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Abstract 
 

The scalability problem is a major impediment to the 
use of hardware evolution for real-world circuit design 
problems. A potential solution is to model the map 
between genotype and phenotype on biological 
development. Although development has been shown to 
improve scalability for a few toy problems, it has not 
been demonstrated for any circuit design problems. 
This paper presents such a demonstration for two 
problems, the n-bit adder with carry and even n-bit 
parity problems, and shows that development imposes, 
and benefits from, fewer constraints on evolutionary 
innovation than other approaches to scalability.  
 

1. Introduction 
 

It is widely recognized that the inability of 
evolutionary algorithms to scale to large and complex 
circuit design problems is a major impediment to their 
application in the real world [1-4].  

Recently researchers have begun to explore how 
modelling the genotype-phenotype map on biological 
development might improve the scalability of hardware 
evolution [4-6]. Although more traditional problem 
decomposition techniques have been used to improve 
scalability in hardware evolution to some extent [1, 3], 
unlike development they often require domain 
knowledge and decompose the problem using hard 
constraints on the interactions between sub-problems, 
thus limiting evolution’s opportunity to explore 
innovative designs [4].  

To date, however, development does not appear to 
have achieved its potential. There are a few instances 
in the literature that demonstrate development can 
enhance scalability for toy problems [7, 8]. These are 
pattern generation problems that show a high 
correlation between changes in phenotype and changes 
in fitness. This is quite unlike circuit evolution, where 

the relationship between changes in a circuit design 
and their effect on fitness can be highly non-linear.  

In fact there is currently very little empirical evidence 
to suggest that development can improve scalability for 
traditional circuit design problems. For instance in [6] 
Miller used development to evolve one bit full adders 
and parity generators for up to 5 bits, but has not 
presented the evolutionary development of any larger 
circuits. Similarly in [4] Gordon and Bentley applied 
development to the evolution of two bit adders but 
failed to evolve fully functional solutions. In the 
analogue domain Koza et al. have shown instances 
where development allows design re-use [9] but have 
not studied scalability in detail.  

This paper shows that an improved version of the 
developmental model of [4] can evolve fully functional 
two bit adders. It goes on to present a series of 
experiments that clearly demonstrate that development 
can enhance the scalability of hardware evolution 
using two benchmark circuit design problems, the n-bit 
adder problem and the even n-bit parity problem.  

The largest of the evolved adders presented here is a 
seven bit adder with carry. To date there is only one 
example in the literature of an evolved adder that is of 
comparable size [10]. This example relied heavily on 
the use of additional techniques to decompose the 
problem into several independently evolved sub-
problems, hence searched a more constrained problem 
space. Furthermore unlike the circuits here 
connectivity was restricted to feedforward 
arrangements only, further constraining the problem 
space. The largest parity generator presented here is 
larger than any previously discovered using 
development and is of similar size to the larger evolved 
examples found in the literature [11-13]. 

Section 2 of this paper presents a summary of the 
developmental model used here. Section 3 presents the 
evolution of a fully functional two bit adder. Section 4 
presents experiments that demonstrate development 



enhancing hardware evolution’s scalability for the n-bit 
adder problem. Section 5 presents similar experiments 
for the even n-bit parity problem.  Conclusions are 
drawn in Section 6. 
 

2. Developmental Model 
 

The developmental model used here consists of two 
layers: a protein layer that models biological 
development and an architecture layer that maps the 
product of development to a circuit, which is 
subsequently evaluated intrinsically using a Xilinx 
Virtex FPGA [14]. Each layer is now briefly described. 
 
2.1 Protein Layer 

The protein layer is responsible for providing a 
mechanism by which evolution can reuse design 
innovations that it has already discovered. This is the 
primary means by which development can enhance 
scalability [4, 9]. It is identical to the Outer Totalistic 
developmental model presented in [15], where full 
details of the model and the design decisions that lie 
behind it can be found. It consists of a set of rules 
called the protein rule set, and a two dimensional non-
toroidal array of cells. The protein rule set describes 
how the contents of the cells in the cellular array alter 
during of development. Each cell in the array contains 
up to four proteins, A, B, C and D that define the cell’s 
state. Development occurs over a series of discrete 
timesteps. At each timestep the proteins present in 
every cell at the next timestep are set by comparing the 
protein rule set to the proteins currently present in each 
cell, and activating the rules that match the cell’s 
contents. When a rule is activated it generates a 
protein. The protein rule set models DNA 
transcription, the process at the heart of biological 
development’s generative ability.  
 
