
Evolving chess playing programs

R. Gro�, K. Albrecht, W. Kantschik and W. Banzhaf

Dept. of Computer Science

University of Dortmund

Dortmund, Germany

Abstract

This contribution introduces a hybrid GP/ES

system for the evolution of chess playing com-

puter programs. We discuss the basic system

and examine its performance in comparison

to pre-existing algorithms of the type alpha-

beta and its improved variants. We can show

that evolution is able to outperform these

algorithms both in terms of eÆciency and

strength.

1 Introduction

Computer programs capable of playing the game of

chess have been designed for more than 40 years, start-

ing with the �rst working program that was reported

in 1958 [BR58]. Since then countless numbers of pro-

grams were developed and appropriate hardware was

designed.

This article introduces a chess program which learns

to play the game of chess under limited resources. We

want to demonstrate the capabilities of Computational

Intelligence (CI) methods to improve the abilities of

known algorithms. More precisely we investigate the

power of Genetic Programming (GP) [BNKF98] and

Evolutionary Strategies (ES) [Sch96] using the exam-

ple of computer chess. The relevance of computer chess

is probably comparable to that of fruit
ies in genetics,

it is a laboratory system with paradigmatic character.

In previous work we have studied the evolution of

chess-playing skills from scratch [BKA+00]. In this

contribution we do not want to create an entirely new

program to play chess. Instead, we start with a scaf-

folding algorithm which can perform the task already

and use a hybrid of GP and ES to �nd new and bet-

ter heuristics for this algorithm. We try to improve a

simple algorithm, the alpha-beta algorithm. In order

to evolve good standard heuristics we use evolutionary

techniques.

It is very time consuming to evolve chess playing indi-

viduals. Thus the basis of our evolutionary system is

a distributed computing environment on the internet

called qoopy . Distributed computing is necessary be-

cause of the high costs of one �tness evaluation for a

chess program. Each individual has to perform several

games against computer programs and a game might

last several hours in worst case. The additional com-

puter power needed to perform the evolution of chess

programs is borrowed from participating users world-

wide through the internet.

The performance of our evolved programs is neither

comparable to Deep Blue [Kor97] nor to other com-

puter chess programs playing at expert level. This

was not intended at the present stage of development.

2 The Chess Individuals

We use an alpha-beta algorithm [Sch89] as the kernel

of an individual which is enhanced by GP- and ES-

modules. The goal of these modules is the evolution

of smart strategies for the middle game. So no open-

ing books or end game databases have been used to

integrate knowledge for situations where a tree search

exhibits weak performance. Also, GP/ES individuals

always play white and standard black players are em-

ployed to evaluate the individuals. The black players

are �xed chess programs which think a certain number

of moves ahead and then choose the best move (accord-

ing to the minimax-principle, restricted by the search

horizon) [Bea99, BK77]. The individuals are limited

to search not more than an average of 100,000 nodes

per move to ensure an acceptable execution speed.

Like standard chess programs, individuals perform a

tree search [IHU95]. In particular, they use an alpha-

beta-algorithm. Three parts of this algorithm are

Table 1: The pseudocode shows the �� algorithm with

the evolutionary parts (bold).

��max (position K; integer �; �) f
integer i; j; value ;

nodes = nodes+ 1;

IF POSITION DECIDED(K) THEN

RETURN position module (K);

IF (depth == maxdepth) THEN

RETURN position module (K);

restdepth = depth module (restdepth);

IF (((restdepth == 0) OR

(nodes > maxnodes))

AND (depth >= mindepth)) THEN

RETURN position module (K);

determine successor positions K:1; : : : ;K:w;

move ordering module (K:1; : : : ;K:w);

value = �;

FOR j = 1 TO w DO f
restdepthBackup = restdepth;

restdepth = restdepth� 1;

value=max(value; ��min(K:j; value; �));

restdepth = restdepthBackup;

IF value � � THEN f
ADJUST KILLERTABLE;

RETURN value;

g
g
RETURN value;

g

evolved:

� The depth module, which determines the remain-

ing search depth for the given node.

