibility of all system inputs during 

training - to use as necessary. The channel code is evolved, and later run, as 

an isolated concurrent processing task (thread). Synchronisation and cycling 

of the tasks can be organised by a pre - written multi - tasking OS. The OS 

will have the responsibility of cycling the channel code continuously, collect 
the task output data and update the system outputs. To an extent, the 

technique is (concurrently) scalable in that the evolved system may be 

expanded simply by adding further tasks and outputs. 

3.9 Problem capture; EC training set generation 

As previously discussed [1.4] the product designer would be aware of the 

inputs and outputs necessary to interface the control computer to the rest of 

the product. This knowledge then, would have to be captured in order to 

automatically create the control system: Though beyond the scope of this 

research, such a `front - end' tool would need to be constructed to question 

the product designer upon output and input quantity, type and range. 

Additionally, the relationships and inter-relationships between these interfaces 

would need to be captured; This could be achieved with the use of formula 

input, truth tables, relationship graphs or graphically, . 
The output of this front end tool would be a sufficient training and test set 

relating the system inputs and outputs, interface types, number of tasks and 
initial EC parameters, necessary for the EC system proposed here to create the 

software. 

3.10 Possible generic hardware host 

This chapter suggests a system for the automatic creation of concurrent 
control programs; the next chapter details how a demonstration system was 
implemented for two simulated applications. For this work, the concurrent 
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processing is achieved by using a multi - tasking OS: Ultimately, each task 

could be run on a dedicated single processor in a multi - processor hardware 

implementation. Further overall design optimisation could be afforded by 

hosting the evolved code In low - cost, mass - produced, generic, multi - 
processor microcontroller blocks. In addition to a pre - written OS, these 

blocks could come supplied with network interfaces for the download of the 

evolved code (invisible maintenance), redesign of the hardware or even the 

provision of an uplink for monitoring purposes. 

3.11 Chapter summary 

This chapter has outlined the characteristics that make typical embedded 

control systems distinct from other software applications; and the suitability of 

such architectures to automatic software creation by EC, have been 

suggested. 
The next chapter describes the construction of a demonstration system to 

simulate the operation of the automatic software creation scheme proposed 
here: In addition, two suitable problems are described, and the latter, larger 

problem of a Washing Machine controller is tackled. 
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4. The experimental system 

4.1 Introduction 

This chapter describes the experimental system used to demonstrate the 

automatic creation of a control system, as outlined in the previous chapter: 

This will include details of the Evolutionary Computing (EC) approach used, 

the evolutionary language set and data types, the simulated Operating System 

(OS) operation and the software tools used. Finally, the two demonstration 

applications - the fridge and the washing machine - are described: This latter 

problem (being effectively a superset of the first) Is the subject of the next 

chapter, in which the experimental demonstration system is built and adapted. 

4.2 EC technique used 

The choice of EC technique falls naturally to Genetic Programming (GP): In 

addition to being a consistent and major research subject, the ultimate 

objective here is to create solutions (programs) that could be embedded, and 

so run directly on the target hardware. 
Standard GP will produce tree-like structures that can easily represent the 

parse tree of the program being generated. These trees have the ability to 

depict the complex structures possible in many programming languages. 

However, trees also create some difficulties; arguably the most detrimental 

(especially if the target is a real -world implementation) is runaway program 

size or `bloat' [2.7.3.2]. 

A pragmatic choice for this work was to use a form of Linear GP [Banzhaf et al 
1998a] which replaces a tree-like structure with a variable-length linear string 

representation; typically not containing any form of program branching i. e. the 

execution flow is linear. Straight-away the problems of excessive code growth 

reduce because the code can only expand in one dimension up to a limit: 

Arbitrarily large trees are not connected together during crossover, or attached 
during mutation. 
Though a linear representation is not familiar to human programmers, it is 

arguable that linear representations, are in many senses, equivalent to tree 

representations if they span the same program space once decoded 
[Albuquerque 2000]. Thus LGP can perhaps be seen as a useful compromise 
between the technique (EC) and the media (computer software). 
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4.3 Evolutionary language set 

Classic (tree) GP would typically allow a (near) full implementation of the 

chosen programming language: For this work, the language set available for 

evolution is a restricted subset of the functions that are available in a basic 

programming language like `C' or BASIC. 

This move away from a full implementation of the chosen programming 
language is seen as an acceptable and possibly advantageous step: All the 

useful possibilities of the language remain available - albeit in a more verbose 
(and perhaps safer) form. As can be seen in appendix A and [4.3.2] below, the 

grammar facilitates all useful continuous mathematical and logical functions. 

This use of basic `general - purpose' program operations also reflects the 

desire to create a system that can create programs for a variety of targets; 

which all fall within the problem class identified - i. e. the ultimate applications 

may range from balloon Inflation to bird feed. Alternatively, if the target class 

was known and static, then a controller for an automatic lawn sprinkler might, 

more usefully, use trigonometric functions as language set primitives. 

The language set here, is a slight departure from `standard' LGP In that the 

program flow is not strictly linear: A conditional branch instruction Is included 

to allow forward branching upon the TRUE / FALSE interpretation of the IF 

condition case. The intention here is to allow for the evolution of equivalents 
for the standard forms of iteration found in computer programs; gotos, 

subroutines, branches and loops. 

This simplification of the instruction set is similar to the approach taken in 

Reduced Instruction Set Computing (RISC)6 and this may appear to be a 

regressive step in software engineering terms, that can frequently result in the 

creation of unreadable code, However, recall that the programs are to be 

generated automatically and it is not the intention that humans would need to 

examine the code. A RISC approach of simple program statements, will allow a 

near one to one transformation to machine code which offers the benefits of 

$ Reduced Instruction Set Computing, RISC: 
RISC processors use what Is perhaps a counter - Intuitive approach whereby the machine-level Instruction 
set is limited to simple instructions (Add, OR etc. ) and more complex Instructions that will perform 
complex, compound operations are omitted. Generally, this will result in longer machine code programs after 
compilation because more Instructions will be required to accomplish the same task; however, the hardware 
design of the processor chip Is now simpler. This simplification will allow the processor to be run faster 
such that even with a greater number of Instructions to process, the overall execution time will usually be 
reduced. [For further information: Stallings 1990] 
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speed / compactness and portability (since almost all processors have similar 
basic machine level operations). 

4.3.1 Program string statements 

The program representation used here consists of a variable length string of 

words (up to a practical maximum which will depend on the computing 

resources available) where each word represents a single, atomic statement. 
With the exception of the IF branch instruction, each statement will have one or 
two inputs and an output term: An input source maybe connected to an input 

terminal, a numbered memory, a constant or a subtotal accumulator. The 

output term maybe connected to a program output terminal, a numbered 

memory or to the subtotal accumulator register. The subtotal accumulator was 
included to facilitate the flow and construction of information up through the 

program by a path that could be readily used (easily found during evolution). 
However, the subtotal accumulator can be seen as simply another (though 

directly - addressable) memory. 

4.3.2 Program functions available 

The available functions that will determine the operation of each program 

statement are as follows: 

Mathematical operators: 

+ (Add) 

- (Subtract) 

* (Multiply) 

I (Divide - protected by returning I upon attempts to divide 
by zero) 

Logical operators: 

AND 

OR 

XOR 

NOT 
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< (Less than) 

> (Greater than) 

Branch: 

IF [condition] (jump forward to) Statement number 

4.3.3 Suitability of language set 

The general - purpose (though computationally efficient) nature of the chosen 
language set [4.3.2 above] may be seen by examining the more specific 
language set choices made by other researchers: 
In the production of an Automatic Theorem Prover, Nordin [Nordin et al 1999] 

used a function set of inference rules (such as 'X+0 may be replaced with X') to 

evolve proofs for mathematical functions; Popp [Popp 1998] uses VHDL' 

primitives to evolve Field Programmable Gate Array (FPGA) - hosted hardware 

designs; and Martin [Martin 2000] uses functions with two levels of abstraction 
(e. g. 'FROUTE' to evaluate routes and 'SendMSG' to deliver a message) for 

automatic network service creation using GP. 

These are all examples of very specific language sets, targeted at particular 

problems: This research proposes a general - purpose system for evolving 

solutions for any control problem from the identified class [3.7], hence a 

general, low - level language set with non (application) specific instructions 

was used. 

4.4 Data types available 

During evolution, the system can use two data types: continuous and logical. 

Continuous data type can be positive or negative floating point numbers; the 

logical data type will only be either `1' or `0'. 