2.1.1 Protein Layer Rule Structure 

An example of a single protein rule is shown in 
Figure 2.1. Each rule consists of a conjunction of 
conditions that must be true for the rule to activate. 
There are two terms in each rule for each of the four 
proteins in the model. The first is a two bit condition 
that specifies what proteins the cell itself must contain 
(11) or not contain (00) for the rule to activate, with 
the other two bit combinations representing don’t care 
terms. The second term is a five bit condition that 
defines how the contents of the neighbouring cells 
affects the activation of the rule: the first two bits 
define an operator, which is either an equality, 
inequality or one of two precedence operators, and the 
final 3 bits define a protein concentration that the 
operator acts upon. This concentration is measured by 

summing the amount of the protein generated by the 
cell’s Von Neumann neighbours. The postcondition of 
the rule consists of two bits that define which protein is 
generated if the rule is activated.  

For development to begin forming useful patterns it 
is necessary to begin with a set of simple yet 
inhomogeneous protein starting conditions from which 
further inhomogeneity can develop.  
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Figure 2.1: The Outer Totalistic Protein Rule 

 

2.2 Architecture Layer 
The architecture layer is similar to that used in [4], 

but it is applied to a simpler architecture. It consists of 
a virtual FPGA, a second set of rules called the 
architecture rule set, and a set of counters that are used 
to monitor the behaviour of the protein layer at each 
developmental timestep. At the end of development the 
counters determine how changes in the contents of the 
cells during development are mapped to the 
architecture layer. Once this mapping is complete the 
virtual architecture is automatically mapped to a Xilinx 
Virtex FPGA for evaluation.  

The virtual architecture consists of a 2D array of 
virtual configurable logic blocks (CLBs). It is 
essentially a simplified model of the Virtex 
architecture [14]. This architecture is overlaid onto the 
array of cells in the protein layer. Thus each CLB in 
the architecture layer corresponds to a unique cell in 
the protein layer. Each CLB contains two 3-input 
lookup tables (LUTs) and 3 inputs that drive both 
LUTs. The source of each input is selected from the 
LUT outputs of the CLB’s Von Neumann neighbours. 
The CLB also contains a set of counters, one for each 
configurable element in the CLB. They are used in 
conjunction with the architecture rules to map activity 
in the protein layer to changes in the CLB’s 
configuration. This process is explained below. The 
protein rule set and the architecture rule set are simply 
concatenated to make up the chromosome. 

 

2.2.1 Mapping Activity to Configuration Changes 
An example of an architecture rule is shown in 

Figure 2.3. The precondition is identical to the 
precondition of a protein rule. Hence the activity of 
each architecture rule in each CLB is determined by 
the proteins present and/or absent in its corresponding 
protein layer cell. The postcondition of the rule 
consists of six bits that specify one of the counters 



discussed above.  Each counter (hence each unique 
architecture postcondition) corresponds to a single 
reconfigurable element in the virtual CLB. There is a 
counter for each of the 16 LUT minterms (eight for 
each of the two LUTs) and a counter for each of the 24 
possible input sources (eight for each input). 
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Figure 2.3: The Architecture Rule 

Each time an architecture rule is activated during 
development the counter specified in the rule’s 
postcondition is incremented. At the end of 
development, the counters are used to determine the 
structure of the circuit. First each counter that 
corresponds to a LUT minterm is queried. If the 
counter value is greater than a predefined threshold 
value then the minterm configuration bit to which it 
corresponds is set high. Should the counter value be 
below the threshold value, the minterm configuration 
bit is set low. Following LUT configuration the inputs 
are then configured, but in a slightly different way. For 
each input, all counters that correspond to one of its 
possible input sources are queried. The counter with 
the highest value, i.e. the input source that has been 
most active throughout development for that input, is 
selected as the input source. Once the circuit design is 
determined it is mapped to a Xilinx Virtex XCV400 
FPGA for evaluation using the Xilinx JBits API [16]. 