� The move ordering module, which changes the or-

dering of all possible moves.

� The position module, which returns a value for a

given chess position.

Evaluation of a chess individual is performed in the

following way (see table 1): The depth module deter-

mines the remaining depth for the current level in the

search tree. If the position is a leaf then the position

module is called to calculate a value for it. Other-

wise the node (move) will be expanded and all possi-

ble moves will be calculated. Subsequently the move

ordering module for these moves is called and changes

the order of the moves, so that moves which are more

important can be evaluated �rst in the search tree.

2.1 Depth module

Table 2: The terminal set of the depth module with a

short description. With chess-speci�c operations the

depth module receives chess knowledge.

terminal description of the terminal

accumulator Default register for all func-

tions, initialized each node.

level register Special register which holds in-

formation of the current level in

the search tree, initialized each

search.

search/game register Special register, initialized each

search/game.

search depth Returns the current search

depth of the tree.

search horizon Value of the current search hori-

zon.

piece value Value of a piece given by the ac-

cumulator.

captured piece Value of a captured piece, if the

last move was a capture move.

alpha/beta bound Value of alpha/beta bound.

move number Number of current move, given

by the move ordering module.

pieces Number of knights, bishops,

rooks and pawns of the board.

expanded nodes Number of expanded nodes for

the current position, in percent.

value of move Value of the move which led to

the current position, given by

the move ordering module.

branching factor Number of moves of the prece-

dent position.

position score Value of the current position,

given from the position module.

The depth module decides for each position whether

the search tree should be expanded and to what depth.

Normally chess programs have a �xed search hori-

zon [PSPDB96]. This means, that after a certain num-

ber of plies the expansion in the search tree will be

terminated. In contrast, the depth module should give

the individual a higher
exibility in the search to avoid

the search horizon e�ect.

The depth module has two limitations, the search

depth and the amount of nodes used in a search tree.

The maximal depth is 10 plies but if all moves until

ply 10 would be executed approximately 1014 nodes

would be expanded. Therefore the amount of ex-

panded nodes in the search tree was limited to 100,000

nodes on average per move. On average means, that

the individual might save nodes in particular periods

of the game to spend them later.

The depth module is a GP-program of branched op-

eration sequences. The structure is an acyclic graph

where each node holds a linear program and each if-

then-else condition makes a decision which node of the

program will be executed next (see section 2.4). Its

function set holds very simple functions but its termi-

nal set is more chess-speci�c, see tables 2 and 3.

Table 3: The function set of the depth module with

a short description. No function of the set has chess

knowledge.

function description of the function

+, -, *, / Arithmetic functions; result is

written to the accumulator.

inc/decHorizon Function to increment/decre-

ment the search depth by one,

but the search depth can only

be increased/decreased by 2 per

level.

sine The sine function.

sigmoid The sigmoid function
1

1+e
�terminal .

store in level/game/ Stores the terminal in the

search register level/game/search register.

load Loads the terminal to the accu-

mulator.

if If the condition is true the left

branch will be executed, other-

wise the right one. A condition

can be a comparison of two ter-

minals.

The depth module does not de�ne the depth of search

directly, rather it modi�es how much depth is left

for searching - the restdepth. It can be incremented

or decremented by the operation incHorizon and de-

cHorizon, or stay untouched. The restdepth is initial-

ized with a value of 2. Once a move is executed the

restdepth is automatically decremented by 1.

2.2 Position module

The position module of an individual calculates a value

for the current position.

The position module is a �xed algorithm which evalu-

ates the position by using evolved values for the di�er-

ent chess pieces and some structural values of a check.

These values are accumulated whereas bonus values

are added and punish values are subtracted - a higher

value corresponds to a better position. We used a sim-

ple ES to evolve these values. The idea of this module

is to �nd a better set of parameters than a �xed po-

sition evaluation algorithm would provide. Values of

hand-written programs are determined through expe-

rience of the programmer or by taking parameters from

the literature.