The values are (at this time) both held in the same storage and the type to 

which the stored values are applied is interpreted in context to the Instruction 

at hand: For instance, the logical instructions above will interpret all 
arguments as unclamped logical values - so that zero Is interpreted as FALSE, 

7VHDL: 
Very high speed integrated circuit Hardware Description Language is used to capture hardware designs 
algorithmically and is compiled into a form used to configure the internal structure (function) of large custom 
iCs. 
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and everything else as TRUE. These instructions will only produce logical 

results, storing 0 for FALSE. Similarly, the continuous functions will Interpret 

all arguments as continuous values, and produce continuous results. 
The comparison instruction (>, <) are a hybrid in that these will treat the 

arguments as continuous numbers but produce logical results. 
The conditional branch (IF) statement will interpret the condition as TRUE (take 

the branch) if the condition evaluates as non-zero. Upon taking the branch, 

execution will continue at the absolute line number supplied as an argument to 

this instruction. 

By implementing both data types, the system can efficiently cover the Input / 

output requirements of a typical embedded control application: The 

continuous data types would be used for reading numeric values from various 

sources i. e. to sample a continuous value such as temperature, position or 
time. The boolean type input / output can be used for logic level type sensing 
I. e. control switches, limit sensors etc. 

In a typical embedded application, these two types would utilise different types 

of storage; boolean variables can be held in bit - wide memory (available with 

some microcontrollers) and continuous variables in byte, word or long-word 

sized storage. Unlike the simulation here, floating point storage (and 

mathematics) would usually only be used if strictly necessary - with 

continuous variables normally represented as integers, or bipolar integers 

(using two's complement representation). Storage size / representation 

minimisation in this way, is another example of how embedded applications 

are `designed down to fit' [3.2] and this approach will optimise the design 

solution in terms of storage and speed: The use of bit and byte sized variable 

representation can allow highly - efficient one - to - one compilation of high 

level program statements down to machine - code primitives such as Branch 

On Bit Set. 

4.5 Generating valid programs 

During evolution, the crossover operator is forced to cut on word boundaries 

and the mutation operator is restricted to select from only permissible values 
based on the grammar and statement context. These restrictions ensure that 

no syntactically illegal programs can be generated, 
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4.6 Trial system implementation 

In order to demonstrate the trial system, a LGP program evolution mechanism 

was required. There are many pre-written GP systems available for free 

download from the internet. Unfortunately, the provenance and quality of such 

free software is frequently unknown - and the consequent potential to waste 

effort great. 
In order then, to pre - filter these free systems, only those available via the 

EvoNet web site8 were considered. The assumption here was that these 

systems had been used by other researchers, and that these systems were, 
hopefully, `tried and tested'. 

The suitable choices were mainly written in Java for transportability, with 

alternatives written in SmallTalk and Ruby. The majority of systems were 

completed demonstration I experimentation environments. 

At the time, this research may have taken the path of actually demonstrating 

the technique at the machine level with embedded hardware, and the 

operational speed of the system could have been an Important issue in real- 
time control suitability. For this reason, systems not written directly in a 
language designed for low-level implementation on a ready platform, were 
ignored. Additionally, the computing resources were limited and this steered 
the choice away from any high level or interpreted languages whereby 

evolution time could be prohibitive. 
This left the most suitable system to be GPkernel, a C++ class library of EC 

parts. However, two additional requirements for the evolution system Included 

the ability to alter the system chosen significantly (in order to Investigate 

language and data types specific to this research) and the facility to run 

concurrent tasks. The former reason made the use of a pre -written 
demonstration system unattractive because new, purpose - built software is 

frequently more reliable than massively - altered code. 

Microsoft Visual C++ version 6, was chosen for implementing both the 

evolutionary system and running the completed control system later (in 

simulation) because of the multi - threaded application development path 

available with this tool. The production of a fast evolutionary system via the 

optimizing compiler, and low - level program development option afforded by 

http: //evonetdcs. napier. ac. uk/ 



54 

using V, coupled with the good support available, cemented the choice upon 
this tool, along with the decision to develop a system from scratch. 

4.7 Evolutionary process and parameters 

This research is not intended to be a study into EC operation and the effect of 

evolutionary parameters on particular problems: Such work comparing 

crossover types, for Instance, has been covered by others [Keijzer et al 

2001][Menon 2002]. Thus, beyond the string length and population size 

variations made during experimentation, these parameter settings were not 

investigated but instead left at a useful working value found by trial and error. 

In fact, the system did not exhibit much sensitivity to changes made in these 

values - within the ranges studied. 

Similarly, the mechanisms of EC used were basic and not researched: 
Evolutionary selection here creates a generational population of constant size. 
All candidates for the next generation are selected from the current generation 
by use of a tournament of size two. 

The developed evolutionary system does, however, allow for the use of 
different population sizes, and mutation and crossover rates, for each task 

output in case the ability to adjust the evolution process for each output I 

function became necessary. Individual parameter values per output would also 
facilitate forced solution diversity [2.7.3.11] if necessary later. 

4.8 Methodology 

Ideally the potential of this research would be demonstrated by capturing and 

evolving the solution for a real - world problem, and executing this on the 

intended hardware host under a multi - tasking operating system (OS). For the 

purposes of comparison, this solution could be contrasted to a solution 

created by programmers for the same problem. Suitable industrial partners 

were sought in an attempt to implement such a comparison - but the 

embedded applications of local companies (with links to the university) were 

safety - critical (e. g. traffic light control) making these wholly unsuitable 
targets from the outset. 
Alternatively, the solution and implementation of a genuine, real - world 

control system could have been achieved by writing the proposed OS and 
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embedding this, along with the evolved code, Into dedicated hardware, 

interfaced to the system being controlled. 
However, this amount of work exceeded the time available for this PhD, and is 

arguably an inefficient use of time: The complete demonstration of the 

proposed system for one type of embedded control problem, would not prove 
its suitability to others - even within the target problem class of non - safety 

critical, concurrently - decomposable problems, that have relaxed 

requirements for output accuracy and response. Instead then, a more 

pragmatic and realistic approach was adopted here to demonstrate the 

potential of the proposed technique by: 

(1) Solving a simplistic though representative, multiple - Input, multiple 

- output control pilot problem (the Fridge controller) by separating the 

entire problem into a two input, three output problem that uses two data 

types (Boolean and bipolar continuous integer). 

(2) Using the knowledge gained in the solution of the above pilot to 

solve a different representative and more complex problem involving 10 

Inputs, six outputs and two data types (the Washing Machine 

controller). 

(3) Providing a simple, visual demonstration of the operation of the 

evolved Washing Machine controller in operation. 

4.9 Example problems 

The example problems chosen to demonstrate this technique were a simple 
fridge controller and later a washing machine controller: Both are familiar 

examples of everyday control problems that do not require any prior specialist 
domain knowledge: Both fit the criteria above [3.7.2] as suitable targets; i. e. 

non safety - critical, do not require great accuracy or have critical response 
timings; and the software would not generally be regarded as 'challenging' or 
'stimulating' for a human programmer. Finally, the two problems indicate how 
the technique is expandable i. e. the fridge problem has three outputs I tasks 

and two inputs, whilst the washing machine controller has six outputs and ten 
inputs. 
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4.10 The Fridge controller 

The Fridge controller problem [Hart & Shepperd 2002] Is a relatively trivial 

example of how a control system can be decomposed into a number of parallel 

tasks - each with a separate output - and how the code producing those 

outputs may be created. The problem requires control code that will 

simultaneously monitor two inputs and produce three outputs of different 

types. 

The Fridge problem is included here only to give a simple introduction into 

how the decomposition translates into a real world application. The Fridge 

controller is also included to show how the technique can be scaled to cope 

with more complex problems i. e. the Washing machine controller, to follow. 

4.10.1 Fridge controller inputs 

4.10.1.1 Temperature. 

The temperature inside the fridge is assumed to be sampled and resolved to an 

eight bit data value. This is a continuous-type input and, for a real 
implementation, this analogue temperature value could be generated using a 

thermistor (temperature-sensitive resistor) and an Analogue to Digital 

Converter (ADC). 

4.10.1.2 Door status. 

This is a boolean logical - type Input that, in a real Implementation, could be 

read as one bit from an external input port. This input will be logic 0 If the door 

Is open. 

4.10.2 Fridge controller outputs 

4.10.2.1 Alarm. 

This logical output will be set if the Temperature inside the fridge exceeds the 

maximum allowed temperature. It is assumed that the imaginary fridge 

contents will provide sufficient hysteresis (due to thermal mass) to prevent 

sudden fluctuations in temperature. 
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4.10.2.2 Fridge light. 

This logical output will drive the internal fridge light on when the door is open. 

4.10.2.3 Pump drive. 

This is the continuous refridgeration pump drive output. For the purposes of 
this example, the fridge will be driven cooler when the refridgeration pump 
demand is increased; therefore the pump drive is directly proportional to the 

internal temperature. In a real fridge, this would usually be under closed - loop 

control i. e. the drive would respond to the temperature error (between the 

desired and actual internal temperature), Here the control is open - loop i. e. 
there is no feedback to produce an error term. 