 

3. Evolution of a Two Bit Adder 
 

Before conducting extensive scalability experiments 
the model was tested to determine whether relatively 
small circuits could be evolved. The initial task was to 
evolve a two bit adder with carry: a circuit that mapped 
the five inputs A0, A1, B0, B1 and Cin to the three 
outputs Sum0, Sum1 and COut in accordance with the 
two bit adder with carry truth table [17]. Fitness was 
measured as the total correct output bits across all input 
combinations, which gives a maximum fitness of 96.  

A 2x4 CLB array was evolved using the 
developmental model described. The problem inputs 
were provided in cells surrounding the evolved area as 
in Figure 3.1, which also shows output positions. The 
chromosome consisted of 20 protein rules and 30 
architecture rules, yielding a length of 1620 bits. At the 
beginning of development some simple starting 
conditions were introduced:  the south western cell was 
set as if protein A had been generated at developmental 
timestep t-1, and the south eastern cell was set as if 

protein B had been generated at timestep t-1. 
Development was carried out for 30 timesteps. Table 
3.1 shows genetic parameters. Each individual was 
evaluated five times and its worst fitness selected. 
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Figure 3.1: Diagram showing where inputs were provided 
and outputs were drawn on the evolved area 

 

Operator Type Rate 
Selection 2 Member tournament 80%
Crossover One-point 100%
Mutation Point 5 per chrom.

Other parameters: Generational GA with elitism, 2500 generations, 
population size = 100, random initialisation. 

Table 3.1: Genetic parameters for all experiments 

3.1 Results and analysis 
50 evolutionary runs were carried out. The results are 

shown in Table 3.2, with finesses scaled to 100. 26% 
of the runs evolved optimal adders, It should be noted 
that the search space contains circuits with unclocked 
feedback between CLBs hence it is different from and 
perhaps richer than the traditional digital design space. 
Examples and analyses of the circuits evolved are 
presented in the following section. 

 
 

Mean Fit. of Best 

Solns. ( bestf ) 

Std. Dev. of Best 

Solns. ( bestσ ) 

Best Fitness / 
Max Fitness 

Optimal 
Solution %  

85.69 12.19 96/96 26 
Table 3.2 Results from 50 runs of 2 bit adder  evolution 

 

4. Scalability and the n-bit Adder Problem 
 

To date there is little direct evidence that the 
scalability of hardware evolution can truly be enhanced 
by development. This section demonstrates such an 
enhancement clearly, for a real hardware evolution 
problem. It presents a series of experiments that evolve 
n-bit adder with carry circuits, ranging from a one bit 
adder up to a seven bit adder.  

 

4.1 Experimental Setup 
The experiments were carried out using the same 

developmental and evolutionary models and 
parameters as described above. The task was to evolve 
an n-bit adder where n varied from 1 to 7. The area 
evolved for each experiment was a 2n x 2 array of 
virtual CLBs. Inputs and outputs for the four smallest 
problems are shown in Figure 4.1. Again the aim was 
to evolve a circuit that mapped the inputs to the outputs 



in accordance with an n-bit adder with carry truth table 
[17]. Fitness was again measured as the total correct 
output bits across all input combinations, which gives a 
maximum fitness of (n+1) x 22n+1. 50 runs were 
conducted for each problem size. 
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Figure 4.1: Layout of evolved areas 

The experiment was repeated using a naïve 1:1 
representation that mapped a gene to each component 
of the evolved array. The representation for one cell is 
shown in Table 4.1. Unlike the developmental system, 
the chromosome length of the naïve system varies with 
array size, from 100 bits for a 2x2 cell array (1 bit 
problem) to 700 bits for a 14x2 array (7 bit problem). 

 

Locus Component Bits (Representation) 
0-2 Input 1 3 (GN,GS,GE,GW, FN,FS,FE,FW) 
3-5 Input 2 3(GN,GS,GE,GW, FN,FS,FE,FW) 
6-8 Input 3 3 (GN,GS,GE,GW, FN,FS,FE,FW) 

9-16 GLUT 8 (8 minterms) 
17-24 FLUT 8 (8 minterms) 

Table 4.1: Naive representation for the adder problem. 
 

4.2 Results and Analysis 
The experimental results are shown in Table 4.2 and 

suggest that for small problems (1 to 3 bit) the 
proportion of runs reaching optimal fitness is greater 
with the naïve system than the developmental system. 
However the proportion decays much more gently with 
increasing problem size for the developmental system 
than for the naïve system. This means that for larger 
problems (4 bit and above) development outperforms 
the naïve system, and the performance differential 
increases with problem size. This can be seen more 
clearly in Figure 4.2, which shows a plot of the 
percentage of runs with optimal fitness against problem 
size for both the naïve and developmental systems 
along with a line of best fit. 