Our ES evolves the following weights for the position

evaluation algorithm. The �rst two numbers in brack-

ets re
ects the range within which the values can be

chosen, the last number is the standard value which

was chosen for the black players (see 3.3).

� Values of di�erent pieces: pawn [85-115, 100],

knight [290-360, 340], bishop [300-370, 340], rook

[440-540, 500], queen [800-1000, 900].

� Bishops in the initial position are punished [0-30,

15].

� Center pawn bonus: Pawns in the center of the

chessboard get a bonus [0-30, 15].

� Doubled pawn punishment: If two pawns of the

same color are at the same column [0-30, 15].

� Passed pawn bonus: A pawn having no opponent

pawn on his and the neighboring columns [0-40,

20].

� Backward pawn punishment: A backward pawn

has no pawn on the neighboring columns which is

nearer to the �rst rank [0-30, 15].

� If a pawn in end game is near the �rst rank of the

opponent it gets a promotion bonus depending on

the distance, this value �xes the maximal bonus

[100-500, 300].

� Two bishops bonus: If a player has both bishops

it gets a bonus [0-40, 20].

� A knight gets a mobility bonus, if it can reach

more than 6 �elds on the board [0-30, 15].

� Knight bonus in closed position: A closed position

is de�ned if more than 6 pawns occupy the center

of the board. The center consists of the 16 �elds

in the center of the board [0-40, 20].

� Knight punishment: If opponent pawns are on

each side in end game [0-50, 25].

� Rook bonus for a half open line: A half open line

is a line with no friendly pawn that does have an

enemy pawn [0-30, 15].

� Rook bonus for an open line: An open line is a

line without a pawn on this line [0-30, 15].

� Rook bonus for other positional advantages [0-20,

10].

� Rook bonus: If a rook is on the same line as a

passed pawn [0-30, 15].

� King punishment, if the king leaves the �rst rank

during the opening and the middle game [0-20,

10].

� Castling bonus, if castling was done [0-40, 20].

� Castling punishment for each weakness of pawn

structure (exception: end game) [0-30, 15].

� Castling punishment, if the possibility was missed

[0-50, 25].

� Random value, this is a random value which will

be added or subtract from the position value [0-

30, 20].

The structure of the position evaluation algorithm for

the chess individual and the black player is identical.

However there is a di�erence: Values for individuals

are evolved, values for black players are prede�ned and

�xed.

2.3 Move ordering module

The move ordering module of an individual orders the

moves for each chess position by assigning a real num-

ber to every possible move. The value of a move is the

sum of several weighted features of the move. Moves

are sorted according to these values and moves will

be expanded by this order. By default the value of a

feature is in [0; 100].

An ES evolves the following weights for the sorting

algorithm:

� Piece values in the opening/middle and end game:

Each piece are assigned three values which re
ect

how important this piece is in the opening/middle

and end game.

� Most valuable victim/Least valuable aggressor:

The ratio of aggressor and victim move values is

calculated. A position with a high ratio is better

than one with a smaller value.

� Check: If the move leads to a check position then

the move ful�lling this feature gets a bonus.

� Capture move: These are moves which can cap-

ture a piece of the opponent.

� Pawn moves that can attack a piece of the oppo-

nent.

� Pawn moves that do not attack a piece of the op-

ponent.

� Pawn moves that lead to a promotion of a queen.

� Center activity: Pieces which move from and/or

to the center of the chess board gets a bonus.

� Killer moves: Killer moves are moves which of-

ten lead to a cut in the search tree. The table

contains at most 4 killer moves for each level in

search tree. The table will be �lled during the

search, and if a move is in the killer table it gets

a bonus depending on its rank, a lower and upper

bound is given by this feature. Besides, the com-

position of the killer table which changes during

search is in
uenced by the move ordering module

of an individual.