The fridge temperature achieved would be related to the drive by a number of 
factors including the electrical, hydraulic and mechanical characteristics of the 

pump and interface; the efficiency of the fridge, the volume of the fridge, the 

ambient temperature, disturbances to the system (door opened) etc: However, 

the fridge problem was primarily intended as a vehicle with which to introduce 

this research, and so a simple function was arbitrarily chosen to represent the 

pump transfer function: 

Drive = (Temperature + 10)*2 

4.10.3 Fridge control functions to evolve 

For this example, we shall assume normalized and scaled inputs i. e. one 
temperature input unit equals one degree Celsius : Thus one possible solution 
for the fridge problem, and hence the software to control the fridge, could be: 

Out1 = NOT In1 

Out2=InO>5 

MemO = InO +10 
OutO = MemO *2 

or some equivalent that would express that the light is on when the door is 

open (Outl); that the alarm output should be true when the temperature 
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exceeds 5 degrees (Out2) and that the fridge pump demand (OutO) needs to be 
driven proportionally in relation to the temperature. 

4.10.4 Solving the fridge problem 

To evolve the Fridge controller, the problems encountered, and changes to the 
technique adopted in response, are published in detail as [Hart & Shepperd 

2002]. All of these points are covered in the following chapter relating to the 

Washing Machine controller. For quick reference, the parameters used to 

evolve the Fridge controller are outlined in Table 4.1 below: 

Parameter Value 

Population size 
(fixed) 

200 

No. of demes 3 

Representation Variable length LGP 

String 

Selection 

mechanism 

Tournament 

Crossover rate (1- 

point crossover) 

0.2 

Mutation rate 0.1 

No. of generations 30000 (max) 

Table 4.1: Fridge controller evolution parameters 

<Illn summary, tackling the Fridge problem led in two main conclusions: 

" That a multiple - input, multiple - output control problem, using two 
data types, can be successfully solved using EC and appropriate 
problem decomposition. 

" That the system was prone to premature convergence after only one 
output was solved - effectively removing population diversity that could 
be necessary to solve the remaining outputs [5.2]. 
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The encouraging outcome of the Fridge controller pilot led to the larger, more 
complex. multiple - population Washing Machine controller problem. The 
Washing Machine controller, detailed below, supersedes all aspects of the 
Fridge problem and its solution, consequently the remainder of this document 

will focus on that problem alone. 

4.11 The Washing Machine controller 

This second study is an extension to the previous pilot - the Fridge controller - 
in that it targets a more complex problem with seven threads and introduces 

temporal sequencing rather than continuous operation. Again, the subject falls 

into the target class of problems identified in [3.7.2] i. e. that the application Is 

non safety - critical and does not demand high accuracy in terms operational 

precision or response timing. 

The basic washing machine control program here will perform the following 

operations: 

Regulate the water temperature 

Control the cold and hot water fill and drain operations 

Control the drum rotation speed 

Sequence the wash, rinse, drain and spin operations 

4.11.1 Inputs and outputs 

In the real Washing Machine controller, these would form the electronic 
interface between the microprocessor components and the rest of the washing 

machine: These signals would typically require appropriate level or type 

conversion i. e. from voltage to current, low voltage to high voltage etc: 

4.11.1.1 System inputs 

Timer inputs TSO .. TS6 
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The temporal sequencing of the entire wash operation is driven by the 

seven binary timer inputs TSO to TS6. These Inputs are mutually 

exclusive in action and in a real application using the general purpose 
hardware block described in [3.10] would be sourced by the embedded 
OS. Each input will be set active for a time period suggested by the 

designer via the front end tool, and then relinquished before the next 

timer input in sequence is set active. The duration of each operational 

timeslot will then reflect the work to be done i. e. In our example here, 

the Wash period would be longer than the Drain period. 

Target temperature. 

This continuous input provides the control system with the required 

washing temperature for the water in the drum. This will be in the form 

of an integer from 0 to 90 and is derived via the interface electronics 

from a dial on the front of the washing machine. 

Water temperature 

This is a continuous reading of the drum water temperature and here 

the value supplied will be an integer in the range of 0 to 100. 

Drum Full 

The remaining input here is the Drum Full signal which will become 

active when the washing drum is sufficiently full of water. 

4.11.1.2 System outputs 

There are a total of six outputs driven by the software being cycled in seven 
tasks by the OS: 

Heat. 

This is the drive for the drum water heater and the objective here (as 
indicated by the product designer) is to regulate the water temperature 
to that required for the Wash cycle. The target washing temperature is 
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set by the Target temperature control input above. The aim Is to evolve 

code that will take the water temperature error ( Target temperature 

minus actual Water temperature) and multiply this by a constant to 

match the full span of an eight bit number for byte - wide interface with 
the heater control. In this way, the resolution is optimised for the 

hardware employed so that the maximum temperature error expected 

will result in the maximum output drive. 

In addition, a secondary requirement is that if the Water temperature 

exceeds the Target temperature then the output is forced to zero. 
The overall Heat output is actually formed by combining the output of 

two tasks - one producing a logical output and the other a continuous 

output - to ease evolution [4.1]. 

Hot, Cold 

These two boolean outputs control the hot and cold water feeds Into the 

washing machine drum. 

Slow, Fast 

The drum rotation motor is controlled by these two boolean outputs so 
that if Slow is active the drum will rotate slowly for washing, and Fast 

will command a fast rotation for spin - drying. The drum motor will not 
turn in the absence of both signals, and spin fast If both are set to 11'. 

Drain 

Water will be pumped from the drum when this boolean signal Is active. 

4.11.2 Complete operational cycle 

In figure 4.1 below, the desired interrelationships between the various Inputs 

and outputs are shown: 
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Figure 4.1: Relationships between inputs and outputs for the washing machine. 
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where f(Te) Indicates a function of water temperature error. 

4.11.3 Functions to be evolved per output 

The following demonstrate the functional relationships that could be evolved 
to satisfy the training requirements and hence the overall washing machine 

problem. Functions actually evolved may, perform the same function but by 

different though equivalent programs. Alternatively, the system may evolve 

solutions that are not correct - though satisfy the training and test sets - due to 

ambiguities there. This would be due to an incorrect specification of the 

problem via the training and test sets generated here by the front end tool. 

Task 0: Heat (continuous) 

Heat = (Target temp - Water temp )* Span constant 

Task 1: Heat (logic) 

Heat Gate ON = (Tt > Tw) & TSO 

Task 2: Motor Slow 

Slow = TSO I TS1 I TS3 I TS4 
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Task 3: Motor Fast 

Fast = TS2 I TS5 

Task 4: Hot In 

Hot = TSO &! Drum Full 

Task 5: Cold In 

Cold = (TSO I TS3 )&I Drum Full 

Task 6: Drain pump 

Drain = TSI I TS4 ITS5 

4.12 Chapter summary 

This chapter outlined the demonstration system, and the EC techniques and 
tools used. Two sample problems are detailed, and the larger problem - the 
Washing Machine controller - will form the main focus of the next chapter: 
This will include details of the problems encountered in realising the 
demonstration, and the solutions tried and adopted. Lastly, the results of some 

900 experimental runs will be presented; followed by an examination of these 

results, and how these may point to an alternative evolution strategy. 
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5 Experimentation 

5.1 Introduction 

The previous chapter detailed the method used in this work to demonstrate 

how the software for certain control systems may be created automatically. 
This chapter examines the problems encountered, and the changes made, to 

realise this goal: These problems centre upon Improving the search results by 

attempting to avoid the premature convergence of the population. 
Later, the results of 900 evolutionary runs involving the most complex task are 

supplied; and an examination into the effect of population size and Linear 

Genetic Programming (LGP) string length on search performance, are made: 
Following on from this, the option of restarting from generation zero against 

continuing with the current run - in the absence of search progress - Is 

considered. 

Lastly, an operational simulation of the entire evolved, washing machine is 
described, along with the LabVIEW graphical application used to visualise the 

wash operation. 

5.2 Technique evolution: One population, multiple outputs 

The early attempts at evolving control programs were made using a single 

population with the requirement that the solution would generate all system 

outputs - this is in contrast to using one single, dedicated population for each 
task I output posited earlier. The single population / multiple outputs method 

was used when tackling the fridge problem [4.10]: Here, the LGP system would 
typically manage to evolve solutions satisfying the requirements of one or 

more outputs but generally failed to find solutions for the remaining output(s) . 
This appeared to be a result of premature convergence, and as a consequence, 

the population diversity was lost. This loss of diversity resulted in a loss of 

problem - solving potential as the other solutions started to emerge. Diversity 

could then only be reintroduced by means of the mutation operator, but the 

effect of this was restricted due to the similarity of the population due, again, 
to the convergence. 