Figure 4.2 suggests that for both systems the 
relationship between fitness and problem size might be 
linear. The coefficient of determination, r2, represents 
the fraction of fitness variability that is explained by 
problem size variability assuming a linear model [18]. 
A perfect line has a value of 1, and random data 0. This 
was calculated for both sets of data in Figure 4.2 to test 
whether the data was linear and gave values of 0.918 

for development and 0.898 for the naïve trend. When 
calculated for the naïve trend the data for the 6 and 7 
bit problem were excluded, as the proportion of 
optimal runs had already decayed to its minimum. The 
measured r2 values are reasonably high, suggesting that 
the trend might be linear. 

 

Adder 
Size / 
Bits 

Optimal 
Solution 

%  
Develop

. 

Optimal 
Solution 

% 
Naïve 

Mean Best 
Fitness 

Develop. 

Dev bestf

Mean Best 
Fitness 
Naïve 

Nv bestf  

Std. Dev. 
Best 

Develop. 
Dev bestσ

Std. Dev. 
Best Naïve 

Nv bestσ  

1 32 100 87.88 100 11.81 0 
2 26 48 85.69 95.44 12.70 4.95 
3 18 28 85.80 92.48 13.50 6.19 
4 14 4 82.13 88.58 13.57 5.74 
5 12 0 82.61 82.99 12.30 5.39 
6 10 0 83.87 79.59 12.50 5.37 
7 8 0 82.09 76.61 12.37 4.81 
Table 4.2: Results of the adder scalability experiments 
showing the mean of the best fitnesses scaled to 100% 
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Figure 4.2: Plot of the percentage of runs reaching 

optimal fitness against problem size. 

From an engineering perspective the percentage of 
optimal runs is a useful value to examine, as it is vital 
for real-world circuits to operate perfectly. However as 
this value decays to a minimum value over the studied 
problem sizes, raw fitness (scaled to 100 to allow 
comparison between the problem sizes) was used to 
provide further evidence of scalability. 

If evolution scaled poorly with problem size, a strong 
negative correlation between problem size and 
performance would be expected. Hence one means of 
detecting a significant difference in scalability between 
the naïve and developmental systems is to compare the 
correlations of the two systems. Plots of fitness against 
problem size are shown for both developmental and 
naïve systems in Figures 4.3(a) and (b) respectively. 

The Spearman correlation coefficient is a test for 
correlation that does not assume normally distributed 
data and can range from -1 to 1 [18]. It was calculated 
for problem size against fitness using the data from 
Figures 4.3(a) and (b). Using this method the 
correlation coefficients were calculated to lie between -
0.28 and -0.07 for the developmental trend and 
between -0.88 and -0.82 for the naïve trend, with 95% 
confidence. The large difference in coefficients and 
high confidence suggests that there is a large difference 
between the rates of decay for both systems and that it 



is highly significant. 
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Figure 4.3(a) and (b): Plots of fitness normalised to 100 
against problem size for the developmental system (left) 

and the naïve system (right) for all 50 runs 

  A further analysis was carried out to lend support to 
the evidence above. The aim was to produce paired 
data for each problem size to demonstrate that the 
performance differential increased monotonically with 
problem size. As the percentage of runs that achieved 
optimal fitness had decayed to its minimum for some 
problem sizes it was decided that the mean fitness of 
the best solutions might be more plausible to analyse 
statistically. The r2 coefficients of determination 
calculated with this data were -0.98 and 0.70 
respectively, suggesting that a linear model fits well 
enough for linear analyses to be realistic.  

A plot of the difference between f bestDev and 
f bestNv for each problem size is shown in Figure 4.4, 

along with the least squares line of best fit.  
The Pearson correlation coefficient [18] for this data 

was 0.979, again suggesting a linear model is a 
reasonable assumption, and confirms statistically what 
is visually very clear: there is a strong positive 
correlation between problem size and enhanced 
performance of the developmental system over the 
naïve system. This clearly shows that the performance 
of the developmental system scales better with 
problem size than the performance of the naïve system 
when applied to the two bit adder with carry problem. 
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Figure 4.4: Plot of the difference between f bestDev  and 

f bestNv  against problem size. 
 

