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ABSTRACT 

A major advantage of the genetic 
programming [GP] approach to data 
modeling is the automatic ability of the 
GP to select input variables that 
contribute beneficially to the model and 
to disregard those that do not. GPs are 
thus able to reduce substantially the 
dimensionality of the model, with 
consequent interpretation benefits. 
Experimental analytical techniques 
frequently generate data with very high 
dimensionality, typically measuring 
many tens or even hundreds of 
variables per sample. It is often not 
apparent which of the measured 
variables can best be used to derive a 
predictive model describing the data. 
The identification of these variables 
often provides a better understanding of 
the physical, chemical or biological 
mechanism underlying the experimental 
observations. 
The ability of a GP to perform variable 
selection is assessed with regard to a 
binary classification of the sporulation 
state of bacterial strains. The analytical 
technique used, Curie-point pyrolysis 
mass spectrometry, generates data for 
150 variables per sample. The GP­
derived predictive rules for the~e data 
contain a substantially smaller subset of 
these variables, typically just 6-9. 
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Inspection of these rules leads to the 
somewhat counter-intuitive conclusion 
that the best predictive models use both 
highly characteristic and highly non­
characteristic variables. 

1. Introduction 
Cells from the genus Bacillus, which are rod-shaped, Gram­
positive bacteria, respond to slowed growth or starvation by 
initiating the process of sporulation. In doing this, the 
bacteria undergo cellular differentiation to form resting 
bodies, called spores, which are morphologically and 
biochemically distinct from the normal (vegetative) bacterial 
cell type. Spores are highly resistant to adverse conditions 
such as dehydration, extremes of temperature and low 
nutrient availablility, and so sporulation provides the 
bacteria with a survival mechanism. After a period of time 
the spores may germinate, each producing a single 
vegetative cell which is then able to grow and divide in the 
normal way. Members of the genus Bacillus are widely 
distributed in soil, water and air and therefore, because of 
the resiliance of their spores, an understanding of the 
mechanisms underlying sporulation is of considerable 
importance for the preparation of sterile products, 
particularly in the medical apparatus and food processing 
industries. 

A collection of 36 Bacillus strains (spanning 7 species) 
were used in this study. The strains were grown under both 
vegetative and spore-inducing conditions, after which their 
biomasses (harvested cellular material) were analysed by 
Curie-point pyrolysis mass spectrometry [PyMS]ci-3

1_ 

PyMS is a high-resolution experimental technique which, 
in combination with supervised learning techniques such as 
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artificial neural networks [ANNs] and partial least squares 
[PLS], has been shown to enable the derivation of accurate 
and precise models for both the qualitative and quantitative 
analysis of complex biological samples[4

·
121

. Only recently 
have the first applications of GP-based analytical modeling 
to data of this type been described, by ourselves[ 13

·
151

. 

To analyse a sample using PyMS, a small sample is dried 
onto an iron-nickel foil. The foil is heated rapidly by 
magnetic induction in vacuo until its magnetic properties 
undergo a phase change which prevents any further 
temperature rise. The exact temperature at which this occurs 
(the Curie-point temperature) depends on the alloy 
composition of the foil. The foils are held at the Curie-point 
temperature for a few seconds, during which volatile 
molecules are released from the sample and non-volatile 
molecules are thermally degraded into volatile breakdown 
products (pyrolysis). The volatilised molecules (pyrolysate) 
are charged electrostatically and passed into a quadrupole 
mass spectrometer where their relative abundances are 
measured, typically over a mass:charge (mlz) range from 51 
to 200. 
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Figure 1 Typical PyMS spectra for a single Bacillus 
strain grown under either vegetative (A) or sporulating 
(B) conditions. 

The PyMS spectra were too complex to interpret visually 
(Figure 1), and so a GP system was used to derive rules for 
the classification of the sporulation state of the samples. By 
constraining the complexity of these rules using a function 

tree node-count penalty in the GP fitness function, it was 
possible to reduce substantially the dimensionality (i.e. 
number of variables) of the data used by the models, thereby 
enabling their interpretation in a chemically meaningful way. 