Solving for several outputs within a single population in this manner is 

essentially a problem of Pareto optimisation. Methods for producing such multi 

- objective solutions have been previously researched, leading to the 
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adoption of multi- population techniques such as Clients and Civil servants 
[Ryan 1999]. Here, N populations are targeted at N specific problems and a 

composite solution is found by combining useful elements from the solutions 

provided by each population. 
One of the tenets of this work was to assume computing resources should not 

be a limitation - within reason. This line of thought makes the adoption of a 

one output per population / task approach acceptable: This method will result 

in a reduction in the evolutionary search burden (per population) whilst making 

the technique scalable to more complex problems i. e. problems with more 

output channels in this instance. 

5.3 Cumulative fitness assessment 

The fitness assessment method originally employed to score each member of 
the population was simply to calculate the absolute error between the 

idealised training set output vector value, and that provided by the candidate 

solution, for the same input training vector value. The reciprocal of this error 

term was then used as the fitness value for that training vector case (such that 

the fitness is directly proportional to the accuracy of the candidate solution for 

that training case). The overall string fitness value scored was then simply the 

accumulation of all such fitness values for all the training vector cases. 

This cumulative fitness assessment method proved to be unsatisfactory with a 

tendency toward premature convergence: Frequently the system would simply 

find a solution that would force a constant into the output register that 

matched at least one output training vector value. Similar solutions with higher 

fitness were sometimes delivered when conditional jumps were evolved to 

examine the input vector value and so deliver two different constants to the 

output register. 
Once such an operation appeared in the candidate solution, the population 

would start to converge and the situation was unrecoverable - even if the 

system was left to run for one million generations. 

5.4 Preserving diversity: Qualified cumulative fitness 

Generally EC techniques are used to tackle problems where the 'correct' or 
'best' answer isn't known: In this situation, the population needs to converge 

as an indicator of success; -however, this convergence inevitably leads to a 
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loss of diversity in the population. The initial random population, created for 

generation zero, should offer the greatest variety of programs that may form 

the root of a solution. 
To prevent the system from placing constants in the output register (and so 

start to converge) a new fitness assessment method was tried: The evolved 

program string would be scored as having zero fitness, unless it exhibited a 
threshold amount of fitness for each training vector case. Provided this 

criterion was met, the fitness score for the string would again be the 

summation of the per case fitness as before. 

This method was adopted because, in the case of functional regression of 

continuous functions, the solution should grow from a useful `root' version 

of that function; such a `root' solution is more likely to exhibit some fitness in 

all training cases. Delaying any form of convergence until such a useful root 
function is discovered, preserves the initial start-up diversity (of the initial 

population) for longer. 

One alternative strategy for allowing the necessary convergence to occur, 

whilst potentially maintaining some of the initial overall diversity, has been 

achieved by the use of island - model parallel Genetic Programming (GP) 

[Fernandez et at 2000]. Here, sub - populations converge - but this 

convergence maybe upon different (potentially sub - optimal) solutions. The 

exchange of material between these sub - populations can thus preserve 

overall diversity longer, allowing an optimum solution to emerge. 

5.5 Fitness clamp 

The use of a fitness assignment method that demanded a threshold fitness in 

all training vector cases, proved to be a more successful approach than the 

simple cumulative fitness assignment, in that the ideal solution was found 

more frequently. However, the calculation of fitness as the simple reciprocal of 
the error led to the possibility that as any evolved solutions approached the 
ideal, the error would fall to near zero, and the fitness would consequently tend 
toward infinity. By this process, a function that was very fit in just one training 

vector case (whilst being only slightly fit in all other cases) could swamp the 

population. This could mean that a better, `all round' solution that was evolving 
would be passed over. 
To avoid such a possibly unhelpful saturation of the population by a single 
candidate, a maximum fitness 'ceiling' value was employed. This clamp value 
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was used as the candidate's fitness score when the error for the training vector 
case fell below 0.002. This value was found to be appropriate for the problem at 
hand by experiment. The tolerance of this value did not seem to be too critical, 
but the choice for such a value must depend upon both the type of function 

sought i. e. its complexity, and the nature of the fitness landscape surrounding 
this solution. In a future development of this system, this value may well be 

tuned dynamically according to search progress [6.6.1]. 

One immediate side effect of clamping the maximum fitness score in this way, 
is to create a 'dead zone'. Within this region, solutions could not be improved 

upon because the feedback path that leads solutions to improvement through 

evolution is broken. This potential limit on solution accuracy can be seen as 

acceptable because of the targeted problem class of non safety - critical 

applications that do not demand high accuracy [3.7]. An example of an 

acceptable application with an accuracy tolerance would be a system to tune a 

radio or guide a TV satellite dish; in the radio case, the broadcasts are made 

centred upon the advertised station frequency and, as a consequence, tuning 

close to that frequency will still yield a good signal. 

5.6 Fitness gain and root solution capture range 

Demanding that any solution to be classed as a `root' solution exhibits 
threshold fitness in all training vector cases applied, will create a solution 
`capture range': Due to the reciprocal nature of the fitness assessment 
function, the errors seen have to be relatively small to in order to generate a 

significant fitness value. As this value must be sufficient in all training vector 

cases, then an acceptable candidate solution needs to be quite close to the 
ideal function before it is will be scored. However, the chances of creating 

such a close match to the desired function randomly are small, and, as a 

consequence, some tolerance on the size of this capture zone needed to be 

incorporated. This is provisionally achieved here by simply multiplying the 
fitness score by a constant. 

5.7 Dynamic fitness gain 

As an experiment to investigate the possible improvement in results that may 
be obtained, the fitness awarded to a given individual was allowed to vary 

according to search progress. The idea here was to increase the fitness by 
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multiplying the award by a constant that was increased incrementally over 

evolutionary time if the search was failing. 

It was hoped that the effect of gradually increasing the fitness award would 

eventually lead to individuals with poor fitness, but some potential, Increasing 

In frequency in the population. With this increased presence, the chances of 

adapting a root solution constructively would increase leading hopefully to the 

optimum. 
Unfortunately, if the initial population had no useful root solutions, and 

adaptation failed to create any, then the effect of this dynamic fitness 

allocation was detrimental: The effect is to eventually make candidates that 

placed one or more constants in the output register, appear fit enough (exceed 

the fitness threshold described in [5.4] above) in all training cases to start a 
fruitless convergence: The use of a dynamic fitness gain was abandoned. 

5.8 Parsimony 

The initial version employed a second level of fitness scoring whereby an 

additional, though minor, award was made according to the length of a 

candidate. 
This simply involved increasing the fitness by one for each statement that the 

candidate contained that was less than the maximum number of statements 

permissible per string. 

Applying parsimony to GP populations has been employed in an attempt to 

reduce program bloat [2.7.3.2] however this is less of an issue with the LGP 

form employed here, mainly because arbitrarily large subtrees cannot be 

grafted onto existing large trees. 

Parsimony intends to reduce solution length but this will frequently reduce the 

population diversity too, hampering the search. For this reason, the true 

relevance of parsimony to LGP - and remembering that resources are not an 
issue in this work - parsimony was abandoned. 

5.9 Fitness function used 

In the above sections [5.3 to 5.8] the development of the fitness assessment 

method that proved to be the most successful is explained. In summary then, 

the fitness assessment algorithm applied to each population member during 

the experimentation was as follows: 
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(1) Load the input registers with the corresponding values from the 
input training vector. 

(2) Clear all output register for the output associated with this 

population and execute the candidate string. 

(3) Calculate the error in the output by subtracting the ideal (output 

training vector) value from the value in the relevant output register. 

(4) Make this error value positive if negative. 

(5) If the error value is less than the clamp threshold value (0.002) [5.5] 

then calculate the reciprocal of this error and multiply this value by 10 

[5.6]; otherwise, set the fitness value to the maximum `clamp' value 
(5000). 

(6) Repeat steps (1) to (5) for each training vector. 

(7) If the fitness for any training vector applied is less than the threshold 
(0.2) then set the fitness value for the whole string to zero [5.4]; 

otherwise, sum the fitness score for each training vector and assign this 

to the string. 

5.10 Crossover 

Crossover action on LGP systems can be viewed as simply a form of strong 

mutation: With register-based linear GP, it will make little difference (in many 

cases) in which order unrelated program statements are executed: Thus the 

action of exchanging the top and bottom halves of two strings, in a converged 

population can add little. However, this ordering is certainly more critical in the 

case of the output statement: In this case, the sequential execution of the 

program strings (unless branching occurs) creates a situation whereby only 
the final Output statement executed (and the code that built the data for this) Is 
Important. Perhaps not unexpectedly then, the level of crossover used has 

little impact on the level of success attained. 
The crossover rate used was held at 0.25 i. e. on a pass through the 

population, the probability of a particular string being selected for crossover 
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was 0.25. When two strings have been selected in this manner, a random cut 
point is chosen separately for each string. If the crossover action would 

produce a string whose length exceeds the preset maximum, then the 

operation is abandoned; otherwise the two string sections above the cut point 
are exchanged, and the adapted strings returned to the population. 