4.3 Circuit Analysis 
The evolved circuits exhibit several features that 

reinforce the argument that development can aid 

scalability, that it can do so without imposing hard 
constraints associated with traditional designer-
imposed abstraction methods, and that this can lead to 
the discovery of innovative designs.  

 
 

4.3.1 Modularity, Reuse without Hard Constraints 
The most striking feature of the evolved designs is 

the high level of component reuse. Figure 4.5 shows 
the first optimal circuit evolved for the two bit 
problem, and is typical of the optimal solutions 
evolved. Cells 1, 2, and 5-7 assumed identical inputs, 
which were generated by the activation of the same 
two architecture rules in each of these cells. The only 
cell with a unique set of inputs, Cell 4, shares two 
inputs with the majority of cells, which generated by 
the same rules as for the other cells. Generation of the 
third input was inhibited by the initial conditions. 

  

0 011
West F

West GWest F
00

0

1F LUT:

G LUT:

Cell
 0:

0 010

01 11 10

0 100

West GWest F
00

0

1 1 010

01 11 10
West F

0 011
West F 00

0

1F LUT:

G LUT:

Cell
1:

0 100

01 11 10

0 100
00

0

1 1 000

01 11 10
West F

West GSouth G

West GSouth G

0 011
West F

West GSouth G
00

0

1F LUT:

G LUT:

Cell
2:

0 100

01 11 10

0 100

West GSouth G
00

0

1 1 000

01 11 10
West F

Cell
3:

0 011
West F

West FSouth G
00

0

1F LUT:

G LUT:

0 010

01 11 10

0 100

West FSouth G
00

0

1 1 010

01 11 10
West F

Cell
4:

Cell
5: 0 011

West F 00
0

1F LUT:

G LUT:

0 100

01 11 10

0 100
00

0

1 1 000

01 11 10
West F

West GSouth G

West GSouth G

Cell
6: 0 011

West F
West GSouth G

00
0

1F LUT:

G LUT:

0 100

01 11 10

0 100

West GSouth G
00

0

1 1 000

01 11 10
West F

Cell
7:

0 011
West F

West GWest F
00

0

1F LUT:

G LUT:

0 010

01 11 10

0 100

West GWest F
00

0

1 1 010

01 11 10
West F

0 011
West F

West GSouth G
00

0

1F LUT:

G LUT:

0 010

01 11 10

0 100

West GSouth G
00

0

1 1 010

01 11 10
West F

 
 

Figure 4.5: K-Maps of an evolved optimal two bit adder 

Hence there are different levels of reuse at the 
cellular level: most cells use a common set of inputs 
generated by identical rules. A single cell has a unique 
set of inputs. This can be interpreted as evolution 
applying a design abstraction that imposes a common 
set of inputs across the circuit, but breaking the 
abstraction where necessary. The evolved logic also 
shows an extremely high level of reuse. Cells 1, 2, 5 
and 6 share identical logic and were generated by the 
same set of rules. Cells 0, 3, 4 and 7 also share 
identical logic generated by a common rule set. There 
are also several rules common to both sets of logic. 
 

4.3.2 Design Innovation 
Of the traditional adder designs familiar to the 

authors the only one that would fit within the evolved 
array is a ripple-carry adder. Examination of the inputs 
to each cell of the circuit in Figure 4.5 reveals that 
signals pass east and north, much like a ripple-carry 
adder. Although there was no explicit fitness bias 
towards doing so, the circuit generates and uses a 
traditional first stage carry out term that propagates up 
a carry chain in the right hand column of the circuit. 
The way the circuit uses the rest of the logic is not 
typical of a ripple carry adder, although terms equating 
to the Generate functions and the inverse of the 
Propagate functions of a carry look-ahead adder are 



found throughout the circuit and directly used in the 
generation of the final sum and carry signals. It is not 
surprising that such similarities to traditional adders are 
found in the evolved circuits as the adder problem 
space is extremely well known to traditional designers. 
So it is likely that evolution would discover designs 
similar in style to traditional adders. However it is 
important to realise that the evolution has managed to 
discover these circuits without any explicit knowledge 
or bias towards good designs, and while operating at a 
low design abstraction that allows a large area of non-
traditional search space to be considered and rejected. 