2. Materials and Methods 

2.1. Cultivation of Bacterial Samples 
The 36 Bacillus strains used in this study have previously 
been determined, using a combination of conventional 
biochemical tests and nucleic acid sequencing technologies, 
to belong to the species B. amyloliquefaciens (five strains), 
B. cereus (five strains), B. licheniformis (five strains), B. 
megaterium (five strains), B. subtilis (seven strains, 
including two B. niger and one B. globigii), B. sphaericus 
(five strains) and B. laterosporus (four strains). The 
collection therefore contained examples of seven distinct 
species of Bacillus. 

Vegetative cells were obtained by incubating the 36 
bacterial strains on Lab M blood agar base plates (without 
blood) at 37°C for 10 hours. 

Spores were prepared by incubating the strains on Lab M 
blood agar base plates, with the addition of 5mg.r1 MnS04, 
at 30°C for 7 days. 

After incubation, the bacterial cells were harvested and 
stored in suspension in physiological saline (0.9% NaCl) at 
-20°C until required for analysis. 

2.2. Pyrolysis Mass Spectrometry 
5 µl aliquots (samples) of the bacterial cell suspensions were 
evenly applied to iron-nickel foils (50:50 Fe:Ni) to give a 
thin, uniform surface coating. Prior to pyrolysis, the samples 
were oven-dried at 50°C for 30 min. The sample tube 
carrying the foil was heated prior to pyrolysis at 100°C for 5 
sec. Curie-point pyrolysis was at 530°C for 3 sec, with a 
temperature rise-time of 0.5 sec. The PyMS spectra were 
collected over an m/z range from 51 to 200. For full 
operational procedures see Goodacre et al. (1993, 1994, 
1995). 

The 36 strains were analysed in triplicate, having been 
grown under both sporulated and vegetative conditions, to 
provide a total data set comprising 216 spectra, each 
containing 150 data points. 

2.3. Genetic Programming 
A genetic algorithm (GA) is an optimisation method ba~ed 
on the principles of Darwinian selection [IS·

201
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of individuals, each representing the parameters o~ the 
problem to be optimised as a string of numbers or binary 
digits, undergoes a process analogous to evolution in order 
to derive an optimal or near-optimal solution. ~he 
parameters stored by each individual are used to assign it a 
fitness, a single numerical value indicating how well the 
solution using that set of parameters performs. New 
individuals are generated from members of the current 



population by processes analogous to biological asexual and 
sexual reproduction. 

Asexual reproduction, or mutation, is performed by 
randomly selecting a parent with a probability related to its 
fitness, then randomly changing one or more of the 
parameters it encodes. The new individual then replaces a 
less-fit member of the population, if one exists. Sexual 
reproduction, or crossover, is achieved by randomly 
selecting two parents at a rate related to their fitnesses, and 
generating two new individuals by copying parameters from 
one parent, and switching to the other parent after a 
randomly-selected point. The two new individuals then 
replace less fit members of the population as before. The 
above procedure is repeated, with the overall fitness of the 
population improving at each generation, until an 
acceptably-fit individual is produced. 

A genetic program (GP) is an application of the GA 
approach to derive mathematical equations, logical rules or 
program functions automatically !

2
'·
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. Rather than 

representing the solution to the problem as a string of 
parameters, as in a conventional GA, a GP uses a tree 
structure. The leaves of the tree, or terminals, represent 
input variables or numerical constants. Their values are 
passed to nodes, at the junctions of branches in the tree, 
which perform some numerical or program operation before 
passing on the result further towards the root of the tree. 
Mutations are performed by selecting a parent and 
modifying the value or variable returned by a terminal, or 
changing the operation performed by a node. Crossovers are 
performed by selecting two parents and grafting sub-trees at 
randomly-selected nodes within their trees. The new 
individuals so generated again replace less-fit members of 
the population. 