Based on these weights, the value for moves will be

calculated. Sorting of the moves is very important

for the alpha-beta search algorithm. If the best move

is visited �rst, the following moves don't need to be

considered. A very good move ordering module results

in a better performance of the alpha-beta algorithm.

2.4 GP structure of the depth module

The depth module of an individual, as illustrated in

Figure 1, is represented by a program with nested if-

then-else statements [KB01]. This representation has

been developed with the goal of giving a GP-program

greater
exibility to follow di�erent execution paths

for di�erent inputs. It also achieves a reuse of the

evolved code more frequently than is the case in linear

GP [Nor94, NB95].

A program consists of a linear sequence of statements

and if-then-else statements, that contain a bifurca-

tion into two sequences of statements. Nested if-then-

else statements are allowed up to a constant recur-

sion depth. The resulting structure is a graph where

each node contains a linear GP-program and a deci-

sion part. During the execution of the program only

one path of the graph will be executed for each input.

Crossover of two programs can be realized in di�er-

ent ways. We have chosen the following two types.

The �rst crossover operator selects a sequence of state-

ments in each program. In case of selected if-then-else

statements, the associated statements of the then- and

Figure 1: The representation of the GP program,

which is a graph structure. The squares represents

the linear programs and the circles represents the if-

then-else decisions.

else- parts are selected, too. Then the selected se-

quences are swapped. Secondly, a swapping of branch-

free sequences is allowed for an exchange of informa-

tion between individuals.

Mutation is performed subsequently to crossover or in-

dependently from it. There are two types of mutation

operators. The �rst one performs a crossover with a

randomly generated individual. The second one selects

a sequence of statements (in case of if-then-else state-

ments including the statements belonging to the asso-

ciated then- and else- parts). Afterwards each state-

ment other than an if-then-else one will be mutated

with an adjustable probability (see [KB02]).

3 Evolution

Evolution is based on populations of several individ-

uals. Each individual has to be evaluated by deter-

mining its �tness. In our system a �tness case is a

chess game and an individual has to play several chess

games before its �tness can be assigned. We used the

approach of distributed computing [GCK94] to allow

for enough computing power. We developed the qoopy

system in order to spread our task among the internet.

As opponents of GP-/ES-programs, chess programs

with �xed depth were used. Fitness was calculated

based on the number of wins, losses and draws against

these opponents.

In the following sections we describe this system in

more detail.

3.1 Internet-wide evolution based on qoopy

qoopy is an environment for distributed computing

tasks [GCK94, Far98]. It is possible to develop dis-

tributed programs for the qoopy environment and use

qoopy to run these programs.

The �rst application of qoopy is EvoChess, a dis-

tributed software system which creates new chess pro-

grams in an evolutionary process. After qoopy is in-

stalled on a machine each participant runs a deme

containing a variable number of individuals (default

value is 20). In each deme evolution begins and, dur-

ing the evolution, individuals might be copied between

demes (pollination) to create o�springs. qoopy pro-

vides the necessary infrastructure for communication

between demes and the connection to an application

server.

The application server is necessary because qoopy has

to register users being online to let them connect to

each other and to exchange data. The server holds

results of the internet evolution, and each deme sends

its best individuals and other statistics back to the

server on a regular basis.

3.2 Fitness evaluation

The �tness of an individual is a real number between

1 and 15, with higher values corresponding to better

individuals. In order to determine �tness, individuals

have to play chess games against �xed algorithms of

strength 2, 4, 6, 8, 10, 12 and 14. For �tness evaluation

an individual always plays white (see 3.3).

The result of a game is a real number between -1 and

1. It is 1 in case that the individual wins the game, -1

if the standard algorithm wins the game and 0 in case

of draw. Sometimes it is obvious that one side can

win or that the game has to end draw. In such a case

the game is stopped to save time. In rare cases lengthy

games are aborted because nothing happens anymore.1

Then the position is evaluated and the result re
ects

the advantage of white (positive) or black (negative)

as a value in the range of [�1; : : : ; 1].