5.11 Mutation action 

Subsequent to the initial population, the only way of introducing diversity into 

the population is through the action of mutation. Mutation becomes especially 
important then as the population starts to converge - especially if that 

convergence is upon a sub-optimal solution. 
Various methods of mutation were tried, along with the replacement of the 

least fit individuals in the population with an equal number of randomly created 

strings. 

Though many methods of mutation were tried, the final method used in the 

experiments formed a composite of these: The maximum evolutionary time 

allowed is 20000 generations9 and this time is divided into four epochs, with 
the level or type of mutation applied changed according to the current epoch: 

During epoch 0 which lasts for the first 40% of evolutionary time, one 

single statement is chosen randomly from the string selected for 

mutation. This entire statement is replaced. 

buring epoch I which lasts from 40% to 70% of evolutionary time, the 

mutation action will again be to randomly select a single statement from 

the selected string but now only one part of that statement will be 

altered: 

this will be either the operation type, the output channel type or one of 
the two input channels [see appendix A: Evolutionary language 

grammar]. 

During the third section of evolutionary time (70 to 90%) one section of 
the chosen string will be selected and, if that section contains a 

constant value, then this will be altered. In this instance, only constants 

'N. B. Evolution can be terminated early if the mean population fitness exceeded a pre-set value I. e. when 
the population has converged upon a high fitness solution. 
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in the input channels are modified - if used. Unlike the mutation of 

constants above, the current value is retained and updated by the 

addition of a bipolar gaussian random number. In this epoch, this 

number is randomly picked from a gaussian normal distribution with 

mean 0 and standard deviation 2 [see appendix B; Gaussian random 

number generation]. 

In the final epoch, which can run from 90% until the end of evolutionary 

time, an identical process to that above is applied - except that the 

random value added to the existing constant is now picked from a 

distribution with a standard deviation of I- effecting a smaller change 

on the current value (probabilistically) than in the previous epoch. 

The intention of performing the mutation in this way is to focus down upon the 

candidate solutions prevailing In the population at that time. The intention is 

that as evolution progresses, those candidate solutions will become closer and 

closer to the ideal solution and so require less dramatic changes. For the final 

two epochs, any input constants are the only items that are available for 

change, and the size of that change to their current value will reduce. 

The focussing down of the search area over time is expected to produce a 

similar effect to that of Simulated Annealing [2.4] but this method also dates 

back to the earliest days of evolutionary programming and Fogel's work with 

Finite State Machines [Fogel et al 1965]. 

5.12 Population size 

Initially a population size of 200 program strings appeared to be a good 

compromise between computing time and efficacy during development. 

Though there has been published work that attempts to relate population size, 

representation and convergence [Albuquerque, 2000]. Albuquerque suggests 

that there exists an optimum population size for a given representation; too 

small and there will be no convergence; too large and computational effort will 
be wasted - perhaps pointing to a multiple population approach as the ideal? 

Unfortunately Albuquerque's formula for optimum population size is particular 

to the Generalised Simulated Annealing algorithm used, and the representation 

adopted - and not in a form generally applicable to other EC contexts. 
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5.13 Training set size 

At just sixteen cases per output, the size of the training set used in the 

experiments is unusually small for EC: However, because the fitness function 

adopted here requires a threshold fitness score in all cases, then the candidate 

function promoted is most likely to be a useful root function which can map all 

training cases to some extent: By this process then, a relatively small training 

set was capable of unambiguously describing the target function (or Its near 

equivalent) In the example tried. 

In the absence of the front-end tool discussed in [3.9] the training vectors were 

created manually: Sixteen cases per output proved to be sufficient (during 

development trials) to unambiguously describe the required functions to be 

evolved: The size of training vector required for this system will have to 

balance the following requirements: 

" The evolution time is directly proportional to the size of the training 

set because fitness assessment of the candidates will usually involve 

testing that candidate against each training case. The time taken to 

evolve a solution can be an important consideration where computing 

resources are restricted, or where evolution time must be restricted: 
This leads to pressure to minimise the training set size. 

" The training vector size has to be large enough to explicitly relate the 

correct inputs to the target output and describe the functional 

relationship necessary. This is vital because in the proposed system, all 
tasks / populations are exposed to all system inputs during output 

evolution, and so it is possible for an incorrect relationship to be 

discovered between the wrong inputs and an output: This can be 

countered by ensuring that the training vector size Is large enough to 

include cases whereby a coincidental -relationship between inputs and 

an output isn't inferred. 

" The fitness assessment method used [5.4] requires that candidates 

exhibit threshold fitness in all training cases before being awarded any 
fitness score: This is intended to promote candidates offering a 
functional relationship between the inputs and outputs rather than 

outputting constant values. Search success will involve the capture and 
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improvement of useful root solutions that fit this criteria initially, 

however, as the training set size increases, discovered functions will 

need to be nearer to the ideal to satisfy this criteria, thus the capture 
range will reduce, and the search will need to have a finer focus - In 

turn reducing the probability of success. 

" More complex functions will need larger training sets for 

unambiguous description. 

" It is possible to exactly define all the required functions with a minimal 
training set - if the required functions are simple. 

Training vector size and generation is further discussed in (6.3]. 

5.14 Composite outputs 

The requirements of the heater demand output [4.11.1.2] combine tracking the 

error in drum water temperature, cancelling this demand if this error is 

negative (i. e. the drum water exceeds the selected wash temperature) and 

ensuring that any heating only occurs in the correct timeslot. 

This combination of one continuous function and two logic functions together 

proved to be extremely difficult to solve for an LGP type system. Typically, the 

logical parts of the problem were solved but the incorporation of these with the 

required continuous function remained hard. 

The explanation for this is probably that the Stop / Go texture imposed on the 
fitness landscape by the logic functions effectively obscures any tractable 

gradient necessary to find the outstanding continuous portion. 
The solution employed is to separate the logical and continuous sections of 
the problem and combine the results afterwards by a `gating' operation. The 

gate control would be fed by the logical contribution and the effect would be to 

either pass the continuous contribution untouched or clamp it to zero. 
Arguably, this could be seen as a solution to the particular problem at hand, 

whereas this research suggests a general - purpose program creation 
technique that may be applied to any problem in the identified class. To make 
this solution universal then, all continuous outputs would have an associated 
logical gating function: The gating itself would occur in the embedded 
Operating System (OS) controlling and cycling the evolved, tasks. If there were 
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no logical I continuous mix needed, then the associated logical gating control 
task would be undefined, and the gate itself would default to 'open'. 

5.15 Results 

The useful evolution of the majority of the tasks proved to be quite trivial with 

maximally - fit solutions found in less than 20000 generations ( about half an 
hour of computational time on aI GHz PC). 

Evolving task code that produces continuous rather than boolean output, 

proved to be more problematic with good solutions only being delivered 

around one In every sixteen runs. In order to examine system performance 

then, the results gathered over 900 runs record only the evolution of the 

continuous Heat function. 

The experimental results are summarised below: The maximum fitness score 

attainable Is 80000 and a score in excess of 40000 would typically Indicate that 

the correct function had been induced - but that a further refinement In 

constant values could be made: For example, If the function sought was 

0= (In. 1 - In. 2) * 2.71 

And the best candidate at a given time was 

O=(In. 1-In. 2)*2.6 

Then this function would score above 40000 here: Leaving the EC system 
running longer would eventually result in a refinement of the constant, up to 
the required 2.71 value, and a fitness score near 80000. 

The first two tables below [5.1 and 5.2] show search successes as the 

population size is varied. In the first table [5.1] `success' Is awarded for fitness 
in excess of 40000, and fitness in excess of 75000 In the second table [5.2]. 
Similarly, the third and fourth tables below [5.3 and 5.41 record success at 
40000+ and 75000+ levels against varied initial (randomly generated for 

generation zero) and maximum permitted string lengths: 
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Pop: 200 400 600 800 1000 Totals 

No: 170 170 169 167 168 844 

Yes: 10 10 11 13 12 56 

Totals 180 180 180 180 180 900 

Table [5.1]: Success (40000+) v. population size. 

Pop: 200 400 600 800 1000 Total 

No: 172 173 171 167 168 851 

Yes: 8 7 9 13 12 49 

Total 180 180 180 180 180 900 

Table [5.2]: Success (75000+) v. population size. 

Length: 5 10 15 20 25 30 Total 

No: 137 138 144 142 142 141 844 

Yes: 13 12 6 8 8 9 56 

Total: 150 150 150 150 150 150 900 

Table [5.3]: Success (40000+) v. string length. 