The GP system used in this study was implemented in C 
following a procedure similar to Singleton (1994). For the 
results presented here, the GP used four types of operator 
node (add, subtract, multiply and protected divide), and two 
types of terminal (a floating-point ephemeral random 
constant type and an input variable type representing the 
data for a specific m/z spectral peak). The configuration of 
the GP was defined using mainly arbitrary parameters. Five 
sub-populations (demes), each comprising 500 individuals, 
were used. At each generation, and for each deme, 50 new 
individuals were created by mutation and 50 by crossover, 
which then replaced less-fit members of the population using 
a ranked (i.e. sorted by decreasing fitness) selection method. 
The five demes were allowed to evolve independently for 10 
generations, after which all 2500 individuals were sorted 
according to their fitness scores and the best I 00 individuals 
from the total pooled population were used to replace the 
worst 100 in each of the five sub-populations. This process 
was repeated at 10-generation intervals throughout the GP 
run. 

In order to conduct a GP-based supervised learning 
regime on these data it was first necessary to partition the 
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samples into training and test sets. The training set consisted 
of the triplicate results for two representatives from each of 
the seven Bacillus species grown under both vegetative and 
sporulating conditions: a total of 84 PyMS spectra, and the 
test set comprised the remaining 132 spectra. 

The fitness function used in the GP returned the RMS 
(root mean square) error for the output expression as 
compared with the known class (encoded as 0.0 for 
vegetative and 1.0 for sporulated samples) for the training 
set samples. An optimal GP rule would threfore return a 
numerical value of 0.0 when presented with a vegetative 
sample, and I .0 when presented with a sporulated one. 

In addition to a node count limit of 64, a penalty of 0.01 
x [the number of nodes in the tree] was added to the fitness 
to reduce the complexity of the GP-derived rules. The GP 
optimised the rules by minimising the fitness function for the 
training set examples. The run terminated when the fitness 
value of the rule reached less than 0.0 I or when the rule was 
able to classify correctly all 132 members of the test set. 

3. Results and Discussion 
A GP approach was used to model the data from a PyMS 
analysis for a group of 36 Bacillus, spanning seven species. 
In order to compare several GP-derived predictive models, 
multiple GP runs were performed using a dataset comprising 
PyMS spectra for 216 examples, representing triplicate 
analyses of the 36 Bacillus strains grown under both 
vegetative and sporulating conditions. 

The GP-derived rules all differ in their detailed 
mathematical forms, but many share several features in 
common. This suggests that there are mathematical 
relationships between certain input variables and the desired 
output which different GP runs are consistently finding. For 
example, most of the rules contain a simple linear 
relationship between the desired output and mio5, m64 and, 
albeit with a lower frequency, with m76 . It is probable that 
frequently-occurring mathematical relationships in the rules 
indicate an equivalent relationship in the actual physico­
chemical or biological processes underlying the 
experimental observations. 

Variable selection is a procedure which substantially 
reduces the size of the search space for problems of 
extremely high dimensionality by selecting a small subset of 
variables from those available. By doing this, the 
dimensionality of the problem may be reduced substantially, 
with consequent benefits for the rapid derivation of readily­
interpretable predictive models, but there is the potential 
penalty of losing any useful information provided by the 
variables which are being discarded. The task of selecting a 
small subset of variables which provide a maximally-useful 
amount of information for the derivation of predictive 
models whilst minimising the dimensionality of the problem 
search space is a common one for many practical 
experimental methods capable of recording data for a large 
number of variables. 
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Table 1 The rules and predictive accuracies from 10 example GP runs. 

Run GP Rule 

1 

2 

3 output = 111iosm,,i11~61n.i1 -111i1s 

Number correctly classified 
(out of 132) 

128 

124 

...................................................................... ,,,, _______ _ 
124 

.. ---·-·--· ---- - -··-····-·-.. ····---·---"-'""'"""""'"'"""'-'"'''"''"'"'""""'""""'"'""''"'"'"'''"'""~·=~ .................................... ,,,_,,,,,,, .................................................................................................................................................................................................................................... ,,_, ____ ,_ 