Fitness is initialized with a value of 1. Resulting val-

ues are weighted with the number of games played

relative to the strength of the opponent. If, e.g., the

individual loses twice and wins once against an oppo-

nent of strength 6 (�1;�1; 1), this results in values

(5:0; 5:0; 7:0), and the �tness is 5:667.

In general, the �tness of an individual is calculated by

the following function:

fitness =
X

j2C

n
jX

i=1

j + result
j

i

nj � jCj

Classes C are the classes with wins, draws and losses of

the individual. These classes lie in an interval whose

1There are several criteria to prevent games to be can-

celed in interesting situations, e.g. when a king has been

checked or a piece has been captured within the last moves.

bounds are de�ned by the following rules: If an in-

dividual wins all its games up to class i, these results

are ignored and if an individual loses all its games from

class i to the highest class, these results are ignored.

For example if an individual i wins all games of classes

2, 4, and 8, and has wins, draws and losses in the

classes 6 and 10, and loses all games in the classes 12

and 14, Ci holds the classes 6, 8 and 10. The �rst rule

de�nes the lower bound of the interval (4), and the

second rule de�nes the upper bound of the interval

(12). The �rst rule does not hold for class 8 because

in class 6 the individual has had a draw or loss.

In general, the �tness of an individual is calculated in

four phases. Thus weak individuals can be dropped

from �tness evaluation in the �rst or second phase.

Fitness evaluation in phase three and four is very CPU

time expensive and we try to reduce the computation

time by removing inviable programs.

In phase one the individual plays two games against 2.

If the individual is very weak it can be identi�ed by the

�tness function and replaced immediately. In the sec-

ond phase the individual plays against 4, 6, 8 and 10.

If the �tness is at least 4.5 at the end of phase two, the

evaluation is continued in phase three. In phase three

the individual plays 1-2 games against 2, 4, 6, 8 and 10.

Successful individuals might skip games against 2 and

4. These are individuals which win each game up to

strength 6 and receive good results in games against 8

and 10. In phase four games are performed against 12

and 14. Only the best individuals play in this phase,

however. Games against the standard algorithm of

class 12 and 14 are very expensive.

To play more than twice against class 12 (or 14) it is

required to win in one of the two games before. Every

draw results in 1 point, every loss in 2 points. If the

individual has more than 6 (5) points it does not play

any more against class 12 (14). If the individual is

good enough it will play 4 times against 12 and then

3 times against 14.

3.3 Opponents of the individuals (black

players)

The opponents of individuals are chess programs which

can fully traverse the search tree up to a �xed depth.

We use these players to calculate the �tness of an indi-

vidual, by playing against �xed programs of di�erent

search depth. Fixed programs can play to a depth of

1, 2, 3, 4, 5, 6 and 7. Each of these programs de�nes

a corresponding �tness class of 2, 4, 6, 8, 10, 12 and

14. The value for a �tness class is the search depth

multiplied with 2, so that an individual which defeats

Figure 2: Average number of nodes used in the search

tree for di�erent �xed search depths. For search depth

6 the plot shows a large di�erence between a random

move ordering and an evolved move ordering module.

Even the f-negascout search algorithm requires more

resources than an evolved individual. The data are av-

erage values of more than 1000 moves (from reference

games).

an individual of class 4 but loses against an individual

of class 6 can be inserted into class 5.

The GP/ES individuals use a position evaluation of

the same structure and the same criteria - but their

weights are determined by the individual's genotype.

To reduce the number of nodes of the game tree an

f-negascout algorithm [Rei89] combined with iterative

deepening is performed for the black players. The f-

negascout algorithm is an improved variant of alpha-

beta, which is the most wide-spread tree search algo-

rithm. Iterative deepening performs a search to depth

d� 1 before searching to depth d (recursively). In ad-

dition, so-called killer moves are stored and tried �rst

whenever possible. Killer moves are moves which re-

sult in the cut of a subtree. This means that much of

the game tree can be discarded without loss of infor-

mation!