A more pertinent point to consider is whether 
development might be of any engineering benefit for 
other problems that are not so well understood. A 
question that might provide some insight into this is 
whether evolution decomposes the problem in the same 
way as a traditional designer. If not, then it is likely to 
search areas of space that are not searched by 
traditional circuit design techniques, which could be of 
great benefit when searching for innovative designs, 
and present an advantage over other mechanisms have 
been proposed to improve scalability including 
function level evolution [1] and partitioned or 
incremental learning [3, 10]. A common theme of these 
mechanisms is that the problem must be decomposed 
by a designer (or arbitrarily) and that this strict 
decomposition might steer evolution away from areas 
of design space that contained potentially innovative 
circuits. 

Traditional ripple-carry adders consist of modules of 
full adders and communication between them is limited 
to a single carry signal. Larger adders can be 
constructed simply by adding full adder modules to the 
most significant end of the adder.  A larger adder 
cannot be constructed from the evolved solution 
presented here by translating a copy of the circuit to a 
new 2x4 array to the north of the current circuit. 
Neither can the circuit be cleanly decomposed into the 
two stages of a traditional ripple-carry adder by 
considering the southern four cells as a the first stage 
and the northern four cells as the second stage, as a 
carry signal is not the only signal to pass between these 
sets of cells. None of the four optimal two bit solutions 
studied could be considered a general solution in this 
way. So it seems that development’s bias towards 
design reuse comes at the expense of the partitioning 
of communication between modules as a traditional 
designer might do.  

 

4.4 Seven Bit Adders 
Figure 4.6 shows the first optimal circuit evolved for 

the seven bit problem, which was verified using a logic 
simulator. Again it shows a high level of reuse: only 

three distinct LUT configurations are used. Again the 
designs cannot be easily decomposed into a series of 
full adders, suggesting that evolution does not merely 
use development to decompose the problem in a 
traditional manner. 
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Figure 4.6: The first optimal seven bit adder evolved 

 

However this evidence is tentative. To support it the 
scalability experiments using the developmental 
system were repeated, this time providing evolution 
with knowledge about how the problem would be 
decomposed traditionally. To achieve this, an 
incremental fitness function that decomposed the 
problem according to output was used. Fitness was 
calculated as in the earlier set of experiments, but a 
fitness reward was only provided for a more significant 
output if the less significant outputs were generated 
perfectly. This means that evolutionary search was 
biased towards finding solutions that solve the less 
significant outputs first, much like a traditional 
designer might create a ripple-carry adder. A plot of 
the mean of the best fitnesses (scaled to 100) from 20 
runs of incremental evolution against problem size are 
shown in Figure 4.7 along with the non-incremental 
experimental results for comparison. 

The results show that when evolution is biased 
towards decomposing the problem along traditional 
lines, scalability is not nearly as great as when 
evolution is free to decompose the problem as it sees 
fit. This suggests that when there is no bias towards a 
traditional decomposition, evolution decomposes the 



problem in a non-traditional way, and that it has some 
benefit to evolvability. Hence not only does a 
developmental approach provide additional 
opportunities for innovation over techniques that rely 
on decomposition [1][3] or mechanisms that combine 
development and decomposition such as [10], but also 
the scalability of the design process can be greater. 
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Figure 4.7: Mean (best fitnesses) against problem size for 

incremental and non-incremental evolution 

Anecdotal evidence from the evolutionary history 
suggests why this might be. For many runs the first 
fitness improvement over a circuit with a fixed output 
was to make a pass-through connection between input 
B1 and output Sum1. As development is biased 
towards a high level of design reuse it is possible that 
this biased evolution towards searching designs that 
connected many of the circuit inputs to the outputs, and 
helped towards the discovery of the feedforward 
design abstraction, which is useful for this problem. 

 

 

5. Scalability and Even n-bit Parity 
 

Section 4 presents strong evidence that scalability 
can enhance hardware evolution. However this was 
only demonstrated for the n-bit adder with carry 
problem. Hence although the evidence detailed above 
is strong, its scope, thus its significance to the research 
community is limited. With this in mind, experiments 
similar to those presented in section 4 were carried out 
for the even n-bit parity problem.  

This is a benchmark problem that is popular with 
evolutionary computation researchers [11, 12]. An 
even parity generator generates the modulo 2 of the 
summed input bits. It has also been a popular target for 
those exploring scalability [11,13] as it is easily 
scalable, simply by increasing the number of bits in the 
word for which parity is generated. Also just as with 
the adder problem traditional designs tend to be 
modular, so it is known that the problem space 
contains modular solutions for development to exploit.  