4 output= 11lios + n~9 
- f11go + 2m64 -111i:w -111i42 -171i46 -111i 1s 
~5 

122 

, .. -_, .. _,_ .. _ .. __ ..... __ ,_, .. _.,,. ____ ................ '"'"""'"""'"'"''"'"'-"'"'"""""'"'"'"""'""-"""'''"-""'""""'""""""""'"""'"'"'''"'"'''""'""'"'""'"' "'""'""'"""''""""""''"'"''"""''''""'"''"'''"''''"" ................................................. . ...... -.......... _ ................................................ -..... --·--
5 l53nlios - '11i67 ( 0 47 )m 

output = ) -171i34 + ln.i6 + · ~9 64 - nlis1 
0.87(~ -n1i 51 

132 

..... ,,,, _______ , __ ,, ___ , ___ ,, ................ ,,_, __ ,,,, ____ , __ ,, ____ ,, ____ ,_,,_,,,, __ , ___ ,,_, ____ ,_,,, __ , __ ,, __ , __ ,_._,,, _____ , ___ ,_,_ .............................................. __ ._, ______ , .... ___ , ______ _ 
6 output = nlios + ~6 - 3171i 68 + 171i 25m64 

2 
+ m64 -171i42 - 0.09 128 ----

... ·-···· .. ·-···-- _,,,, ____ , ___ ,,,_,_, ........... _ ..................... .._ .. __ , ____ ,_,,,_, __ ._ ........... - ....................................... - ................................................................... ,_ .............................................................................. , ___ ,, ................. -............................... --.. --.. -
7 129 

...... -... - ... ·--·- ______ ..,_,,,, .......... _,.,. _____ , ............. _,,_,. ___ ,_,,_,_,_,_,_,,.,,,,. __ ...,.,,.,_,_, ___ ,, .. _,, __ ,,_ ....... ._ ___ -.. -............ ,, ____ .. __ ,.. __ ,, __ , _____ _ 
8 output = (f11g9 + 1rt,6 )

2 
+ 2m64 -111ii5 - n~ 1s -17li34 120 

..... - ... ·--- ___ .. ___ ......... , ... _ .. __ , ...... _ .... _,,,,, __ ,, .............................. - ................. - ............ __ ,,, ......................................... ._ ......... _ .............. __ ........ _ .................................................................................................... __ ...... -....... _ .. ,., __ . 
9 output= 2.59171i 05 +m51 mM +171i 79 -2171i56 -4.19171i 34 130 . 

..... - ....... -·-· ,,, __ .... ______ ,_,_,,._ .. , .............................................................. ~ ................................................................................................................................................ ,, .... _ ... ., ................................................................................................................................................................. -...... -·--
10 

Conventional variable selection is performed by 
calculating some statistical metric relating the input 
variables to the desired outputs and choosing those inputs 
ranked as most characteristic. A characteristic variable is 
one which shows a high degree of correlation between its 
experimentally-measured values and the known target values 
of the problem to be solved. For the sporulation problem 
described here, a highly characteristic variable would 
represent a m/z peak which consistently showed a high/low 
or low/high pattern to its values for bacterial samples grown 
under either vegetative or sporulating conditions. 

The most commonly-used statistical metrics are shown in 
Equations 1-3

116
•
171

, where a i is the standard deviation for 

peak i in all classes, a (i.k) is the standard deviation for peak 

i in class k (k = 0 for vegetative and 1 for sporulated 
samples), nk is the number of members in class k, xi is the 

mean of peak i for all classes, and XU.kl is the mean of peak 
i in class k. 

The rules from 10 example GP runs are shown in Table 
1, along with their predictive accuracies for the 132-sample 
test set, which comprised 66 vegetative and 66 sporulated 
samples all previously unseen by the GP. The term mn refers 
to the ion count for a m/z ratio of n, expressed as a 

Equation 1 

Equation 2 

Equation 3 

F = (j(i ,k) 
I 2 

(j . 
I 

120 

2 

The Fisher Test (F-test) 

The Student Test (t-test) 

Characteristicity 



percentage of the total ion count for that sample. Each 
spectrum contained 150 m 0 values, ranging from m 51 to m 200. 

Each GP was trained using an 84-sample training set of 
42 vegetative and 42 sporulated samples, with the fitness 
function returning the RMS error for the rule's output as 
compared with the desired output (which was set to 0.0 for 
vegetative samples and 1.0 for sporulated samples). To 
classify a sample, an output value < 0.5 was taken to 
indicate a vegetative sample, and one ~ 0.5 to indicate a 
sporulated sample. 