4 Results

In this section we describe the current results of an

ongoing evolution on the internet.

First we look at the evolved individuals and their eÆ-

ciency in search. The question is: How many resources

are needed by the evolved move ordering modules in

case of a �xed-depth search in comparison to other

move ordering strategies. Figure 2 shows the number

Figure 3: Box plot diagram of average number of used

nodes during a game with one of an evolved individual

combined with a simple �xed-depth alpha-beta algo-

rithm, average taken over more than 5000 moves from

50 reference games. The bar in the gray boxes is the

median of the data. A box represents 50 % of the

data, this means that 25 % of the data lies under and

over a box. The smallest and biggest usual values are

connected with a dashed line. The circles represents

outliers of the data.

of nodes examined in the search tree of an alpha-beta-

algorithm with a random move ordering, an evolved

individual and the f-negascout algorithm (the oppo-

nent of an individual (the black player) is always an

f-negascout algorithm). The �gure shows that a ran-

dom move ordering algorithm calculates seven million

nodes with a search tree of depth 6. The f-negascout

algorithm needs one million nodes. An evolved in-

dividual only needs 250,000 nodes. So evolution has

managed to create individuals which perform a very

eÆcient search through the tree.

Figures 3 and 4 show a box plot diagram investigat-

ing the number of search nodes visited by an evolved

and a random move ordering module combined with a

simple �xed-depth alpha-beta algorithm. The evolved

individual clearly outperforms the random one. Be-

sides, the �gures show that most nodes during a game

are used between ply 10 and 60.

The other aspect of the evolved chess programs is the

quality of the selected moves. Currently evolution suc-

ceeded to evolve a chess playing program, with a �t-

ness of 10.48. This means that the evolved program is

better than the opponent program of �tness class 10.

The �tness value was measured by a post-evaluation of

best programs: An individual plays 20 games against

class 8, 10 and 12, so that the �tness value is the re-

Figure 4: Box plot diagram of average number of used

nodes during a game with a random individual (see

also �gure 3).

sult of 60 games. Note that the individual achieves

this result by expanding on average 58,410 nodes per

move in the search tree. A simple alpha-beta chess pro-

gram needs 897,070 nodes per move for search depth

of 5, which corresponds to class 10. The f-negascout

algorithm which is an improved variant of alpha-beta,

needs 120,000 nodes per move for this search depth.

In other words evolution has improved the search al-

gorithm, so that it wins by only using 50% of the re-

sources of a f-negascout algorithm which, in turn, out-

performs an alpha-beta-algorithm. Evolved individu-

als win against a simple alpha-beta-algorithm by using

only 6% of the resources.

5 Summary and Outlook

We have shown, that it is possible to evolve chess play-

ing individuals superior to given algorithms. At this

time evolution is still going on and results are still im-

proving.

Next we shall develop this approach by using other

search algorithms as the internal structure, and by ex-

changing the di�erent modules. A further feature will

be that individuals will play against each other.

The ultimate goal of our approach is to beat computer

programs like Deep Blue, which to this day use brute-

force methods to play chess.

ACKNOWLEDGMENT

The authors gratefully acknowledge the enthusiastic

support of a large group of EvoChess users. A

list of participants is available at http://qoopy.cs.uni-

dortmund.de/qoopy e.php?page=statistik e . All of

them have helped to produce these results and to im-

prove both EvoChess and the qoopy system con-

siderably. Support has been provided by the DFG

(Deutsche Forschungsgemeinschaft), under grant Ba

1042/5-2.

SUPPLEMENTARY MATERIAL

More information on the qoopy system, the EvoChess

application, and experimental data are available from:

http://www.qoopy.net.

References

[Bea99] D.F. Beal. The Nature of Minimax

Search. PhD thesis, University of Maas-

tricht, 1999. Diss.Nr.99-3.