Length: 5 10 15 20 25 30 Total 

No: 138 138 144 146 143 142 851 

Yes: 12 12 6 4 7 8 49 

Total: 150 150 150 150 150 150 900 

Table [5.4]: Success (75000+) v. string length. 

5.15.1 Evolvability and string length 

Using longer strings to construct an initial population would generally result in 

a more diverse population and, intuitively, this should increase the chances of 

finding a good root solution. However, the results [tables 5.3 and 5.4] Indicate 

the opposite result - that greater success results from shorter strings. There 

would seem to be two possible explanations for this unexpected result: 

Firstly, the evolved program strings are executed sequentially forwards (with 

the exception that the Branch instruction may cause some instructions to be 

skipped over) and so the contents of the output register will be overwritten by 

successive output operations. As a consequence, only the code and data 

directly contributing to the final output operation is relevant; thereby the 

overall string length cannot be simply viewed as an indicator of potential. 
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Secondly, the effect of mutation (and effective search) are diluted in direct 

proportion to the string length. This is because the probability of selecting the 

critical instruction for a constructive mutation must diminish as the string 

length increases. 
These two factors can explain why the counter - intuitive observation that 

string length is negatively related to success. 

5.15.2 Evolvability and population size 

Similarly and perhaps more surprisingly, the experiments also failed to 

demonstrate any useful advantage In operating with larger population sizes. 

Again, the greater diversity afforded by a larger initial population should 

Increase the probability that a useable root solution will appear In the initial 

random population. However, it has been shown that, beyond a given 

threshold, the functional diversity of a random population will tend to a limit 

irrespective of size [Langdon 2003 ], but perhaps the dominant factor here Is 

the subsequent loss of diversity: 

Due to the fitness assessment measure used [5.4] the vast majority - or 

possibly all - of the candidate solutions in the Initial population will be scored 

at zero fitness. As a result, approximately half of the diversity can be lost on 

selection, and this process will continue with the population starting to 

converge upon any solution with some fitness. 

Unfortunately, premature convergence on any sub - optimal solution in this 

manner, will effectively block the development of any potentially ideal solution 

(uncovered by mutation or crossover) unless the fitness of this root solution is 

sufficiently high. 

This unexpected indifference to population size (and sometimes other genetic 

parameters) In some situations, was also noted and Investigated by Fuchs 

[Fuchs 1999] in a study where GP and Hill Climbing (HC) were compared. 

Fuchs' conclusion was that this indifference Is more an artefact of the 

particular problem rather than the technique (i. e. another example of the No 

Free Lunch theorem [Wolpert & Macready 1995] ). Fuchs suggests that In such 

a situation, the fitness landscape might be flat and (initial) solutions could only 
be found by `accident': In such a situation, a GP search with a population size 

of one, could be seen as a basic HC search (where the HC can restart at a 

random point if no progress is made): The conclusion then, Is that GP 

population size can be irrelevant In some situations. 
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5.15.3 The rate of random generation of root solutions 

In an attempt to determine whether or not the action of premature convergence 

will block the development of good root solutions - Irrespective of (reasonable) 

population sizes - the rate of generation of such root solutions was examined: 

The results are lists of the fittest, unadapted individuals that were generated 

randomly as members of a population of variously - sized strings. These lists 

were created by modifying the standard evolution software used previously, so 

that rather than adapt and evolve a random start - up population over 20000 

generations, a fresh random population of 1000 programs were created 20000 

times. Each of these populations were examined and the fitness of any fit 

strings added to the list, along with the population number (i. e. 1 to 20000). 

Due to the amount of data, the content of these lists is supplied as a histogram 

and included in Appendix C. 

The lists demonstrate that the frequency of occurrence of fit individuals Is so 
low (at best 44 individuals of fitness 116.9) that counteracting any prior (sub - 

optimal) convergence would be unlikely, due to the relatively low initial fitness 

of these individuals. 

Also, by examining these lists of fittest individuals produced during 20000000 

attempts, where, in the best case, the highest fitness recorded is 116.9, it may 

also be concluded that the LGP system used is a very effective method - 
capable of producing solutions with a fitness in excess of 75000 on 

approximately one run in every eighteen [tables 5.2 and 5.4]. The results are 

slightly better still (56 1900) for successes with a fitness above 40000 [tables 

5.1 and 5.3]. 

5.15.4 Continued evolution versus restarting 

Due to the inevitable convergence, and low initial fitness of solutions (as 

discussed in [5.15.3] directly above) continuing with a run that is not making 

useful progress may be a waste of resources: An alternative strategy may be to 

abandon the run after a time and simply restart from zero. To assess the merit 

of this approach, the data from the 900 experimental runs above was examined 

and the epoch in which the root solution first appeared (fitness left zero) was 

recorded: 
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Epoch Generation #Runs 

0 0.. 8000 486 

1 8001.. 14000 127 

2 14000.. 18000 13 

3 18001.. 20000 5 

Zero fitness 269 

Total: 900 

Table [5.5]: Epoch of discovery for fit individuals. 

For the 49 out of 900 totally successful (i. e. fitness of 75000 and above) runs 

alone, the epoch of origin was as follows: 

Epoch Successes Probability 

0 32 32/49 65.3% 

1 15 15/49 30.6% 

22 2/49 4.1% 

30-- 

Table [5.6]: Epoch of discovery for successes. 

So the probability that one of the successful solution will emerge during the 

first epoch is 65.3% and this is only the first 40% of the total allocated 

computational effort allocated for that run. 
Alternatively, the probability of discovering and building a solution to success 
during the remaining epochs is: 

(49-32)/(900-486)=4.1% 

And the probability of finding a successful solution during the first epoch Is: 

32 / 486 = 6.6% 

Thus, with this data, there appears to be a clear advantage in restarting after 
the first 40% of a run - if the fitness has not left zero by this time. 
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This higher rate of discovery (of initial root solutions) during the first epoch is 

almost certainly due to the more radical mutation strategy used in this epoch 
[5.111. 

5.15.5 Testing 

Some initial simulation work was performed on the evolved washing machine 

code by synchronising and then cycling the evolved threads In parallel to 

simulate the action of the embedded OS: In this simulation, sensor data was 

read In from an input file (replacing the data from the system hardware) and 
this was run through the code threads to produce the output data, which was 

collected synchronously and written to an output file (instead of writing to the 

physical hardware). This collection of input data samples and corresponding 

output data was then used as Input for a LabVIEW1° application written to 

graphically display the simulated washing machine state. 

The LabVIEW application converts the input, and corresponding output file 

data from numeric data and displays it as actions in the washing operation; 

advancing to the next data batch I washing state as the file data is stepped - 
through. The result is a display that could show, for example, spin speed and 

water temperature, at a glance. 
However, this graphical simulation is intended only to give a manual 
demonstration of the operation of the whole system and there remains great 

scope for further work [6.6.3] utilising automated test vector generation. The 

effect of intensive automated testing could be to raise confidence in the 

technique and so increase the range of target applications. 

Ultimately, graphical simulation of the evolved system could be used for 

prototyping and developing the design prior to implementation, QA, sales 
demonstrations etc. 

'0 LabVIEW: 
LabVIEW Is a 'graphical' programming language used primarily for fast application development In the 
electronic test and automation Industries. Graphical icons (depicting a function) replace program statements 
and data flow is created by connecting these Icons with virtual 'wires'. which appear as lines. Control flow 
and sequencing Is determined by data flow and by grouping Icons in operation boxes for iteration operations 
or for the purposes of modularization. Various forms of numeric data can be easily displayed with the use of 
various library icons such as graphs, meters or fill bars. Similarly, data can be input using virtual 'knobs' or 
via disk files or networks - again using library icons. For more information on National Instruments' 
LabVIEW: www. ni. com. 
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5.15.5.1 LabVIEW simulation screenshots 

The following figures [5.1,5.2,5.3 and 5.4] are screenshots taken from the 

LabVIEW simulation of the entire washing machine controller operation. 
In these figures, the upper block of boxes show the sensor input fed to the 

controller from a data file: The Vectors input shows the total number of system 
input and output sample vectors to display. The Time box indicates the current 

operational timeslot; the Water temperature and Target temperature boxes 

Indicate the actual and required drum water temperatures, and the Water level 
box corresponds to the Drum Full input. 

The lower five boxes display the collected system outputs taken from the 

evolved code threads when fed with the sensor input data: The Drum speed 
indicates the washing drum rotation speed, the Heat demand shows the 

composite logical and continuous Heat demand values; the Drain pump box 

Indicates whether or not the drum water drain pump is operating, and the 

Water boxes show the status of the hot and cold water feed valves. 
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Figure 5.1: Timeslot 0 (Fill). Here the drum is filled with hot and cold water, tho 
drum is not rotating and there is no water heating. 

demand attempts to correct the water temperature error. 