 

5.1 Experimental Setup 
This section provides details of experiments to 

evolve even n-bit parity circuits, ranging from a 2 bit 
generator to a 12 bit generator. The experiments were 

carried out using the same model of development, 
chromosome, evolutionary algorithm, genetic and 
developmental parameters as used for the adder 
experiments. An n x 2 array of virtual CLBs was 
evolved. Figure 5.1 shows the inputs and outputs for 
the first three problem sizes. Task was to evolve a 
circuit that mapped the inputs to outputs in accordance 
with an even n-bit parity truth table [17], where n 
ranged from 2 to 12. Fitness was measured as for the 
non-incremental experiments of section 4, by summing 
the total correct output bits across all input 
combinations, giving a maximum fitness of 2n. 20 runs 
were conducted for each problem size. The experiment 
was then repeated using the same naïve representation 
used for the adder experiments. 
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Figure 5.1: Layout of the evolved areas for the first six 

parity problem sizes 
 

5.2 Results and Analysis 
Table 5.1 shows the experimental results, and Figure 

5.2 shows a plot of the percentage of runs reaching 
optimal fitness against problem size for both the naïve 
and developmental systems. 

  

Parity 
Size / 
Bits 

Max 
Fitness

% Optimal 
Runs 

(Development)

% 
Optimal 

Runs 
(Naïve) 

Mean Best 
Fitnesses 

(Development) 

(Dev bestf ) 

Mean Best 
Fitnesses 
(Naïve) 

(Nv bestf )

2 4 75.00 100.00 93.75 100.00
3 8 90.00 95.00 96.25 97.50
4 16 85.00 20.00 94.38 60.00
5 32 70.00 0.00 91.88 50.00
6 64 90.00 0.00 96.33 50.15
7 128 90.00 0.00 96.29 50.05
8 256 65.00 0.00 88.22 50.02
9 512 85.00 N/A 96.25 N/A
10 1024 80.00 N/A 93.44 N/A
11 2048 80.00 N/A 95.49 N/A
12 4096 80.00 N/A 95.00 N/A

Table 5.1: Results of the even parity scalability 
experiments 
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Figure 5.2: Percentage of optimal solutions found using 
development and naïve systems for the parity problems 

They suggest that just as with the adder problem, for 
small parity problems (2 and 3 bit) the percentage of 



runs reaching optimal fitness is greater with the naïve 
system than the developmental system. However this 
percentage decays rapidly for the naïve representation, 
whereas there is little evidence of a trend towards 
decaying percentages for the developmental system as 
the problem size increases. (The Spearman correlation 
coefficient calculated using data from all the 
developmental runs suggested a small negative 
correlation, but with only 58.2% confidence, meaning 
that that zero or positive correlation is within the 
margin of error.) For larger parity problems (four bit 
and above) development outperforms the naïve system, 
and the performance differential again appears to 
increase with problem size. Hence just as with the 
adder problem the results suggest that evolutionary 
performance using development scales better with 
problem size than performance with the naïve system. 

 

 

6. Conclusions 
 

It is vital that the scalability problem is tackled if 
hardware evolution is to rival traditional techniques, 
and development is one potential solution. However to 
date it has never been shown that development can 
actually enhance scalability for hardware evolution. 

This paper has presented such a demonstration. A 
series of experiments compared evolution’s 
performance evolving adder circuits using both 
development and a naïve mapping, for a range of 
problem sizes. Analysis showed the performance of the 
naive system decayed faster than the performance of 
the developmental system as problem size increased. 

Analysis of the circuits revealed a high degree of 
design reuse. It was also shown that while they 
contained elements of traditional designs, they differed 
in many respects suggesting that development has not 
prevented evolution from exploring non-traditional 
areas of design space that might be rich in good 
solutions for other problems. 

It was also demonstrated that biasing evolution 
towards a standard decomposition of the problem 
lowered performance, suggesting that evolution 
benefits from the freedom to discover and apply its 
own design abstractions, a feature not present in other 
approaches to scalability. 

A second set of scalability experiments was 
conducted for the even n-bit parity problem. It was 
again observed that development enhanced scalability, 
suggesting that developmental techniques might be 
applicable to a larger set of circuit design problems.  
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