The 10 example GP-derived rules use 34 of the 150 
possible variables in the spectra but, because of the size 
constraints on the rules, each individual rule uses only about 
6 to 9 variables. Surprisingly, the GP frequently selects 
variables other than those indicated by the statistical metrics 
to be the most characteristic for classification purposes 
(Table 2). In fact, in addition to those that are most 
characteristic, the GP consistently selects variables that are 
least characteristic. Inspection of the rules show that these 
non-characteristic variables are often being used as internal 
standard reference points: the fact that they are uncorrelated 
with the outputs (i.e. are independent or even constant) 
means that they are ideal variables to use in operations such 
as normalisation and baseline correction between samples. 
The use of low characteristicity variables in this way 
suggests that, although the data have already been 
normalised using the total ion count for the whole data set, 
the process of selecting a subset of the variables may 
necessitate a further normalisation of the selected variables 
to enable the best predictive models to be derived. 

An example of the use of internal reference points is seen 
in the rule from example run 3 (Table 1), where three highly 
characteristic variables m105, m64 and m76 (with average 
characteristicity rankings of 4.67, 2.67 and 1 respectively) 
are all found as ratios with m134 (average rank 140.33). This 
rule also contains a scaling factor of m97 (average rank 103), 
again as a ratio with m 134 and additionally uses ml78 (average 
rank 107.67) as a baseline correction factor. 

The observation that the GP models use variables at both 
extremes of the characteristicity scale has obvious 
implications for the conventional approach to variable 
selection, which is to choose only those variables with high 
statistical characteristicity. 

It was noted that m105 appeared in the rules much more 
frequently than any other variable, despite several other 
variables having a higher average characteristicity ranking. 
On closer examination, it was found that the data ranges for 
either sporulated or vegetative classes for m105 overlapped 
by just 9 samples, which was the lowest such overlap in the 
whole data set. The next lowest, m76, had 20 overlapping 
samples. Thus m105, although having a lower statistical 
characteristicity, actually provided the greatest 
discrimination between the sporulation classes of any single 
input variable. The statistical metrics do not take into 
account the actual distribution of points both within and 
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between the classes, and so may give a somewhat inaccurate 
measure for the suitability of variables for use in a 
classification problem such as this. 

The consistent selection by the GP of a small number of 
m/z peaks with high characteristicity, specifically peaks m105 , 

m64 and m16, strongly suggests that molecules with these 
masses (105, 64 and 76 atomic mass units) are involved in 
the physico-chemical processes underlying the analysis of 
bacterial sporulation by PyMS. It is possible, therefore, to 
design a directed chemical analysis in order to identify 
molecules with these masses in the pyrolysate, and thereby 
to improve the understanding of the biochemistry of 
sporulation. Such a directed analysis would not have been so 
readily possible without the variable selection provided by 
the GP. 

Table 2 Characteristicity rankings (relative positions in 
a sorted list) of the spectral peaks used by the rules in 
Table 1. 

Peak 

(m/z) 

51 

F-test 

11 

Ranking 

t-test Characteristicitv 

7 15 

55 107 109 126 ················ .................................. ·················· ······· ········· ·································· 
58 14 14 20 

64 2 4 2 

72 79 68 114 ......... ......................................... ·········· ··· ·············· ·· ···· · ···· ······ ··· ····· ·············· ·· 
76 1 ......... .. .................... ........................ .. ... ....... ........... ...................................... .. 
79 12 13 14 ................ ··············· ··················· ··························· ·· ····· ········ ·· ··········· ············· 

...... ~g ...... .. ............. ?.~ ......... ...... ...... .. ... ... ~- ~. ~ .......................... ...!~ .............. . 

. ..... ~~· ··· · · .... .. ..... .... . ~ ............................... ~.~ ............................... ~ ............... . 

...... ~~ ... .................. ~.g ...................... ......... ~ ................ ... ............ 1.~ .............. . 

.... .. ~~ ................... ..?.? .............................. ~~ ....... ....................... ~?. .......... .. .. . 

...... ~?.. ..... . ............ ·~-~ ~ ............................ 1}.7.. ..... ... .. .. . ....... ...... ~.?~ ............ .. 

...... ~?.. ..... .. .... .. .... .. ~ .~. ~ .................. .. ......... ?.?.... .. ... .. . .. .. . ........... --~-~g ........... .. . 