Figure 5.2: Timeslot 1 (Wash). Here the drum rotates slowly whilst the heater 
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desired wash temperature and the Heat logic function has gated out the 

demand output to prevent a negative demand value being produced. 

Figure 5.3: Timeslot I (Wash). Here the actual water temperature exceeds the 
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and the drum is on fast rotation. 

5.16 Chapter summary 

This chapter has covered the problems and solutions found, during, the 

realisation of the technique demonstration outlined in the previous chapter: 
The results of 900 experimental runs were examined in an attempt to relate 
search performance, population size, string length and the option of restarting 
the search: The conclusions drawn were that the LGP system used is very 

effective - capable of solving the hardest thread here in about half an hour, 

approximately one in every eighteen times, whilst being relatively insensitive 

to parameter changes - probably making the technique ideal for wide 

application: Restarting also proved to be a potentially useful strategy with this 

problem examined. 
Finally, a graphical simulation involving the entire, evolved washing machine 

operation is described. 

Figure 5.4: Timeslot 6 (Spin). Here the heater is off, the drain pump Is active 
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In the next chapter, conclusions are drawn about the work carried out here and 

what has been achieved, and this is followed by suggestions for future work 
that will carry this research forward. 
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6 Conclusions 

6.1 Introduction 

In this final chapter, the work is re - examined and conclusions are drawn 

about what has been proposed, discovered and completed towards the stated 

aim of this research; namely, to propose and demonstrate a method of 

automatic software creation by problem decomposition and evolutionary 
computing. Later, suggestions are made for Future Work that can add to this 

research. 

6.2 The software creation system developed 

The main aim of this research is to propose and demonstrate a method of 

automatic software creation for certain embedded control problems using 

concurrent Evolutionary Computing (EC). The target problem class contains 

non safety - critical problems with a limited requirement for output accuracy, 

complexity and response timing: Essentially these are problems that can be 

decomposed into a number of simpler problems that execute in parallel. 
The system developed appears to be very effective - capable of producing 

solutions to the most complex problem thread in approximately half an hour 

using a three year old PC about one in every eighteen runs: The effectiveness 

of the search can be appreciated by comparing the frequency and fitness of 

the best root solutions produced randomly (at best 44 Individuals in 20000000 

with a fitness of 116.9 [5.15.3]) against the fitness and frequency of the 

successful runs where a root solution is improved through evolution (attaining 

a fitness in excess of 75000 In 49 out of 900 runs [tables 5.2 and 5.4]). 

A statistical examination of the 900 experimental runs also led to the useful 

conclusion that, if no fit individuals exist in the population after the first 40% of 
the total run time allocated, then the computing resources can be better 

employed by restarting the run with a fresh population rather than continuing 
[5.15.4]. 
The relative insensitivity of the system to variations in the population size 

could be a reassuring indicator of the generic nature of this technique i. e. that 

the system is robust enough to use on a range of problems without excessive 
tuning. However the No Free Lunch theorem [Wolpert & Macready 1995] 

suggests that a universal system is unlikely and that some automated 
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restarting and dynamic parameter tuning may be needed - though this can be 

reduced if the target problem domain is limited - which is the situation here. 

6.3 Problem capture and training set size 

Ultimately, the training set necessary would be produced by a front - end tool 

capable of capturing the problem from the user (as outlined in [3.9]): For both 

problems here, the training sets were produced manually and, at just sixteen 

cases per output, are unusually small for EC. This is possible here because the 

continuous heat function (of the washing machine controller) is linear, and the 

logic functions trivial: There is no real restriction upon training set size - 
beyond that of the computing resources available (evolution time will increase 

in proportion to the time needed to evaluate candidate fitness i. e. present all 
the training cases). However, the current method employed to assign a (non - 

zero) fitness score to an individual requires that a nominal level of fitness is 

exhibited in all training cases [described in 5.4]. This could be a prohibitive 

requirement for more complex problems described with larger training sets; 
i. e. this criterion may involve randomly creating a very close solution 
immediately rather than evolving one. This situation could possibly be tackled 

by requiring nominal fitness in only a proportion of training cases. 

Describing more complex functions accurately will always require more 

samples but such problems are beyond the intended scope of this system i. e. 
target problems [as detailed in 3.7.2] are those that can be solved by breaking 

the whole problem into a number of smaller, individual problems that are, in 

themselves, relatively simple and undemanding in terms of accuracy and 
reliability. 

6.4 Contributions to knowledge: What has been achieved 

In summary, the following items have been achieved, and a corresponding 
contribution to knowledge made in the fields of EC and software engineering in 

general: 

" The examination and classification of Genetic Programming (GP) 

literature up to mid 2003 - highlighting the lack of work on the 
decomposition of problems for concurrent EC solutions, or the use of 
EC to create actual programs for real applications. 



87 

. The characterisation of typical embedded control applications and the 

suggestion that the structural architecture of such software - and the 

way problems are necessarily decomposed - can prove to be a fruitful 

EC target. This results in the identification of a realistic and useful, finite 

application class for GP; and so defines the operational bounds for this 

technique: This is the class of problems that are non safety - critical, 
concurrently decomposable into a number of quasi - linear problems, 
where guarantees about accuracy and response time are not needed 
[described in 3.7.2]. 
Further to this, is the suggestion that GP for concurrent embedded 

application may benefit from using two distinct data types; Bipolar 

continuous and Boolean logical. 

" The development of a concurrent EC system suitable for use in this 

research: In addition to implementing a specific language set (created 

for this work [4.3]) and using two distinct data types (Bipolar continuous 

and Boolean), successful search required the development and use of 
the following: 

"A fitness assessment method capable of promoting useful 'root' 

solutions (i. e. randomly created individuals that exhibit a 
threshold level of fitness for all training cases applied) and so 

reduce sub - optimal convergence. (Convergence here is defined 

as the situation where at least 95% of the population is identical, 

and that this situation has persisted for at least 50 

generations). This method demands that any fitness score 

attained by a candidate will only be applied if that candidate 

meets this 'root' solution criterion [5.4]. 

" The adoption of a fitness level clamp to damp convergence and 

so preserve the range of genetic material (population diversity) 

with the intention of avoiding premature convergence. (Here, 

premature convergence describes the situation whereby the 

population has converged upon a solution, but that a better (or 

optimal) solution is known to exist). The clamp value is a preset 
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maximum value that can be attained by a candidate - Irrespective 

of the degree to which this value is exceeded [5.5]. 

"A method for evolving solutions for problems involving 

combined continuous and logical functions: Here, the functions 

are separated during evolution and combined later as a function 

of the Operating System (OS) (5.14]. 

" Optimised search with the use of graded mutation to search 

aggressively and then refine solutions: This is achieved by 

dividing the overall evolution time allocated into four epochs: 
During the first epoch, mutation can replace the entire target 

string; in the next epoch, only one element in that string can be 

replaced. Mutation in the penultimate epoch may only make 

coarse adjustment of one constant in the chosen element and, in 

the final epoch, only fine adjustment of a constant is permitted 

[5.11] 

" The solution of two demonstration control problems repeatedly and 

quickly using concurrent EC and decomposition: These were a simple 
fridge controller with two inputs and three outputs, and later a relatively 

complex washing machine controller with ten inputs and seven outputs. 

" An examination into the search sensitivity of the EC system employed 
here, to changes in population size and program string length [detailed 

in 5.15.1 and 5.15.2] that shows a useful degree of insensitivity to the 

search parameters used, thus demonstrating the necessary (relatively) 

universal nature of this system. 
The same data was used to perform a statistical examination into the 

merits of early search termination and restarting from zero - If stalled 
[see 5.15.41. This yielded a fruitful heuristic for determining the time at 

which to abandon the current run and so conserve computing 

resources. 

" The development of a simple visualisation tool to demonstrate the 

operation of the entire control system, and so enhance user confidence 
[section 5.15.5]. 
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9 To identify a number of further research streams that could enhance tho 

technique and the scope of its application [6.6] 

6.5 GP and automatic software creation 

The past decade of GP research has taken place against a background of 

exploding computer power, and in excess of 1200 GP papers have been 

published" yet the failure of GP to actually create useful programs is 

conspicuous: Toy problems, the comparison of improved techniques against 
benchmarks and various `curve - fitting' exercises (albeit with possibly 

complex functions) are no real substitute for the early promise of GP. 

One of the earliest claims made for GP by Koza was that GP is capable of 
discovering not only the solution to a problem, but also the shape of that 

solution (i. e. architecture, storage etc. ) [Kota 1992b]. This may be possible, 
but is it realistic for anything more complex than trivial problems with a small 

search space? 
This work then, is already a distinct departure from the original GP of Koza 

because human input is required to define some of the solution shape in 

advance: This step may be essential though when attempting to solve real 

problems with software that will reside in chosen, off - the - shelf hardware, or 

where the dedicated hardware architecture is strictly defined by the problem. In 

addition, this step could be viewed as a realistic necessity that will actually 

make larger problems accessible to EC methods. 