[BK77] J. Birmingham and P. Kent. Tree-

Searching and Tree-Pruning Techniques.

In M.R.B. Clarke, editor, Advances in

Computer Chess 1, pages 89{97. Edin-

burgh University Press, 1977.

[BKA+00] J. Busch, W. Kantschik, H. Aburaya,

K. Albrecht, R. Gross, P. Gundlach,

M. Kleefeld, A. Skusa, M. Villwock,

T. Vogd, and W. Banzhaf. Evolu-

tion von GP-Agenten mit Schachwissen

sowie deren Integration in ein Comput-

erschachsystem. SYS Report SYS-01/00,

ISSN 0941-4568, Systems Analysis Re-

search Group, Univ. Dortmund, Infor-

matik, 10 2000.

[BNKF98] W. Banzhaf, P. Nordin, R. E. Keller,

and F. D. Francone. Genetic Program-

ming { An Introduction On the Automatic

Evolution of Computer Programs and its

Applications. Morgan Kaufmann, San

Francisco und dpunkt verlag, Heidelberg,

1998.

[BR58] A. Bernstein and M. de V. Roberts. Com-

puter v Chess-Player. Scienti�c Ameri-

can, 198:96{105, 1958.

[Far98] J. Farley. Java Distributed Computing.

O'Reilly, 1998.

[GCK94] J. Dollimore G.F. Coulouris and T. Kind-

berg. Distributed Systems, Concepts and

Design. Addison-Wesley, 2 edition, 1994.

[IHU95] H. Iida, K. Handa, and J. Uiterwijk. Tu-

toring Strategies in Game-Tree Search.

ICCA Journal, 18(4):191{205, December

1995.

[KB01] W. Kantschik and W. Banzhaf. Linear-

tree GP and its comparison with other GP

structures. In J. F. Miller, M. Tomassini,

P. Luca Lanzi, C. Ryan, A. G. B. Tet-

tamanzi, and W. B. Langdon, editors,

Genetic Programming, Proceedings of Eu-

roGP'2001, volume 2038 of LNCS, pages

302{312, Lake Como, Italy, 18-20 April

2001. Springer-Verlag.

[KB02] W. Kantschik and W. Banzhaf. Linear-

graph gp - a new gp structure. In J. F.

Miller, M. Tomassini, P. Luca Lanzi,

C. Ryan, A. G. B. Tettamanzi, and

W. B. Langdon, editors, Genetic Pro-

gramming, Proceedings of EuroGP'2002,

LNCS. Springer-Verlag, 2002.

[Kor97] R.E. Korf. Does Deep Blue Use Arti�cial

Intelligence? ICCA Journal, 20(4):243{

245, December 1997.

[NB95] Peter Nordin and Wolfgang Banzhaf.

Evolving turing-complete programs for a

register machine with self-modifying code.

In L. Eshelman, editor, Genetic Algo-

rithms: Proceedings of the Sixth Interna-

tional Conference (ICGA95), pages 318{

325, Pittsburgh, PA, USA, 15-19 1995.

Morgan Kaufmann.

[Nor94] J. P. Nordin. A Compiling Genetic Pro-

gramming System that Directly Manipu-

lates the Machine code, pages 311{331.

MIT Press, Cambridge, 1994.

[PSPDB96] A. Plaat, J. Schae�er, W. Pijls, and

A. De Bruin. Best-�rst �xed-depth min-

imax algorithms. Arti�cial Intelligence,

87:255{293, 1996.

[Rei89] A. Reinfeld. An improvement of the scout

tree search algorithm. ICCA Journal,

6(4):4{14, June 1989.

[Sch89] J. Schae�er. The History Heuristic

and Alpha-Beta Search Enhancements in

Practice. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence,

11(11):1203{1212, 1989.

[Sch96] H-P. Schwefel. Evolution and Optimum

Seeking. John Wiley & Sons, Inc., 1996.