..... ~.~~ .................... .?. ................ ................ ~ ................................ ~ .... .. ......... . 
114 16 15 27 

················ ·································· ················· ·· ··············· ·························-········ 
·····~-~.! ..... ............... ~~ .............................. ?~ .............................. ?~ .............. . 

118 29 21 32 ................ ························· ········ .... ························ .............. .... .... ·············· 
..... ~.?.~ ..... .............. 1.~~ ......... .... ........ ... .... 1.~.s ..... ....................... ~.?g ...... .. ... .. . 
..... ~.~~-·-·· ............. ~ .~~ ...... ............. ... .... 1.~.o ........ ................... ~.~~ ............ . 

135 37 40 66 ............ .... ········ ······· ··················· ..... ..... .... ..................................................... . 
142 78 72 .............. ~-~-g ............ .. ................ ······························ ···· .... .......... ···· ·· ········· .. 
146 126 101 82 . .. ....... .. .... ·································· .... ..... ............. ......... .................................... . 

..... !.? .~ .. ... ... ....... .. .. ~.~? ......................... ~.~! ............................ ~-~~ ............. . 
152 129 142 140 ·· ····· ·· ······· ·································· ... .. .............................................................. . 

..... 1 ?~ .................... ?.~ ............................ ~ ! ............... ............... ~~ ........... .. .. 
156 46 76 58 ················ ................................. ············ ······· .......... .. .. ························· ········· 
157 70 98 71 ················ ·································· ·································· ................................. . 

... .. ~.?.~ ..... .............. ~.?.~ .............. ····· ........ ~.9? .......................... ..?.~ .............. . 
164 123 1 50 127 ················ ························ ········· ... .... ......... . ················ ·································· 
167 143 149 ........... ... ~}~ ............. . ................ ·································· ................................. . 
168 125 133 131 

................ ······· ········ ················ ··· ....... ... .... ................. ... ······· ·· ·· ········· ··· ·· ········· 
178 128 106 89 .................. ................. ......................................................... 

:::: :j:?.~::::: ::::::::: ...... ?.~ ....................... ...... !. ~. ~ .. ... ···· ·· ··· .............. ~. ~.?. ............. . 
1 98 116 111 90 
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4. Conclusions 
The vegetative and sporulated biomass from 36 Bacillus 
species were analysed by Curie-point pyrolysis mass 
spectrometry (PyMS). Direct visual analysis of these 150-
variable spectra was not possible, and so a GP approach was 
used to reduce the data dimensionality by deriving 
predictive models based on constrained-length rules. 

The GP was able to derive rules capable of modeling the 
data using just 6-9 variables, which may be a reflection of 
the intrinsic dimensionality of this data set, i.e. an indication 
of the minimum number of variables within the data set 
which are able to provide all the information necessary to 
derive the best predictive models. 

Inspection of the GP-derived rules showed that the 
models used not only the most characteristic variables (as 
measured by standard statistical metrics) but also the least 
characteristic. This enabled the GPs to derive good 
predictive models by performing normalisation and baseline 
correction between different samples, an ability likely to be 
lost if only the most characteristic variables are used. 

The GP was also able to identify variables which are 
actually more characteristic for classification purposes than 
the statistical metrics would suggest. Unlike the statistical 
methods, the GP is able to take into account the precise 
distribution of data values for any given variable, and so the 
GP was able to select variables by assessing their actual 
discriminatory performance, rather than estimating their 
discriminatory value based on statistical theory. 

The identification of characteristic ions by the GP allows 
a directed chemical analysis to be designed, and therefore 
this approach has the potential to lead to a better 
understanding of the physico-chemical processes underlying 
the classification of bacterial sporulation using Py MS. 

This study highlights some of the ways in which genetic 
programming can aid the practice of science in ways not 
easily achieveable using more conventional data modelling 
methods. With its ability to select those variables which 
provide the maximum information for the minimum of 
model complexity, and to derive simple, interpretable 
expressions using those variables, GP can provide insights 
into the mechanisms underlying scientific problems which 
would otherwise remain undiscovered. Genetic 
programming-based data modelling is therefore a uniquely 
powerful tool with the potential to advance scientific 
knowledge in a wide variety of experimental fields. 
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