This work demonstrates how a relatively complex software creation problem - 
too complex for EC solution as a single program - may become soluble when 

recast as a number of simpler problems operating in concert. 
With regard to scalability; the potential for this technique may be greater than 

that of tree GP which must identify and capture common modules of 
functionality automatically in order to tackle larger problems. Here, larger 

problems can be accommodated by Increasing the number of threads - 
provided this division of overall output is possible. 

11 Online GP bibliography: http: //iwww. ira. uka. de/bibliographylal/genetic. progromming. html 
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6.6 Future work 

This thesis has taken these ideas on automatic program creation using EC In a 

concurrent processing environment, and extended them from the previous 

published work [Hart & Shepperd 2002] . Expanding this research further could 

simply involve bigger or more complex problems; alternatively, these 

extensions could involve technique refinements or widening the applicability 
by confidence - building measures and testing: 

6.6.1 Towards better performance 

Improved search performance, and perhaps a system capable of adapting to a 

range of problem types automatically, could result from an investigation into 

dynamic parameter tuning: Failure to converge successfully within a certain 

number of generations could initiate changes In various evolutionary and 

system parameters. These changes could be made dynamically and used In 

the current search, or made prior to a restart. 
Suggested parameters could include the fitness threshold required in all 

training cases [5.4], or in reducing this requirement so that only a proportion 

of cases need this fitness level. Changes in the mutation operation [5.11] are 

another possibility, along with the more immediate targets such as mutation 

and crossover rates, tournament size, initial string length and population size 

(though sensitivity to population size has proved to be low - for the problems 

tried [5.15.2]). 

The most appropriate representation Is vital for success - but this has not been 

the subject of experimentation here: The Idea of using a very simple 

evolutionary language set may be flawed because the number of instructions 

needed to be assembled - In the correct order - may make the probability of 

discovery near zero; whereas a few, more complex instructions, could be 

more readily assembled. Experiments to determine if the addition of some 
higher - level Instruction would be beneficial - provided that undue 

customisation of the system to one application area could be avoided. 

More direct approaches to deal with the inherent problems of LGP could be 

addressed by implementing recently published work on linear scaling [Keljzer 
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2003] that alms to free the LGP to find the desired function " rather than focus 

on the magnitude of the data. 

6.6.2 Widening the range of application 

The extension of this work to evolve voting teams [2.7.3.11.2] Is an option 

available that may increase the trustworthiness of the system and so increase 

the range of possible applications i. e. to include those in which a degree of 

correctness must be ensured. With voting teams, an output will be formed from 

the consensus of a number of contributors within a team - thus increasing the 

reliability of the output generally. This approach to safety - critical software 
development by humans has already been investigated in the form of N version 

software development [Hatton 1997]. GP forms of N version software have 

been explored in [Soule 1999 ] and [Imamura & Foster 2001], and similar 
approaches to forcibly create heterogeneous team members (by manipulating 
the evolutionary context) In [Feldt 1998]. 

Further confidence in the operation of the evolved controller may result from 

an investigation into the use of run - time bounds checking" and watchdog 
timers13 - already a common feature in embedded control systems. 

6.6.3 Testing 

Testing, and design - proving in general, will usually be an essential element in 

the automatic creation of software but, beyond the graphical demonstration 

system developed [5.15.5] this work has not been attempted here: There 

remains great scope for work utilising automated test vector generation to 

accompany this work. The effect of intensive automated testing could be to 

raise confidence in the technique and so increase the range of target 

applications. 
Alternatively, because of the fast evolution time, and consequent low cost of 

redesign, the whole system could be used (along with the front end tool [3.9] ) 

to provide a cyclic prototype - redesign - trial approach to development - with 
the system user 1 product designer and target hardware: This type of testing 

1= Run time bounds checking: 
This is a feature available with languages targeted at safety- critical applications such as ADA IBames 
1989). Here, the normal bounds for a program variable or output are specified prior to execution. If the 
variable exceeds these bounds, exception processing is Initiated. 

13 Watchdog timers: 
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can, in many cases, be viewed as the ultimate test because it does not use any 

abstraction away from the target. 

6.6.4 Front end tool 

Beyond stating the output requirements of this tool for problem capture [3.9] 

no work has been attempted on its development. The generation of automatic 
test vectors could be an additional output of such a tool - though these would 

only test against the captured model of the required software and not 
necessarily the required software. 

Watchdog timers are typically hardware counters that will reset the microprocessor upon expiration - 
returning the 'processor from a known start, state. During normal execution of the control operation, the 
microprocessor must regularly reload the watchdog timer to prevent the fault restart. 
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Appendix A: Evolutionary Language Grammar. 

The evolutionary language set used is { N, T, P, S} 

where S is the start symbol, T is the set of terminals, N the set of non-terminals 

and P the set of production rules that map N to T. 

Terminals -T 

These are items that can appear in the language. 

T IF, AND, OR, XOR, NOT, (, ), <branch_number>, 

<Iine_number>, THEN, <const> } 

Non Terminals -N 

These can be broken down into one or more Terminals and non-Terminals 

N={ code, line, expr, if op, op, boot op, cont_op, comp op } 

Production rules -P 

(1) <code>:: = <line> (A) 

I<code><Iine> (B) 

(2) <line> :: = <expr> 

(3) <expr> :: _ <if op> (A) 

I <Out Item>=<op> (B) 

(4) <op> :: = <In_iteml><cont_op><In_item2> (A) 

j<In item1><comp_op><In_item2> (B) 

I<ln_iteml><bool_op><In_item2> (C) 

I NOT <In Item2> (D) 

(5) <Out_Item>:: = { Me. <nm>, Ou. <no> } 

(6) <In_Item1>:: = { Me. <nm>, In. <nl>, Const } 

(7) <In_ltem2>:: = { Me. <nm>, In. <ni>, <Const> } 

(8) <Const>:: = Constant floating point value in the range -10.0 to 10.0 

(9) <cont_op>:: = { +, -, *, /} 



(10) <comp op>:: = { <, >) 

(11) <bool_op>:: = {AND, OR, XOR, NOT) 

(12) <if op>: =IF (<In Item1>) THEN (<line number >) 

(13) <nm>:: =(0,1j 

(14) <ni>:: = { 0,1 } 

(15) <no>:: = (0,1) 

(16) <line number>:: = {( Current line number + 1,..., Last possible line number) } 

where: 

The above describes a two input, two memory, two output example configuration. 

Continuous operations (4. A) interpret operands as floating point, bipolar values 
and produce similar output. 

Comparison operations (4. B) compare operands that are assumed to be bipolar, 

floating point values but produce a boolean result of 1 (1.0) If the operation 

evaluates to TRUE, and 0 otherwise. 

Boolean operations (4. C) consider operands to be FALSE if zero and TRUE 

otherwise. Operations are logical In nature and the result wil be I if the operation 

evaluates as TRUE, and 0 otherwise. 

The 'if operation (12) will evaluate <ln_iteml> as FALSE If this Item Is zero, and 
TRUE otherwise. With a TRUE result, the next line executed will be that specified 
by <line_number> and all intermediate lines (if any) will be Ignored and 

consequently any outputs specified In these lines will not be updated. 
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Appendix B: Gaussian random number generation 

The Microsoft Visual C++ compiler RAND() function produces only uniformly 
distributed pseudo random numbers. To generate the normal gaussian distributed 

random numbers needed for the mutation operation, the Polar Method described 

in 'The Art of Computing[ Knuth 1997] was encoded: 

To generate two normally (gaussian distributed) distributions from a uniformly 
distributed random number sequence: 

Take two random numbers between 0 and 1, ui and u2. 

Shift these to make two numbers that lie between +1 and -1, v1 and v2 by; 

v1 =2u1 -1 andv2=2u2-1 

Calculate S= v1 ̂ 2 + v2"2 

If S >= I then repeat the above steps, otherwise: 

Two normally distributed random numbers can be found by: 

xl=v1sgr(-2InS/S) 
x2=v2sgr(-2lnsls ) 

where sqr( ) returns the square root and In() returns the natural logarithm. 
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Appendix C: Fitness of random strings at creation 
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Figure C. 1: Histogram of random strings at creation 
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Fitness Range Frequency 
0-4 19511 
5-9 0 
10-14 10 
15-19 87 
20-24 251 
25-29 42 
30-34 0 
35-39 11 
40-44 11 
45-49 22 
50-54 0 
55-59 0 
60-64 0 
65-69 0 
70-74 0 
75-79 0 
80-84 0 
85-89 0 
90-94 0 
95-99 0 
100-104 0 
105-109 0 
110-114 11 
115-119 44 

Table C. 1: Fitness distribution of random string individuals at creation. 


